| import argparse |
| import tools.find_mxnet |
| import mxnet as mx |
| import os |
| import sys |
| from train.train_net import train_net |
| |
| def parse_args(): |
| parser = argparse.ArgumentParser(description='Train a Single-shot detection network') |
| parser.add_argument('--dataset', dest='dataset', help='which dataset to use', |
| default='pascal', type=str) |
| parser.add_argument('--image-set', dest='image_set', help='train set, can be trainval or train', |
| default='trainval', type=str) |
| parser.add_argument('--year', dest='year', help='can be 2007, 2012', |
| default='2007,2012', type=str) |
| parser.add_argument('--val-image-set', dest='val_image_set', help='validation set, can be val or test', |
| default='test', type=str) |
| parser.add_argument('--val-year', dest='val_year', help='can be 2007, 2010, 2012', |
| default='2007', type=str) |
| parser.add_argument('--devkit-path', dest='devkit_path', help='VOCdevkit path', |
| default=os.path.join(os.getcwd(), 'data', 'VOCdevkit'), type=str) |
| parser.add_argument('--network', dest='network', type=str, default='vgg16_reduced', |
| choices=['vgg16_reduced'], help='which network to use') |
| parser.add_argument('--batch-size', dest='batch_size', type=int, default=32, |
| help='training batch size') |
| parser.add_argument('--resume', dest='resume', type=int, default=-1, |
| help='resume training from epoch n') |
| parser.add_argument('--finetune', dest='finetune', type=int, default=-1, |
| help='finetune from epoch n, rename the model before doing this') |
| parser.add_argument('--pretrained', dest='pretrained', help='pretrained model prefix', |
| default=os.path.join(os.getcwd(), 'model', 'vgg16_reduced'), type=str) |
| parser.add_argument('--epoch', dest='epoch', help='epoch of pretrained model', |
| default=1, type=int) |
| parser.add_argument('--prefix', dest='prefix', help='new model prefix', |
| default=os.path.join(os.getcwd(), 'model', 'ssd'), type=str) |
| parser.add_argument('--gpus', dest='gpus', help='GPU devices to train with', |
| default='0', type=str) |
| parser.add_argument('--begin-epoch', dest='begin_epoch', help='begin epoch of training', |
| default=0, type=int) |
| parser.add_argument('--end-epoch', dest='end_epoch', help='end epoch of training', |
| default=100, type=int) |
| parser.add_argument('--frequent', dest='frequent', help='frequency of logging', |
| default=20, type=int) |
| parser.add_argument('--data-shape', dest='data_shape', type=int, default=300, |
| help='set image shape') |
| parser.add_argument('--lr', dest='learning_rate', type=float, default=0.001, |
| help='learning rate') |
| parser.add_argument('--momentum', dest='momentum', type=float, default=0.9, |
| help='momentum') |
| parser.add_argument('--wd', dest='weight_decay', type=float, default=0.0001, |
| help='weight decay') |
| parser.add_argument('--mean-r', dest='mean_r', type=float, default=123, |
| help='red mean value') |
| parser.add_argument('--mean-g', dest='mean_g', type=float, default=117, |
| help='green mean value') |
| parser.add_argument('--mean-b', dest='mean_b', type=float, default=104, |
| help='blue mean value') |
| parser.add_argument('--lr-epoch', dest='lr_refactor_epoch', type=int, default=50, |
| help='refactor learning rate every N epoch') |
| parser.add_argument('--lr-ratio', dest='lr_refactor_ratio', type=float, default=0.9, |
| help='ratio to refactor learning rate') |
| parser.add_argument('--log', dest='log_file', type=str, default="train.log", |
| help='save training log to file') |
| parser.add_argument('--monitor', dest='monitor', type=int, default=0, |
| help='log network parameters every N iters if larger than 0') |
| args = parser.parse_args() |
| return args |
| |
| if __name__ == '__main__': |
| args = parse_args() |
| ctx = [mx.gpu(int(i)) for i in args.gpus.split(',')] |
| ctx = mx.cpu() if not ctx else ctx |
| train_net(args.network, args.dataset, args.image_set, args.year, |
| args.devkit_path, args.batch_size, |
| args.data_shape, [args.mean_r, args.mean_g, args.mean_b], |
| args.resume, args.finetune, args.pretrained, |
| args.epoch, args.prefix, ctx, args.begin_epoch, args.end_epoch, |
| args.frequent, args.learning_rate, args.momentum, args.weight_decay, |
| args.val_image_set, args.val_year, args.lr_refactor_epoch, |
| args.lr_refactor_ratio, args.monitor, args.log_file) |