| """ |
| test pretrained models |
| """ |
| from __future__ import print_function |
| import mxnet as mx |
| from common import find_mxnet, modelzoo |
| from common.util import download_file, get_gpus |
| from score import score |
| |
| def download_data(): |
| download_file('http://data.mxnet.io/data/val-5k-256.rec', 'data/val-5k-256.rec') |
| |
| def test_imagenet1k_resnet(**kwargs): |
| models = ['imagenet1k-resnet-34', |
| 'imagenet1k-resnet-50', |
| 'imagenet1k-resnet-101', |
| 'imagenet1k-resnet-152'] |
| accs = [.72, .75, .765, .76] |
| for (m, g) in zip(models, accs): |
| acc = mx.metric.create('acc') |
| (speed,) = score(model=m, data_val='data/val-5k-256.rec', |
| rgb_mean='0,0,0', metrics=acc, **kwargs) |
| r = acc.get()[1] |
| print('testing %s, acc = %f, speed = %f img/sec' % (m, r, speed)) |
| assert r > g and r < g + .1 |
| |
| def test_imagenet1k_inception_bn(**kwargs): |
| acc = mx.metric.create('acc') |
| m = 'imagenet1k-inception-bn' |
| g = 0.72 |
| (speed,) = score(model=m, |
| data_val='data/val-5k-256.rec', |
| rgb_mean='123.68,116.779,103.939', metrics=acc, **kwargs) |
| r = acc.get()[1] |
| print('Tested %s acc = %f, speed = %f img/sec' % (m, r, speed)) |
| assert r > g and r < g + .1 |
| |
| if __name__ == '__main__': |
| gpus = get_gpus() |
| assert len(gpus) > 0 |
| batch_size = 16 * len(gpus) |
| gpus = ','.join([str(i) for i in gpus]) |
| |
| download_data() |
| test_imagenet1k_resnet(gpus=gpus, batch_size=batch_size) |
| test_imagenet1k_inception_bn(gpus=gpus, batch_size=batch_size) |