blob: d0f527a740c29092c88c485c40c531a07e3a243b [file] [log] [blame]
"""
test pretrained models
"""
from __future__ import print_function
import mxnet as mx
from common import find_mxnet, modelzoo
from common.util import download_file, get_gpus
from score import score
def download_data():
download_file('http://data.mxnet.io/data/val-5k-256.rec', 'data/val-5k-256.rec')
def test_imagenet1k_resnet(**kwargs):
models = ['imagenet1k-resnet-34',
'imagenet1k-resnet-50',
'imagenet1k-resnet-101',
'imagenet1k-resnet-152']
accs = [.72, .75, .765, .76]
for (m, g) in zip(models, accs):
acc = mx.metric.create('acc')
(speed,) = score(model=m, data_val='data/val-5k-256.rec',
rgb_mean='0,0,0', metrics=acc, **kwargs)
r = acc.get()[1]
print('testing %s, acc = %f, speed = %f img/sec' % (m, r, speed))
assert r > g and r < g + .1
def test_imagenet1k_inception_bn(**kwargs):
acc = mx.metric.create('acc')
m = 'imagenet1k-inception-bn'
g = 0.72
(speed,) = score(model=m,
data_val='data/val-5k-256.rec',
rgb_mean='123.68,116.779,103.939', metrics=acc, **kwargs)
r = acc.get()[1]
print('Tested %s acc = %f, speed = %f img/sec' % (m, r, speed))
assert r > g and r < g + .1
if __name__ == '__main__':
gpus = get_gpus()
assert len(gpus) > 0
batch_size = 16 * len(gpus)
gpus = ','.join([str(i) for i in gpus])
download_data()
test_imagenet1k_resnet(gpus=gpus, batch_size=batch_size)
test_imagenet1k_inception_bn(gpus=gpus, batch_size=batch_size)