| /*! |
| * Copyright (c) 2017 by Contributors |
| * \file control_flow_op.cc |
| * \brief CPU Implementation of flow control |
| */ |
| #include "./control_flow_op.h" |
| |
| namespace mxnet { |
| namespace op { |
| |
| NNVM_REGISTER_OP(where) |
| .MXNET_DESCRIBE("Given three ndarrays, condition, x, and y, return an ndarray" |
| " with the elements from x or y, depending on the elements" |
| " from condition are true or false. x and y must have the same" |
| " shape. If condition has the same shape as x, each element" |
| " in the output array is from x if the corresponding element" |
| " in the condition is true, and from y if false. If condtion" |
| " does not have the same shape as x, it must be a 1D array" |
| " whose size is the same as x's first dimension size. Each" |
| " row of the output array is from x's row if the corresponding" |
| " element from condition is true, and from y's row if false.") |
| .set_num_inputs(3) |
| .set_num_outputs(1) |
| .set_attr<nnvm::FListInputNames>("FListInputNames", |
| [](const NodeAttrs& attrs) { |
| return std::vector<std::string>{"condition", "x", "y"}; |
| }) |
| .set_attr<nnvm::FInferShape>("FInferShape", WhereOpShape) |
| .set_attr<nnvm::FInferType>("FInferType", WhereOpType) |
| .set_attr<FCompute>("FCompute<cpu>", WhereOpForward<cpu>) |
| .set_attr<nnvm::FGradient>("FGradient", |
| // Use the following lambda function instead of ElemwiseGradUseIn |
| // for best efficiency. grad[condition] = 0; to calculate grad[x] and grad[y] |
| // we need only condition from input. |
| [](const nnvm::NodePtr& n, const std::vector<nnvm::NodeEntry>& ograds) { |
| std::vector<nnvm::NodeEntry> ret; |
| // make zero grad node for grad[condition] |
| auto p = MakeNode("zeros_like", n->attrs.name + "_cond_backward", |
| {n->inputs[0]}, nullptr, &n); |
| ret.emplace_back(nnvm::NodeEntry{p, 0, 0}); |
| |
| // make grad nodes for grad[x] and grad[y] |
| std::vector<nnvm::NodeEntry> heads(ograds.begin(), ograds.end()); |
| heads.push_back(n->inputs[0]); // only need condition to calculate gradients |
| p = nnvm::Node::Create(); |
| p->attrs.op = nnvm::Op::Get("_backward_where"); |
| p->attrs.name = n->attrs.name + "_backward"; |
| p->attrs.dict = n->attrs.dict; |
| if (p->op()->attr_parser != nullptr) { |
| p->op()->attr_parser(&(p->attrs)); |
| } |
| p->control_deps.emplace_back(n); |
| p->inputs = std::move(heads); |
| ret.emplace_back(nnvm::NodeEntry{p, 0, 0}); |
| ret.emplace_back(nnvm::NodeEntry{p, 1, 0}); |
| |
| return ret; |
| }) |
| .add_argument("condition", "NDArray-or-Symbol", "condition array") |
| .add_argument("x", "NDArray-or-Symbol", "") |
| .add_argument("y", "NDArray-or-Symbol", ""); |
| |
| NNVM_REGISTER_OP(_backward_where) |
| .set_num_inputs(2) |
| .set_num_outputs(2) |
| .set_attr<nnvm::TIsBackward>("TIsBackward", true) |
| .set_attr<FCompute>("FCompute<cpu>", WhereOpBackward<cpu>); |
| |
| } // namespace op |
| } // namespace mxnet |