| /*! |
| * Copyright (c) 2015 by Contributors |
| * \file elemwise_sum.h |
| * \brief elementwise sum |
| * \author Bing Xu |
| */ |
| #ifndef MXNET_OPERATOR_TENSOR_ELEMWISE_SUM_H_ |
| #define MXNET_OPERATOR_TENSOR_ELEMWISE_SUM_H_ |
| |
| #include <dmlc/logging.h> |
| #include <cstring> |
| #include <vector> |
| #include "../operator_common.h" |
| #include "../elemwise_op_common.h" |
| #include "../mshadow_op.h" |
| #include "../mxnet_op.h" |
| |
| namespace mxnet { |
| namespace op { |
| |
| struct Sum { |
| template<typename DType> |
| MSHADOW_XINLINE static DType sum(int i, const DType* a) { |
| return a[i]; |
| } |
| template<typename DType, typename... DTypes> |
| MSHADOW_XINLINE static DType sum(int i, const DType* a, const DTypes... b) { |
| return a[i] + sum(i, b...); |
| } |
| template<typename DType, typename... DTypes> |
| MSHADOW_XINLINE static void Map(int i, DType* out, const OpReqType req, const DType* in0, |
| const DTypes... ins) { |
| KERNEL_ASSIGN(out[i], req, sum(i, in0, ins...)); |
| } |
| }; |
| |
| template<typename xpu, typename DType> |
| void ElementWiseSumCompute_(const nnvm::NodeAttrs& attrs, |
| const OpContext& ctx, |
| const std::vector<TBlob>& in_data, |
| const std::vector<OpReqType>& req, |
| const std::vector<TBlob>& out_data) { |
| using namespace mxnet_op; |
| if (req[0] == kNullOp) return; |
| size_t size = in_data.size(); |
| Stream<xpu> *s = ctx.get_stream<xpu>(); |
| DType* out_dptr = out_data[0].dptr<DType>(); |
| int out_size = static_cast<int>((out_data[0].Size() + DataType<DType>::kLanes - 1) |
| /DataType<DType>::kLanes); |
| switch (size) { |
| case 2: { |
| DType* in_0_dptr = in_data[0].dptr<DType>(); |
| DType* in_1_dptr = in_data[1].dptr<DType>(); |
| Kernel<Sum, xpu>::Launch(s, out_size, out_dptr, req[0], in_0_dptr, in_1_dptr); |
| break; |
| } |
| case 3: { |
| DType* in_0_dptr = in_data[0].dptr<DType>(); |
| DType* in_1_dptr = in_data[1].dptr<DType>(); |
| DType* in_2_dptr = in_data[2].dptr<DType>(); |
| Kernel<Sum, xpu>::Launch(s, out_size, out_dptr, req[0], in_0_dptr, in_1_dptr, in_2_dptr); |
| break; |
| } |
| case 4: { |
| DType* in_0_dptr = in_data[0].dptr<DType>(); |
| DType* in_1_dptr = in_data[1].dptr<DType>(); |
| DType* in_2_dptr = in_data[2].dptr<DType>(); |
| DType* in_3_dptr = in_data[3].dptr<DType>(); |
| Kernel<Sum, xpu>::Launch(s, out_size, out_dptr, req[0], in_0_dptr, in_1_dptr, in_2_dptr, |
| in_3_dptr); |
| break; |
| } |
| default: { |
| DType* in_0_dptr = in_data[0].dptr<DType>(); |
| Kernel<Sum, xpu>::Launch(s, out_size, out_dptr, req[0], in_0_dptr); |
| for (size_t i = 1; i < size; ++i) { |
| DType* in_dptr = in_data[i].dptr<DType>(); |
| Kernel<Sum, xpu>::Launch(s, out_size, out_dptr, req[0], out_dptr, in_dptr); |
| } |
| break; |
| } |
| } |
| } |
| |
| template<typename xpu> |
| void ElementWiseSumCompute(const nnvm::NodeAttrs& attrs, |
| const OpContext& ctx, |
| const std::vector<TBlob>& inputs, |
| const std::vector<OpReqType>& req, |
| const std::vector<TBlob>& outputs) { |
| CHECK_EQ(outputs.size(), 1U); |
| MSHADOW_TYPE_SWITCH(outputs[0].type_flag_, DType, { |
| ElementWiseSumCompute_<xpu, DType>(attrs, ctx, inputs, req, outputs); |
| }); |
| } |
| |
| template<typename xpu> |
| void ElementWiseSumComputeWithHalf2(const nnvm::NodeAttrs& attrs, |
| const OpContext& ctx, |
| const std::vector<TBlob>& inputs, |
| const std::vector<OpReqType>& req, |
| const std::vector<TBlob>& outputs) { |
| CHECK_EQ(outputs.size(), 1U); |
| MSHADOW_TYPE_SWITCH_WITH_HALF2(outputs[0].type_flag_, DType, { |
| ElementWiseSumCompute_<xpu, DType>(attrs, ctx, inputs, req, outputs); |
| }); |
| } |
| |
| } // namespace op |
| } // namespace mxnet |
| #endif // MXNET_OPERATOR_TENSOR_ELEMWISE_SUM_H_ |