| /*! |
| * Copyright (c) 2016 by Contributors |
| * \file elemwise_binary_scalar_op.cc |
| * \brief CPU Implementation of unary function. |
| */ |
| #include "./elemwise_unary_op.h" |
| #include "./elemwise_binary_op.h" |
| #include "./elemwise_binary_broadcast_op.h" |
| |
| namespace mxnet { |
| namespace op { |
| MXNET_OPERATOR_REGISTER_BINARY_BROADCAST(broadcast_power) |
| .describe(R"code(Returns result of first array elements raised to powers from second array, element-wise with broadcasting. |
| |
| Example:: |
| |
| x = [[ 1., 1., 1.], |
| [ 1., 1., 1.]] |
| |
| y = [[ 0.], |
| [ 1.]] |
| |
| broadcast_power(x, y) = [[ 2., 2., 2.], |
| [ 4., 4., 4.]] |
| |
| )code" ADD_FILELINE) |
| .set_attr<FCompute>("FCompute<cpu>", BinaryBroadcastCompute<cpu, mshadow_op::power>) |
| .set_attr<nnvm::FGradient>("FGradient", ElemwiseGradUseIn{"_backward_broadcast_power"}); |
| |
| NNVM_REGISTER_OP(_backward_broadcast_power) |
| .set_num_inputs(3) |
| .set_num_outputs(2) |
| .set_attr<nnvm::TIsBackward>("TIsBackward", true) |
| .set_attr<nnvm::FInplaceOption>("FInplaceOption", |
| [](const NodeAttrs& attrs){ |
| return std::vector<std::pair<int, int> >{{0, 1}}; |
| }) |
| .set_attr<FResourceRequest>("FResourceRequest", |
| [](const NodeAttrs& attrs) { |
| return std::vector<ResourceRequest>{ResourceRequest::kTempSpace}; |
| }) |
| .set_attr<FCompute>("FCompute<cpu>", BinaryBroadcastBackwardUseIn<cpu, mshadow_op::power_grad, |
| mshadow_op::power_rgrad>); |
| |
| MXNET_OPERATOR_REGISTER_BINARY_BROADCAST(broadcast_maximum) |
| .describe(R"code(Returns element-wise maximum of the input arrays with broadcasting. |
| |
| This function compares two input arrays and returns a new array having the element-wise maxima. |
| |
| Example:: |
| |
| x = [[ 1., 1., 1.], |
| [ 1., 1., 1.]] |
| |
| y = [[ 0.], |
| [ 1.]] |
| |
| broadcast_maximum(x, y) = [[ 1., 1., 1.], |
| [ 1., 1., 1.]] |
| |
| )code" ADD_FILELINE) |
| .set_attr<FCompute>("FCompute<cpu>", BinaryBroadcastCompute<cpu, mshadow_op::maximum>) |
| .set_attr<nnvm::FGradient>("FGradient", ElemwiseGradUseIn{"_backward_broadcast_maximum"}); |
| |
| NNVM_REGISTER_OP(_backward_broadcast_maximum) |
| .set_num_inputs(3) |
| .set_num_outputs(2) |
| .set_attr<nnvm::TIsBackward>("TIsBackward", true) |
| .set_attr<nnvm::FInplaceOption>("FInplaceOption", |
| [](const NodeAttrs& attrs){ |
| return std::vector<std::pair<int, int> >{{0, 1}}; |
| }) |
| .set_attr<FResourceRequest>("FResourceRequest", |
| [](const NodeAttrs& attrs) { |
| return std::vector<ResourceRequest>{ResourceRequest::kTempSpace}; |
| }) |
| .set_attr<FCompute>("FCompute<cpu>", BinaryBroadcastBackwardUseIn<cpu, mshadow_op::ge, |
| mshadow_op::lt>); |
| |
| MXNET_OPERATOR_REGISTER_BINARY_BROADCAST(broadcast_minimum) |
| .describe(R"code(Returns element-wise minimum of the input arrays with broadcasting. |
| |
| This function compares two input arrays and returns a new array having the element-wise minima. |
| |
| Example:: |
| |
| x = [[ 1., 1., 1.], |
| [ 1., 1., 1.]] |
| |
| y = [[ 0.], |
| [ 1.]] |
| |
| broadcast_maximum(x, y) = [[ 0., 0., 0.], |
| [ 1., 1., 1.]] |
| |
| )code" ADD_FILELINE) |
| .set_attr<FCompute>("FCompute<cpu>", BinaryBroadcastCompute<cpu, mshadow_op::minimum>) |
| .set_attr<nnvm::FGradient>("FGradient", ElemwiseGradUseIn{"_backward_broadcast_minimum"}); |
| |
| NNVM_REGISTER_OP(_backward_broadcast_minimum) |
| .set_num_inputs(3) |
| .set_num_outputs(2) |
| .set_attr<nnvm::TIsBackward>("TIsBackward", true) |
| .set_attr<nnvm::FInplaceOption>("FInplaceOption", |
| [](const NodeAttrs& attrs){ |
| return std::vector<std::pair<int, int> >{{0, 1}}; |
| }) |
| .set_attr<FResourceRequest>("FResourceRequest", |
| [](const NodeAttrs& attrs) { |
| return std::vector<ResourceRequest>{ResourceRequest::kTempSpace}; |
| }) |
| .set_attr<FCompute>("FCompute<cpu>", BinaryBroadcastBackwardUseIn<cpu, mshadow_op::le, |
| mshadow_op::gt>); |
| |
| MXNET_OPERATOR_REGISTER_BINARY_BROADCAST(broadcast_hypot) |
| .describe(R"code( Returns the hypotenuse of a right angled triangle, given its "legs" |
| with broadcasting. |
| |
| It is equivalent to doing :math:`sqrt(x_1^2 + x_2^2)`. |
| |
| Example:: |
| |
| x = [[ 3., 3., 3.]] |
| |
| y = [[ 4.], |
| [ 4.]] |
| |
| broadcast_hypot(x, y) = [[ 5., 5., 5.], |
| [ 5., 5., 5.]] |
| |
| z = [[ 0.], |
| [ 4.]] |
| |
| broadcast_hypot(x, z) = [[ 3., 3., 3.], |
| [ 5., 5., 5.]] |
| |
| )code" ADD_FILELINE) |
| .set_attr<FCompute>("FCompute<cpu>", BinaryBroadcastCompute<cpu, mshadow_op::hypot>) |
| .set_attr<nnvm::FGradient>("FGradient", ElemwiseGradUseIn{ "_backward_broadcast_hypot" }); |
| |
| NNVM_REGISTER_OP(_backward_broadcast_hypot) |
| .set_num_inputs(3) |
| .set_num_outputs(2) |
| .set_attr<nnvm::TIsBackward>("TIsBackward", true) |
| .set_attr<nnvm::FInplaceOption>("FInplaceOption", |
| [](const NodeAttrs& attrs) { |
| return std::vector<std::pair<int, int> > {{0, 1}}; |
| }) |
| .set_attr<FResourceRequest>("FResourceRequest", |
| [](const NodeAttrs& attrs) { |
| return std::vector<ResourceRequest>{ResourceRequest::kTempSpace}; |
| }) |
| .set_attr<FCompute>("FCompute<cpu>", BinaryBroadcastBackwardUseIn<cpu, mshadow_op::hypot_grad_left, |
| mshadow_op::hypot_grad_right>); |
| |
| } // namespace op |
| } // namespace mxnet |