blob: 303d1d2f0086de0002e2862d35c80193cc0ce135 [file] [log] [blame]
/*!
* Copyright (c) 2017 by Contributors
* \file multisample_op.cc
* \brief CPU-implementation of multi-sampling operators
*/
#include "./multisample_op.h"
namespace mxnet {
namespace op {
struct UniformSampler {
template<typename DType>
struct Sampler{
std::mt19937 rnd_;
// Ensure that half_t is handled correctly.
typedef typename std::conditional<std::is_floating_point<DType>::value,
DType, double>::type FType;
typedef typename std::conditional<std::is_integral<DType>::value,
std::uniform_int_distribution<DType>,
std::uniform_real_distribution<FType>>::type GType;
GType gen_;
template<typename PType>
Sampler(PType a, PType b, int seed): rnd_(seed), gen_(a, b) { }
MSHADOW_XINLINE DType operator()() { return gen_(rnd_); }
};
};
struct NormalSampler {
template<typename DType>
struct Sampler{
std::mt19937 rnd_;
typedef typename std::conditional<std::is_floating_point<DType>::value,
DType, double>::type GType;
std::normal_distribution<GType> gen_;
template<typename PType>
Sampler(PType mu, PType sigma, int seed): rnd_(seed), gen_(mu, sigma) {}
MSHADOW_XINLINE DType operator()() { return gen_(rnd_); }
};
};
struct GammaSampler {
template<typename DType>
struct Sampler{
std::mt19937 rnd_;
// Avoid problems with static check during compilation for integral types.
typedef typename std::conditional<std::is_floating_point<DType>::value,
DType, double>::type GType;
std::gamma_distribution<GType> gen_;
template<typename PType>
Sampler(PType alpha, PType beta, int seed): rnd_(seed), gen_(alpha, beta) {}
MSHADOW_XINLINE DType operator()() { return gen_(rnd_); }
};
};
struct ExponentialSampler {
template<typename DType>
struct Sampler{
std::mt19937 rnd_;
// Avoid problems with static check during compilation for integral types.
typedef typename std::conditional<std::is_floating_point<DType>::value,
DType, double>::type GType;
std::exponential_distribution<GType> gen_;
template<typename PType>
Sampler(PType lambda, PType , int seed): rnd_(seed), gen_(lambda) {}
MSHADOW_XINLINE DType operator()() { return gen_(rnd_); }
};
};
struct PoissonSampler {
template<typename DType>
struct Sampler{
std::mt19937 rnd_;
// Allow sampling of a Poisson distribution also to output floating point types.
typedef typename std::conditional<std::is_integral<DType>::value,
DType, int>::type GType;
std::poisson_distribution<GType> gen_;
template<typename PType>
Sampler(PType lambda, PType , int seed): rnd_(seed), gen_(lambda) { }
MSHADOW_XINLINE DType operator()() { return static_cast<DType>(gen_(rnd_)); }
};
};
// Negative binomial distribution as defined in C++ standard library
struct NegativeBinomialSampler {
template<typename DType>
struct Sampler{
std::mt19937 rnd_;
// Allow sampling of a negative binomial distribution also to output floating point types.
typedef typename std::conditional<std::is_integral<DType>::value, DType, int>::type GType;
std::negative_binomial_distribution<GType> gen_;
template<typename PType>
Sampler(PType k, PType p, int seed): rnd_(seed), gen_(k, p) {}
MSHADOW_XINLINE DType operator()() { return static_cast<DType>(gen_(rnd_)); }
};
};
// Generalized form of the negative binomial distribution which is generated by
// a poisson-gamma mixture: X ~ NegBin(mu, alpha) corresponds to
// X ~ Poisson(Gamma(1/alpha,mu*alpha))
struct GeneralizedNegativeBinomialSampler {
template<typename DType>
struct Sampler {
// We allow the boundary case where the negative binomial equals the Poisson distribution
bool poisson_;
double mu_;
std::mt19937 rnd_;
// Realize the negative binomial by a Poisson distribution over a gamma distributed mean.
std::gamma_distribution<> gen_;
template<typename PType>
Sampler(PType mu, PType alpha, int seed): poisson_(alpha == 0.0), mu_(mu), rnd_(seed),
gen_((alpha == PType(0) ? PType(1) : PType(1)/alpha), mu*alpha) {}
// Allow sampling of a Poisson distribution also to output floating point types.
typedef typename std::conditional<std::is_integral<DType>::value, DType, int>::type GType;
MSHADOW_XINLINE DType operator()() { return static_cast<DType>(
std::poisson_distribution<GType>(poisson_ ? mu_ : gen_(rnd_))(rnd_)); }
};
};
DMLC_REGISTER_PARAMETER(MultiSampleParam);
#define MXNET_OPERATOR_REGISTER_SAMPLING(distr, sampler, num_inputs, \
input_name_1, input_name_2, \
input_desc_1, input_desc_2, \
description) \
NNVM_REGISTER_OP(sample_##distr) \
.describe(description()+std::string(ADD_FILELINE)) \
.set_num_inputs(num_inputs) \
.set_num_outputs(1) \
.set_attr_parser(ParamParser<MultiSampleParam>) \
.set_attr<nnvm::FListInputNames>("FListInputNames", \
[](const NodeAttrs& attrs) { \
std::vector<std::string> v = {input_name_1, input_name_2}; v.resize(num_inputs); return v; \
}) \
.set_attr<nnvm::FInferShape>("FInferShape", MultiSampleOpShape) \
.set_attr<nnvm::FInferType>("FInferType", MultiSampleOpType) \
.set_attr<FResourceRequest>("FResourceRequest", [](const NodeAttrs& attrs) { \
return std::vector<ResourceRequest>(1, ResourceRequest::kRandom); \
}) \
.set_attr<FCompute>("FCompute<cpu>", MultiSampleOpForward<cpu, sampler>) \
.set_attr<nnvm::FGradient>("FGradient", MakeZeroGradNodes) \
.add_argument(input_name_1, "NDArray-or-Symbol", input_desc_1) \
.add_arguments(MultiSampleParam::__FIELDS__())
#define MXNET_OPERATOR_REGISTER_SAMPLING1(distr, sampler, input_name, input_desc, \
description) \
MXNET_OPERATOR_REGISTER_SAMPLING(distr, sampler, 1, input_name, input_name, \
input_desc, input_desc, description);
#define MXNET_OPERATOR_REGISTER_SAMPLING2(distr, sampler, input_name_1, input_name_2, \
input_desc_1, input_desc_2, description) \
MXNET_OPERATOR_REGISTER_SAMPLING(distr, sampler, 2, input_name_1, input_name_2, \
input_desc_1, input_desc_2, description) \
.add_argument(input_name_2, "NDArray-or-Symbol", input_desc_2);
inline std::string uniform_desc() {
return std::string(R"code(Concurrent sampling from multiple
uniform distributions on the intervals given by *[low,high)*.
The parameters of the distributions are provided as input arrays.
Let *[s]* be the shape of the input arrays, *n* be the dimension of *[s]*, *[t]*
be the shape specified as the parameter of the operator, and *m* be the dimension
of *[t]*. Then the output will be a *(n+m)*-dimensional array with shape *[s]x[t]*.
For any valid *n*-dimensional index *i* with respect to the input arrays, *output[i]*
will be an *m*-dimensional array that holds randomly drawn samples from the distribution
which is parameterized by the input values at index *i*. If the shape parameter of the
operator is not set, then one sample will be drawn per distribution and the output array
has the same shape as the input arrays.
Examples::
low = [ 0.0, 2.5 ]
high = [ 1.0, 3.7 ]
// Draw a single sample for each distribution
sample_uniform(low, high) = [ 0.40451524, 3.18687344]
// Draw a vector containing two samples for each distribution
sample_uniform(low, high, shape=(2)) = [[ 0.40451524, 0.18017688],
[ 3.18687344, 3.68352246]]
)code");
}
inline std::string normal_desc() {
return std::string(R"code(Concurrent sampling from multiple
normal distributions with parameters *mu* (mean) and *sigma* (standard deviation).
The parameters of the distributions are provided as input arrays.
Let *[s]* be the shape of the input arrays, *n* be the dimension of *[s]*, *[t]*
be the shape specified as the parameter of the operator, and *m* be the dimension
of *[t]*. Then the output will be a *(n+m)*-dimensional array with shape *[s]x[t]*.
For any valid *n*-dimensional index *i* with respect to the input arrays, *output[i]*
will be an *m*-dimensional array that holds randomly drawn samples from the distribution
which is parameterized by the input values at index *i*. If the shape parameter of the
operator is not set, then one sample will be drawn per distribution and the output array
has the same shape as the input arrays.
Examples::
mu = [ 0.0, 2.5 ]
sigma = [ 1.0, 3.7 ]
// Draw a single sample for each distribution
sample_normal(mu, sigma) = [-0.56410581, 0.95934606]
// Draw a vector containing two samples for each distribution
sample_normal(mu, sigma, shape=(2)) = [[-0.56410581, 0.2928229 ],
[ 0.95934606, 4.48287058]]
)code");
}
inline std::string gamma_desc() {
return std::string(R"code(Concurrent sampling from multiple
gamma distributions with parameters *alpha* (shape) and *beta* (scale).
The parameters of the distributions are provided as input arrays.
Let *[s]* be the shape of the input arrays, *n* be the dimension of *[s]*, *[t]*
be the shape specified as the parameter of the operator, and *m* be the dimension
of *[t]*. Then the output will be a *(n+m)*-dimensional array with shape *[s]x[t]*.
For any valid *n*-dimensional index *i* with respect to the input arrays, *output[i]*
will be an *m*-dimensional array that holds randomly drawn samples from the distribution
which is parameterized by the input values at index *i*. If the shape parameter of the
operator is not set, then one sample will be drawn per distribution and the output array
has the same shape as the input arrays.
Examples::
alpha = [ 0.0, 2.5 ]
beta = [ 1.0, 0.7 ]
// Draw a single sample for each distribution
sample_gamma(alpha, beta) = [ 0. , 2.25797319]
// Draw a vector containing two samples for each distribution
sample_gamma(alpha, beta, shape=(2)) = [[ 0. , 0. ],
[ 2.25797319, 1.70734084]]
)code");
}
inline std::string exponential_desc() {
return std::string(R"code(Concurrent sampling from multiple
exponential distributions with parameters lambda (rate).
The parameters of the distributions are provided as an input array.
Let *[s]* be the shape of the input array, *n* be the dimension of *[s]*, *[t]*
be the shape specified as the parameter of the operator, and *m* be the dimension
of *[t]*. Then the output will be a *(n+m)*-dimensional array with shape *[s]x[t]*.
For any valid *n*-dimensional index *i* with respect to the input array, *output[i]*
will be an *m*-dimensional array that holds randomly drawn samples from the distribution
which is parameterized by the input value at index *i*. If the shape parameter of the
operator is not set, then one sample will be drawn per distribution and the output array
has the same shape as the input array.
Examples::
lam = [ 1.0, 8.5 ]
// Draw a single sample for each distribution
sample_exponential(lam) = [ 0.51837951, 0.09994757]
// Draw a vector containing two samples for each distribution
sample_exponential(lam, shape=(2)) = [[ 0.51837951, 0.19866663],
[ 0.09994757, 0.50447971]]
)code");
}
inline std::string poisson_desc() {
return std::string(R"code(Concurrent sampling from multiple
Poisson distributions with parameters lambda (rate).
The parameters of the distributions are provided as an input array.
Let *[s]* be the shape of the input array, *n* be the dimension of *[s]*, *[t]*
be the shape specified as the parameter of the operator, and *m* be the dimension
of *[t]*. Then the output will be a *(n+m)*-dimensional array with shape *[s]x[t]*.
For any valid *n*-dimensional index *i* with respect to the input array, *output[i]*
will be an *m*-dimensional array that holds randomly drawn samples from the distribution
which is parameterized by the input value at index *i*. If the shape parameter of the
operator is not set, then one sample will be drawn per distribution and the output array
has the same shape as the input array.
Samples will always be returned as a floating point data type.
Examples::
lam = [ 1.0, 8.5 ]
// Draw a single sample for each distribution
sample_poisson(lam) = [ 0., 13.]
// Draw a vector containing two samples for each distribution
sample_poisson(lam, shape=(2)) = [[ 0., 4.],
[ 13., 8.]]
)code");
}
inline std::string negative_binomial_desc() {
return std::string(R"code(Concurrent sampling from multiple
negative binomial distributions with parameters *k* (failure limit) and *p* (failure probability).
The parameters of the distributions are provided as input arrays.
Let *[s]* be the shape of the input arrays, *n* be the dimension of *[s]*, *[t]*
be the shape specified as the parameter of the operator, and *m* be the dimension
of *[t]*. Then the output will be a *(n+m)*-dimensional array with shape *[s]x[t]*.
For any valid *n*-dimensional index *i* with respect to the input arrays, *output[i]*
will be an *m*-dimensional array that holds randomly drawn samples from the distribution
which is parameterized by the input values at index *i*. If the shape parameter of the
operator is not set, then one sample will be drawn per distribution and the output array
has the same shape as the input arrays.
Samples will always be returned as a floating point data type.
Examples::
k = [ 20, 49 ]
p = [ 0.4 , 0.77 ]
// Draw a single sample for each distribution
sample_negative_binomial(k, p) = [ 15., 16.]
// Draw a vector containing two samples for each distribution
sample_negative_binomial(k, p, shape=(2)) = [[ 15., 50.],
[ 16., 12.]]
)code");
}
inline std::string generalized_negative_binomial_desc() {
return std::string(R"code(Concurrent sampling from multiple
generalized negative binomial distributions with parameters *mu* (mean) and *alpha* (dispersion).
The parameters of the distributions are provided as input arrays.
Let *[s]* be the shape of the input arrays, *n* be the dimension of *[s]*, *[t]*
be the shape specified as the parameter of the operator, and *m* be the dimension
of *[t]*. Then the output will be a *(n+m)*-dimensional array with shape *[s]x[t]*.
For any valid *n*-dimensional index *i* with respect to the input arrays, *output[i]*
will be an *m*-dimensional array that holds randomly drawn samples from the distribution
which is parameterized by the input values at index *i*. If the shape parameter of the
operator is not set, then one sample will be drawn per distribution and the output array
has the same shape as the input arrays.
Samples will always be returned as a floating point data type.
Examples::
mu = [ 2.0, 2.5 ]
alpha = [ 1.0, 0.1 ]
// Draw a single sample for each distribution
sample_generalized_negative_binomial(mu, alpha) = [ 0., 3.]
// Draw a vector containing two samples for each distribution
sample_generalized_negative_binomial(mu, alpha, shape=(2)) = [[ 0., 3.],
[ 3., 1.]]
)code");
}
MXNET_OPERATOR_REGISTER_SAMPLING2(uniform, UniformSampler, "low", "high",
"Lower bounds of the distributions.", "Upper bounds of the distributions.", uniform_desc)
MXNET_OPERATOR_REGISTER_SAMPLING2(normal, NormalSampler, "mu", "sigma",
"Means of the distributions.", "Standard deviations of the distributions.", normal_desc)
MXNET_OPERATOR_REGISTER_SAMPLING2(gamma, GammaSampler, "alpha", "beta",
"Alpha (shape) parameters of the distributions.", "Beta (scale) parameters of the distributions.",
gamma_desc)
MXNET_OPERATOR_REGISTER_SAMPLING1(exponential, ExponentialSampler, "lam",
"Lambda (rate) parameters of the distributions.", exponential_desc)
MXNET_OPERATOR_REGISTER_SAMPLING1(poisson, PoissonSampler, "lam",
"Lambda (rate) parameters of the distributions.", poisson_desc)
MXNET_OPERATOR_REGISTER_SAMPLING2(negative_binomial, NegativeBinomialSampler, "k", "p",
"Limits of unsuccessful experiments.", "Failure probabilities in each experiment.",
negative_binomial_desc)
MXNET_OPERATOR_REGISTER_SAMPLING2(generalized_negative_binomial,
GeneralizedNegativeBinomialSampler, "mu", "alpha",
"Means of the distributions.", "Alpha (dispersion) parameters of the distributions.",
generalized_negative_binomial_desc)
} // namespace op
} // namespace mxnet