blob: 86f35e11788273275c3347cf9a777ea38e47414c [file] [log] [blame]
/*!
* Copyright (c) 2017 by Contributors
* \file quantize.cc
* \brief
*/
#include "./quantize-inl.h"
namespace mxnet {
namespace op {
DMLC_REGISTER_PARAMETER(QuantizeParam);
NNVM_REGISTER_OP(_contrib_quantize)
.describe(R"code(Quantize a input tensor from float to `out_type`,
with user-specified `min_range` and `max_range`.
[min_range, max_range] are scalar floats that spcify the range for
the input data. Each value of the tensor will undergo the following:
`out[i] = (in[i] - min_range) * range(OUTPUT_TYPE) / (max_range - min_range)`
here `range(T) = numeric_limits<T>::max() - numeric_limits<T>::min()`
)code" ADD_FILELINE)
.set_attr_parser(ParamParser<QuantizeParam>)
.set_num_inputs(3)
.set_num_outputs(3)
.set_attr<nnvm::FInferShape>("FInferShape", QuantizeShape)
.set_attr<nnvm::FInferType>("FInferType", QuantizeType)
.set_attr<FCompute>("FCompute<cpu>", QuantizeCompute<cpu>)
.set_attr<nnvm::FGradient>("FGradient", ElemwiseGradUseNone{"_quantize"})
.add_argument("input", "NDArray-or-Symbol", "A ndarray/symbol of type `float32`")
.add_argument("min_range", "NDArray-or-Symbol", "The minimum scalar value "
"possibly produced for the input")
.add_argument("max_range", "NDArray-or-Symbol", "The maximum scalar value "
"possibly produced for the input")
.add_arguments(QuantizeParam::__FIELDS__());
} // namespace op
} // namespace mxnet