blob: 3507281eba10584e945f6341ea19ab12536b80a3 [file] [log] [blame]
/*!
* Copyright (c) 2016 by Contributors
* \file multibox_detection-inl.h
* \brief post-process multibox detection predictions
* \author Joshua Zhang
*/
#ifndef MXNET_OPERATOR_CONTRIB_MULTIBOX_DETECTION_INL_H_
#define MXNET_OPERATOR_CONTRIB_MULTIBOX_DETECTION_INL_H_
#include <dmlc/logging.h>
#include <dmlc/parameter.h>
#include <mxnet/operator.h>
#include <mxnet/base.h>
#include <nnvm/tuple.h>
#include <map>
#include <vector>
#include <string>
#include <utility>
#include <valarray>
#include "../operator_common.h"
namespace mxnet {
namespace op {
namespace mboxdet_enum {
enum MultiBoxDetectionOpInputs {kClsProb, kLocPred, kAnchor};
enum MultiBoxDetectionOpOutputs {kOut};
enum MultiBoxDetectionOpResource {kTempSpace};
} // namespace mboxdet_enum
struct MultiBoxDetectionParam : public dmlc::Parameter<MultiBoxDetectionParam> {
bool clip;
float threshold;
int background_id;
float nms_threshold;
bool force_suppress;
int keep_topk;
int nms_topk;
nnvm::Tuple<float> variances;
DMLC_DECLARE_PARAMETER(MultiBoxDetectionParam) {
DMLC_DECLARE_FIELD(clip).set_default(true)
.describe("Clip out-of-boundary boxes.");
DMLC_DECLARE_FIELD(threshold).set_default(0.01f)
.describe("Threshold to be a positive prediction.");
DMLC_DECLARE_FIELD(background_id).set_default(0)
.describe("Background id.");
DMLC_DECLARE_FIELD(nms_threshold).set_default(0.5f)
.describe("Non-maximum suppression threshold.");
DMLC_DECLARE_FIELD(force_suppress).set_default(false)
.describe("Suppress all detections regardless of class_id.");
DMLC_DECLARE_FIELD(variances).set_default({0.1f, 0.1f, 0.2f, 0.2f})
.describe("Variances to be decoded from box regression output.");
DMLC_DECLARE_FIELD(nms_topk).set_default(-1)
.describe("Keep maximum top k detections before nms, -1 for no limit.");
}
}; // struct MultiBoxDetectionParam
template<typename xpu, typename DType>
class MultiBoxDetectionOp : public Operator {
public:
explicit MultiBoxDetectionOp(MultiBoxDetectionParam param) {
this->param_ = param;
}
virtual void Forward(const OpContext &ctx,
const std::vector<TBlob> &in_data,
const std::vector<OpReqType> &req,
const std::vector<TBlob> &out_data,
const std::vector<TBlob> &aux_args) {
using namespace mshadow;
using namespace mshadow::expr;
CHECK_EQ(in_data.size(), 3U) << "Input: [cls_prob, loc_pred, anchor]";
TShape ashape = in_data[mboxdet_enum::kAnchor].shape_;
CHECK_EQ(out_data.size(), 1U);
Stream<xpu> *s = ctx.get_stream<xpu>();
Tensor<xpu, 3, DType> cls_prob = in_data[mboxdet_enum::kClsProb]
.get<xpu, 3, DType>(s);
Tensor<xpu, 2, DType> loc_pred = in_data[mboxdet_enum::kLocPred]
.get<xpu, 2, DType>(s);
Tensor<xpu, 2, DType> anchors = in_data[mboxdet_enum::kAnchor]
.get_with_shape<xpu, 2, DType>(Shape2(ashape[1], 4), s);
Tensor<xpu, 3, DType> out = out_data[mboxdet_enum::kOut]
.get<xpu, 3, DType>(s);
Tensor<xpu, 3, DType> temp_space = ctx.requested[mboxdet_enum::kTempSpace]
.get_space_typed<xpu, 3, DType>(out.shape_, s);
out = -1.f;
MultiBoxDetectionForward(out, cls_prob, loc_pred, anchors, temp_space,
param_.threshold, param_.clip, param_.variances, param_.nms_threshold,
param_.force_suppress, param_.nms_topk);
}
virtual void Backward(const OpContext &ctx,
const std::vector<TBlob> &out_grad,
const std::vector<TBlob> &in_data,
const std::vector<TBlob> &out_data,
const std::vector<OpReqType> &req,
const std::vector<TBlob> &in_grad,
const std::vector<TBlob> &aux_states) {
using namespace mshadow;
using namespace mshadow::expr;
Stream<xpu> *s = ctx.get_stream<xpu>();
Tensor<xpu, 2, DType> gradc = in_grad[mboxdet_enum::kClsProb].FlatTo2D<xpu, DType>(s);
Tensor<xpu, 2, DType> gradl = in_grad[mboxdet_enum::kLocPred].FlatTo2D<xpu, DType>(s);
Tensor<xpu, 2, DType> grada = in_grad[mboxdet_enum::kAnchor].FlatTo2D<xpu, DType>(s);
gradc = 0.f;
gradl = 0.f;
grada = 0.f;
}
private:
MultiBoxDetectionParam param_;
}; // class MultiBoxDetectionOp
template<typename xpu>
Operator *CreateOp(MultiBoxDetectionParam, int dtype);
#if DMLC_USE_CXX11
class MultiBoxDetectionProp : public OperatorProperty {
public:
void Init(const std::vector<std::pair<std::string, std::string> >& kwargs) override {
param_.Init(kwargs);
}
std::map<std::string, std::string> GetParams() const override {
return param_.__DICT__();
}
std::vector<std::string> ListArguments() const override {
return {"cls_prob", "loc_pred", "anchor"};
}
bool InferShape(std::vector<TShape> *in_shape,
std::vector<TShape> *out_shape,
std::vector<TShape> *aux_shape) const override {
using namespace mshadow;
CHECK_EQ(in_shape->size(), 3U) << "Inputs: [cls_prob, loc_pred, anchor]";
TShape cshape = in_shape->at(mboxdet_enum::kClsProb);
TShape lshape = in_shape->at(mboxdet_enum::kLocPred);
TShape ashape = in_shape->at(mboxdet_enum::kAnchor);
CHECK_EQ(cshape.ndim(), 3U) << "Provided: " << cshape;
CHECK_EQ(lshape.ndim(), 2U) << "Provided: " << lshape;
CHECK_EQ(ashape.ndim(), 3U) << "Provided: " << ashape;
CHECK_EQ(cshape[2], ashape[1]) << "Number of anchors mismatch";
CHECK_EQ(cshape[2] * 4, lshape[1]) << "# anchors mismatch with # loc";
CHECK_GT(ashape[1], 0U) << "Number of anchors must > 0";
CHECK_EQ(ashape[2], 4U);
TShape oshape = TShape(3);
oshape[0] = cshape[0];
oshape[1] = ashape[1];
oshape[2] = 6; // [id, prob, xmin, ymin, xmax, ymax]
out_shape->clear();
out_shape->push_back(oshape);
return true;
}
OperatorProperty* Copy() const override {
auto ptr = new MultiBoxDetectionProp();
ptr->param_ = param_;
return ptr;
}
std::string TypeString() const override {
return "_contrib_MultiBoxDetection";
}
std::vector<ResourceRequest> ForwardResource(
const std::vector<TShape> &in_shape) const override {
return {ResourceRequest::kTempSpace};
}
Operator* CreateOperator(Context ctx) const override {
LOG(FATAL) << "Not implemented";
return NULL;
}
Operator* CreateOperatorEx(Context ctx, std::vector<TShape> *in_shape,
std::vector<int> *in_type) const override;
private:
MultiBoxDetectionParam param_;
}; // class MultiBoxDetectionProp
#endif // DMLC_USE_CXX11
} // namespace op
} // namespace mxnet
#endif // MXNET_OPERATOR_CONTRIB_MULTIBOX_DETECTION_INL_H_