blob: 46e36fa3c89163529a67032f956883520322ab47 [file] [log] [blame]
/*!
* Copyright (c) 2017 by Contributors
* \file dequantize.cc
* \brief
*/
#include "./dequantize-inl.h"
namespace mxnet {
namespace op {
DMLC_REGISTER_PARAMETER(DequantizeParam);
NNVM_REGISTER_OP(_contrib_dequantize)
.describe(R"code(Dequantize the input tensor into a float tensor.
[min_range, max_range] are scalar floats that spcify the range for
the output data.
Each value of the tensor will undergo the following:
`out[i] = min_range + (in[i] * (max_range - min_range) / range(INPUT_TYPE))`
here `range(T) = numeric_limits<T>::max() - numeric_limits<T>::min()`
)code" ADD_FILELINE)
.set_attr_parser(ParamParser<DequantizeParam>)
.set_num_inputs(3)
.set_num_outputs(1)
.set_attr<nnvm::FInferShape>("FInferShape", DequantizeShape)
.set_attr<nnvm::FInferType>("FInferType", DequantizeType)
.set_attr<FCompute>("FCompute<cpu>", DequantizeCompute<cpu>)
.set_attr<nnvm::FGradient>("FGradient", ElemwiseGradUseNone{"_dequantize"})
.add_argument("input", "NDArray-or-Symbol", "A ndarray/symbol of type `uint8`")
.add_argument("min_range", "NDArray-or-Symbol", "The minimum scalar value "
"possibly produced for the input")
.add_argument("max_range", "NDArray-or-Symbol", "The maximum scalar value "
"possibly produced for the input")
.add_arguments(DequantizeParam::__FIELDS__());
} // namespace op
} // namespace mxnet