| /*! |
| * Copyright (c) 2017 Microsoft |
| * Licensed under The Apache-2.0 License [see LICENSE for details] |
| * \file deformable_convolution.cc |
| * \brief |
| * \author Yuwen Xiong, Haozhi Qi, Jifeng Dai |
| */ |
| |
| #include "./deformable_convolution-inl.h" |
| |
| namespace mxnet { |
| namespace op { |
| DMLC_REGISTER_PARAMETER(DeformableConvolutionParam); |
| |
| template<> |
| Operator* CreateOp<cpu>(DeformableConvolutionParam param, int dtype, |
| std::vector<TShape> *in_shape, |
| std::vector<TShape> *out_shape, |
| Context ctx) { |
| Operator *op = NULL; |
| MSHADOW_REAL_TYPE_SWITCH(dtype, DType, { |
| op = new DeformableConvolutionOp<cpu, DType>(param); |
| }) |
| return op; |
| } |
| |
| // DO_BIND_DISPATCH comes from operator_common.h |
| Operator *DeformableConvolutionProp::CreateOperatorEx(Context ctx, |
| std::vector<TShape> *in_shape, |
| std::vector<int> *in_type) const { |
| std::vector<TShape> out_shape, aux_shape; |
| std::vector<int> out_type, aux_type; |
| CHECK(InferType(in_type, &out_type, &aux_type)); |
| CHECK(InferShape(in_shape, &out_shape, &aux_shape)); |
| DO_BIND_DISPATCH(CreateOp, param_, (*in_type)[0], in_shape, &out_shape, ctx); |
| } |
| |
| MXNET_REGISTER_OP_PROPERTY(_contrib_DeformableConvolution, DeformableConvolutionProp) |
| .describe(R"code(Compute 2-D deformable convolution on 4-D input. |
| |
| The deformable convolution operation is described in https://arxiv.org/abs/1703.06211 |
| |
| For 2-D deformable convolution, the shapes are |
| |
| - **data**: *(batch_size, channel, height, width)* |
| - **offset**: *(batch_size, num_deformable_group * kernel[0] * kernel[1], height, width)* |
| - **weight**: *(num_filter, channel, kernel[0], kernel[1])* |
| - **bias**: *(num_filter,)* |
| - **out**: *(batch_size, num_filter, out_height, out_width)*. |
| |
| Define:: |
| |
| f(x,k,p,s,d) = floor((x+2*p-d*(k-1)-1)/s)+1 |
| |
| then we have:: |
| |
| out_height=f(height, kernel[0], pad[0], stride[0], dilate[0]) |
| out_width=f(width, kernel[1], pad[1], stride[1], dilate[1]) |
| |
| If ``no_bias`` is set to be true, then the ``bias`` term is ignored. |
| |
| The default data ``layout`` is *NCHW*, namely *(batch_size, channle, height, |
| width)*. |
| |
| If ``num_group`` is larger than 1, denoted by *g*, then split the input ``data`` |
| evenly into *g* parts along the channel axis, and also evenly split ``weight`` |
| along the first dimension. Next compute the convolution on the *i*-th part of |
| the data with the *i*-th weight part. The output is obtained by concating all |
| the *g* results. |
| |
| If ``num_deformable_group`` is larger than 1, denoted by *dg*, then split the |
| input ``offset`` evenly into *dg* parts along the channel axis, and also evenly |
| split ``out`` evenly into *dg* parts along the channel axis. Next compute the |
| deformable convolution, apply the *i*-th part of the offset part on the *i*-th |
| out. |
| |
| |
| Both ``weight`` and ``bias`` are learnable parameters. |
| |
| |
| )code" ADD_FILELINE) |
| .add_argument("data", "NDArray-or-Symbol", "Input data to the DeformableConvolutionOp.") |
| .add_argument("offset", "NDArray-or-Symbol", "Input offset to the DeformableConvolutionOp.") |
| .add_argument("weight", "NDArray-or-Symbol", "Weight matrix.") |
| .add_argument("bias", "NDArray-or-Symbol", "Bias parameter.") |
| .add_arguments(DeformableConvolutionParam::__FIELDS__()); |
| |
| } // namespace op |
| } // namespace mxnet |