blob: cf89c97bdc9be01b9a192cc886ef8ba5bcf0c640 [file] [log] [blame]
/*!
* Copyright (c) 2015 by Contributors
* \file count_sketch.cc
* \brief count_sketch op
* \author Chen Zhu
*/
#include "./count_sketch-inl.h"
namespace mxnet {
namespace op {
template<>
Operator *CreateOp<cpu>(CountSketchParam param, int dtype) {
LOG(FATAL) << "CountSketch is only available for GPU.";
return NULL;
}
Operator *CountSketchProp::CreateOperatorEx(Context ctx, std::vector<TShape> *in_shape,
std::vector<int> *in_type) const {
std::vector<TShape> out_shape, aux_shape;
std::vector<int> out_type, aux_type;
CHECK(InferType(in_type, &out_type, &aux_type));
CHECK(InferShape(in_shape, &out_shape, &aux_shape));
DO_BIND_DISPATCH(CreateOp, param_, (*in_type)[0]);
}
DMLC_REGISTER_PARAMETER(CountSketchParam);
MXNET_REGISTER_OP_PROPERTY(_contrib_count_sketch, CountSketchProp)
.describe(R"code(Apply CountSketch to input: map a d-dimension data to k-dimension data"
.. note:: `count_sketch` is only available on GPU.
Assume input data has shape (N, d), sign hash table s has shape (N, d),
index hash table h has shape (N, d) and mapping dimension out_dim = k,
each element in s is either +1 or -1, each element in h is random integer from 0 to k-1.
Then the operator computs:
.. math::
out[h[i]] += data[i] * s[i]
Example::
out_dim = 5
x = [[1.2, 2.5, 3.4],[3.2, 5.7, 6.6]]
h = [0, 3, 4]
s = [1, -1, 1]
mx.contrib.ndarray.count_sketch(data=x, h=h, s=s, out_dim = 5) = [[1.2, 0, 0, -2.5, 3.4],
[3.2, 0, 0, -5.7, 6.6]]
)code" ADD_FILELINE)
.add_argument("data", "NDArray-or-Symbol", "Input data to the CountSketchOp.")
.add_argument("h", "NDArray-or-Symbol", "The index vector")
.add_argument("s", "NDArray-or-Symbol", "The sign vector")
.add_arguments(CountSketchParam::__FIELDS__());
} // namespace op
} // namespace mxnet