blob: 0cd162ff5e9ecd2d8d717ae8cc277c198d3b2a08 [file] [log] [blame]
from ddpg import DDPG
from rllab.envs.box2d.cartpole_env import CartpoleEnv
from rllab.envs.normalized_env import normalize
from policies import DeterministicMLPPolicy
from qfuncs import ContinuousMLPQ
from strategies import OUStrategy
from utils import SEED
import mxnet as mx
# set environment, policy, qfunc, strategy
env = normalize(CartpoleEnv())
policy = DeterministicMLPPolicy(env.spec)
qfunc = ContinuousMLPQ(env.spec)
strategy = OUStrategy(env.spec)
# set the training algorithm and train
algo = DDPG(
env=env,
policy=policy,
qfunc=qfunc,
strategy=strategy,
ctx=mx.gpu(0),
max_path_length=100,
epoch_length=1000,
memory_start_size=10000,
n_epochs=1000,
discount=0.99,
qfunc_lr=1e-3,
policy_lr=1e-4,
seed=SEED)
algo.train()