| <!DOCTYPE html> |
| |
| <html lang="en"> |
| <head> |
| <meta charset="utf-8"/> |
| <meta content="IE=edge" http-equiv="X-UA-Compatible"/> |
| <meta content="width=device-width, initial-scale=1" name="viewport"/> |
| <title>Classify Images with a PreTrained Model — mxnet documentation</title> |
| <link crossorigin="anonymous" href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/css/bootstrap.min.css" integrity="sha384-1q8mTJOASx8j1Au+a5WDVnPi2lkFfwwEAa8hDDdjZlpLegxhjVME1fgjWPGmkzs7" rel="stylesheet"/> |
| <link href="https://maxcdn.bootstrapcdn.com/font-awesome/4.5.0/css/font-awesome.min.css" rel="stylesheet"/> |
| <link href="../../_static/basic.css" rel="stylesheet" type="text/css"/> |
| <link href="../../_static/pygments.css" rel="stylesheet" type="text/css"/> |
| <link href="../../_static/mxnet.css" rel="stylesheet" type="text/css"> |
| <script type="text/javascript"> |
| var DOCUMENTATION_OPTIONS = { |
| URL_ROOT: '../../', |
| VERSION: '', |
| COLLAPSE_INDEX: false, |
| FILE_SUFFIX: '.html', |
| HAS_SOURCE: true, |
| SOURCELINK_SUFFIX: '' |
| }; |
| </script> |
| <script src="../../_static/jquery-1.11.1.js" type="text/javascript"></script> |
| <script src="../../_static/underscore.js" type="text/javascript"></script> |
| <script src="../../_static/searchtools_custom.js" type="text/javascript"></script> |
| <script src="../../_static/doctools.js" type="text/javascript"></script> |
| <script src="../../_static/selectlang.js" type="text/javascript"></script> |
| <script src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML" type="text/javascript"></script> |
| <script type="text/javascript"> jQuery(function() { Search.loadIndex("/searchindex.js"); Search.init();}); </script> |
| <script> |
| (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ |
| (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new |
| Date();a=s.createElement(o), |
| m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) |
| })(window,document,'script','https://www.google-analytics.com/analytics.js','ga'); |
| |
| ga('create', 'UA-96378503-1', 'auto'); |
| ga('send', 'pageview'); |
| |
| </script> |
| <!-- --> |
| <!-- <script type="text/javascript" src="../../_static/jquery.js"></script> --> |
| <!-- --> |
| <!-- <script type="text/javascript" src="../../_static/underscore.js"></script> --> |
| <!-- --> |
| <!-- <script type="text/javascript" src="../../_static/doctools.js"></script> --> |
| <!-- --> |
| <!-- <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script> --> |
| <!-- --> |
| <link href="https://raw.githubusercontent.com/dmlc/web-data/master/mxnet/image/mxnet-icon.png" rel="icon" type="image/png"> |
| </link></link></head> |
| <body background="https://raw.githubusercontent.com/dmlc/web-data/master/mxnet/image/mxnet-background-compressed.jpeg" role="document"> |
| <div class="content-block"><div class="navbar navbar-fixed-top"> |
| <div class="container" id="navContainer"> |
| <div class="innder" id="header-inner"> |
| <h1 id="logo-wrap"> |
| <a href="../../" id="logo"><img src="https://raw.githubusercontent.com/dmlc/web-data/master/mxnet/image/mxnet_logo.png"/></a> |
| </h1> |
| <nav class="nav-bar" id="main-nav"> |
| <a class="main-nav-link" href="../../install/index.html">Install</a> |
| <a class="main-nav-link" href="../../tutorials/index.html">Tutorials</a> |
| <span id="dropdown-menu-position-anchor"> |
| <a aria-expanded="true" aria-haspopup="true" class="main-nav-link dropdown-toggle" data-toggle="dropdown" href="#" role="button">Gluon <span class="caret"></span></a> |
| <ul class="dropdown-menu navbar-menu" id="package-dropdown-menu"> |
| <li><a class="main-nav-link" href="../../gluon/index.html">About</a></li> |
| <li><a class="main-nav-link" href="http://gluon.mxnet.io">Tutorials</a></li> |
| </ul> |
| </span> |
| <span id="dropdown-menu-position-anchor"> |
| <a aria-expanded="true" aria-haspopup="true" class="main-nav-link dropdown-toggle" data-toggle="dropdown" href="#" role="button">API <span class="caret"></span></a> |
| <ul class="dropdown-menu navbar-menu" id="package-dropdown-menu"> |
| <li><a class="main-nav-link" href="../../api/python/index.html">Python</a></li> |
| <li><a class="main-nav-link" href="../../api/scala/index.html">Scala</a></li> |
| <li><a class="main-nav-link" href="../../api/r/index.html">R</a></li> |
| <li><a class="main-nav-link" href="../../api/julia/index.html">Julia</a></li> |
| <li><a class="main-nav-link" href="../../api/c++/index.html">C++</a></li> |
| <li><a class="main-nav-link" href="../../api/perl/index.html">Perl</a></li> |
| </ul> |
| </span> |
| <span id="dropdown-menu-position-anchor-docs"> |
| <a aria-expanded="true" aria-haspopup="true" class="main-nav-link dropdown-toggle" data-toggle="dropdown" href="#" role="button">Docs <span class="caret"></span></a> |
| <ul class="dropdown-menu navbar-menu" id="package-dropdown-menu-docs"> |
| <li><a class="main-nav-link" href="../../faq/index.html">FAQ</a></li> |
| <li><a class="main-nav-link" href="../../architecture/index.html">Architecture</a></li> |
| <li><a class="main-nav-link" href="https://github.com/apache/incubator-mxnet/tree/0.12.1/example">Examples</a></li> |
| <li><a class="main-nav-link" href="../../model_zoo/index.html">Model Zoo</a></li> |
| </ul> |
| </span> |
| <a class="main-nav-link" href="https://github.com/dmlc/mxnet">Github</a> |
| <span id="dropdown-menu-position-anchor-community"> |
| <a aria-expanded="true" aria-haspopup="true" class="main-nav-link dropdown-toggle" data-toggle="dropdown" href="#" role="button">Community <span class="caret"></span></a> |
| <ul class="dropdown-menu navbar-menu" id="package-dropdown-menu-community"> |
| <li><a class="main-nav-link" href="../../community/index.html">Community</a></li> |
| <li><a class="main-nav-link" href="../../community/contribute.html">Contribute</a></li> |
| <li><a class="main-nav-link" href="../../community/powered_by.html">Powered By</a></li> |
| </ul> |
| </span> |
| <a class="main-nav-link" href="http://discuss.mxnet.io">Discuss</a> |
| <span id="dropdown-menu-position-anchor-version" style="position: relative"><a href="#" class="main-nav-link dropdown-toggle" data-toggle="dropdown" role="button" aria-haspopup="true" aria-expanded="true">Versions(0.12.1)<span class="caret"></span></a><ul id="package-dropdown-menu" class="dropdown-menu"><li><a class="main-nav-link" href=https://mxnet.incubator.apache.org/>1.0.0</a></li><li><a class="main-nav-link" href=https://mxnet.incubator.apache.org/versions/0.12.1/index.html>0.12.1</a></li><li><a class="main-nav-link" href=https://mxnet.incubator.apache.org/versions/0.12.0/index.html>0.12.0</a></li><li><a class="main-nav-link" href=https://mxnet.incubator.apache.org/versions/0.11.0/index.html>0.11.0</a></li><li><a class="main-nav-link" href=https://mxnet.incubator.apache.org/versions/master/index.html>master</a></li></ul></span></nav> |
| <script> function getRootPath(){ return "../../" } </script> |
| <div class="burgerIcon dropdown"> |
| <a class="dropdown-toggle" data-toggle="dropdown" href="#" role="button">☰</a> |
| <ul class="dropdown-menu" id="burgerMenu"> |
| <li><a href="../../install/index.html">Install</a></li> |
| <li><a class="main-nav-link" href="../../tutorials/index.html">Tutorials</a></li> |
| <li class="dropdown-submenu"> |
| <a href="#" tabindex="-1">Community</a> |
| <ul class="dropdown-menu"> |
| <li><a href="../../community/index.html" tabindex="-1">Community</a></li> |
| <li><a href="../../community/contribute.html" tabindex="-1">Contribute</a></li> |
| <li><a href="../../community/powered_by.html" tabindex="-1">Powered By</a></li> |
| </ul> |
| </li> |
| <li class="dropdown-submenu"> |
| <a href="#" tabindex="-1">API</a> |
| <ul class="dropdown-menu"> |
| <li><a href="../../api/python/index.html" tabindex="-1">Python</a> |
| </li> |
| <li><a href="../../api/scala/index.html" tabindex="-1">Scala</a> |
| </li> |
| <li><a href="../../api/r/index.html" tabindex="-1">R</a> |
| </li> |
| <li><a href="../../api/julia/index.html" tabindex="-1">Julia</a> |
| </li> |
| <li><a href="../../api/c++/index.html" tabindex="-1">C++</a> |
| </li> |
| <li><a href="../../api/perl/index.html" tabindex="-1">Perl</a> |
| </li> |
| </ul> |
| </li> |
| <li class="dropdown-submenu"> |
| <a href="#" tabindex="-1">Docs</a> |
| <ul class="dropdown-menu"> |
| <li><a href="../../tutorials/index.html" tabindex="-1">Tutorials</a></li> |
| <li><a href="../../faq/index.html" tabindex="-1">FAQ</a></li> |
| <li><a href="../../architecture/index.html" tabindex="-1">Architecture</a></li> |
| <li><a href="https://github.com/apache/incubator-mxnet/tree/0.12.1/example" tabindex="-1">Examples</a></li> |
| <li><a href="../../model_zoo/index.html" tabindex="-1">Model Zoo</a></li> |
| </ul> |
| </li> |
| <li><a href="../../architecture/index.html">Architecture</a></li> |
| <li><a class="main-nav-link" href="https://github.com/dmlc/mxnet">Github</a></li> |
| <li id="dropdown-menu-position-anchor-version-mobile" class="dropdown-submenu" style="position: relative"><a href="#" tabindex="-1">Versions(0.12.1)</a><ul class="dropdown-menu"><li><a tabindex="-1" href=https://mxnet.incubator.apache.org/>1.0.0</a></li><li><a tabindex="-1" href=https://mxnet.incubator.apache.org/versions/0.12.1/index.html>0.12.1</a></li><li><a tabindex="-1" href=https://mxnet.incubator.apache.org/versions/0.12.0/index.html>0.12.0</a></li><li><a tabindex="-1" href=https://mxnet.incubator.apache.org/versions/0.11.0/index.html>0.11.0</a></li><li><a tabindex="-1" href=https://mxnet.incubator.apache.org/versions/master/index.html>master</a></li></ul></li></ul> |
| </div> |
| <div class="plusIcon dropdown"> |
| <a class="dropdown-toggle" data-toggle="dropdown" href="#" role="button"><span aria-hidden="true" class="glyphicon glyphicon-plus"></span></a> |
| <ul class="dropdown-menu dropdown-menu-right" id="plusMenu"></ul> |
| </div> |
| <div id="search-input-wrap"> |
| <form action="../../search.html" autocomplete="off" class="" method="get" role="search"> |
| <div class="form-group inner-addon left-addon"> |
| <i class="glyphicon glyphicon-search"></i> |
| <input class="form-control" name="q" placeholder="Search" type="text"/> |
| </div> |
| <input name="check_keywords" type="hidden" value="yes"/> |
| <input name="area" type="hidden" value="default"> |
| </input></form> |
| <div id="search-preview"></div> |
| </div> |
| <div id="searchIcon"> |
| <span aria-hidden="true" class="glyphicon glyphicon-search"></span> |
| </div> |
| <!-- <div id="lang-select-wrap"> --> |
| <!-- <label id="lang-select-label"> --> |
| <!-- <\!-- <i class="fa fa-globe"></i> -\-> --> |
| <!-- <span></span> --> |
| <!-- </label> --> |
| <!-- <select id="lang-select"> --> |
| <!-- <option value="en">Eng</option> --> |
| <!-- <option value="zh">中文</option> --> |
| <!-- </select> --> |
| <!-- </div> --> |
| <!-- <a id="mobile-nav-toggle"> |
| <span class="mobile-nav-toggle-bar"></span> |
| <span class="mobile-nav-toggle-bar"></span> |
| <span class="mobile-nav-toggle-bar"></span> |
| </a> --> |
| </div> |
| </div> |
| </div> |
| <script type="text/javascript"> |
| $('body').css('background', 'white'); |
| </script> |
| <div class="container"> |
| <div class="row"> |
| <div aria-label="main navigation" class="sphinxsidebar leftsidebar" role="navigation"> |
| <div class="sphinxsidebarwrapper"> |
| <ul> |
| <li class="toctree-l1"><a class="reference internal" href="../../api/python/index.html">Python Documents</a></li> |
| <li class="toctree-l1"><a class="reference internal" href="../../api/r/index.html">R Documents</a></li> |
| <li class="toctree-l1"><a class="reference internal" href="../../api/julia/index.html">Julia Documents</a></li> |
| <li class="toctree-l1"><a class="reference internal" href="../../api/c++/index.html">C++ Documents</a></li> |
| <li class="toctree-l1"><a class="reference internal" href="../../api/scala/index.html">Scala Documents</a></li> |
| <li class="toctree-l1"><a class="reference internal" href="../../api/perl/index.html">Perl Documents</a></li> |
| <li class="toctree-l1"><a class="reference internal" href="../../faq/index.html">HowTo Documents</a></li> |
| <li class="toctree-l1"><a class="reference internal" href="../../architecture/index.html">System Documents</a></li> |
| <li class="toctree-l1"><a class="reference internal" href="../index.html">Tutorials</a></li> |
| <li class="toctree-l1"><a class="reference internal" href="../../community/index.html">Community</a></li> |
| </ul> |
| </div> |
| </div> |
| <div class="content"> |
| <div class="page-tracker"></div> |
| <div class="section" id="classify-images-with-a-pretrained-model"> |
| <span id="classify-images-with-a-pretrained-model"></span><h1>Classify Images with a PreTrained Model<a class="headerlink" href="#classify-images-with-a-pretrained-model" title="Permalink to this headline">¶</a></h1> |
| <p>MXNet is a flexible and efficient deep learning framework. One of the interesting things that a deep learning |
| algorithm can do is classify real world images.</p> |
| <p>In this tutorial, we show how to use a pre-trained Inception-BatchNorm network to predict the class of an |
| image. For information about the network architecture, see [1].</p> |
| <p>The pre-trained Inception-BatchNorm network is able to be downloaded from <a class="reference external" href="http://data.mxnet.io/mxnet/data/Inception.zip">this link</a> |
| This model gives the recent state-of-art prediction accuracy on image net dataset.</p> |
| <div class="section" id="load-the-mxnet-package"> |
| <span id="load-the-mxnet-package"></span><h2>Load the MXNet Package<a class="headerlink" href="#load-the-mxnet-package" title="Permalink to this headline">¶</a></h2> |
| <p>To get started, load the mxnet package:</p> |
| <div class="highlight-r"><div class="highlight"><pre><span></span> <span class="kn">require</span><span class="p">(</span>mxnet<span class="p">)</span> |
| </pre></div> |
| </div> |
| <div class="highlight-python"><div class="highlight"><pre><span></span> <span class="c1">## Loading required package: mxnet</span> |
| <span class="c1">## Loading required package: methods</span> |
| </pre></div> |
| </div> |
| <p>Now load the imager package to load and preprocess the images in R:</p> |
| <div class="highlight-r"><div class="highlight"><pre><span></span> <span class="kn">require</span><span class="p">(</span>imager<span class="p">)</span> |
| </pre></div> |
| </div> |
| <div class="highlight-python"><div class="highlight"><pre><span></span> <span class="c1">## Loading required package: imager</span> |
| <span class="c1">## Loading required package: plyr</span> |
| <span class="c1">## Loading required package: magrittr</span> |
| <span class="c1">## Loading required package: stringr</span> |
| <span class="c1">## Loading required package: png</span> |
| <span class="c1">## Loading required package: jpeg</span> |
| <span class="c1">##</span> |
| <span class="c1">## Attaching package: 'imager'</span> |
| <span class="c1">##</span> |
| <span class="c1">## The following object is masked from 'package:magrittr':</span> |
| <span class="c1">##</span> |
| <span class="c1">## add</span> |
| <span class="c1">##</span> |
| <span class="c1">## The following object is masked from 'package:plyr':</span> |
| <span class="c1">##</span> |
| <span class="c1">## liply</span> |
| <span class="c1">##</span> |
| <span class="c1">## The following objects are masked from 'package:stats':</span> |
| <span class="c1">##</span> |
| <span class="c1">## convolve, spectrum</span> |
| <span class="c1">##</span> |
| <span class="c1">## The following object is masked from 'package:graphics':</span> |
| <span class="c1">##</span> |
| <span class="c1">## frame</span> |
| <span class="c1">##</span> |
| <span class="c1">## The following object is masked from 'package:base':</span> |
| <span class="c1">##</span> |
| <span class="c1">## save.image</span> |
| </pre></div> |
| </div> |
| </div> |
| <div class="section" id="load-the-pretrained-model"> |
| <span id="load-the-pretrained-model"></span><h2>Load the PreTrained Model<a class="headerlink" href="#load-the-pretrained-model" title="Permalink to this headline">¶</a></h2> |
| <p>Make sure you unzip the pre-trained model in the current folder. Use the model |
| loading function to load the model into R:</p> |
| <div class="highlight-r"><div class="highlight"><pre><span></span> model <span class="o">=</span> mx.model.load<span class="p">(</span><span class="s">"Inception/Inception_BN"</span><span class="p">,</span> iteration<span class="o">=</span><span class="m">39</span><span class="p">)</span> |
| </pre></div> |
| </div> |
| <p>Load in the mean image, which is used for preprocessing using:</p> |
| <div class="highlight-r"><div class="highlight"><pre><span></span> mean.img <span class="o">=</span> <span class="kp">as.array</span><span class="p">(</span>mx.nd.load<span class="p">(</span><span class="s">"Inception/mean_224.nd"</span><span class="p">)[[</span><span class="s">"mean_img"</span><span class="p">]])</span> |
| </pre></div> |
| </div> |
| </div> |
| <div class="section" id="load-and-preprocess-the-image"> |
| <span id="load-and-preprocess-the-image"></span><h2>Load and Preprocess the Image<a class="headerlink" href="#load-and-preprocess-the-image" title="Permalink to this headline">¶</a></h2> |
| <p>Now, we are ready to classify a real image. In this example, we simply take the parrots image |
| from the imager package. You can use another image, if you prefer.</p> |
| <p>Load and plot the image:</p> |
| <div class="highlight-r"><div class="highlight"><pre><span></span> im <span class="o"><-</span> load.image<span class="p">(</span><span class="kp">system.file</span><span class="p">(</span><span class="s">"extdata/parrots.png"</span><span class="p">,</span> package<span class="o">=</span><span class="s">"imager"</span><span class="p">))</span> |
| plot<span class="p">(</span>im<span class="p">)</span> |
| </pre></div> |
| </div> |
| <p><img alt="plot of chunk unnamed-chunk-5" src="https://raw.githubusercontent.com/dmlc/web-data/master/mxnet/knitr/classifyRealImageWithPretrainedModel-unnamed-chunk-5-1.png"/></p> |
| <p>Before feeding the image to the deep network, we need to perform some preprocessing |
| to make the image meet the deep network input requirements. Preprocessing |
| includes cropping and subtracting the mean. |
| Because MXNet is deeply integrated with R, we can do all the processing in an R function:</p> |
| <div class="highlight-r"><div class="highlight"><pre><span></span> preproc.image <span class="o"><-</span> <span class="kr">function</span><span class="p">(</span>im<span class="p">,</span> mean.image<span class="p">)</span> <span class="p">{</span> |
| <span class="c1"># crop the image</span> |
| shape <span class="o"><-</span> <span class="kp">dim</span><span class="p">(</span>im<span class="p">)</span> |
| short.edge <span class="o"><-</span> <span class="kp">min</span><span class="p">(</span>shape<span class="p">[</span><span class="m">1</span><span class="o">:</span><span class="m">2</span><span class="p">])</span> |
| xx <span class="o"><-</span> <span class="kp">floor</span><span class="p">((</span>shape<span class="p">[</span><span class="m">1</span><span class="p">]</span> <span class="o">-</span> short.edge<span class="p">)</span> <span class="o">/</span> <span class="m">2</span><span class="p">)</span> |
| yy <span class="o"><-</span> <span class="kp">floor</span><span class="p">((</span>shape<span class="p">[</span><span class="m">2</span><span class="p">]</span> <span class="o">-</span> short.edge<span class="p">)</span> <span class="o">/</span> <span class="m">2</span><span class="p">)</span> |
| cropped <span class="o"><-</span> crop.borders<span class="p">(</span>im<span class="p">,</span> xx<span class="p">,</span> yy<span class="p">)</span> |
| <span class="c1"># resize to 224 x 224, needed by input of the model.</span> |
| resized <span class="o"><-</span> resize<span class="p">(</span>cropped<span class="p">,</span> <span class="m">224</span><span class="p">,</span> <span class="m">224</span><span class="p">)</span> |
| <span class="c1"># convert to array (x, y, channel)</span> |
| arr <span class="o"><-</span> <span class="kp">as.array</span><span class="p">(</span>resized<span class="p">)</span> <span class="o">*</span> <span class="m">255</span> |
| <span class="kp">dim</span><span class="p">(</span>arr<span class="p">)</span> <span class="o"><-</span> <span class="kt">c</span><span class="p">(</span><span class="m">224</span><span class="p">,</span> <span class="m">224</span><span class="p">,</span> <span class="m">3</span><span class="p">)</span> |
| <span class="c1"># subtract the mean</span> |
| normed <span class="o"><-</span> arr <span class="o">-</span> mean.img |
| <span class="c1"># Reshape to format needed by mxnet (width, height, channel, num)</span> |
| <span class="kp">dim</span><span class="p">(</span>normed<span class="p">)</span> <span class="o"><-</span> <span class="kt">c</span><span class="p">(</span><span class="m">224</span><span class="p">,</span> <span class="m">224</span><span class="p">,</span> <span class="m">3</span><span class="p">,</span> <span class="m">1</span><span class="p">)</span> |
| <span class="kr">return</span><span class="p">(</span>normed<span class="p">)</span> |
| <span class="p">}</span> |
| </pre></div> |
| </div> |
| <p>Use the defined preprocessing function to get the normalized image:</p> |
| <div class="highlight-r"><div class="highlight"><pre><span></span> normed <span class="o"><-</span> preproc.image<span class="p">(</span>im<span class="p">,</span> mean.img<span class="p">)</span> |
| </pre></div> |
| </div> |
| </div> |
| <div class="section" id="classify-the-image"> |
| <span id="classify-the-image"></span><h2>Classify the Image<a class="headerlink" href="#classify-the-image" title="Permalink to this headline">¶</a></h2> |
| <p>Now we are ready to classify the image! Use the <code class="docutils literal"><span class="pre">predict</span></code> function |
| to get the probability over classes:</p> |
| <div class="highlight-r"><div class="highlight"><pre><span></span> prob <span class="o"><-</span> predict<span class="p">(</span>model<span class="p">,</span> X<span class="o">=</span>normed<span class="p">)</span> |
| <span class="kp">dim</span><span class="p">(</span>prob<span class="p">)</span> |
| </pre></div> |
| </div> |
| <div class="highlight-python"><div class="highlight"><pre><span></span> <span class="c1">## [1] 1000 1</span> |
| </pre></div> |
| </div> |
| <p>As you can see, <code class="docutils literal"><span class="pre">prob</span></code> is a 1 times 1000 array, which gives the probability |
| over the 1000 image classes of the input.</p> |
| <p>Use the <code class="docutils literal"><span class="pre">max.col</span></code> on the transpose of <code class="docutils literal"><span class="pre">prob</span></code> to get the class index:</p> |
| <div class="highlight-r"><div class="highlight"><pre><span></span> max.idx <span class="o"><-</span> <span class="kp">max.col</span><span class="p">(</span><span class="kp">t</span><span class="p">(</span>prob<span class="p">))</span> |
| max.idx |
| </pre></div> |
| </div> |
| <div class="highlight-python"><div class="highlight"><pre><span></span> <span class="c1">## [1] 89</span> |
| </pre></div> |
| </div> |
| <p>The index doesn’t make much sense, so let’s see what it really means. |
| Read the names of the classes from the following file:</p> |
| <div class="highlight-r"><div class="highlight"><pre><span></span> synsets <span class="o"><-</span> <span class="kp">readLines</span><span class="p">(</span><span class="s">"Inception/synset.txt"</span><span class="p">)</span> |
| </pre></div> |
| </div> |
| <p>Let’s see what the image really is:</p> |
| <div class="highlight-r"><div class="highlight"><pre><span></span> <span class="kp">print</span><span class="p">(</span><span class="kp">paste0</span><span class="p">(</span><span class="s">"Predicted Top-class: "</span><span class="p">,</span> synsets <span class="p">[[</span>max.idx<span class="p">]]))</span> |
| </pre></div> |
| </div> |
| <div class="highlight-python"><div class="highlight"><pre><span></span> <span class="c1">## [1] "Predicted Top-class: n01818515 macaw"</span> |
| </pre></div> |
| </div> |
| <p>It’s a macaw!</p> |
| </div> |
| <div class="section" id="reference"> |
| <span id="reference"></span><h2>Reference<a class="headerlink" href="#reference" title="Permalink to this headline">¶</a></h2> |
| <p>[1] Ioffe, Sergey, and Christian Szegedy. “Batch normalization: Accelerating deep network training by reducing internal covariate shift.” arXiv preprint arXiv:1502.03167 (2015).</p> |
| </div> |
| <div class="section" id="next-steps"> |
| <span id="next-steps"></span><h2>Next Steps<a class="headerlink" href="#next-steps" title="Permalink to this headline">¶</a></h2> |
| <div class="toctree-wrapper compound"> |
| <ul> |
| <li class="toctree-l1"><a class="reference external" href="https://mxnet.incubator.apache.org/tutorials/r/mnistCompetition.html">Handwritten Digits Classification Competition</a></li> |
| <li class="toctree-l1"><a class="reference external" href="https://mxnet.incubator.apache.org/tutorials/r/charRnnModel.html">Character Language Model using RNN</a></li> |
| </ul> |
| </div> |
| </div> |
| </div> |
| </div> |
| </div> |
| <div aria-label="main navigation" class="sphinxsidebar rightsidebar" role="navigation"> |
| <div class="sphinxsidebarwrapper"> |
| <h3><a href="../../index.html">Table Of Contents</a></h3> |
| <ul> |
| <li><a class="reference internal" href="#">Classify Images with a PreTrained Model</a><ul> |
| <li><a class="reference internal" href="#load-the-mxnet-package">Load the MXNet Package</a></li> |
| <li><a class="reference internal" href="#load-the-pretrained-model">Load the PreTrained Model</a></li> |
| <li><a class="reference internal" href="#load-and-preprocess-the-image">Load and Preprocess the Image</a></li> |
| <li><a class="reference internal" href="#classify-the-image">Classify the Image</a></li> |
| <li><a class="reference internal" href="#reference">Reference</a></li> |
| <li><a class="reference internal" href="#next-steps">Next Steps</a></li> |
| </ul> |
| </li> |
| </ul> |
| </div> |
| </div> |
| </div><div class="footer"> |
| <div class="section-disclaimer"> |
| <div class="container"> |
| <div> |
| <img height="60" src="https://raw.githubusercontent.com/dmlc/web-data/master/mxnet/image/apache_incubator_logo.png"/> |
| <p> |
| Apache MXNet is an effort undergoing incubation at The Apache Software Foundation (ASF), <strong>sponsored by the <i>Apache Incubator</i></strong>. Incubation is required of all newly accepted projects until a further review indicates that the infrastructure, communications, and decision making process have stabilized in a manner consistent with other successful ASF projects. While incubation status is not necessarily a reflection of the completeness or stability of the code, it does indicate that the project has yet to be fully endorsed by the ASF. |
| </p> |
| <p> |
| "Copyright © 2017, The Apache Software Foundation |
| Apache MXNet, MXNet, Apache, the Apache feather, and the Apache MXNet project logo are either registered trademarks or trademarks of the Apache Software Foundation." |
| </p> |
| </div> |
| </div> |
| </div> |
| </div> <!-- pagename != index --> |
| </div> |
| <script crossorigin="anonymous" integrity="sha384-0mSbJDEHialfmuBBQP6A4Qrprq5OVfW37PRR3j5ELqxss1yVqOtnepnHVP9aJ7xS" src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/js/bootstrap.min.js"></script> |
| <script src="../../_static/js/sidebar.js" type="text/javascript"></script> |
| <script src="../../_static/js/search.js" type="text/javascript"></script> |
| <script src="../../_static/js/navbar.js" type="text/javascript"></script> |
| <script src="../../_static/js/clipboard.min.js" type="text/javascript"></script> |
| <script src="../../_static/js/copycode.js" type="text/javascript"></script> |
| <script src="../../_static/js/page.js" type="text/javascript"></script> |
| <script type="text/javascript"> |
| $('body').ready(function () { |
| $('body').css('visibility', 'visible'); |
| }); |
| </script> |
| </body> |
| </html> |