| <!DOCTYPE html> |
| |
| <html lang="en"> |
| <head> |
| <meta charset="utf-8"/> |
| <meta content="IE=edge" http-equiv="X-UA-Compatible"/> |
| <meta content="width=device-width, initial-scale=1" name="viewport"/> |
| <title>Gluon - Neural network building blocks — mxnet documentation</title> |
| <link crossorigin="anonymous" href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/css/bootstrap.min.css" integrity="sha384-1q8mTJOASx8j1Au+a5WDVnPi2lkFfwwEAa8hDDdjZlpLegxhjVME1fgjWPGmkzs7" rel="stylesheet"/> |
| <link href="https://maxcdn.bootstrapcdn.com/font-awesome/4.5.0/css/font-awesome.min.css" rel="stylesheet"/> |
| <link href="../../_static/basic.css" rel="stylesheet" type="text/css"/> |
| <link href="../../_static/pygments.css" rel="stylesheet" type="text/css"/> |
| <link href="../../_static/mxnet.css" rel="stylesheet" type="text/css"/> |
| <script type="text/javascript"> |
| var DOCUMENTATION_OPTIONS = { |
| URL_ROOT: '../../', |
| VERSION: '', |
| COLLAPSE_INDEX: false, |
| FILE_SUFFIX: '.html', |
| HAS_SOURCE: true, |
| SOURCELINK_SUFFIX: '' |
| }; |
| </script> |
| <script src="../../_static/jquery-1.11.1.js" type="text/javascript"></script> |
| <script src="../../_static/underscore.js" type="text/javascript"></script> |
| <script src="../../_static/searchtools_custom.js" type="text/javascript"></script> |
| <script src="../../_static/doctools.js" type="text/javascript"></script> |
| <script src="../../_static/selectlang.js" type="text/javascript"></script> |
| <script src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML" type="text/javascript"></script> |
| <script type="text/javascript"> jQuery(function() { Search.loadIndex("/searchindex.js"); Search.init();}); </script> |
| <script> |
| (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ |
| (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new |
| Date();a=s.createElement(o), |
| m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) |
| })(window,document,'script','https://www.google-analytics.com/analytics.js','ga'); |
| |
| ga('create', 'UA-96378503-1', 'auto'); |
| ga('send', 'pageview'); |
| |
| </script> |
| <!-- --> |
| <!-- <script type="text/javascript" src="../../_static/jquery.js"></script> --> |
| <!-- --> |
| <!-- <script type="text/javascript" src="../../_static/underscore.js"></script> --> |
| <!-- --> |
| <!-- <script type="text/javascript" src="../../_static/doctools.js"></script> --> |
| <!-- --> |
| <!-- <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script> --> |
| <!-- --> |
| <link href="https://raw.githubusercontent.com/dmlc/web-data/master/mxnet/image/mxnet-icon.png" rel="icon" type="image/png"/> |
| </head> |
| <body role="document"><div class="navbar navbar-fixed-top"> |
| <div class="container" id="navContainer"> |
| <div class="innder" id="header-inner"> |
| <h1 id="logo-wrap"> |
| <a href="../../" id="logo"><img src="../../_static/mxnet.png"/></a> |
| </h1> |
| <nav class="nav-bar" id="main-nav"> |
| <a class="main-nav-link" href="../../get_started/install.html">Install</a> |
| <a class="main-nav-link" href="../../tutorials/index.html">Tutorials</a> |
| <span id="dropdown-menu-position-anchor"> |
| <a aria-expanded="true" aria-haspopup="true" class="main-nav-link dropdown-toggle" data-toggle="dropdown" href="#" role="button">Gluon <span class="caret"></span></a> |
| <ul class="dropdown-menu" id="package-dropdown-menu"> |
| <li><a class="main-nav-link" href="../../gluon/index.html">About</a></li> |
| <li><a class="main-nav-link" href="http://gluon.mxnet.io/">Tutorials</a></li> |
| </ul> |
| </span> |
| <a class="main-nav-link" href="../../how_to/index.html">How To</a> |
| <span id="dropdown-menu-position-anchor"> |
| <a aria-expanded="true" aria-haspopup="true" class="main-nav-link dropdown-toggle" data-toggle="dropdown" href="#" role="button">API <span class="caret"></span></a> |
| <ul class="dropdown-menu" id="package-dropdown-menu"> |
| <li><a class="main-nav-link" href="../../api/python/index.html">Python</a></li> |
| <li><a class="main-nav-link" href="../../api/scala/index.html">Scala</a></li> |
| <li><a class="main-nav-link" href="../../api/r/index.html">R</a></li> |
| <li><a class="main-nav-link" href="../../api/julia/index.html">Julia</a></li> |
| <li><a class="main-nav-link" href="../../api/c++/index.html">C++</a></li> |
| <li><a class="main-nav-link" href="../../api/perl/index.html">Perl</a></li> |
| </ul> |
| </span> |
| <a class="main-nav-link" href="../../architecture/index.html">Architecture</a> |
| <!-- <a class="main-nav-link" href="../../community/index.html">Community</a> --> |
| <a class="main-nav-link" href="https://github.com/dmlc/mxnet">Github</a> |
| <span id="dropdown-menu-position-anchor-version" style="position: relative"><a href="#" class="main-nav-link dropdown-toggle" data-toggle="dropdown" role="button" aria-haspopup="true" aria-expanded="true">Versions(0.11.0)<span class="caret"></span></a><ul id="package-dropdown-menu" class="dropdown-menu"><li><a class="main-nav-link" href=https://mxnet.incubator.apache.org/>1.0.0</a></li><li><a class="main-nav-link" href=https://mxnet.incubator.apache.org/versions/0.12.1/index.html>0.12.1</a></li><li><a class="main-nav-link" href=https://mxnet.incubator.apache.org/versions/0.12.0/index.html>0.12.0</a></li><li><a class="main-nav-link" href=https://mxnet.incubator.apache.org/versions/0.11.0/index.html>0.11.0</a></li><li><a class="main-nav-link" href=https://mxnet.incubator.apache.org/versions/master/index.html>master</a></li></ul></span></nav> |
| <script> function getRootPath(){ return "../../" } </script> |
| <div class="burgerIcon dropdown"> |
| <a class="dropdown-toggle" data-toggle="dropdown" href="#" role="button">☰</a> |
| <ul class="dropdown-menu dropdown-menu-right" id="burgerMenu"> |
| <li><a href="../../get_started/install.html">Install</a></li> |
| <li><a href="../../tutorials/index.html">Tutorials</a></li> |
| <li><a href="../../how_to/index.html">How To</a></li> |
| <li class="dropdown-submenu"> |
| <a href="#" tabindex="-1">API</a> |
| <ul class="dropdown-menu"> |
| <li><a href="../../api/python/index.html" tabindex="-1">Python</a> |
| </li> |
| <li><a href="../../api/scala/index.html" tabindex="-1">Scala</a> |
| </li> |
| <li><a href="../../api/r/index.html" tabindex="-1">R</a> |
| </li> |
| <li><a href="../../api/julia/index.html" tabindex="-1">Julia</a> |
| </li> |
| <li><a href="../../api/c++/index.html" tabindex="-1">C++</a> |
| </li> |
| <li><a href="../../api/perl/index.html" tabindex="-1">Perl</a> |
| </li> |
| </ul> |
| </li> |
| <li><a href="../../architecture/index.html">Architecture</a></li> |
| <li><a class="main-nav-link" href="https://github.com/dmlc/mxnet">Github</a></li> |
| <li id="dropdown-menu-position-anchor-version-mobile" class="dropdown-submenu" style="position: relative"><a href="#" tabindex="-1">Versions(0.11.0)</a><ul class="dropdown-menu"><li><a tabindex="-1" href=https://mxnet.incubator.apache.org/>1.0.0</a></li><li><a tabindex="-1" href=https://mxnet.incubator.apache.org/versions/0.12.1/index.html>0.12.1</a></li><li><a tabindex="-1" href=https://mxnet.incubator.apache.org/versions/0.12.0/index.html>0.12.0</a></li><li><a tabindex="-1" href=https://mxnet.incubator.apache.org/versions/0.11.0/index.html>0.11.0</a></li><li><a tabindex="-1" href=https://mxnet.incubator.apache.org/versions/master/index.html>master</a></li></ul></li></ul> |
| </div> |
| <div class="plusIcon dropdown"> |
| <a class="dropdown-toggle" data-toggle="dropdown" href="#" role="button"><span aria-hidden="true" class="glyphicon glyphicon-plus"></span></a> |
| <ul class="dropdown-menu dropdown-menu-right" id="plusMenu"></ul> |
| </div> |
| <div id="search-input-wrap"> |
| <form action="../../search.html" autocomplete="off" class="" method="get" role="search"> |
| <div class="form-group inner-addon left-addon"> |
| <i class="glyphicon glyphicon-search"></i> |
| <input class="form-control" name="q" placeholder="Search" type="text"/> |
| </div> |
| <input name="check_keywords" type="hidden" value="yes"/> |
| <input name="area" type="hidden" value="default"/> |
| </form> |
| <div id="search-preview"></div> |
| </div> |
| <div id="searchIcon"> |
| <span aria-hidden="true" class="glyphicon glyphicon-search"></span> |
| </div> |
| <!-- <div id="lang-select-wrap"> --> |
| <!-- <label id="lang-select-label"> --> |
| <!-- <\!-- <i class="fa fa-globe"></i> -\-> --> |
| <!-- <span></span> --> |
| <!-- </label> --> |
| <!-- <select id="lang-select"> --> |
| <!-- <option value="en">Eng</option> --> |
| <!-- <option value="zh">中文</option> --> |
| <!-- </select> --> |
| <!-- </div> --> |
| <!-- <a id="mobile-nav-toggle"> |
| <span class="mobile-nav-toggle-bar"></span> |
| <span class="mobile-nav-toggle-bar"></span> |
| <span class="mobile-nav-toggle-bar"></span> |
| </a> --> |
| </div> |
| </div> |
| </div> |
| <div class="container"> |
| <div class="row"> |
| <div aria-label="main navigation" class="sphinxsidebar leftsidebar" role="navigation"> |
| <div class="sphinxsidebarwrapper"> |
| <ul> |
| <li class="toctree-l1"><a class="reference internal" href="../../api/python/index.html">Python Documents</a></li> |
| <li class="toctree-l1"><a class="reference internal" href="../../api/r/index.html">R Documents</a></li> |
| <li class="toctree-l1"><a class="reference internal" href="../../api/julia/index.html">Julia Documents</a></li> |
| <li class="toctree-l1"><a class="reference internal" href="../../api/c++/index.html">C++ Documents</a></li> |
| <li class="toctree-l1"><a class="reference internal" href="../../api/scala/index.html">Scala Documents</a></li> |
| <li class="toctree-l1"><a class="reference internal" href="../../api/perl/index.html">Perl Documents</a></li> |
| <li class="toctree-l1"><a class="reference internal" href="../../how_to/index.html">HowTo Documents</a></li> |
| <li class="toctree-l1"><a class="reference internal" href="../../architecture/index.html">System Documents</a></li> |
| <li class="toctree-l1"><a class="reference internal" href="../index.html">Tutorials</a></li> |
| </ul> |
| </div> |
| </div> |
| <div class="content"> |
| <div class="section" id="gluon-neural-network-building-blocks"> |
| <span id="gluon-neural-network-building-blocks"></span><h1>Gluon - Neural network building blocks<a class="headerlink" href="#gluon-neural-network-building-blocks" title="Permalink to this headline">¶</a></h1> |
| <p>Gluon package is a high-level interface for MXNet designed to be easy to use while |
| keeping most of the flexibility of low level API. Gluon supports both imperative |
| and symbolic programming, making it easy to train complex models imperatively |
| in Python and then deploy with symbolic graph in C++ and Scala.</p> |
| <div class="highlight-python"><div class="highlight"><pre><span></span><span class="c1"># import dependencies</span> |
| <span class="kn">from</span> <span class="nn">__future__</span> <span class="kn">import</span> <span class="n">print_function</span> |
| <span class="kn">import</span> <span class="nn">numpy</span> <span class="kn">as</span> <span class="nn">np</span> |
| <span class="kn">import</span> <span class="nn">mxnet</span> <span class="kn">as</span> <span class="nn">mx</span> |
| <span class="kn">import</span> <span class="nn">mxnet.ndarray</span> <span class="kn">as</span> <span class="nn">F</span> |
| <span class="kn">import</span> <span class="nn">mxnet.gluon</span> <span class="kn">as</span> <span class="nn">gluon</span> |
| <span class="kn">from</span> <span class="nn">mxnet.gluon</span> <span class="kn">import</span> <span class="n">nn</span> |
| <span class="kn">from</span> <span class="nn">mxnet</span> <span class="kn">import</span> <span class="n">autograd</span> |
| </pre></div> |
| </div> |
| <p>Neural networks (and other machine learning models) can be defined and trained |
| with <code class="docutils literal"><span class="pre">gluon.nn</span></code> and <code class="docutils literal"><span class="pre">gluon.rnn</span></code> package. A typical training script has the following |
| steps:</p> |
| <ul class="simple"> |
| <li>Define network</li> |
| <li>Initialize parameters</li> |
| <li>Loop over inputs</li> |
| <li>Forward input through network to get output</li> |
| <li>Compute loss with output and label</li> |
| <li>Backprop gradient</li> |
| <li>Update parameters with gradient descent.</li> |
| </ul> |
| <div class="section" id="define-network"> |
| <span id="define-network"></span><h2>Define Network<a class="headerlink" href="#define-network" title="Permalink to this headline">¶</a></h2> |
| <p><code class="docutils literal"><span class="pre">gluon.Block</span></code> is the basic building block of models. You can define networks by |
| composing and inheriting <code class="docutils literal"><span class="pre">Block</span></code>:</p> |
| <div class="highlight-python"><div class="highlight"><pre><span></span><span class="k">class</span> <span class="nc">Net</span><span class="p">(</span><span class="n">gluon</span><span class="o">.</span><span class="n">Block</span><span class="p">):</span> |
| <span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span> |
| <span class="nb">super</span><span class="p">(</span><span class="n">Net</span><span class="p">,</span> <span class="bp">self</span><span class="p">)</span><span class="o">.</span><span class="fm">__init__</span><span class="p">(</span><span class="o">**</span><span class="n">kwargs</span><span class="p">)</span> |
| <span class="k">with</span> <span class="bp">self</span><span class="o">.</span><span class="n">name_scope</span><span class="p">():</span> |
| <span class="c1"># layers created in name_scope will inherit name space</span> |
| <span class="c1"># from parent layer.</span> |
| <span class="bp">self</span><span class="o">.</span><span class="n">conv1</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Conv2D</span><span class="p">(</span><span class="mi">6</span><span class="p">,</span> <span class="n">kernel_size</span><span class="o">=</span><span class="mi">5</span><span class="p">)</span> |
| <span class="bp">self</span><span class="o">.</span><span class="n">pool1</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">MaxPool2D</span><span class="p">(</span><span class="n">pool_size</span><span class="o">=</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span><span class="mi">2</span><span class="p">))</span> |
| <span class="bp">self</span><span class="o">.</span><span class="n">conv2</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Conv2D</span><span class="p">(</span><span class="mi">16</span><span class="p">,</span> <span class="n">kernel_size</span><span class="o">=</span><span class="mi">5</span><span class="p">)</span> |
| <span class="bp">self</span><span class="o">.</span><span class="n">pool2</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">MaxPool2D</span><span class="p">(</span><span class="n">pool_size</span><span class="o">=</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span><span class="mi">2</span><span class="p">))</span> |
| <span class="bp">self</span><span class="o">.</span><span class="n">fc1</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Dense</span><span class="p">(</span><span class="mi">120</span><span class="p">)</span> |
| <span class="bp">self</span><span class="o">.</span><span class="n">fc2</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Dense</span><span class="p">(</span><span class="mi">84</span><span class="p">)</span> |
| <span class="bp">self</span><span class="o">.</span><span class="n">fc3</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Dense</span><span class="p">(</span><span class="mi">10</span><span class="p">)</span> |
| |
| <span class="k">def</span> <span class="nf">forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">x</span><span class="p">):</span> |
| <span class="n">x</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">pool1</span><span class="p">(</span><span class="n">F</span><span class="o">.</span><span class="n">relu</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">conv1</span><span class="p">(</span><span class="n">x</span><span class="p">)))</span> |
| <span class="n">x</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">pool2</span><span class="p">(</span><span class="n">F</span><span class="o">.</span><span class="n">relu</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">conv2</span><span class="p">(</span><span class="n">x</span><span class="p">)))</span> |
| <span class="c1"># 0 means copy over size from corresponding dimension.</span> |
| <span class="c1"># -1 means infer size from the rest of dimensions.</span> |
| <span class="n">x</span> <span class="o">=</span> <span class="n">x</span><span class="o">.</span><span class="n">reshape</span><span class="p">((</span><span class="mi">0</span><span class="p">,</span> <span class="o">-</span><span class="mi">1</span><span class="p">))</span> |
| <span class="n">x</span> <span class="o">=</span> <span class="n">F</span><span class="o">.</span><span class="n">relu</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">fc1</span><span class="p">(</span><span class="n">x</span><span class="p">))</span> |
| <span class="n">x</span> <span class="o">=</span> <span class="n">F</span><span class="o">.</span><span class="n">relu</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">fc2</span><span class="p">(</span><span class="n">x</span><span class="p">))</span> |
| <span class="n">x</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">fc3</span><span class="p">(</span><span class="n">x</span><span class="p">)</span> |
| <span class="k">return</span> <span class="n">x</span> |
| </pre></div> |
| </div> |
| </div> |
| <div class="section" id="initialize-parameters"> |
| <span id="initialize-parameters"></span><h2>Initialize Parameters<a class="headerlink" href="#initialize-parameters" title="Permalink to this headline">¶</a></h2> |
| <p>A network must be created and initialized before it can be used:</p> |
| <div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">net</span> <span class="o">=</span> <span class="n">Net</span><span class="p">()</span> |
| <span class="c1"># Initialize on CPU. Replace with `mx.gpu(0)`, or `[mx.gpu(0), mx.gpu(1)]`,</span> |
| <span class="c1"># etc to use one or more GPUs.</span> |
| <span class="n">net</span><span class="o">.</span><span class="n">collect_params</span><span class="p">()</span><span class="o">.</span><span class="n">initialize</span><span class="p">(</span><span class="n">mx</span><span class="o">.</span><span class="n">init</span><span class="o">.</span><span class="n">Xavier</span><span class="p">(),</span> <span class="n">ctx</span><span class="o">=</span><span class="n">mx</span><span class="o">.</span><span class="n">cpu</span><span class="p">())</span> |
| </pre></div> |
| </div> |
| <p>Note that because we didn’t specify input size to layers in Net’s constructor, |
| the shape of parameters cannot be determined at this point. Actual initialization |
| is deferred to the first forward pass, i.e. if you access <code class="docutils literal"><span class="pre">net.fc1.weight.data()</span></code> |
| now an exception will be raised.</p> |
| <p>You can actually initialize the weights by running a forward pass:</p> |
| <div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">data</span> <span class="o">=</span> <span class="n">mx</span><span class="o">.</span><span class="n">nd</span><span class="o">.</span><span class="n">random_normal</span><span class="p">(</span><span class="n">shape</span><span class="o">=</span><span class="p">(</span><span class="mi">10</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">32</span><span class="p">,</span> <span class="mi">32</span><span class="p">))</span> <span class="c1"># dummy data</span> |
| <span class="n">output</span> <span class="o">=</span> <span class="n">net</span><span class="p">(</span><span class="n">data</span><span class="p">)</span> |
| </pre></div> |
| </div> |
| <p>Or you can specify input size when creating layers, i.e. <code class="docutils literal"><span class="pre">nn.Dense(84,</span> <span class="pre">in_units=120)</span></code> |
| instead of <code class="docutils literal"><span class="pre">nn.Dense(84)</span></code>.</p> |
| </div> |
| <div class="section" id="loss-functions"> |
| <span id="loss-functions"></span><h2>Loss Functions<a class="headerlink" href="#loss-functions" title="Permalink to this headline">¶</a></h2> |
| <p>Loss functions take (output, label) pairs and compute a scalar loss for each sample |
| in the mini-batch. The scalars measure how far each output is from the label.</p> |
| <p>There are many predefined loss functions in <code class="docutils literal"><span class="pre">gluon.loss</span></code>. Here we use |
| <code class="docutils literal"><span class="pre">softmax_cross_entropy_loss</span></code> for digit classification.</p> |
| <p>To compute loss and backprop for one iteration, we do:</p> |
| <div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">label</span> <span class="o">=</span> <span class="n">mx</span><span class="o">.</span><span class="n">nd</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="mi">10</span><span class="p">)</span> <span class="c1"># dummy label</span> |
| <span class="k">with</span> <span class="n">autograd</span><span class="o">.</span><span class="n">record</span><span class="p">():</span> |
| <span class="n">output</span> <span class="o">=</span> <span class="n">net</span><span class="p">(</span><span class="n">data</span><span class="p">)</span> |
| <span class="n">L</span> <span class="o">=</span> <span class="n">gluon</span><span class="o">.</span><span class="n">loss</span><span class="o">.</span><span class="n">SoftmaxCrossEntropyLoss</span><span class="p">()</span> |
| <span class="n">loss</span> <span class="o">=</span> <span class="n">L</span><span class="p">(</span><span class="n">output</span><span class="p">,</span> <span class="n">label</span><span class="p">)</span> |
| <span class="n">loss</span><span class="o">.</span><span class="n">backward</span><span class="p">()</span> |
| <span class="k">print</span><span class="p">(</span><span class="s1">'loss:'</span><span class="p">,</span> <span class="n">loss</span><span class="p">)</span> |
| <span class="k">print</span><span class="p">(</span><span class="s1">'grad:'</span><span class="p">,</span> <span class="n">net</span><span class="o">.</span><span class="n">fc1</span><span class="o">.</span><span class="n">weight</span><span class="o">.</span><span class="n">grad</span><span class="p">())</span> |
| </pre></div> |
| </div> |
| </div> |
| <div class="section" id="updating-the-weights"> |
| <span id="updating-the-weights"></span><h2>Updating the weights<a class="headerlink" href="#updating-the-weights" title="Permalink to this headline">¶</a></h2> |
| <p>Now that gradient is computed, we just need to update the weights. This is usually |
| done with formulas like <code class="docutils literal"><span class="pre">weight</span> <span class="pre">=</span> <span class="pre">weight</span> <span class="pre">-</span> <span class="pre">learning_rate</span> <span class="pre">*</span> <span class="pre">grad</span> <span class="pre">/</span> <span class="pre">batch_size</span></code>. |
| Note we divide gradient by batch_size because gradient is aggregated over the |
| entire batch. For example,</p> |
| <div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">lr</span> <span class="o">=</span> <span class="mf">0.01</span> |
| <span class="k">for</span> <span class="n">p</span> <span class="ow">in</span> <span class="n">net</span><span class="o">.</span><span class="n">collect_params</span><span class="p">()</span><span class="o">.</span><span class="n">values</span><span class="p">():</span> |
| <span class="n">p</span><span class="o">.</span><span class="n">data</span><span class="p">()[:]</span> <span class="o">-=</span> <span class="n">lr</span> <span class="o">/</span> <span class="n">data</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span> <span class="o">*</span> <span class="n">p</span><span class="o">.</span><span class="n">grad</span><span class="p">()</span> |
| </pre></div> |
| </div> |
| <p>But sometimes you want more fancy updating rules like momentum and Adam, and since |
| this is a commonly used functionality, gluon provide a <code class="docutils literal"><span class="pre">Trainer</span></code> class for it:</p> |
| <div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">trainer</span> <span class="o">=</span> <span class="n">gluon</span><span class="o">.</span><span class="n">Trainer</span><span class="p">(</span><span class="n">net</span><span class="o">.</span><span class="n">collect_params</span><span class="p">(),</span> <span class="s1">'sgd'</span><span class="p">,</span> <span class="p">{</span><span class="s1">'learning_rate'</span><span class="p">:</span> <span class="mf">0.01</span><span class="p">})</span> |
| |
| <span class="k">with</span> <span class="n">autograd</span><span class="o">.</span><span class="n">record</span><span class="p">():</span> |
| <span class="n">output</span> <span class="o">=</span> <span class="n">net</span><span class="p">(</span><span class="n">data</span><span class="p">)</span> |
| <span class="n">L</span> <span class="o">=</span> <span class="n">gluon</span><span class="o">.</span><span class="n">loss</span><span class="o">.</span><span class="n">SoftmaxCrossEntropyLoss</span><span class="p">()</span> |
| <span class="n">loss</span> <span class="o">=</span> <span class="n">L</span><span class="p">(</span><span class="n">output</span><span class="p">,</span> <span class="n">label</span><span class="p">)</span> |
| <span class="n">loss</span><span class="o">.</span><span class="n">backward</span><span class="p">()</span> |
| |
| <span class="c1"># do the update. Trainer needs to know the batch size of data to normalize</span> |
| <span class="c1"># the gradient by 1/batch_size.</span> |
| <span class="n">trainer</span><span class="o">.</span><span class="n">step</span><span class="p">(</span><span class="n">data</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="mi">0</span><span class="p">])</span> |
| </pre></div> |
| </div> |
| <div class="btn-group" role="group"> |
| <div class="download_btn"><a download="gluon.ipynb" href="gluon.ipynb"><span class="glyphicon glyphicon-download-alt"></span> gluon.ipynb</a></div></div></div> |
| </div> |
| <div class="container"> |
| <div class="footer"> |
| <p> </p> |
| </div> |
| </div> |
| </div> |
| <div aria-label="main navigation" class="sphinxsidebar rightsidebar" role="navigation"> |
| <div class="sphinxsidebarwrapper"> |
| <h3><a href="../../index.html">Table Of Contents</a></h3> |
| <ul> |
| <li><a class="reference internal" href="#">Gluon - Neural network building blocks</a><ul> |
| <li><a class="reference internal" href="#define-network">Define Network</a></li> |
| <li><a class="reference internal" href="#initialize-parameters">Initialize Parameters</a></li> |
| <li><a class="reference internal" href="#loss-functions">Loss Functions</a></li> |
| <li><a class="reference internal" href="#updating-the-weights">Updating the weights</a></li> |
| </ul> |
| </li> |
| </ul> |
| </div> |
| </div> |
| </div> <!-- pagename != index --> |
| <script crossorigin="anonymous" integrity="sha384-0mSbJDEHialfmuBBQP6A4Qrprq5OVfW37PRR3j5ELqxss1yVqOtnepnHVP9aJ7xS" src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/js/bootstrap.min.js"></script> |
| <script src="../../_static/js/sidebar.js" type="text/javascript"></script> |
| <script src="../../_static/js/search.js" type="text/javascript"></script> |
| <script src="../../_static/js/navbar.js" type="text/javascript"></script> |
| <script src="../../_static/js/clipboard.min.js" type="text/javascript"></script> |
| <script src="../../_static/js/copycode.js" type="text/javascript"></script> |
| <script type="text/javascript"> |
| $('body').ready(function () { |
| $('body').css('visibility', 'visible'); |
| }); |
| </script> |
| </div></body> |
| </html> |