| <!DOCTYPE html> |
| |
| <html lang="en"> |
| <head> |
| <meta charset="utf-8"/> |
| <meta content="IE=edge" http-equiv="X-UA-Compatible"/> |
| <meta content="width=device-width, initial-scale=1" name="viewport"/> |
| <title>Sparse Symbol API — mxnet documentation</title> |
| <link crossorigin="anonymous" href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/css/bootstrap.min.css" integrity="sha384-1q8mTJOASx8j1Au+a5WDVnPi2lkFfwwEAa8hDDdjZlpLegxhjVME1fgjWPGmkzs7" rel="stylesheet"/> |
| <link href="https://maxcdn.bootstrapcdn.com/font-awesome/4.5.0/css/font-awesome.min.css" rel="stylesheet"/> |
| <link href="../../../_static/basic.css" rel="stylesheet" type="text/css"> |
| <link href="../../../_static/pygments.css" rel="stylesheet" type="text/css"> |
| <link href="../../../_static/mxnet.css" rel="stylesheet" type="text/css"/> |
| <script type="text/javascript"> |
| var DOCUMENTATION_OPTIONS = { |
| URL_ROOT: '../../../', |
| VERSION: '', |
| COLLAPSE_INDEX: false, |
| FILE_SUFFIX: '.html', |
| HAS_SOURCE: true, |
| SOURCELINK_SUFFIX: '' |
| }; |
| </script> |
| <script src="https://code.jquery.com/jquery-1.11.1.min.js" type="text/javascript"></script> |
| <script src="../../../_static/underscore.js" type="text/javascript"></script> |
| <script src="../../../_static/searchtools_custom.js" type="text/javascript"></script> |
| <script src="../../../_static/doctools.js" type="text/javascript"></script> |
| <script src="../../../_static/selectlang.js" type="text/javascript"></script> |
| <script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.1/MathJax.js?config=TeX-AMS-MML_HTMLorMML" type="text/javascript"></script> |
| <script type="text/javascript"> jQuery(function() { Search.loadIndex("/searchindex.js"); Search.init();}); </script> |
| <script> |
| (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ |
| (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new |
| Date();a=s.createElement(o), |
| m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) |
| })(window,document,'script','https://www.google-analytics.com/analytics.js','ga'); |
| |
| ga('create', 'UA-96378503-1', 'auto'); |
| ga('send', 'pageview'); |
| |
| </script> |
| <!-- --> |
| <!-- <script type="text/javascript" src="../../../_static/jquery.js"></script> --> |
| <!-- --> |
| <!-- <script type="text/javascript" src="../../../_static/underscore.js"></script> --> |
| <!-- --> |
| <!-- <script type="text/javascript" src="../../../_static/doctools.js"></script> --> |
| <!-- --> |
| <!-- <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script> --> |
| <!-- --> |
| <link href="../index.html" rel="up" title="MXNet - Python API"> |
| <link href="contrib.html" rel="next" title="Contrib Symbol API"/> |
| <link href="linalg.html" rel="prev" title="Linear Algebra Symbol API"/> |
| <link href="https://raw.githubusercontent.com/dmlc/web-data/master/mxnet/image/mxnet-icon.png" rel="icon" type="image/png"/> |
| </link></link></link></head> |
| <body background="https://raw.githubusercontent.com/dmlc/web-data/master/mxnet/image/mxnet-background-compressed.jpeg" role="document"> |
| <div class="content-block"><div class="navbar navbar-fixed-top"> |
| <div class="container" id="navContainer"> |
| <div class="innder" id="header-inner"> |
| <h1 id="logo-wrap"> |
| <a href="../../../" id="logo"><img src="https://raw.githubusercontent.com/dmlc/web-data/master/mxnet/image/mxnet_logo.png"/></a> |
| </h1> |
| <nav class="nav-bar" id="main-nav"> |
| <a class="main-nav-link" href="../../../install/index.html">Install</a> |
| <a class="main-nav-link" href="../../../tutorials/index.html">Tutorials</a> |
| <span id="dropdown-menu-position-anchor"> |
| <a aria-expanded="true" aria-haspopup="true" class="main-nav-link dropdown-toggle" data-toggle="dropdown" href="#" role="button">Gluon <span class="caret"></span></a> |
| <ul class="dropdown-menu navbar-menu" id="package-dropdown-menu"> |
| <li><a class="main-nav-link" href="../../../gluon/index.html">About</a></li> |
| <li><a class="main-nav-link" href="http://gluon.mxnet.io">Tutorials</a></li> |
| </ul> |
| </span> |
| <span id="dropdown-menu-position-anchor"> |
| <a aria-expanded="true" aria-haspopup="true" class="main-nav-link dropdown-toggle" data-toggle="dropdown" href="#" role="button">API <span class="caret"></span></a> |
| <ul class="dropdown-menu navbar-menu" id="package-dropdown-menu"> |
| <li><a class="main-nav-link" href="../../../api/python/index.html">Python</a></li> |
| <li><a class="main-nav-link" href="../../../api/scala/index.html">Scala</a></li> |
| <li><a class="main-nav-link" href="../../../api/r/index.html">R</a></li> |
| <li><a class="main-nav-link" href="../../../api/julia/index.html">Julia</a></li> |
| <li><a class="main-nav-link" href="../../../api/c++/index.html">C++</a></li> |
| <li><a class="main-nav-link" href="../../../api/perl/index.html">Perl</a></li> |
| </ul> |
| </span> |
| <span id="dropdown-menu-position-anchor-docs"> |
| <a aria-expanded="true" aria-haspopup="true" class="main-nav-link dropdown-toggle" data-toggle="dropdown" href="#" role="button">Docs <span class="caret"></span></a> |
| <ul class="dropdown-menu navbar-menu" id="package-dropdown-menu-docs"> |
| <li><a class="main-nav-link" href="../../../faq/index.html">FAQ</a></li> |
| <li><a class="main-nav-link" href="../../../architecture/index.html">Architecture</a></li> |
| <li><a class="main-nav-link" href="https://github.com/apache/incubator-mxnet/tree/1.0.0/example">Examples</a></li> |
| <li><a class="main-nav-link" href="../../../model_zoo/index.html">Model Zoo</a></li> |
| </ul> |
| </span> |
| <a class="main-nav-link" href="https://github.com/dmlc/mxnet">Github</a> |
| <span id="dropdown-menu-position-anchor-community"> |
| <a aria-expanded="true" aria-haspopup="true" class="main-nav-link dropdown-toggle" data-toggle="dropdown" href="#" role="button">Community <span class="caret"></span></a> |
| <ul class="dropdown-menu navbar-menu" id="package-dropdown-menu-community"> |
| <li><a class="main-nav-link" href="../../../community/index.html">Community</a></li> |
| <li><a class="main-nav-link" href="../../../community/contribute.html">Contribute</a></li> |
| <li><a class="main-nav-link" href="../../../community/powered_by.html">Powered By</a></li> |
| </ul> |
| </span> |
| <a class="main-nav-link" href="http://discuss.mxnet.io">Discuss</a> |
| <span id="dropdown-menu-position-anchor-version" style="position: relative"><a href="#" class="main-nav-link dropdown-toggle" data-toggle="dropdown" role="button" aria-haspopup="true" aria-expanded="true">Versions(1.0.0)<span class="caret"></span></a><ul id="package-dropdown-menu" class="dropdown-menu"><li><a class="main-nav-link" href=https://mxnet.incubator.apache.org/>1.0.0</a></li><li><a class="main-nav-link" href=https://mxnet.incubator.apache.org/versions/0.12.1/index.html>0.12.1</a></li><li><a class="main-nav-link" href=https://mxnet.incubator.apache.org/versions/0.12.0/index.html>0.12.0</a></li><li><a class="main-nav-link" href=https://mxnet.incubator.apache.org/versions/0.11.0/index.html>0.11.0</a></li><li><a class="main-nav-link" href=https://mxnet.incubator.apache.org/versions/master/index.html>master</a></li></ul></span></nav> |
| <script> function getRootPath(){ return "../../../" } </script> |
| <div class="burgerIcon dropdown"> |
| <a class="dropdown-toggle" data-toggle="dropdown" href="#" role="button">☰</a> |
| <ul class="dropdown-menu" id="burgerMenu"> |
| <li><a href="../../../install/index.html">Install</a></li> |
| <li><a class="main-nav-link" href="../../../tutorials/index.html">Tutorials</a></li> |
| <li class="dropdown-submenu"> |
| <a href="#" tabindex="-1">Community</a> |
| <ul class="dropdown-menu"> |
| <li><a href="../../../community/index.html" tabindex="-1">Community</a></li> |
| <li><a href="../../../community/contribute.html" tabindex="-1">Contribute</a></li> |
| <li><a href="../../../community/powered_by.html" tabindex="-1">Powered By</a></li> |
| </ul> |
| </li> |
| <li class="dropdown-submenu"> |
| <a href="#" tabindex="-1">API</a> |
| <ul class="dropdown-menu"> |
| <li><a href="../../../api/python/index.html" tabindex="-1">Python</a> |
| </li> |
| <li><a href="../../../api/scala/index.html" tabindex="-1">Scala</a> |
| </li> |
| <li><a href="../../../api/r/index.html" tabindex="-1">R</a> |
| </li> |
| <li><a href="../../../api/julia/index.html" tabindex="-1">Julia</a> |
| </li> |
| <li><a href="../../../api/c++/index.html" tabindex="-1">C++</a> |
| </li> |
| <li><a href="../../../api/perl/index.html" tabindex="-1">Perl</a> |
| </li> |
| </ul> |
| </li> |
| <li class="dropdown-submenu"> |
| <a href="#" tabindex="-1">Docs</a> |
| <ul class="dropdown-menu"> |
| <li><a href="../../../tutorials/index.html" tabindex="-1">Tutorials</a></li> |
| <li><a href="../../../faq/index.html" tabindex="-1">FAQ</a></li> |
| <li><a href="../../../architecture/index.html" tabindex="-1">Architecture</a></li> |
| <li><a href="https://github.com/apache/incubator-mxnet/tree/1.0.0/example" tabindex="-1">Examples</a></li> |
| <li><a href="../../../model_zoo/index.html" tabindex="-1">Model Zoo</a></li> |
| </ul> |
| </li> |
| <li><a href="../../../architecture/index.html">Architecture</a></li> |
| <li><a class="main-nav-link" href="https://github.com/dmlc/mxnet">Github</a></li> |
| <li id="dropdown-menu-position-anchor-version-mobile" class="dropdown-submenu" style="position: relative"><a href="#" tabindex="-1">Versions(1.0.0)</a><ul class="dropdown-menu"><li><a tabindex="-1" href=https://mxnet.incubator.apache.org/>1.0.0</a></li><li><a tabindex="-1" href=https://mxnet.incubator.apache.org/versions/0.12.1/index.html>0.12.1</a></li><li><a tabindex="-1" href=https://mxnet.incubator.apache.org/versions/0.12.0/index.html>0.12.0</a></li><li><a tabindex="-1" href=https://mxnet.incubator.apache.org/versions/0.11.0/index.html>0.11.0</a></li><li><a tabindex="-1" href=https://mxnet.incubator.apache.org/versions/master/index.html>master</a></li></ul></li></ul> |
| </div> |
| <div class="plusIcon dropdown"> |
| <a class="dropdown-toggle" data-toggle="dropdown" href="#" role="button"><span aria-hidden="true" class="glyphicon glyphicon-plus"></span></a> |
| <ul class="dropdown-menu dropdown-menu-right" id="plusMenu"></ul> |
| </div> |
| <div id="search-input-wrap"> |
| <form action="../../../search.html" autocomplete="off" class="" method="get" role="search"> |
| <div class="form-group inner-addon left-addon"> |
| <i class="glyphicon glyphicon-search"></i> |
| <input class="form-control" name="q" placeholder="Search" type="text"/> |
| </div> |
| <input name="check_keywords" type="hidden" value="yes"> |
| <input name="area" type="hidden" value="default"/> |
| </input></form> |
| <div id="search-preview"></div> |
| </div> |
| <div id="searchIcon"> |
| <span aria-hidden="true" class="glyphicon glyphicon-search"></span> |
| </div> |
| <!-- <div id="lang-select-wrap"> --> |
| <!-- <label id="lang-select-label"> --> |
| <!-- <\!-- <i class="fa fa-globe"></i> -\-> --> |
| <!-- <span></span> --> |
| <!-- </label> --> |
| <!-- <select id="lang-select"> --> |
| <!-- <option value="en">Eng</option> --> |
| <!-- <option value="zh">中文</option> --> |
| <!-- </select> --> |
| <!-- </div> --> |
| <!-- <a id="mobile-nav-toggle"> |
| <span class="mobile-nav-toggle-bar"></span> |
| <span class="mobile-nav-toggle-bar"></span> |
| <span class="mobile-nav-toggle-bar"></span> |
| </a> --> |
| </div> |
| </div> |
| </div> |
| <script type="text/javascript"> |
| $('body').css('background', 'white'); |
| </script> |
| <div class="container"> |
| <div class="row"> |
| <div aria-label="main navigation" class="sphinxsidebar leftsidebar" role="navigation"> |
| <div class="sphinxsidebarwrapper"> |
| <ul class="current"> |
| <li class="toctree-l1 current"><a class="reference internal" href="../index.html">Python Documents</a><ul class="current"> |
| <li class="toctree-l2"><a class="reference internal" href="../index.html#ndarray-api">NDArray API</a></li> |
| <li class="toctree-l2 current"><a class="reference internal" href="../index.html#symbol-api">Symbol API</a><ul class="current"> |
| <li class="toctree-l3"><a class="reference internal" href="symbol.html">Symbol API</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="random.html">Random Distribution Generator Symbol API</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="linalg.html">Linear Algebra Symbol API</a></li> |
| <li class="toctree-l3 current"><a class="current reference internal" href="">Sparse Symbol API</a><ul> |
| <li class="toctree-l4"><a class="reference internal" href="#overview">Overview</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="#symbol-creation-routines">Symbol creation routines</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="#symbol-manipulation-routines">Symbol manipulation routines</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="#mathematical-functions">Mathematical functions</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="#neural-network">Neural network</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="#api-reference">API Reference</a></li> |
| </ul> |
| </li> |
| <li class="toctree-l3"><a class="reference internal" href="contrib.html">Contrib Symbol API</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="rnn.html">RNN Cell Symbol API</a></li> |
| </ul> |
| </li> |
| <li class="toctree-l2"><a class="reference internal" href="../index.html#module-api">Module API</a></li> |
| <li class="toctree-l2"><a class="reference internal" href="../index.html#autograd-api">Autograd API</a></li> |
| <li class="toctree-l2"><a class="reference internal" href="../index.html#gluon-api">Gluon API</a></li> |
| <li class="toctree-l2"><a class="reference internal" href="../index.html#kvstore-api">KVStore API</a></li> |
| <li class="toctree-l2"><a class="reference internal" href="../index.html#io-api">IO API</a></li> |
| <li class="toctree-l2"><a class="reference internal" href="../index.html#image-api">Image API</a></li> |
| <li class="toctree-l2"><a class="reference internal" href="../index.html#optimization-api">Optimization API</a></li> |
| <li class="toctree-l2"><a class="reference internal" href="../index.html#callback-api">Callback API</a></li> |
| <li class="toctree-l2"><a class="reference internal" href="../index.html#metric-api">Metric API</a></li> |
| <li class="toctree-l2"><a class="reference internal" href="../index.html#run-time-compilation-api">Run-Time Compilation API</a></li> |
| </ul> |
| </li> |
| <li class="toctree-l1"><a class="reference internal" href="../../r/index.html">R Documents</a></li> |
| <li class="toctree-l1"><a class="reference internal" href="../../julia/index.html">Julia Documents</a></li> |
| <li class="toctree-l1"><a class="reference internal" href="../../c++/index.html">C++ Documents</a></li> |
| <li class="toctree-l1"><a class="reference internal" href="../../scala/index.html">Scala Documents</a></li> |
| <li class="toctree-l1"><a class="reference internal" href="../../perl/index.html">Perl Documents</a></li> |
| <li class="toctree-l1"><a class="reference internal" href="../../../faq/index.html">HowTo Documents</a></li> |
| <li class="toctree-l1"><a class="reference internal" href="../../../architecture/index.html">System Documents</a></li> |
| <li class="toctree-l1"><a class="reference internal" href="../../../tutorials/index.html">Tutorials</a></li> |
| <li class="toctree-l1"><a class="reference internal" href="../../../community/index.html">Community</a></li> |
| </ul> |
| </div> |
| </div> |
| <div class="content"> |
| <div class="page-tracker"></div> |
| <div class="section" id="sparse-symbol-api"> |
| <span id="sparse-symbol-api"></span><h1>Sparse Symbol API<a class="headerlink" href="#sparse-symbol-api" title="Permalink to this headline">¶</a></h1> |
| <div class="section" id="overview"> |
| <span id="overview"></span><h2>Overview<a class="headerlink" href="#overview" title="Permalink to this headline">¶</a></h2> |
| <p>This document lists the routines of the sparse symbolic expression package:</p> |
| <table border="1" class="longtable docutils"> |
| <colgroup> |
| <col width="10%"/> |
| <col width="90%"/> |
| </colgroup> |
| <tbody valign="top"> |
| <tr class="row-odd"><td><a class="reference internal" href="#module-mxnet.symbol.sparse" title="mxnet.symbol.sparse"><code class="xref py py-obj docutils literal"><span class="pre">mxnet.symbol.sparse</span></code></a></td> |
| <td>Sparse Symbol API of MXNet.</td> |
| </tr> |
| </tbody> |
| </table> |
| <p>The <code class="docutils literal"><span class="pre">Sparse</span> <span class="pre">Symbol</span></code> API, defined in the <code class="docutils literal"><span class="pre">symbol.sparse</span></code> package, provides |
| sparse neural network graphs and auto-differentiation on CPU.</p> |
| <p>The storage type of a variable is speficied by the <code class="docutils literal"><span class="pre">stype</span></code> attribute of the variable. |
| The storage type of a symbolic expression is inferred based on the storage types of the variables and the operators.</p> |
| <div class="highlight-python"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">a</span> <span class="o">=</span> <span class="n">mx</span><span class="o">.</span><span class="n">sym</span><span class="o">.</span><span class="n">Variable</span><span class="p">(</span><span class="s1">'a'</span><span class="p">,</span> <span class="n">stype</span><span class="o">=</span><span class="s1">'csr'</span><span class="p">)</span> |
| <span class="gp">>>> </span><span class="n">b</span> <span class="o">=</span> <span class="n">mx</span><span class="o">.</span><span class="n">sym</span><span class="o">.</span><span class="n">Variable</span><span class="p">(</span><span class="s1">'b'</span><span class="p">)</span> |
| <span class="gp">>>> </span><span class="n">c</span> <span class="o">=</span> <span class="n">mx</span><span class="o">.</span><span class="n">sym</span><span class="o">.</span><span class="n">dot</span><span class="p">(</span><span class="n">a</span><span class="p">,</span> <span class="n">b</span><span class="p">,</span> <span class="n">transpose_a</span><span class="o">=</span><span class="bp">True</span><span class="p">)</span> |
| <span class="gp">>>> </span><span class="nb">type</span><span class="p">(</span><span class="n">c</span><span class="p">)</span> |
| <span class="go"><class 'mxnet.symbol.Symbol'></span> |
| <span class="gp">>>> </span><span class="n">e</span> <span class="o">=</span> <span class="n">c</span><span class="o">.</span><span class="n">bind</span><span class="p">(</span><span class="n">mx</span><span class="o">.</span><span class="n">cpu</span><span class="p">(),</span> <span class="p">{</span><span class="s1">'a'</span><span class="p">:</span> <span class="n">mx</span><span class="o">.</span><span class="n">nd</span><span class="o">.</span><span class="n">array</span><span class="p">([[</span><span class="mi">1</span><span class="p">,</span><span class="mi">0</span><span class="p">,</span><span class="mi">0</span><span class="p">]])</span><span class="o">.</span><span class="n">tostype</span><span class="p">(</span><span class="s1">'csr'</span><span class="p">),</span> <span class="s1">'b'</span><span class="p">:</span><span class="n">mx</span><span class="o">.</span><span class="n">nd</span><span class="o">.</span><span class="n">ones</span><span class="p">((</span><span class="mi">1</span><span class="p">,</span><span class="mi">2</span><span class="p">))})</span> |
| <span class="gp">>>> </span><span class="n">y</span> <span class="o">=</span> <span class="n">e</span><span class="o">.</span><span class="n">forward</span><span class="p">()</span> |
| <span class="go"># the result storage type of dot(csr.T, dense) is inferred to be `row_sparse`</span> |
| <span class="gp">>>> </span><span class="n">y</span> |
| <span class="go">[<RowSparseNDArray 3x2 @cpu(0)>]</span> |
| <span class="gp">>>> </span><span class="n">y</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span><span class="o">.</span><span class="n">asnumpy</span><span class="p">()</span> |
| <span class="go">array([ 1., 1.],</span> |
| <span class="go"> [ 0., 0.],</span> |
| <span class="go"> [ 0., 0.]], dtype=float32)</span> |
| </pre></div> |
| </div> |
| <div class="admonition note"> |
| <p class="first admonition-title">Note</p> |
| <p>most operators provided in <code class="docutils literal"><span class="pre">mxnet.symbol.sparse</span></code> are similar to those in |
| <code class="docutils literal"><span class="pre">mxnet.symbol</span></code> although there are few differences:</p> |
| <ul class="last simple"> |
| <li>Only a subset of operators in <code class="docutils literal"><span class="pre">mxnet.symbol</span></code> have specialized implementations in <code class="docutils literal"><span class="pre">mxnet.symbol.sparse</span></code>. |
| Operators such as reduction and broadcasting do not have sparse implementations yet.</li> |
| <li>The storage types (<code class="docutils literal"><span class="pre">stype</span></code>) of sparse operators’ outputs depend on the storage types of inputs. |
| By default the operators not available in <code class="docutils literal"><span class="pre">mxnet.symbol.sparse</span></code> infer “default” (dense) storage type for outputs. |
| Please refer to the API reference section for further details on specific operators.</li> |
| <li>GPU support for <code class="docutils literal"><span class="pre">mxnet.symbol.sparse</span></code> is experimental.</li> |
| </ul> |
| </div> |
| <p>In the rest of this document, we list sparse related routines provided by the |
| <code class="docutils literal"><span class="pre">symbol.sparse</span></code> package.</p> |
| </div> |
| <div class="section" id="symbol-creation-routines"> |
| <span id="symbol-creation-routines"></span><h2>Symbol creation routines<a class="headerlink" href="#symbol-creation-routines" title="Permalink to this headline">¶</a></h2> |
| <table border="1" class="longtable docutils"> |
| <colgroup> |
| <col width="10%"/> |
| <col width="90%"/> |
| </colgroup> |
| <tbody valign="top"> |
| <tr class="row-odd"><td><a class="reference internal" href="#mxnet.symbol.sparse.zeros_like" title="mxnet.symbol.sparse.zeros_like"><code class="xref py py-obj docutils literal"><span class="pre">zeros_like</span></code></a></td> |
| <td>Return an array of zeros with the same shape and type as the input array.</td> |
| </tr> |
| <tr class="row-even"><td><a class="reference internal" href="symbol.html#mxnet.symbol.var" title="mxnet.symbol.var"><code class="xref py py-obj docutils literal"><span class="pre">mxnet.symbol.var</span></code></a></td> |
| <td>Creates a symbolic variable with specified name.</td> |
| </tr> |
| </tbody> |
| </table> |
| </div> |
| <div class="section" id="symbol-manipulation-routines"> |
| <span id="symbol-manipulation-routines"></span><h2>Symbol manipulation routines<a class="headerlink" href="#symbol-manipulation-routines" title="Permalink to this headline">¶</a></h2> |
| <div class="section" id="changing-symbol-storage-type"> |
| <span id="changing-symbol-storage-type"></span><h3>Changing symbol storage type<a class="headerlink" href="#changing-symbol-storage-type" title="Permalink to this headline">¶</a></h3> |
| <table border="1" class="longtable docutils"> |
| <colgroup> |
| <col width="10%"/> |
| <col width="90%"/> |
| </colgroup> |
| <tbody valign="top"> |
| <tr class="row-odd"><td><a class="reference internal" href="#mxnet.symbol.sparse.cast_storage" title="mxnet.symbol.sparse.cast_storage"><code class="xref py py-obj docutils literal"><span class="pre">cast_storage</span></code></a></td> |
| <td>Casts tensor storage type to the new type.</td> |
| </tr> |
| </tbody> |
| </table> |
| </div> |
| <div class="section" id="indexing-routines"> |
| <span id="indexing-routines"></span><h3>Indexing routines<a class="headerlink" href="#indexing-routines" title="Permalink to this headline">¶</a></h3> |
| <table border="1" class="longtable docutils"> |
| <colgroup> |
| <col width="10%"/> |
| <col width="90%"/> |
| </colgroup> |
| <tbody valign="top"> |
| <tr class="row-odd"><td><a class="reference internal" href="#mxnet.symbol.sparse.slice" title="mxnet.symbol.sparse.slice"><code class="xref py py-obj docutils literal"><span class="pre">slice</span></code></a></td> |
| <td>Slices a region of the array.</td> |
| </tr> |
| <tr class="row-even"><td><a class="reference internal" href="#mxnet.symbol.sparse.retain" title="mxnet.symbol.sparse.retain"><code class="xref py py-obj docutils literal"><span class="pre">retain</span></code></a></td> |
| <td>pick rows specified by user input index array from a row sparse matrix</td> |
| </tr> |
| </tbody> |
| </table> |
| </div> |
| </div> |
| <div class="section" id="mathematical-functions"> |
| <span id="mathematical-functions"></span><h2>Mathematical functions<a class="headerlink" href="#mathematical-functions" title="Permalink to this headline">¶</a></h2> |
| <div class="section" id="arithmetic-operations"> |
| <span id="arithmetic-operations"></span><h3>Arithmetic operations<a class="headerlink" href="#arithmetic-operations" title="Permalink to this headline">¶</a></h3> |
| <table border="1" class="longtable docutils"> |
| <colgroup> |
| <col width="10%"/> |
| <col width="90%"/> |
| </colgroup> |
| <tbody valign="top"> |
| <tr class="row-odd"><td><a class="reference internal" href="#mxnet.symbol.sparse.elemwise_add" title="mxnet.symbol.sparse.elemwise_add"><code class="xref py py-obj docutils literal"><span class="pre">elemwise_add</span></code></a></td> |
| <td>Adds arguments element-wise.</td> |
| </tr> |
| <tr class="row-even"><td><a class="reference internal" href="#mxnet.symbol.sparse.elemwise_sub" title="mxnet.symbol.sparse.elemwise_sub"><code class="xref py py-obj docutils literal"><span class="pre">elemwise_sub</span></code></a></td> |
| <td>Subtracts arguments element-wise.</td> |
| </tr> |
| <tr class="row-odd"><td><a class="reference internal" href="#mxnet.symbol.sparse.elemwise_mul" title="mxnet.symbol.sparse.elemwise_mul"><code class="xref py py-obj docutils literal"><span class="pre">elemwise_mul</span></code></a></td> |
| <td>Multiplies arguments element-wise.</td> |
| </tr> |
| <tr class="row-even"><td><a class="reference internal" href="#mxnet.symbol.sparse.negative" title="mxnet.symbol.sparse.negative"><code class="xref py py-obj docutils literal"><span class="pre">negative</span></code></a></td> |
| <td>Numerical negative of the argument, element-wise.</td> |
| </tr> |
| <tr class="row-odd"><td><a class="reference internal" href="#mxnet.symbol.sparse.dot" title="mxnet.symbol.sparse.dot"><code class="xref py py-obj docutils literal"><span class="pre">dot</span></code></a></td> |
| <td>Dot product of two arrays.</td> |
| </tr> |
| <tr class="row-even"><td><a class="reference internal" href="#mxnet.symbol.sparse.add_n" title="mxnet.symbol.sparse.add_n"><code class="xref py py-obj docutils literal"><span class="pre">add_n</span></code></a></td> |
| <td>Adds all input arguments element-wise.</td> |
| </tr> |
| </tbody> |
| </table> |
| </div> |
| <div class="section" id="trigonometric-functions"> |
| <span id="trigonometric-functions"></span><h3>Trigonometric functions<a class="headerlink" href="#trigonometric-functions" title="Permalink to this headline">¶</a></h3> |
| <table border="1" class="longtable docutils"> |
| <colgroup> |
| <col width="10%"/> |
| <col width="90%"/> |
| </colgroup> |
| <tbody valign="top"> |
| <tr class="row-odd"><td><a class="reference internal" href="#mxnet.symbol.sparse.sin" title="mxnet.symbol.sparse.sin"><code class="xref py py-obj docutils literal"><span class="pre">sin</span></code></a></td> |
| <td>Computes the element-wise sine of the input array.</td> |
| </tr> |
| <tr class="row-even"><td><a class="reference internal" href="#mxnet.symbol.sparse.tan" title="mxnet.symbol.sparse.tan"><code class="xref py py-obj docutils literal"><span class="pre">tan</span></code></a></td> |
| <td>Computes the element-wise tangent of the input array.</td> |
| </tr> |
| <tr class="row-odd"><td><a class="reference internal" href="#mxnet.symbol.sparse.arcsin" title="mxnet.symbol.sparse.arcsin"><code class="xref py py-obj docutils literal"><span class="pre">arcsin</span></code></a></td> |
| <td>Returns element-wise inverse sine of the input array.</td> |
| </tr> |
| <tr class="row-even"><td><a class="reference internal" href="#mxnet.symbol.sparse.arctan" title="mxnet.symbol.sparse.arctan"><code class="xref py py-obj docutils literal"><span class="pre">arctan</span></code></a></td> |
| <td>Returns element-wise inverse tangent of the input array.</td> |
| </tr> |
| <tr class="row-odd"><td><a class="reference internal" href="#mxnet.symbol.sparse.degrees" title="mxnet.symbol.sparse.degrees"><code class="xref py py-obj docutils literal"><span class="pre">degrees</span></code></a></td> |
| <td>Converts each element of the input array from radians to degrees.</td> |
| </tr> |
| <tr class="row-even"><td><a class="reference internal" href="#mxnet.symbol.sparse.radians" title="mxnet.symbol.sparse.radians"><code class="xref py py-obj docutils literal"><span class="pre">radians</span></code></a></td> |
| <td>Converts each element of the input array from degrees to radians.</td> |
| </tr> |
| </tbody> |
| </table> |
| </div> |
| <div class="section" id="hyperbolic-functions"> |
| <span id="hyperbolic-functions"></span><h3>Hyperbolic functions<a class="headerlink" href="#hyperbolic-functions" title="Permalink to this headline">¶</a></h3> |
| <table border="1" class="longtable docutils"> |
| <colgroup> |
| <col width="10%"/> |
| <col width="90%"/> |
| </colgroup> |
| <tbody valign="top"> |
| <tr class="row-odd"><td><a class="reference internal" href="#mxnet.symbol.sparse.sinh" title="mxnet.symbol.sparse.sinh"><code class="xref py py-obj docutils literal"><span class="pre">sinh</span></code></a></td> |
| <td>Returns the hyperbolic sine of the input array, computed element-wise.</td> |
| </tr> |
| <tr class="row-even"><td><a class="reference internal" href="#mxnet.symbol.sparse.tanh" title="mxnet.symbol.sparse.tanh"><code class="xref py py-obj docutils literal"><span class="pre">tanh</span></code></a></td> |
| <td>Returns the hyperbolic tangent of the input array, computed element-wise.</td> |
| </tr> |
| <tr class="row-odd"><td><a class="reference internal" href="#mxnet.symbol.sparse.arcsinh" title="mxnet.symbol.sparse.arcsinh"><code class="xref py py-obj docutils literal"><span class="pre">arcsinh</span></code></a></td> |
| <td>Returns the element-wise inverse hyperbolic sine of the input array, computed element-wise.</td> |
| </tr> |
| <tr class="row-even"><td><a class="reference internal" href="#mxnet.symbol.sparse.arctanh" title="mxnet.symbol.sparse.arctanh"><code class="xref py py-obj docutils literal"><span class="pre">arctanh</span></code></a></td> |
| <td>Returns the element-wise inverse hyperbolic tangent of the input array, computed element-wise.</td> |
| </tr> |
| </tbody> |
| </table> |
| </div> |
| <div class="section" id="reduce-functions"> |
| <span id="reduce-functions"></span><h3>Reduce functions<a class="headerlink" href="#reduce-functions" title="Permalink to this headline">¶</a></h3> |
| <table border="1" class="longtable docutils"> |
| <colgroup> |
| <col width="10%"/> |
| <col width="90%"/> |
| </colgroup> |
| <tbody valign="top"> |
| <tr class="row-odd"><td><a class="reference internal" href="#mxnet.symbol.sparse.sum" title="mxnet.symbol.sparse.sum"><code class="xref py py-obj docutils literal"><span class="pre">sum</span></code></a></td> |
| <td>Computes the sum of array elements over given axes.</td> |
| </tr> |
| <tr class="row-even"><td><a class="reference internal" href="#mxnet.symbol.sparse.mean" title="mxnet.symbol.sparse.mean"><code class="xref py py-obj docutils literal"><span class="pre">mean</span></code></a></td> |
| <td>Computes the mean of array elements over given axes.</td> |
| </tr> |
| </tbody> |
| </table> |
| </div> |
| <div class="section" id="rounding"> |
| <span id="rounding"></span><h3>Rounding<a class="headerlink" href="#rounding" title="Permalink to this headline">¶</a></h3> |
| <table border="1" class="longtable docutils"> |
| <colgroup> |
| <col width="10%"/> |
| <col width="90%"/> |
| </colgroup> |
| <tbody valign="top"> |
| <tr class="row-odd"><td><a class="reference internal" href="#mxnet.symbol.sparse.round" title="mxnet.symbol.sparse.round"><code class="xref py py-obj docutils literal"><span class="pre">round</span></code></a></td> |
| <td>Returns element-wise rounded value to the nearest integer of the input.</td> |
| </tr> |
| <tr class="row-even"><td><a class="reference internal" href="#mxnet.symbol.sparse.rint" title="mxnet.symbol.sparse.rint"><code class="xref py py-obj docutils literal"><span class="pre">rint</span></code></a></td> |
| <td>Returns element-wise rounded value to the nearest integer of the input.</td> |
| </tr> |
| <tr class="row-odd"><td><a class="reference internal" href="#mxnet.symbol.sparse.fix" title="mxnet.symbol.sparse.fix"><code class="xref py py-obj docutils literal"><span class="pre">fix</span></code></a></td> |
| <td>Returns element-wise rounded value to the nearest integer towards zero of the input.</td> |
| </tr> |
| <tr class="row-even"><td><a class="reference internal" href="#mxnet.symbol.sparse.floor" title="mxnet.symbol.sparse.floor"><code class="xref py py-obj docutils literal"><span class="pre">floor</span></code></a></td> |
| <td>Returns element-wise floor of the input.</td> |
| </tr> |
| <tr class="row-odd"><td><a class="reference internal" href="#mxnet.symbol.sparse.ceil" title="mxnet.symbol.sparse.ceil"><code class="xref py py-obj docutils literal"><span class="pre">ceil</span></code></a></td> |
| <td>Returns element-wise ceiling of the input.</td> |
| </tr> |
| <tr class="row-even"><td><a class="reference internal" href="#mxnet.symbol.sparse.trunc" title="mxnet.symbol.sparse.trunc"><code class="xref py py-obj docutils literal"><span class="pre">trunc</span></code></a></td> |
| <td>Return the element-wise truncated value of the input.</td> |
| </tr> |
| </tbody> |
| </table> |
| </div> |
| <div class="section" id="exponents-and-logarithms"> |
| <span id="exponents-and-logarithms"></span><h3>Exponents and logarithms<a class="headerlink" href="#exponents-and-logarithms" title="Permalink to this headline">¶</a></h3> |
| <table border="1" class="longtable docutils"> |
| <colgroup> |
| <col width="10%"/> |
| <col width="90%"/> |
| </colgroup> |
| <tbody valign="top"> |
| <tr class="row-odd"><td><a class="reference internal" href="#mxnet.symbol.sparse.expm1" title="mxnet.symbol.sparse.expm1"><code class="xref py py-obj docutils literal"><span class="pre">expm1</span></code></a></td> |
| <td>Returns <code class="docutils literal"><span class="pre">exp(x)</span> <span class="pre">-</span> <span class="pre">1</span></code> computed element-wise on the input.</td> |
| </tr> |
| <tr class="row-even"><td><a class="reference internal" href="#mxnet.symbol.sparse.log1p" title="mxnet.symbol.sparse.log1p"><code class="xref py py-obj docutils literal"><span class="pre">log1p</span></code></a></td> |
| <td>Returns element-wise <code class="docutils literal"><span class="pre">log(1</span> <span class="pre">+</span> <span class="pre">x)</span></code> value of the input.</td> |
| </tr> |
| </tbody> |
| </table> |
| </div> |
| <div class="section" id="powers"> |
| <span id="powers"></span><h3>Powers<a class="headerlink" href="#powers" title="Permalink to this headline">¶</a></h3> |
| <table border="1" class="longtable docutils"> |
| <colgroup> |
| <col width="10%"/> |
| <col width="90%"/> |
| </colgroup> |
| <tbody valign="top"> |
| <tr class="row-odd"><td><a class="reference internal" href="#mxnet.symbol.sparse.sqrt" title="mxnet.symbol.sparse.sqrt"><code class="xref py py-obj docutils literal"><span class="pre">sqrt</span></code></a></td> |
| <td>Returns element-wise square-root value of the input.</td> |
| </tr> |
| <tr class="row-even"><td><a class="reference internal" href="#mxnet.symbol.sparse.square" title="mxnet.symbol.sparse.square"><code class="xref py py-obj docutils literal"><span class="pre">square</span></code></a></td> |
| <td>Returns element-wise squared value of the input.</td> |
| </tr> |
| </tbody> |
| </table> |
| </div> |
| <div class="section" id="miscellaneous"> |
| <span id="miscellaneous"></span><h3>Miscellaneous<a class="headerlink" href="#miscellaneous" title="Permalink to this headline">¶</a></h3> |
| <table border="1" class="longtable docutils"> |
| <colgroup> |
| <col width="10%"/> |
| <col width="90%"/> |
| </colgroup> |
| <tbody valign="top"> |
| <tr class="row-odd"><td><a class="reference internal" href="#mxnet.symbol.sparse.clip" title="mxnet.symbol.sparse.clip"><code class="xref py py-obj docutils literal"><span class="pre">clip</span></code></a></td> |
| <td>Clips (limits) the values in an array.</td> |
| </tr> |
| <tr class="row-even"><td><a class="reference internal" href="#mxnet.symbol.sparse.abs" title="mxnet.symbol.sparse.abs"><code class="xref py py-obj docutils literal"><span class="pre">abs</span></code></a></td> |
| <td>Returns element-wise absolute value of the input.</td> |
| </tr> |
| <tr class="row-odd"><td><a class="reference internal" href="#mxnet.symbol.sparse.sign" title="mxnet.symbol.sparse.sign"><code class="xref py py-obj docutils literal"><span class="pre">sign</span></code></a></td> |
| <td>Returns element-wise sign of the input.</td> |
| </tr> |
| </tbody> |
| </table> |
| </div> |
| </div> |
| <div class="section" id="neural-network"> |
| <span id="neural-network"></span><h2>Neural network<a class="headerlink" href="#neural-network" title="Permalink to this headline">¶</a></h2> |
| <div class="section" id="more"> |
| <span id="more"></span><h3>More<a class="headerlink" href="#more" title="Permalink to this headline">¶</a></h3> |
| <table border="1" class="longtable docutils"> |
| <colgroup> |
| <col width="10%"/> |
| <col width="90%"/> |
| </colgroup> |
| <tbody valign="top"> |
| <tr class="row-odd"><td><a class="reference internal" href="#mxnet.symbol.sparse.make_loss" title="mxnet.symbol.sparse.make_loss"><code class="xref py py-obj docutils literal"><span class="pre">make_loss</span></code></a></td> |
| <td>Make your own loss function in network construction.</td> |
| </tr> |
| <tr class="row-even"><td><a class="reference internal" href="#mxnet.symbol.sparse.stop_gradient" title="mxnet.symbol.sparse.stop_gradient"><code class="xref py py-obj docutils literal"><span class="pre">stop_gradient</span></code></a></td> |
| <td>Stops gradient computation.</td> |
| </tr> |
| <tr class="row-odd"><td><a class="reference internal" href="contrib.html#mxnet.symbol.contrib.SparseEmbedding" title="mxnet.symbol.contrib.SparseEmbedding"><code class="xref py py-obj docutils literal"><span class="pre">mxnet.symbol.contrib.SparseEmbedding</span></code></a></td> |
| <td>Maps integer indices to vector representations (embeddings).</td> |
| </tr> |
| </tbody> |
| </table> |
| </div> |
| </div> |
| <div class="section" id="api-reference"> |
| <span id="api-reference"></span><h2>API Reference<a class="headerlink" href="#api-reference" title="Permalink to this headline">¶</a></h2> |
| <script src="../../../_static/js/auto_module_index.js" type="text/javascript"></script><span class="target" id="module-mxnet.symbol.sparse"></span><p>Sparse Symbol API of MXNet.</p> |
| <dl class="function"> |
| <dt id="mxnet.symbol.sparse.ElementWiseSum"> |
| <code class="descclassname">mxnet.symbol.sparse.</code><code class="descname">ElementWiseSum</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#mxnet.symbol.sparse.ElementWiseSum" title="Permalink to this definition">¶</a></dt> |
| <dd><p>Adds all input arguments element-wise.</p> |
| <div class="math"> |
| \[add\_n(a_1, a_2, ..., a_n) = a_1 + a_2 + ... + a_n\]</div> |
| <p><code class="docutils literal"><span class="pre">add_n</span></code> is potentially more efficient than calling <code class="docutils literal"><span class="pre">add</span></code> by <cite>n</cite> times.</p> |
| <p>The storage type of <code class="docutils literal"><span class="pre">add_n</span></code> output depends on storage types of inputs</p> |
| <ul class="simple"> |
| <li>add_n(row_sparse, row_sparse, ..) = row_sparse</li> |
| <li>otherwise, <code class="docutils literal"><span class="pre">add_n</span></code> generates output with default storage</li> |
| </ul> |
| <p>Defined in src/operator/tensor/elemwise_sum.cc:L123 |
| This function support variable length of positional input.</p> |
| <table class="docutils field-list" frame="void" rules="none"> |
| <col class="field-name"/> |
| <col class="field-body"/> |
| <tbody valign="top"> |
| <tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple"> |
| <li><strong>args</strong> (<em>Symbol[]</em>) – Positional input arguments</li> |
| <li><strong>name</strong> (<em>string, optional.</em>) – Name of the resulting symbol.</li> |
| </ul> |
| </td> |
| </tr> |
| <tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">The result symbol.</p> |
| </td> |
| </tr> |
| <tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last"><a class="reference internal" href="symbol.html#mxnet.symbol.Symbol" title="mxnet.symbol.Symbol">Symbol</a></p> |
| </td> |
| </tr> |
| </tbody> |
| </table> |
| </dd></dl> |
| <dl class="function"> |
| <dt id="mxnet.symbol.sparse.abs"> |
| <code class="descclassname">mxnet.symbol.sparse.</code><code class="descname">abs</code><span class="sig-paren">(</span><em>data=None</em>, <em>name=None</em>, <em>attr=None</em>, <em>out=None</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#mxnet.symbol.sparse.abs" title="Permalink to this definition">¶</a></dt> |
| <dd><p>Returns element-wise absolute value of the input.</p> |
| <p>Example:</p> |
| <div class="highlight-python"><div class="highlight"><pre><span></span><span class="nb">abs</span><span class="p">([</span><span class="o">-</span><span class="mi">2</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">3</span><span class="p">])</span> <span class="o">=</span> <span class="p">[</span><span class="mi">2</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">3</span><span class="p">]</span> |
| </pre></div> |
| </div> |
| <p>The storage type of <code class="docutils literal"><span class="pre">abs</span></code> output depends upon the input storage type:</p> |
| <blockquote> |
| <div><ul class="simple"> |
| <li>abs(default) = default</li> |
| <li>abs(row_sparse) = row_sparse</li> |
| </ul> |
| </div></blockquote> |
| <p>Defined in src/operator/tensor/elemwise_unary_op_basic.cc:L386</p> |
| <table class="docutils field-list" frame="void" rules="none"> |
| <col class="field-name"/> |
| <col class="field-body"/> |
| <tbody valign="top"> |
| <tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple"> |
| <li><strong>data</strong> (<a class="reference internal" href="symbol.html#mxnet.symbol.Symbol" title="mxnet.symbol.Symbol"><em>Symbol</em></a>) – The input array.</li> |
| <li><strong>name</strong> (<em>string, optional.</em>) – Name of the resulting symbol.</li> |
| </ul> |
| </td> |
| </tr> |
| <tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">The result symbol.</p> |
| </td> |
| </tr> |
| <tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last"><a class="reference internal" href="symbol.html#mxnet.symbol.Symbol" title="mxnet.symbol.Symbol">Symbol</a></p> |
| </td> |
| </tr> |
| </tbody> |
| </table> |
| </dd></dl> |
| <dl class="function"> |
| <dt id="mxnet.symbol.sparse.adam_update"> |
| <code class="descclassname">mxnet.symbol.sparse.</code><code class="descname">adam_update</code><span class="sig-paren">(</span><em>weight=None</em>, <em>grad=None</em>, <em>mean=None</em>, <em>var=None</em>, <em>lr=_Null</em>, <em>beta1=_Null</em>, <em>beta2=_Null</em>, <em>epsilon=_Null</em>, <em>wd=_Null</em>, <em>rescale_grad=_Null</em>, <em>clip_gradient=_Null</em>, <em>name=None</em>, <em>attr=None</em>, <em>out=None</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#mxnet.symbol.sparse.adam_update" title="Permalink to this definition">¶</a></dt> |
| <dd><p>Update function for Adam optimizer. Adam is seen as a generalization |
| of AdaGrad.</p> |
| <p>Adam update consists of the following steps, where g represents gradient and m, v |
| are 1st and 2nd order moment estimates (mean and variance).</p> |
| <div class="math"> |
| \[\begin{split}g_t = \nabla J(W_{t-1})\\ |
| m_t = \beta_1 m_{t-1} + (1 - \beta_1) g_t\\ |
| v_t = \beta_2 v_{t-1} + (1 - \beta_2) g_t^2\\ |
| W_t = W_{t-1} - \alpha \frac{ m_t }{ \sqrt{ v_t } + \epsilon }\end{split}\]</div> |
| <p>It updates the weights using:</p> |
| <div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">m</span> <span class="o">=</span> <span class="n">beta1</span><span class="o">*</span><span class="n">m</span> <span class="o">+</span> <span class="p">(</span><span class="mi">1</span><span class="o">-</span><span class="n">beta1</span><span class="p">)</span><span class="o">*</span><span class="n">grad</span> |
| <span class="n">v</span> <span class="o">=</span> <span class="n">beta2</span><span class="o">*</span><span class="n">v</span> <span class="o">+</span> <span class="p">(</span><span class="mi">1</span><span class="o">-</span><span class="n">beta2</span><span class="p">)</span><span class="o">*</span><span class="p">(</span><span class="n">grad</span><span class="o">**</span><span class="mi">2</span><span class="p">)</span> |
| <span class="n">w</span> <span class="o">+=</span> <span class="o">-</span> <span class="n">learning_rate</span> <span class="o">*</span> <span class="n">m</span> <span class="o">/</span> <span class="p">(</span><span class="n">sqrt</span><span class="p">(</span><span class="n">v</span><span class="p">)</span> <span class="o">+</span> <span class="n">epsilon</span><span class="p">)</span> |
| </pre></div> |
| </div> |
| <p>If w, m and v are all of <code class="docutils literal"><span class="pre">row_sparse</span></code> storage type, |
| only the row slices whose indices appear in grad.indices are updated (for w, m and v):</p> |
| <div class="highlight-python"><div class="highlight"><pre><span></span><span class="k">for</span> <span class="n">row</span> <span class="ow">in</span> <span class="n">grad</span><span class="o">.</span><span class="n">indices</span><span class="p">:</span> |
| <span class="n">m</span><span class="p">[</span><span class="n">row</span><span class="p">]</span> <span class="o">=</span> <span class="n">beta1</span><span class="o">*</span><span class="n">m</span><span class="p">[</span><span class="n">row</span><span class="p">]</span> <span class="o">+</span> <span class="p">(</span><span class="mi">1</span><span class="o">-</span><span class="n">beta1</span><span class="p">)</span><span class="o">*</span><span class="n">grad</span><span class="p">[</span><span class="n">row</span><span class="p">]</span> |
| <span class="n">v</span><span class="p">[</span><span class="n">row</span><span class="p">]</span> <span class="o">=</span> <span class="n">beta2</span><span class="o">*</span><span class="n">v</span><span class="p">[</span><span class="n">row</span><span class="p">]</span> <span class="o">+</span> <span class="p">(</span><span class="mi">1</span><span class="o">-</span><span class="n">beta2</span><span class="p">)</span><span class="o">*</span><span class="p">(</span><span class="n">grad</span><span class="p">[</span><span class="n">row</span><span class="p">]</span><span class="o">**</span><span class="mi">2</span><span class="p">)</span> |
| <span class="n">w</span><span class="p">[</span><span class="n">row</span><span class="p">]</span> <span class="o">+=</span> <span class="o">-</span> <span class="n">learning_rate</span> <span class="o">*</span> <span class="n">m</span><span class="p">[</span><span class="n">row</span><span class="p">]</span> <span class="o">/</span> <span class="p">(</span><span class="n">sqrt</span><span class="p">(</span><span class="n">v</span><span class="p">[</span><span class="n">row</span><span class="p">])</span> <span class="o">+</span> <span class="n">epsilon</span><span class="p">)</span> |
| </pre></div> |
| </div> |
| <p>Defined in src/operator/optimizer_op.cc:L175</p> |
| <table class="docutils field-list" frame="void" rules="none"> |
| <col class="field-name"/> |
| <col class="field-body"/> |
| <tbody valign="top"> |
| <tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple"> |
| <li><strong>weight</strong> (<a class="reference internal" href="symbol.html#mxnet.symbol.Symbol" title="mxnet.symbol.Symbol"><em>Symbol</em></a>) – Weight</li> |
| <li><strong>grad</strong> (<a class="reference internal" href="symbol.html#mxnet.symbol.Symbol" title="mxnet.symbol.Symbol"><em>Symbol</em></a>) – Gradient</li> |
| <li><strong>mean</strong> (<a class="reference internal" href="symbol.html#mxnet.symbol.Symbol" title="mxnet.symbol.Symbol"><em>Symbol</em></a>) – Moving mean</li> |
| <li><strong>var</strong> (<a class="reference internal" href="symbol.html#mxnet.symbol.Symbol" title="mxnet.symbol.Symbol"><em>Symbol</em></a>) – Moving variance</li> |
| <li><strong>lr</strong> (<em>float, required</em>) – Learning rate</li> |
| <li><strong>beta1</strong> (<em>float, optional, default=0.9</em>) – The decay rate for the 1st moment estimates.</li> |
| <li><strong>beta2</strong> (<em>float, optional, default=0.999</em>) – The decay rate for the 2nd moment estimates.</li> |
| <li><strong>epsilon</strong> (<em>float, optional, default=1e-08</em>) – A small constant for numerical stability.</li> |
| <li><strong>wd</strong> (<em>float, optional, default=0</em>) – Weight decay augments the objective function with a regularization term that penalizes large weights. The penalty scales with the square of the magnitude of each weight.</li> |
| <li><strong>rescale_grad</strong> (<em>float, optional, default=1</em>) – Rescale gradient to grad = rescale_grad*grad.</li> |
| <li><strong>clip_gradient</strong> (<em>float, optional, default=-1</em>) – Clip gradient to the range of [-clip_gradient, clip_gradient] If clip_gradient <= 0, gradient clipping is turned off. grad = max(min(grad, clip_gradient), -clip_gradient).</li> |
| <li><strong>name</strong> (<em>string, optional.</em>) – Name of the resulting symbol.</li> |
| </ul> |
| </td> |
| </tr> |
| <tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">The result symbol.</p> |
| </td> |
| </tr> |
| <tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last"><a class="reference internal" href="symbol.html#mxnet.symbol.Symbol" title="mxnet.symbol.Symbol">Symbol</a></p> |
| </td> |
| </tr> |
| </tbody> |
| </table> |
| </dd></dl> |
| <dl class="function"> |
| <dt id="mxnet.symbol.sparse.add_n"> |
| <code class="descclassname">mxnet.symbol.sparse.</code><code class="descname">add_n</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#mxnet.symbol.sparse.add_n" title="Permalink to this definition">¶</a></dt> |
| <dd><p>Adds all input arguments element-wise.</p> |
| <div class="math"> |
| \[add\_n(a_1, a_2, ..., a_n) = a_1 + a_2 + ... + a_n\]</div> |
| <p><code class="docutils literal"><span class="pre">add_n</span></code> is potentially more efficient than calling <code class="docutils literal"><span class="pre">add</span></code> by <cite>n</cite> times.</p> |
| <p>The storage type of <code class="docutils literal"><span class="pre">add_n</span></code> output depends on storage types of inputs</p> |
| <ul class="simple"> |
| <li>add_n(row_sparse, row_sparse, ..) = row_sparse</li> |
| <li>otherwise, <code class="docutils literal"><span class="pre">add_n</span></code> generates output with default storage</li> |
| </ul> |
| <p>Defined in src/operator/tensor/elemwise_sum.cc:L123 |
| This function support variable length of positional input.</p> |
| <table class="docutils field-list" frame="void" rules="none"> |
| <col class="field-name"/> |
| <col class="field-body"/> |
| <tbody valign="top"> |
| <tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple"> |
| <li><strong>args</strong> (<em>Symbol[]</em>) – Positional input arguments</li> |
| <li><strong>name</strong> (<em>string, optional.</em>) – Name of the resulting symbol.</li> |
| </ul> |
| </td> |
| </tr> |
| <tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">The result symbol.</p> |
| </td> |
| </tr> |
| <tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last"><a class="reference internal" href="symbol.html#mxnet.symbol.Symbol" title="mxnet.symbol.Symbol">Symbol</a></p> |
| </td> |
| </tr> |
| </tbody> |
| </table> |
| </dd></dl> |
| <dl class="function"> |
| <dt id="mxnet.symbol.sparse.arccos"> |
| <code class="descclassname">mxnet.symbol.sparse.</code><code class="descname">arccos</code><span class="sig-paren">(</span><em>data=None</em>, <em>name=None</em>, <em>attr=None</em>, <em>out=None</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#mxnet.symbol.sparse.arccos" title="Permalink to this definition">¶</a></dt> |
| <dd><p>Returns element-wise inverse cosine of the input array.</p> |
| <p>The input should be in range <cite>[-1, 1]</cite>. |
| The output is in the closed interval <span class="math">\([0, \pi]\)</span></p> |
| <div class="math"> |
| \[arccos([-1, -.707, 0, .707, 1]) = [\pi, 3\pi/4, \pi/2, \pi/4, 0]\]</div> |
| <p>The storage type of <code class="docutils literal"><span class="pre">arccos</span></code> output is always dense</p> |
| <p>Defined in src/operator/tensor/elemwise_unary_op_trig.cc:L123</p> |
| <table class="docutils field-list" frame="void" rules="none"> |
| <col class="field-name"/> |
| <col class="field-body"/> |
| <tbody valign="top"> |
| <tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple"> |
| <li><strong>data</strong> (<a class="reference internal" href="symbol.html#mxnet.symbol.Symbol" title="mxnet.symbol.Symbol"><em>Symbol</em></a>) – The input array.</li> |
| <li><strong>name</strong> (<em>string, optional.</em>) – Name of the resulting symbol.</li> |
| </ul> |
| </td> |
| </tr> |
| <tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">The result symbol.</p> |
| </td> |
| </tr> |
| <tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last"><a class="reference internal" href="symbol.html#mxnet.symbol.Symbol" title="mxnet.symbol.Symbol">Symbol</a></p> |
| </td> |
| </tr> |
| </tbody> |
| </table> |
| </dd></dl> |
| <dl class="function"> |
| <dt id="mxnet.symbol.sparse.arccosh"> |
| <code class="descclassname">mxnet.symbol.sparse.</code><code class="descname">arccosh</code><span class="sig-paren">(</span><em>data=None</em>, <em>name=None</em>, <em>attr=None</em>, <em>out=None</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#mxnet.symbol.sparse.arccosh" title="Permalink to this definition">¶</a></dt> |
| <dd><p>Returns the element-wise inverse hyperbolic cosine of the input array, computed element-wise.</p> |
| <p>The storage type of <code class="docutils literal"><span class="pre">arccosh</span></code> output is always dense</p> |
| <p>Defined in src/operator/tensor/elemwise_unary_op_trig.cc:L264</p> |
| <table class="docutils field-list" frame="void" rules="none"> |
| <col class="field-name"/> |
| <col class="field-body"/> |
| <tbody valign="top"> |
| <tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple"> |
| <li><strong>data</strong> (<a class="reference internal" href="symbol.html#mxnet.symbol.Symbol" title="mxnet.symbol.Symbol"><em>Symbol</em></a>) – The input array.</li> |
| <li><strong>name</strong> (<em>string, optional.</em>) – Name of the resulting symbol.</li> |
| </ul> |
| </td> |
| </tr> |
| <tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">The result symbol.</p> |
| </td> |
| </tr> |
| <tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last"><a class="reference internal" href="symbol.html#mxnet.symbol.Symbol" title="mxnet.symbol.Symbol">Symbol</a></p> |
| </td> |
| </tr> |
| </tbody> |
| </table> |
| </dd></dl> |
| <dl class="function"> |
| <dt id="mxnet.symbol.sparse.arcsin"> |
| <code class="descclassname">mxnet.symbol.sparse.</code><code class="descname">arcsin</code><span class="sig-paren">(</span><em>data=None</em>, <em>name=None</em>, <em>attr=None</em>, <em>out=None</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#mxnet.symbol.sparse.arcsin" title="Permalink to this definition">¶</a></dt> |
| <dd><p>Returns element-wise inverse sine of the input array.</p> |
| <p>The input should be in the range <cite>[-1, 1]</cite>. |
| The output is in the closed interval of [<span class="math">\(-\pi/2\)</span>, <span class="math">\(\pi/2\)</span>].</p> |
| <div class="math"> |
| \[arcsin([-1, -.707, 0, .707, 1]) = [-\pi/2, -\pi/4, 0, \pi/4, \pi/2]\]</div> |
| <p>The storage type of <code class="docutils literal"><span class="pre">arcsin</span></code> output depends upon the input storage type:</p> |
| <blockquote> |
| <div><ul class="simple"> |
| <li>arcsin(default) = default</li> |
| <li>arcsin(row_sparse) = row_sparse</li> |
| </ul> |
| </div></blockquote> |
| <p>Defined in src/operator/tensor/elemwise_unary_op_trig.cc:L104</p> |
| <table class="docutils field-list" frame="void" rules="none"> |
| <col class="field-name"/> |
| <col class="field-body"/> |
| <tbody valign="top"> |
| <tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple"> |
| <li><strong>data</strong> (<a class="reference internal" href="symbol.html#mxnet.symbol.Symbol" title="mxnet.symbol.Symbol"><em>Symbol</em></a>) – The input array.</li> |
| <li><strong>name</strong> (<em>string, optional.</em>) – Name of the resulting symbol.</li> |
| </ul> |
| </td> |
| </tr> |
| <tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">The result symbol.</p> |
| </td> |
| </tr> |
| <tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last"><a class="reference internal" href="symbol.html#mxnet.symbol.Symbol" title="mxnet.symbol.Symbol">Symbol</a></p> |
| </td> |
| </tr> |
| </tbody> |
| </table> |
| </dd></dl> |
| <dl class="function"> |
| <dt id="mxnet.symbol.sparse.arcsinh"> |
| <code class="descclassname">mxnet.symbol.sparse.</code><code class="descname">arcsinh</code><span class="sig-paren">(</span><em>data=None</em>, <em>name=None</em>, <em>attr=None</em>, <em>out=None</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#mxnet.symbol.sparse.arcsinh" title="Permalink to this definition">¶</a></dt> |
| <dd><p>Returns the element-wise inverse hyperbolic sine of the input array, computed element-wise.</p> |
| <p>The storage type of <code class="docutils literal"><span class="pre">arcsinh</span></code> output depends upon the input storage type:</p> |
| <blockquote> |
| <div><ul class="simple"> |
| <li>arcsinh(default) = default</li> |
| <li>arcsinh(row_sparse) = row_sparse</li> |
| </ul> |
| </div></blockquote> |
| <p>Defined in src/operator/tensor/elemwise_unary_op_trig.cc:L250</p> |
| <table class="docutils field-list" frame="void" rules="none"> |
| <col class="field-name"/> |
| <col class="field-body"/> |
| <tbody valign="top"> |
| <tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple"> |
| <li><strong>data</strong> (<a class="reference internal" href="symbol.html#mxnet.symbol.Symbol" title="mxnet.symbol.Symbol"><em>Symbol</em></a>) – The input array.</li> |
| <li><strong>name</strong> (<em>string, optional.</em>) – Name of the resulting symbol.</li> |
| </ul> |
| </td> |
| </tr> |
| <tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">The result symbol.</p> |
| </td> |
| </tr> |
| <tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last"><a class="reference internal" href="symbol.html#mxnet.symbol.Symbol" title="mxnet.symbol.Symbol">Symbol</a></p> |
| </td> |
| </tr> |
| </tbody> |
| </table> |
| </dd></dl> |
| <dl class="function"> |
| <dt id="mxnet.symbol.sparse.arctan"> |
| <code class="descclassname">mxnet.symbol.sparse.</code><code class="descname">arctan</code><span class="sig-paren">(</span><em>data=None</em>, <em>name=None</em>, <em>attr=None</em>, <em>out=None</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#mxnet.symbol.sparse.arctan" title="Permalink to this definition">¶</a></dt> |
| <dd><p>Returns element-wise inverse tangent of the input array.</p> |
| <p>The output is in the closed interval <span class="math">\([-\pi/2, \pi/2]\)</span></p> |
| <div class="math"> |
| \[arctan([-1, 0, 1]) = [-\pi/4, 0, \pi/4]\]</div> |
| <p>The storage type of <code class="docutils literal"><span class="pre">arctan</span></code> output depends upon the input storage type:</p> |
| <blockquote> |
| <div><ul class="simple"> |
| <li>arctan(default) = default</li> |
| <li>arctan(row_sparse) = row_sparse</li> |
| </ul> |
| </div></blockquote> |
| <p>Defined in src/operator/tensor/elemwise_unary_op_trig.cc:L144</p> |
| <table class="docutils field-list" frame="void" rules="none"> |
| <col class="field-name"/> |
| <col class="field-body"/> |
| <tbody valign="top"> |
| <tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple"> |
| <li><strong>data</strong> (<a class="reference internal" href="symbol.html#mxnet.symbol.Symbol" title="mxnet.symbol.Symbol"><em>Symbol</em></a>) – The input array.</li> |
| <li><strong>name</strong> (<em>string, optional.</em>) – Name of the resulting symbol.</li> |
| </ul> |
| </td> |
| </tr> |
| <tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">The result symbol.</p> |
| </td> |
| </tr> |
| <tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last"><a class="reference internal" href="symbol.html#mxnet.symbol.Symbol" title="mxnet.symbol.Symbol">Symbol</a></p> |
| </td> |
| </tr> |
| </tbody> |
| </table> |
| </dd></dl> |
| <dl class="function"> |
| <dt id="mxnet.symbol.sparse.arctanh"> |
| <code class="descclassname">mxnet.symbol.sparse.</code><code class="descname">arctanh</code><span class="sig-paren">(</span><em>data=None</em>, <em>name=None</em>, <em>attr=None</em>, <em>out=None</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#mxnet.symbol.sparse.arctanh" title="Permalink to this definition">¶</a></dt> |
| <dd><p>Returns the element-wise inverse hyperbolic tangent of the input array, computed element-wise.</p> |
| <p>The storage type of <code class="docutils literal"><span class="pre">arctanh</span></code> output depends upon the input storage type:</p> |
| <blockquote> |
| <div><ul class="simple"> |
| <li>arctanh(default) = default</li> |
| <li>arctanh(row_sparse) = row_sparse</li> |
| </ul> |
| </div></blockquote> |
| <p>Defined in src/operator/tensor/elemwise_unary_op_trig.cc:L281</p> |
| <table class="docutils field-list" frame="void" rules="none"> |
| <col class="field-name"/> |
| <col class="field-body"/> |
| <tbody valign="top"> |
| <tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple"> |
| <li><strong>data</strong> (<a class="reference internal" href="symbol.html#mxnet.symbol.Symbol" title="mxnet.symbol.Symbol"><em>Symbol</em></a>) – The input array.</li> |
| <li><strong>name</strong> (<em>string, optional.</em>) – Name of the resulting symbol.</li> |
| </ul> |
| </td> |
| </tr> |
| <tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">The result symbol.</p> |
| </td> |
| </tr> |
| <tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last"><a class="reference internal" href="symbol.html#mxnet.symbol.Symbol" title="mxnet.symbol.Symbol">Symbol</a></p> |
| </td> |
| </tr> |
| </tbody> |
| </table> |
| </dd></dl> |
| <dl class="function"> |
| <dt id="mxnet.symbol.sparse.cast_storage"> |
| <code class="descclassname">mxnet.symbol.sparse.</code><code class="descname">cast_storage</code><span class="sig-paren">(</span><em>data=None</em>, <em>stype=_Null</em>, <em>name=None</em>, <em>attr=None</em>, <em>out=None</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#mxnet.symbol.sparse.cast_storage" title="Permalink to this definition">¶</a></dt> |
| <dd><p>Casts tensor storage type to the new type.</p> |
| <p>When an NDArray with default storage type is cast to csr or row_sparse storage, |
| the result is compact, which means:</p> |
| <ul class="simple"> |
| <li>for csr, zero values will not be retained</li> |
| <li>for row_sparse, row slices of all zeros will not be retained</li> |
| </ul> |
| <p>The storage type of <code class="docutils literal"><span class="pre">cast_storage</span></code> output depends on stype parameter:</p> |
| <ul class="simple"> |
| <li>cast_storage(csr, ‘default’) = default</li> |
| <li>cast_storage(row_sparse, ‘default’) = default</li> |
| <li>cast_storage(default, ‘csr’) = csr</li> |
| <li>cast_storage(default, ‘row_sparse’) = row_sparse</li> |
| </ul> |
| <p>Example:</p> |
| <div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">dense</span> <span class="o">=</span> <span class="p">[[</span> <span class="mf">0.</span><span class="p">,</span> <span class="mf">1.</span><span class="p">,</span> <span class="mf">0.</span><span class="p">],</span> |
| <span class="p">[</span> <span class="mf">2.</span><span class="p">,</span> <span class="mf">0.</span><span class="p">,</span> <span class="mf">3.</span><span class="p">],</span> |
| <span class="p">[</span> <span class="mf">0.</span><span class="p">,</span> <span class="mf">0.</span><span class="p">,</span> <span class="mf">0.</span><span class="p">],</span> |
| <span class="p">[</span> <span class="mf">0.</span><span class="p">,</span> <span class="mf">0.</span><span class="p">,</span> <span class="mf">0.</span><span class="p">]]</span> |
| |
| <span class="c1"># cast to row_sparse storage type</span> |
| <span class="n">rsp</span> <span class="o">=</span> <span class="n">cast_storage</span><span class="p">(</span><span class="n">dense</span><span class="p">,</span> <span class="s1">'row_sparse'</span><span class="p">)</span> |
| <span class="n">rsp</span><span class="o">.</span><span class="n">indices</span> <span class="o">=</span> <span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">]</span> |
| <span class="n">rsp</span><span class="o">.</span><span class="n">values</span> <span class="o">=</span> <span class="p">[[</span> <span class="mf">0.</span><span class="p">,</span> <span class="mf">1.</span><span class="p">,</span> <span class="mf">0.</span><span class="p">],</span> |
| <span class="p">[</span> <span class="mf">2.</span><span class="p">,</span> <span class="mf">0.</span><span class="p">,</span> <span class="mf">3.</span><span class="p">]]</span> |
| |
| <span class="c1"># cast to csr storage type</span> |
| <span class="n">csr</span> <span class="o">=</span> <span class="n">cast_storage</span><span class="p">(</span><span class="n">dense</span><span class="p">,</span> <span class="s1">'csr'</span><span class="p">)</span> |
| <span class="n">csr</span><span class="o">.</span><span class="n">indices</span> <span class="o">=</span> <span class="p">[</span><span class="mi">1</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">2</span><span class="p">]</span> |
| <span class="n">csr</span><span class="o">.</span><span class="n">values</span> <span class="o">=</span> <span class="p">[</span> <span class="mf">1.</span><span class="p">,</span> <span class="mf">2.</span><span class="p">,</span> <span class="mf">3.</span><span class="p">]</span> |
| <span class="n">csr</span><span class="o">.</span><span class="n">indptr</span> <span class="o">=</span> <span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="mi">3</span><span class="p">]</span> |
| </pre></div> |
| </div> |
| <p>Defined in src/operator/tensor/cast_storage.cc:L69</p> |
| <table class="docutils field-list" frame="void" rules="none"> |
| <col class="field-name"/> |
| <col class="field-body"/> |
| <tbody valign="top"> |
| <tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple"> |
| <li><strong>data</strong> (<a class="reference internal" href="symbol.html#mxnet.symbol.Symbol" title="mxnet.symbol.Symbol"><em>Symbol</em></a>) – The input.</li> |
| <li><strong>stype</strong> (<em>{'csr', 'default', 'row_sparse'}, required</em>) – Output storage type.</li> |
| <li><strong>name</strong> (<em>string, optional.</em>) – Name of the resulting symbol.</li> |
| </ul> |
| </td> |
| </tr> |
| <tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">The result symbol.</p> |
| </td> |
| </tr> |
| <tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last"><a class="reference internal" href="symbol.html#mxnet.symbol.Symbol" title="mxnet.symbol.Symbol">Symbol</a></p> |
| </td> |
| </tr> |
| </tbody> |
| </table> |
| </dd></dl> |
| <dl class="function"> |
| <dt id="mxnet.symbol.sparse.ceil"> |
| <code class="descclassname">mxnet.symbol.sparse.</code><code class="descname">ceil</code><span class="sig-paren">(</span><em>data=None</em>, <em>name=None</em>, <em>attr=None</em>, <em>out=None</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#mxnet.symbol.sparse.ceil" title="Permalink to this definition">¶</a></dt> |
| <dd><p>Returns element-wise ceiling of the input.</p> |
| <p>The ceil of the scalar x is the smallest integer i, such that i >= x.</p> |
| <p>Example:</p> |
| <div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">ceil</span><span class="p">([</span><span class="o">-</span><span class="mf">2.1</span><span class="p">,</span> <span class="o">-</span><span class="mf">1.9</span><span class="p">,</span> <span class="mf">1.5</span><span class="p">,</span> <span class="mf">1.9</span><span class="p">,</span> <span class="mf">2.1</span><span class="p">])</span> <span class="o">=</span> <span class="p">[</span><span class="o">-</span><span class="mf">2.</span><span class="p">,</span> <span class="o">-</span><span class="mf">1.</span><span class="p">,</span> <span class="mf">2.</span><span class="p">,</span> <span class="mf">2.</span><span class="p">,</span> <span class="mf">3.</span><span class="p">]</span> |
| </pre></div> |
| </div> |
| <p>The storage type of <code class="docutils literal"><span class="pre">ceil</span></code> output depends upon the input storage type:</p> |
| <blockquote> |
| <div><ul class="simple"> |
| <li>ceil(default) = default</li> |
| <li>ceil(row_sparse) = row_sparse</li> |
| </ul> |
| </div></blockquote> |
| <p>Defined in src/operator/tensor/elemwise_unary_op_basic.cc:L463</p> |
| <table class="docutils field-list" frame="void" rules="none"> |
| <col class="field-name"/> |
| <col class="field-body"/> |
| <tbody valign="top"> |
| <tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple"> |
| <li><strong>data</strong> (<a class="reference internal" href="symbol.html#mxnet.symbol.Symbol" title="mxnet.symbol.Symbol"><em>Symbol</em></a>) – The input array.</li> |
| <li><strong>name</strong> (<em>string, optional.</em>) – Name of the resulting symbol.</li> |
| </ul> |
| </td> |
| </tr> |
| <tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">The result symbol.</p> |
| </td> |
| </tr> |
| <tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last"><a class="reference internal" href="symbol.html#mxnet.symbol.Symbol" title="mxnet.symbol.Symbol">Symbol</a></p> |
| </td> |
| </tr> |
| </tbody> |
| </table> |
| </dd></dl> |
| <dl class="function"> |
| <dt id="mxnet.symbol.sparse.clip"> |
| <code class="descclassname">mxnet.symbol.sparse.</code><code class="descname">clip</code><span class="sig-paren">(</span><em>data=None</em>, <em>a_min=_Null</em>, <em>a_max=_Null</em>, <em>name=None</em>, <em>attr=None</em>, <em>out=None</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#mxnet.symbol.sparse.clip" title="Permalink to this definition">¶</a></dt> |
| <dd><p>Clips (limits) the values in an array.</p> |
| <p>Given an interval, values outside the interval are clipped to the interval edges. |
| Clipping <code class="docutils literal"><span class="pre">x</span></code> between <cite>a_min</cite> and <cite>a_x</cite> would be:</p> |
| <div class="highlight-python"><div class="highlight"><pre><span></span>clip(x, a_min, a_max) = max(min(x, a_max), a_min)) |
| </pre></div> |
| </div> |
| <p>Example:</p> |
| <div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">x</span> <span class="o">=</span> <span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">5</span><span class="p">,</span> <span class="mi">6</span><span class="p">,</span> <span class="mi">7</span><span class="p">,</span> <span class="mi">8</span><span class="p">,</span> <span class="mi">9</span><span class="p">]</span> |
| |
| <span class="n">clip</span><span class="p">(</span><span class="n">x</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">8</span><span class="p">)</span> <span class="o">=</span> <span class="p">[</span> <span class="mf">1.</span><span class="p">,</span> <span class="mf">1.</span><span class="p">,</span> <span class="mf">2.</span><span class="p">,</span> <span class="mf">3.</span><span class="p">,</span> <span class="mf">4.</span><span class="p">,</span> <span class="mf">5.</span><span class="p">,</span> <span class="mf">6.</span><span class="p">,</span> <span class="mf">7.</span><span class="p">,</span> <span class="mf">8.</span><span class="p">,</span> <span class="mf">8.</span><span class="p">]</span> |
| </pre></div> |
| </div> |
| <p>The storage type of <code class="docutils literal"><span class="pre">clip</span></code> output depends on storage types of inputs and the a_min, a_max parameter values:</p> |
| <blockquote> |
| <div><ul class="simple"> |
| <li>clip(default) = default</li> |
| <li>clip(row_sparse, a_min <= 0, a_max >= 0) = row_sparse</li> |
| <li>clip(csr, a_min <= 0, a_max >= 0) = csr</li> |
| <li>clip(row_sparse, a_min < 0, a_max < 0) = default</li> |
| <li>clip(row_sparse, a_min > 0, a_max > 0) = default</li> |
| <li>clip(csr, a_min < 0, a_max < 0) = csr</li> |
| <li>clip(csr, a_min > 0, a_max > 0) = csr</li> |
| </ul> |
| </div></blockquote> |
| <p>Defined in src/operator/tensor/matrix_op.cc:L424</p> |
| <table class="docutils field-list" frame="void" rules="none"> |
| <col class="field-name"/> |
| <col class="field-body"/> |
| <tbody valign="top"> |
| <tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple"> |
| <li><strong>data</strong> (<a class="reference internal" href="symbol.html#mxnet.symbol.Symbol" title="mxnet.symbol.Symbol"><em>Symbol</em></a>) – Input array.</li> |
| <li><strong>a_min</strong> (<em>float, required</em>) – Minimum value</li> |
| <li><strong>a_max</strong> (<em>float, required</em>) – Maximum value</li> |
| <li><strong>name</strong> (<em>string, optional.</em>) – Name of the resulting symbol.</li> |
| </ul> |
| </td> |
| </tr> |
| <tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">The result symbol.</p> |
| </td> |
| </tr> |
| <tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last"><a class="reference internal" href="symbol.html#mxnet.symbol.Symbol" title="mxnet.symbol.Symbol">Symbol</a></p> |
| </td> |
| </tr> |
| </tbody> |
| </table> |
| </dd></dl> |
| <dl class="function"> |
| <dt id="mxnet.symbol.sparse.cos"> |
| <code class="descclassname">mxnet.symbol.sparse.</code><code class="descname">cos</code><span class="sig-paren">(</span><em>data=None</em>, <em>name=None</em>, <em>attr=None</em>, <em>out=None</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#mxnet.symbol.sparse.cos" title="Permalink to this definition">¶</a></dt> |
| <dd><p>Computes the element-wise cosine of the input array.</p> |
| <p>The input should be in radians (<span class="math">\(2\pi\)</span> rad equals 360 degrees).</p> |
| <div class="math"> |
| \[cos([0, \pi/4, \pi/2]) = [1, 0.707, 0]\]</div> |
| <p>The storage type of <code class="docutils literal"><span class="pre">cos</span></code> output is always dense</p> |
| <p>Defined in src/operator/tensor/elemwise_unary_op_trig.cc:L63</p> |
| <table class="docutils field-list" frame="void" rules="none"> |
| <col class="field-name"/> |
| <col class="field-body"/> |
| <tbody valign="top"> |
| <tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple"> |
| <li><strong>data</strong> (<a class="reference internal" href="symbol.html#mxnet.symbol.Symbol" title="mxnet.symbol.Symbol"><em>Symbol</em></a>) – The input array.</li> |
| <li><strong>name</strong> (<em>string, optional.</em>) – Name of the resulting symbol.</li> |
| </ul> |
| </td> |
| </tr> |
| <tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">The result symbol.</p> |
| </td> |
| </tr> |
| <tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last"><a class="reference internal" href="symbol.html#mxnet.symbol.Symbol" title="mxnet.symbol.Symbol">Symbol</a></p> |
| </td> |
| </tr> |
| </tbody> |
| </table> |
| </dd></dl> |
| <dl class="function"> |
| <dt id="mxnet.symbol.sparse.cosh"> |
| <code class="descclassname">mxnet.symbol.sparse.</code><code class="descname">cosh</code><span class="sig-paren">(</span><em>data=None</em>, <em>name=None</em>, <em>attr=None</em>, <em>out=None</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#mxnet.symbol.sparse.cosh" title="Permalink to this definition">¶</a></dt> |
| <dd><p>Returns the hyperbolic cosine of the input array, computed element-wise.</p> |
| <div class="math"> |
| \[cosh(x) = 0.5\times(exp(x) + exp(-x))\]</div> |
| <p>The storage type of <code class="docutils literal"><span class="pre">cosh</span></code> output is always dense</p> |
| <p>Defined in src/operator/tensor/elemwise_unary_op_trig.cc:L216</p> |
| <table class="docutils field-list" frame="void" rules="none"> |
| <col class="field-name"/> |
| <col class="field-body"/> |
| <tbody valign="top"> |
| <tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple"> |
| <li><strong>data</strong> (<a class="reference internal" href="symbol.html#mxnet.symbol.Symbol" title="mxnet.symbol.Symbol"><em>Symbol</em></a>) – The input array.</li> |
| <li><strong>name</strong> (<em>string, optional.</em>) – Name of the resulting symbol.</li> |
| </ul> |
| </td> |
| </tr> |
| <tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">The result symbol.</p> |
| </td> |
| </tr> |
| <tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last"><a class="reference internal" href="symbol.html#mxnet.symbol.Symbol" title="mxnet.symbol.Symbol">Symbol</a></p> |
| </td> |
| </tr> |
| </tbody> |
| </table> |
| </dd></dl> |
| <dl class="function"> |
| <dt id="mxnet.symbol.sparse.degrees"> |
| <code class="descclassname">mxnet.symbol.sparse.</code><code class="descname">degrees</code><span class="sig-paren">(</span><em>data=None</em>, <em>name=None</em>, <em>attr=None</em>, <em>out=None</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#mxnet.symbol.sparse.degrees" title="Permalink to this definition">¶</a></dt> |
| <dd><p>Converts each element of the input array from radians to degrees.</p> |
| <div class="math"> |
| \[degrees([0, \pi/2, \pi, 3\pi/2, 2\pi]) = [0, 90, 180, 270, 360]\]</div> |
| <p>The storage type of <code class="docutils literal"><span class="pre">degrees</span></code> output depends upon the input storage type:</p> |
| <blockquote> |
| <div><ul class="simple"> |
| <li>degrees(default) = default</li> |
| <li>degrees(row_sparse) = row_sparse</li> |
| </ul> |
| </div></blockquote> |
| <p>Defined in src/operator/tensor/elemwise_unary_op_trig.cc:L163</p> |
| <table class="docutils field-list" frame="void" rules="none"> |
| <col class="field-name"/> |
| <col class="field-body"/> |
| <tbody valign="top"> |
| <tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple"> |
| <li><strong>data</strong> (<a class="reference internal" href="symbol.html#mxnet.symbol.Symbol" title="mxnet.symbol.Symbol"><em>Symbol</em></a>) – The input array.</li> |
| <li><strong>name</strong> (<em>string, optional.</em>) – Name of the resulting symbol.</li> |
| </ul> |
| </td> |
| </tr> |
| <tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">The result symbol.</p> |
| </td> |
| </tr> |
| <tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last"><a class="reference internal" href="symbol.html#mxnet.symbol.Symbol" title="mxnet.symbol.Symbol">Symbol</a></p> |
| </td> |
| </tr> |
| </tbody> |
| </table> |
| </dd></dl> |
| <dl class="function"> |
| <dt id="mxnet.symbol.sparse.dot"> |
| <code class="descclassname">mxnet.symbol.sparse.</code><code class="descname">dot</code><span class="sig-paren">(</span><em>lhs=None</em>, <em>rhs=None</em>, <em>transpose_a=_Null</em>, <em>transpose_b=_Null</em>, <em>name=None</em>, <em>attr=None</em>, <em>out=None</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#mxnet.symbol.sparse.dot" title="Permalink to this definition">¶</a></dt> |
| <dd><p>Dot product of two arrays.</p> |
| <p><code class="docutils literal"><span class="pre">dot</span></code>‘s behavior depends on the input array dimensions:</p> |
| <ul> |
| <li><p class="first">1-D arrays: inner product of vectors</p> |
| </li> |
| <li><p class="first">2-D arrays: matrix multiplication</p> |
| </li> |
| <li><p class="first">N-D arrays: a sum product over the last axis of the first input and the first |
| axis of the second input</p> |
| <p>For example, given 3-D <code class="docutils literal"><span class="pre">x</span></code> with shape <cite>(n,m,k)</cite> and <code class="docutils literal"><span class="pre">y</span></code> with shape <cite>(k,r,s)</cite>, the |
| result array will have shape <cite>(n,m,r,s)</cite>. It is computed by:</p> |
| <div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">dot</span><span class="p">(</span><span class="n">x</span><span class="p">,</span><span class="n">y</span><span class="p">)[</span><span class="n">i</span><span class="p">,</span><span class="n">j</span><span class="p">,</span><span class="n">a</span><span class="p">,</span><span class="n">b</span><span class="p">]</span> <span class="o">=</span> <span class="nb">sum</span><span class="p">(</span><span class="n">x</span><span class="p">[</span><span class="n">i</span><span class="p">,</span><span class="n">j</span><span class="p">,:]</span><span class="o">*</span><span class="n">y</span><span class="p">[:,</span><span class="n">a</span><span class="p">,</span><span class="n">b</span><span class="p">])</span> |
| </pre></div> |
| </div> |
| <p>Example:</p> |
| <div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">x</span> <span class="o">=</span> <span class="n">reshape</span><span class="p">([</span><span class="mi">0</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">2</span><span class="p">,</span><span class="mi">3</span><span class="p">,</span><span class="mi">4</span><span class="p">,</span><span class="mi">5</span><span class="p">,</span><span class="mi">6</span><span class="p">,</span><span class="mi">7</span><span class="p">],</span> <span class="n">shape</span><span class="o">=</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span><span class="mi">2</span><span class="p">,</span><span class="mi">2</span><span class="p">))</span> |
| <span class="n">y</span> <span class="o">=</span> <span class="n">reshape</span><span class="p">([</span><span class="mi">7</span><span class="p">,</span><span class="mi">6</span><span class="p">,</span><span class="mi">5</span><span class="p">,</span><span class="mi">4</span><span class="p">,</span><span class="mi">3</span><span class="p">,</span><span class="mi">2</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">0</span><span class="p">],</span> <span class="n">shape</span><span class="o">=</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span><span class="mi">2</span><span class="p">,</span><span class="mi">2</span><span class="p">))</span> |
| <span class="n">dot</span><span class="p">(</span><span class="n">x</span><span class="p">,</span><span class="n">y</span><span class="p">)[</span><span class="mi">0</span><span class="p">,</span><span class="mi">0</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">]</span> <span class="o">=</span> <span class="mi">0</span> |
| <span class="nb">sum</span><span class="p">(</span><span class="n">x</span><span class="p">[</span><span class="mi">0</span><span class="p">,</span><span class="mi">0</span><span class="p">,:]</span><span class="o">*</span><span class="n">y</span><span class="p">[:,</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">])</span> <span class="o">=</span> <span class="mi">0</span> |
| </pre></div> |
| </div> |
| </li> |
| </ul> |
| <p>The storage type of <code class="docutils literal"><span class="pre">dot</span></code> output depends on storage types of inputs and transpose options:</p> |
| <ul class="simple"> |
| <li>dot(csr, default) = default</li> |
| <li>dot(csr.T, default) = row_sparse</li> |
| <li>dot(csr, row_sparse) = default</li> |
| <li>otherwise, <code class="docutils literal"><span class="pre">dot</span></code> generates output with default storage</li> |
| </ul> |
| <p>Defined in src/operator/tensor/dot.cc:L61</p> |
| <table class="docutils field-list" frame="void" rules="none"> |
| <col class="field-name"/> |
| <col class="field-body"/> |
| <tbody valign="top"> |
| <tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple"> |
| <li><strong>lhs</strong> (<a class="reference internal" href="symbol.html#mxnet.symbol.Symbol" title="mxnet.symbol.Symbol"><em>Symbol</em></a>) – The first input</li> |
| <li><strong>rhs</strong> (<a class="reference internal" href="symbol.html#mxnet.symbol.Symbol" title="mxnet.symbol.Symbol"><em>Symbol</em></a>) – The second input</li> |
| <li><strong>transpose_a</strong> (<em>boolean, optional, default=0</em>) – If true then transpose the first input before dot.</li> |
| <li><strong>transpose_b</strong> (<em>boolean, optional, default=0</em>) – If true then transpose the second input before dot.</li> |
| <li><strong>name</strong> (<em>string, optional.</em>) – Name of the resulting symbol.</li> |
| </ul> |
| </td> |
| </tr> |
| <tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">The result symbol.</p> |
| </td> |
| </tr> |
| <tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last"><a class="reference internal" href="symbol.html#mxnet.symbol.Symbol" title="mxnet.symbol.Symbol">Symbol</a></p> |
| </td> |
| </tr> |
| </tbody> |
| </table> |
| </dd></dl> |
| <dl class="function"> |
| <dt id="mxnet.symbol.sparse.elemwise_add"> |
| <code class="descclassname">mxnet.symbol.sparse.</code><code class="descname">elemwise_add</code><span class="sig-paren">(</span><em>lhs=None</em>, <em>rhs=None</em>, <em>name=None</em>, <em>attr=None</em>, <em>out=None</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#mxnet.symbol.sparse.elemwise_add" title="Permalink to this definition">¶</a></dt> |
| <dd><p>Adds arguments element-wise.</p> |
| <p>The storage type of <code class="docutils literal"><span class="pre">elemwise_add</span></code> output depends on storage types of inputs</p> |
| <blockquote> |
| <div><ul class="simple"> |
| <li>elemwise_add(row_sparse, row_sparse) = row_sparse</li> |
| <li>elemwise_add(csr, csr) = csr</li> |
| <li>otherwise, <code class="docutils literal"><span class="pre">elemwise_add</span></code> generates output with default storage</li> |
| </ul> |
| </div></blockquote> |
| <table class="docutils field-list" frame="void" rules="none"> |
| <col class="field-name"/> |
| <col class="field-body"/> |
| <tbody valign="top"> |
| <tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple"> |
| <li><strong>lhs</strong> (<a class="reference internal" href="symbol.html#mxnet.symbol.Symbol" title="mxnet.symbol.Symbol"><em>Symbol</em></a>) – first input</li> |
| <li><strong>rhs</strong> (<a class="reference internal" href="symbol.html#mxnet.symbol.Symbol" title="mxnet.symbol.Symbol"><em>Symbol</em></a>) – second input</li> |
| <li><strong>name</strong> (<em>string, optional.</em>) – Name of the resulting symbol.</li> |
| </ul> |
| </td> |
| </tr> |
| <tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">The result symbol.</p> |
| </td> |
| </tr> |
| <tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last"><a class="reference internal" href="symbol.html#mxnet.symbol.Symbol" title="mxnet.symbol.Symbol">Symbol</a></p> |
| </td> |
| </tr> |
| </tbody> |
| </table> |
| </dd></dl> |
| <dl class="function"> |
| <dt id="mxnet.symbol.sparse.elemwise_div"> |
| <code class="descclassname">mxnet.symbol.sparse.</code><code class="descname">elemwise_div</code><span class="sig-paren">(</span><em>lhs=None</em>, <em>rhs=None</em>, <em>name=None</em>, <em>attr=None</em>, <em>out=None</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#mxnet.symbol.sparse.elemwise_div" title="Permalink to this definition">¶</a></dt> |
| <dd><p>Divides arguments element-wise.</p> |
| <p>The storage type of <code class="docutils literal"><span class="pre">elemwise_div</span></code> output is always dense</p> |
| <table class="docutils field-list" frame="void" rules="none"> |
| <col class="field-name"/> |
| <col class="field-body"/> |
| <tbody valign="top"> |
| <tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple"> |
| <li><strong>lhs</strong> (<a class="reference internal" href="symbol.html#mxnet.symbol.Symbol" title="mxnet.symbol.Symbol"><em>Symbol</em></a>) – first input</li> |
| <li><strong>rhs</strong> (<a class="reference internal" href="symbol.html#mxnet.symbol.Symbol" title="mxnet.symbol.Symbol"><em>Symbol</em></a>) – second input</li> |
| <li><strong>name</strong> (<em>string, optional.</em>) – Name of the resulting symbol.</li> |
| </ul> |
| </td> |
| </tr> |
| <tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">The result symbol.</p> |
| </td> |
| </tr> |
| <tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last"><a class="reference internal" href="symbol.html#mxnet.symbol.Symbol" title="mxnet.symbol.Symbol">Symbol</a></p> |
| </td> |
| </tr> |
| </tbody> |
| </table> |
| </dd></dl> |
| <dl class="function"> |
| <dt id="mxnet.symbol.sparse.elemwise_mul"> |
| <code class="descclassname">mxnet.symbol.sparse.</code><code class="descname">elemwise_mul</code><span class="sig-paren">(</span><em>lhs=None</em>, <em>rhs=None</em>, <em>name=None</em>, <em>attr=None</em>, <em>out=None</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#mxnet.symbol.sparse.elemwise_mul" title="Permalink to this definition">¶</a></dt> |
| <dd><p>Multiplies arguments element-wise.</p> |
| <p>The storage type of <code class="docutils literal"><span class="pre">elemwise_mul</span></code> output depends on storage types of inputs</p> |
| <blockquote> |
| <div><ul class="simple"> |
| <li>elemwise_mul(default, default) = default</li> |
| <li>elemwise_mul(row_sparse, row_sparse) = row_sparse</li> |
| <li>elemwise_mul(default, row_sparse) = default</li> |
| <li>elemwise_mul(row_sparse, default) = default</li> |
| <li>elemwise_mul(csr, csr) = csr</li> |
| <li>otherwise, <code class="docutils literal"><span class="pre">elemwise_mul</span></code> generates output with default storage</li> |
| </ul> |
| </div></blockquote> |
| <table class="docutils field-list" frame="void" rules="none"> |
| <col class="field-name"/> |
| <col class="field-body"/> |
| <tbody valign="top"> |
| <tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple"> |
| <li><strong>lhs</strong> (<a class="reference internal" href="symbol.html#mxnet.symbol.Symbol" title="mxnet.symbol.Symbol"><em>Symbol</em></a>) – first input</li> |
| <li><strong>rhs</strong> (<a class="reference internal" href="symbol.html#mxnet.symbol.Symbol" title="mxnet.symbol.Symbol"><em>Symbol</em></a>) – second input</li> |
| <li><strong>name</strong> (<em>string, optional.</em>) – Name of the resulting symbol.</li> |
| </ul> |
| </td> |
| </tr> |
| <tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">The result symbol.</p> |
| </td> |
| </tr> |
| <tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last"><a class="reference internal" href="symbol.html#mxnet.symbol.Symbol" title="mxnet.symbol.Symbol">Symbol</a></p> |
| </td> |
| </tr> |
| </tbody> |
| </table> |
| </dd></dl> |
| <dl class="function"> |
| <dt id="mxnet.symbol.sparse.elemwise_sub"> |
| <code class="descclassname">mxnet.symbol.sparse.</code><code class="descname">elemwise_sub</code><span class="sig-paren">(</span><em>lhs=None</em>, <em>rhs=None</em>, <em>name=None</em>, <em>attr=None</em>, <em>out=None</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#mxnet.symbol.sparse.elemwise_sub" title="Permalink to this definition">¶</a></dt> |
| <dd><p>Subtracts arguments element-wise.</p> |
| <p>The storage type of <code class="docutils literal"><span class="pre">elemwise_sub</span></code> output depends on storage types of inputs</p> |
| <blockquote> |
| <div><ul class="simple"> |
| <li>elemwise_sub(row_sparse, row_sparse) = row_sparse</li> |
| <li>elemwise_sub(csr, csr) = csr</li> |
| <li>otherwise, <code class="docutils literal"><span class="pre">elemwise_sub</span></code> generates output with default storage</li> |
| </ul> |
| </div></blockquote> |
| <table class="docutils field-list" frame="void" rules="none"> |
| <col class="field-name"/> |
| <col class="field-body"/> |
| <tbody valign="top"> |
| <tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple"> |
| <li><strong>lhs</strong> (<a class="reference internal" href="symbol.html#mxnet.symbol.Symbol" title="mxnet.symbol.Symbol"><em>Symbol</em></a>) – first input</li> |
| <li><strong>rhs</strong> (<a class="reference internal" href="symbol.html#mxnet.symbol.Symbol" title="mxnet.symbol.Symbol"><em>Symbol</em></a>) – second input</li> |
| <li><strong>name</strong> (<em>string, optional.</em>) – Name of the resulting symbol.</li> |
| </ul> |
| </td> |
| </tr> |
| <tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">The result symbol.</p> |
| </td> |
| </tr> |
| <tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last"><a class="reference internal" href="symbol.html#mxnet.symbol.Symbol" title="mxnet.symbol.Symbol">Symbol</a></p> |
| </td> |
| </tr> |
| </tbody> |
| </table> |
| </dd></dl> |
| <dl class="function"> |
| <dt id="mxnet.symbol.sparse.exp"> |
| <code class="descclassname">mxnet.symbol.sparse.</code><code class="descname">exp</code><span class="sig-paren">(</span><em>data=None</em>, <em>name=None</em>, <em>attr=None</em>, <em>out=None</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#mxnet.symbol.sparse.exp" title="Permalink to this definition">¶</a></dt> |
| <dd><p>Returns element-wise exponential value of the input.</p> |
| <div class="math"> |
| \[exp(x) = e^x \approx 2.718^x\]</div> |
| <p>Example:</p> |
| <div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">exp</span><span class="p">([</span><span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">])</span> <span class="o">=</span> <span class="p">[</span><span class="mf">1.</span><span class="p">,</span> <span class="mf">2.71828175</span><span class="p">,</span> <span class="mf">7.38905621</span><span class="p">]</span> |
| </pre></div> |
| </div> |
| <p>The storage type of <code class="docutils literal"><span class="pre">exp</span></code> output is always dense</p> |
| <p>Defined in src/operator/tensor/elemwise_unary_op_basic.cc:L637</p> |
| <table class="docutils field-list" frame="void" rules="none"> |
| <col class="field-name"/> |
| <col class="field-body"/> |
| <tbody valign="top"> |
| <tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple"> |
| <li><strong>data</strong> (<a class="reference internal" href="symbol.html#mxnet.symbol.Symbol" title="mxnet.symbol.Symbol"><em>Symbol</em></a>) – The input array.</li> |
| <li><strong>name</strong> (<em>string, optional.</em>) – Name of the resulting symbol.</li> |
| </ul> |
| </td> |
| </tr> |
| <tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">The result symbol.</p> |
| </td> |
| </tr> |
| <tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last"><a class="reference internal" href="symbol.html#mxnet.symbol.Symbol" title="mxnet.symbol.Symbol">Symbol</a></p> |
| </td> |
| </tr> |
| </tbody> |
| </table> |
| </dd></dl> |
| <dl class="function"> |
| <dt id="mxnet.symbol.sparse.expm1"> |
| <code class="descclassname">mxnet.symbol.sparse.</code><code class="descname">expm1</code><span class="sig-paren">(</span><em>data=None</em>, <em>name=None</em>, <em>attr=None</em>, <em>out=None</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#mxnet.symbol.sparse.expm1" title="Permalink to this definition">¶</a></dt> |
| <dd><p>Returns <code class="docutils literal"><span class="pre">exp(x)</span> <span class="pre">-</span> <span class="pre">1</span></code> computed element-wise on the input.</p> |
| <p>This function provides greater precision than <code class="docutils literal"><span class="pre">exp(x)</span> <span class="pre">-</span> <span class="pre">1</span></code> for small values of <code class="docutils literal"><span class="pre">x</span></code>.</p> |
| <p>The storage type of <code class="docutils literal"><span class="pre">expm1</span></code> output depends upon the input storage type:</p> |
| <blockquote> |
| <div><ul class="simple"> |
| <li>expm1(default) = default</li> |
| <li>expm1(row_sparse) = row_sparse</li> |
| </ul> |
| </div></blockquote> |
| <p>Defined in src/operator/tensor/elemwise_unary_op_basic.cc:L716</p> |
| <table class="docutils field-list" frame="void" rules="none"> |
| <col class="field-name"/> |
| <col class="field-body"/> |
| <tbody valign="top"> |
| <tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple"> |
| <li><strong>data</strong> (<a class="reference internal" href="symbol.html#mxnet.symbol.Symbol" title="mxnet.symbol.Symbol"><em>Symbol</em></a>) – The input array.</li> |
| <li><strong>name</strong> (<em>string, optional.</em>) – Name of the resulting symbol.</li> |
| </ul> |
| </td> |
| </tr> |
| <tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">The result symbol.</p> |
| </td> |
| </tr> |
| <tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last"><a class="reference internal" href="symbol.html#mxnet.symbol.Symbol" title="mxnet.symbol.Symbol">Symbol</a></p> |
| </td> |
| </tr> |
| </tbody> |
| </table> |
| </dd></dl> |
| <dl class="function"> |
| <dt id="mxnet.symbol.sparse.fix"> |
| <code class="descclassname">mxnet.symbol.sparse.</code><code class="descname">fix</code><span class="sig-paren">(</span><em>data=None</em>, <em>name=None</em>, <em>attr=None</em>, <em>out=None</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#mxnet.symbol.sparse.fix" title="Permalink to this definition">¶</a></dt> |
| <dd><p>Returns element-wise rounded value to the nearest integer towards zero of the input.</p> |
| <p>Example:</p> |
| <div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">fix</span><span class="p">([</span><span class="o">-</span><span class="mf">2.1</span><span class="p">,</span> <span class="o">-</span><span class="mf">1.9</span><span class="p">,</span> <span class="mf">1.9</span><span class="p">,</span> <span class="mf">2.1</span><span class="p">])</span> <span class="o">=</span> <span class="p">[</span><span class="o">-</span><span class="mf">2.</span><span class="p">,</span> <span class="o">-</span><span class="mf">1.</span><span class="p">,</span> <span class="mf">1.</span><span class="p">,</span> <span class="mf">2.</span><span class="p">]</span> |
| </pre></div> |
| </div> |
| <p>The storage type of <code class="docutils literal"><span class="pre">fix</span></code> output depends upon the input storage type:</p> |
| <blockquote> |
| <div><ul class="simple"> |
| <li>fix(default) = default</li> |
| <li>fix(row_sparse) = row_sparse</li> |
| </ul> |
| </div></blockquote> |
| <p>Defined in src/operator/tensor/elemwise_unary_op_basic.cc:L517</p> |
| <table class="docutils field-list" frame="void" rules="none"> |
| <col class="field-name"/> |
| <col class="field-body"/> |
| <tbody valign="top"> |
| <tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple"> |
| <li><strong>data</strong> (<a class="reference internal" href="symbol.html#mxnet.symbol.Symbol" title="mxnet.symbol.Symbol"><em>Symbol</em></a>) – The input array.</li> |
| <li><strong>name</strong> (<em>string, optional.</em>) – Name of the resulting symbol.</li> |
| </ul> |
| </td> |
| </tr> |
| <tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">The result symbol.</p> |
| </td> |
| </tr> |
| <tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last"><a class="reference internal" href="symbol.html#mxnet.symbol.Symbol" title="mxnet.symbol.Symbol">Symbol</a></p> |
| </td> |
| </tr> |
| </tbody> |
| </table> |
| </dd></dl> |
| <dl class="function"> |
| <dt id="mxnet.symbol.sparse.floor"> |
| <code class="descclassname">mxnet.symbol.sparse.</code><code class="descname">floor</code><span class="sig-paren">(</span><em>data=None</em>, <em>name=None</em>, <em>attr=None</em>, <em>out=None</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#mxnet.symbol.sparse.floor" title="Permalink to this definition">¶</a></dt> |
| <dd><p>Returns element-wise floor of the input.</p> |
| <p>The floor of the scalar x is the largest integer i, such that i <= x.</p> |
| <p>Example:</p> |
| <div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">floor</span><span class="p">([</span><span class="o">-</span><span class="mf">2.1</span><span class="p">,</span> <span class="o">-</span><span class="mf">1.9</span><span class="p">,</span> <span class="mf">1.5</span><span class="p">,</span> <span class="mf">1.9</span><span class="p">,</span> <span class="mf">2.1</span><span class="p">])</span> <span class="o">=</span> <span class="p">[</span><span class="o">-</span><span class="mf">3.</span><span class="p">,</span> <span class="o">-</span><span class="mf">2.</span><span class="p">,</span> <span class="mf">1.</span><span class="p">,</span> <span class="mf">1.</span><span class="p">,</span> <span class="mf">2.</span><span class="p">]</span> |
| </pre></div> |
| </div> |
| <p>The storage type of <code class="docutils literal"><span class="pre">floor</span></code> output depends upon the input storage type:</p> |
| <blockquote> |
| <div><ul class="simple"> |
| <li>floor(default) = default</li> |
| <li>floor(row_sparse) = row_sparse</li> |
| </ul> |
| </div></blockquote> |
| <p>Defined in src/operator/tensor/elemwise_unary_op_basic.cc:L481</p> |
| <table class="docutils field-list" frame="void" rules="none"> |
| <col class="field-name"/> |
| <col class="field-body"/> |
| <tbody valign="top"> |
| <tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple"> |
| <li><strong>data</strong> (<a class="reference internal" href="symbol.html#mxnet.symbol.Symbol" title="mxnet.symbol.Symbol"><em>Symbol</em></a>) – The input array.</li> |
| <li><strong>name</strong> (<em>string, optional.</em>) – Name of the resulting symbol.</li> |
| </ul> |
| </td> |
| </tr> |
| <tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">The result symbol.</p> |
| </td> |
| </tr> |
| <tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last"><a class="reference internal" href="symbol.html#mxnet.symbol.Symbol" title="mxnet.symbol.Symbol">Symbol</a></p> |
| </td> |
| </tr> |
| </tbody> |
| </table> |
| </dd></dl> |
| <dl class="function"> |
| <dt id="mxnet.symbol.sparse.ftrl_update"> |
| <code class="descclassname">mxnet.symbol.sparse.</code><code class="descname">ftrl_update</code><span class="sig-paren">(</span><em>weight=None</em>, <em>grad=None</em>, <em>z=None</em>, <em>n=None</em>, <em>lr=_Null</em>, <em>lamda1=_Null</em>, <em>beta=_Null</em>, <em>wd=_Null</em>, <em>rescale_grad=_Null</em>, <em>clip_gradient=_Null</em>, <em>name=None</em>, <em>attr=None</em>, <em>out=None</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#mxnet.symbol.sparse.ftrl_update" title="Permalink to this definition">¶</a></dt> |
| <dd><p>Update function for Ftrl optimizer. |
| Referenced from <em>Ad Click Prediction: a View from the Trenches</em>, available at |
| <a class="reference external" href="http://dl.acm.org/citation.cfm?id=2488200">http://dl.acm.org/citation.cfm?id=2488200</a>.</p> |
| <p>It updates the weights using:</p> |
| <div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">rescaled_grad</span> <span class="o">=</span> <span class="n">clip</span><span class="p">(</span><span class="n">grad</span> <span class="o">*</span> <span class="n">rescale_grad</span><span class="p">,</span> <span class="n">clip_gradient</span><span class="p">)</span> |
| <span class="n">z</span> <span class="o">+=</span> <span class="n">rescaled_grad</span> <span class="o">-</span> <span class="p">(</span><span class="n">sqrt</span><span class="p">(</span><span class="n">n</span> <span class="o">+</span> <span class="n">rescaled_grad</span><span class="o">**</span><span class="mi">2</span><span class="p">)</span> <span class="o">-</span> <span class="n">sqrt</span><span class="p">(</span><span class="n">n</span><span class="p">))</span> <span class="o">*</span> <span class="n">weight</span> <span class="o">/</span> <span class="n">learning_rate</span> |
| <span class="n">n</span> <span class="o">+=</span> <span class="n">rescaled_grad</span><span class="o">**</span><span class="mi">2</span> |
| <span class="n">w</span> <span class="o">=</span> <span class="p">(</span><span class="n">sign</span><span class="p">(</span><span class="n">z</span><span class="p">)</span> <span class="o">*</span> <span class="n">lamda1</span> <span class="o">-</span> <span class="n">z</span><span class="p">)</span> <span class="o">/</span> <span class="p">((</span><span class="n">beta</span> <span class="o">+</span> <span class="n">sqrt</span><span class="p">(</span><span class="n">n</span><span class="p">))</span> <span class="o">/</span> <span class="n">learning_rate</span> <span class="o">+</span> <span class="n">wd</span><span class="p">)</span> <span class="o">*</span> <span class="p">(</span><span class="nb">abs</span><span class="p">(</span><span class="n">z</span><span class="p">)</span> <span class="o">></span> <span class="n">lamda1</span><span class="p">)</span> |
| </pre></div> |
| </div> |
| <p>If w, z and n are all of <code class="docutils literal"><span class="pre">row_sparse</span></code> storage type, |
| only the row slices whose indices appear in grad.indices are updated (for w, z and n):</p> |
| <div class="highlight-python"><div class="highlight"><pre><span></span><span class="k">for</span> <span class="n">row</span> <span class="ow">in</span> <span class="n">grad</span><span class="o">.</span><span class="n">indices</span><span class="p">:</span> |
| <span class="n">rescaled_grad</span><span class="p">[</span><span class="n">row</span><span class="p">]</span> <span class="o">=</span> <span class="n">clip</span><span class="p">(</span><span class="n">grad</span><span class="p">[</span><span class="n">row</span><span class="p">]</span> <span class="o">*</span> <span class="n">rescale_grad</span><span class="p">,</span> <span class="n">clip_gradient</span><span class="p">)</span> |
| <span class="n">z</span><span class="p">[</span><span class="n">row</span><span class="p">]</span> <span class="o">+=</span> <span class="n">rescaled_grad</span><span class="p">[</span><span class="n">row</span><span class="p">]</span> <span class="o">-</span> <span class="p">(</span><span class="n">sqrt</span><span class="p">(</span><span class="n">n</span><span class="p">[</span><span class="n">row</span><span class="p">]</span> <span class="o">+</span> <span class="n">rescaled_grad</span><span class="p">[</span><span class="n">row</span><span class="p">]</span><span class="o">**</span><span class="mi">2</span><span class="p">)</span> <span class="o">-</span> <span class="n">sqrt</span><span class="p">(</span><span class="n">n</span><span class="p">[</span><span class="n">row</span><span class="p">]))</span> <span class="o">*</span> <span class="n">weight</span><span class="p">[</span><span class="n">row</span><span class="p">]</span> <span class="o">/</span> <span class="n">learning_rate</span> |
| <span class="n">n</span><span class="p">[</span><span class="n">row</span><span class="p">]</span> <span class="o">+=</span> <span class="n">rescaled_grad</span><span class="p">[</span><span class="n">row</span><span class="p">]</span><span class="o">**</span><span class="mi">2</span> |
| <span class="n">w</span><span class="p">[</span><span class="n">row</span><span class="p">]</span> <span class="o">=</span> <span class="p">(</span><span class="n">sign</span><span class="p">(</span><span class="n">z</span><span class="p">[</span><span class="n">row</span><span class="p">])</span> <span class="o">*</span> <span class="n">lamda1</span> <span class="o">-</span> <span class="n">z</span><span class="p">[</span><span class="n">row</span><span class="p">])</span> <span class="o">/</span> <span class="p">((</span><span class="n">beta</span> <span class="o">+</span> <span class="n">sqrt</span><span class="p">(</span><span class="n">n</span><span class="p">[</span><span class="n">row</span><span class="p">]))</span> <span class="o">/</span> <span class="n">learning_rate</span> <span class="o">+</span> <span class="n">wd</span><span class="p">)</span> <span class="o">*</span> <span class="p">(</span><span class="nb">abs</span><span class="p">(</span><span class="n">z</span><span class="p">[</span><span class="n">row</span><span class="p">])</span> <span class="o">></span> <span class="n">lamda1</span><span class="p">)</span> |
| </pre></div> |
| </div> |
| <p>Defined in src/operator/optimizer_op.cc:L308</p> |
| <table class="docutils field-list" frame="void" rules="none"> |
| <col class="field-name"/> |
| <col class="field-body"/> |
| <tbody valign="top"> |
| <tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple"> |
| <li><strong>weight</strong> (<a class="reference internal" href="symbol.html#mxnet.symbol.Symbol" title="mxnet.symbol.Symbol"><em>Symbol</em></a>) – Weight</li> |
| <li><strong>grad</strong> (<a class="reference internal" href="symbol.html#mxnet.symbol.Symbol" title="mxnet.symbol.Symbol"><em>Symbol</em></a>) – Gradient</li> |
| <li><strong>z</strong> (<a class="reference internal" href="symbol.html#mxnet.symbol.Symbol" title="mxnet.symbol.Symbol"><em>Symbol</em></a>) – z</li> |
| <li><strong>n</strong> (<a class="reference internal" href="symbol.html#mxnet.symbol.Symbol" title="mxnet.symbol.Symbol"><em>Symbol</em></a>) – Square of grad</li> |
| <li><strong>lr</strong> (<em>float, required</em>) – Learning rate</li> |
| <li><strong>lamda1</strong> (<em>float, optional, default=0.01</em>) – The L1 regularization coefficient.</li> |
| <li><strong>beta</strong> (<em>float, optional, default=1</em>) – Per-Coordinate Learning Rate beta.</li> |
| <li><strong>wd</strong> (<em>float, optional, default=0</em>) – Weight decay augments the objective function with a regularization term that penalizes large weights. The penalty scales with the square of the magnitude of each weight.</li> |
| <li><strong>rescale_grad</strong> (<em>float, optional, default=1</em>) – Rescale gradient to grad = rescale_grad*grad.</li> |
| <li><strong>clip_gradient</strong> (<em>float, optional, default=-1</em>) – Clip gradient to the range of [-clip_gradient, clip_gradient] If clip_gradient <= 0, gradient clipping is turned off. grad = max(min(grad, clip_gradient), -clip_gradient).</li> |
| <li><strong>name</strong> (<em>string, optional.</em>) – Name of the resulting symbol.</li> |
| </ul> |
| </td> |
| </tr> |
| <tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">The result symbol.</p> |
| </td> |
| </tr> |
| <tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last"><a class="reference internal" href="symbol.html#mxnet.symbol.Symbol" title="mxnet.symbol.Symbol">Symbol</a></p> |
| </td> |
| </tr> |
| </tbody> |
| </table> |
| </dd></dl> |
| <dl class="function"> |
| <dt id="mxnet.symbol.sparse.gamma"> |
| <code class="descclassname">mxnet.symbol.sparse.</code><code class="descname">gamma</code><span class="sig-paren">(</span><em>data=None</em>, <em>name=None</em>, <em>attr=None</em>, <em>out=None</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#mxnet.symbol.sparse.gamma" title="Permalink to this definition">¶</a></dt> |
| <dd><p>Returns the gamma function (extension of the factorial function to the reals), computed element-wise on the input array.</p> |
| <p>The storage type of <code class="docutils literal"><span class="pre">gamma</span></code> output is always dense</p> |
| <table class="docutils field-list" frame="void" rules="none"> |
| <col class="field-name"/> |
| <col class="field-body"/> |
| <tbody valign="top"> |
| <tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple"> |
| <li><strong>data</strong> (<a class="reference internal" href="symbol.html#mxnet.symbol.Symbol" title="mxnet.symbol.Symbol"><em>Symbol</em></a>) – The input array.</li> |
| <li><strong>name</strong> (<em>string, optional.</em>) – Name of the resulting symbol.</li> |
| </ul> |
| </td> |
| </tr> |
| <tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">The result symbol.</p> |
| </td> |
| </tr> |
| <tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last"><a class="reference internal" href="symbol.html#mxnet.symbol.Symbol" title="mxnet.symbol.Symbol">Symbol</a></p> |
| </td> |
| </tr> |
| </tbody> |
| </table> |
| </dd></dl> |
| <dl class="function"> |
| <dt id="mxnet.symbol.sparse.gammaln"> |
| <code class="descclassname">mxnet.symbol.sparse.</code><code class="descname">gammaln</code><span class="sig-paren">(</span><em>data=None</em>, <em>name=None</em>, <em>attr=None</em>, <em>out=None</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#mxnet.symbol.sparse.gammaln" title="Permalink to this definition">¶</a></dt> |
| <dd><p>Returns element-wise log of the absolute value of the gamma function of the input.</p> |
| <p>The storage type of <code class="docutils literal"><span class="pre">gammaln</span></code> output is always dense</p> |
| <table class="docutils field-list" frame="void" rules="none"> |
| <col class="field-name"/> |
| <col class="field-body"/> |
| <tbody valign="top"> |
| <tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple"> |
| <li><strong>data</strong> (<a class="reference internal" href="symbol.html#mxnet.symbol.Symbol" title="mxnet.symbol.Symbol"><em>Symbol</em></a>) – The input array.</li> |
| <li><strong>name</strong> (<em>string, optional.</em>) – Name of the resulting symbol.</li> |
| </ul> |
| </td> |
| </tr> |
| <tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">The result symbol.</p> |
| </td> |
| </tr> |
| <tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last"><a class="reference internal" href="symbol.html#mxnet.symbol.Symbol" title="mxnet.symbol.Symbol">Symbol</a></p> |
| </td> |
| </tr> |
| </tbody> |
| </table> |
| </dd></dl> |
| <dl class="function"> |
| <dt id="mxnet.symbol.sparse.log"> |
| <code class="descclassname">mxnet.symbol.sparse.</code><code class="descname">log</code><span class="sig-paren">(</span><em>data=None</em>, <em>name=None</em>, <em>attr=None</em>, <em>out=None</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#mxnet.symbol.sparse.log" title="Permalink to this definition">¶</a></dt> |
| <dd><p>Returns element-wise Natural logarithmic value of the input.</p> |
| <p>The natural logarithm is logarithm in base <em>e</em>, so that <code class="docutils literal"><span class="pre">log(exp(x))</span> <span class="pre">=</span> <span class="pre">x</span></code></p> |
| <p>The storage type of <code class="docutils literal"><span class="pre">log</span></code> output is always dense</p> |
| <p>Defined in src/operator/tensor/elemwise_unary_op_basic.cc:L649</p> |
| <table class="docutils field-list" frame="void" rules="none"> |
| <col class="field-name"/> |
| <col class="field-body"/> |
| <tbody valign="top"> |
| <tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple"> |
| <li><strong>data</strong> (<a class="reference internal" href="symbol.html#mxnet.symbol.Symbol" title="mxnet.symbol.Symbol"><em>Symbol</em></a>) – The input array.</li> |
| <li><strong>name</strong> (<em>string, optional.</em>) – Name of the resulting symbol.</li> |
| </ul> |
| </td> |
| </tr> |
| <tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">The result symbol.</p> |
| </td> |
| </tr> |
| <tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last"><a class="reference internal" href="symbol.html#mxnet.symbol.Symbol" title="mxnet.symbol.Symbol">Symbol</a></p> |
| </td> |
| </tr> |
| </tbody> |
| </table> |
| </dd></dl> |
| <dl class="function"> |
| <dt id="mxnet.symbol.sparse.log10"> |
| <code class="descclassname">mxnet.symbol.sparse.</code><code class="descname">log10</code><span class="sig-paren">(</span><em>data=None</em>, <em>name=None</em>, <em>attr=None</em>, <em>out=None</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#mxnet.symbol.sparse.log10" title="Permalink to this definition">¶</a></dt> |
| <dd><p>Returns element-wise Base-10 logarithmic value of the input.</p> |
| <p><code class="docutils literal"><span class="pre">10**log10(x)</span> <span class="pre">=</span> <span class="pre">x</span></code></p> |
| <p>The storage type of <code class="docutils literal"><span class="pre">log10</span></code> output is always dense</p> |
| <p>Defined in src/operator/tensor/elemwise_unary_op_basic.cc:L661</p> |
| <table class="docutils field-list" frame="void" rules="none"> |
| <col class="field-name"/> |
| <col class="field-body"/> |
| <tbody valign="top"> |
| <tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple"> |
| <li><strong>data</strong> (<a class="reference internal" href="symbol.html#mxnet.symbol.Symbol" title="mxnet.symbol.Symbol"><em>Symbol</em></a>) – The input array.</li> |
| <li><strong>name</strong> (<em>string, optional.</em>) – Name of the resulting symbol.</li> |
| </ul> |
| </td> |
| </tr> |
| <tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">The result symbol.</p> |
| </td> |
| </tr> |
| <tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last"><a class="reference internal" href="symbol.html#mxnet.symbol.Symbol" title="mxnet.symbol.Symbol">Symbol</a></p> |
| </td> |
| </tr> |
| </tbody> |
| </table> |
| </dd></dl> |
| <dl class="function"> |
| <dt id="mxnet.symbol.sparse.log1p"> |
| <code class="descclassname">mxnet.symbol.sparse.</code><code class="descname">log1p</code><span class="sig-paren">(</span><em>data=None</em>, <em>name=None</em>, <em>attr=None</em>, <em>out=None</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#mxnet.symbol.sparse.log1p" title="Permalink to this definition">¶</a></dt> |
| <dd><p>Returns element-wise <code class="docutils literal"><span class="pre">log(1</span> <span class="pre">+</span> <span class="pre">x)</span></code> value of the input.</p> |
| <p>This function is more accurate than <code class="docutils literal"><span class="pre">log(1</span> <span class="pre">+</span> <span class="pre">x)</span></code> for small <code class="docutils literal"><span class="pre">x</span></code> so that |
| <span class="math">\(1+x\approx 1\)</span></p> |
| <p>The storage type of <code class="docutils literal"><span class="pre">log1p</span></code> output depends upon the input storage type:</p> |
| <blockquote> |
| <div><ul class="simple"> |
| <li>log1p(default) = default</li> |
| <li>log1p(row_sparse) = row_sparse</li> |
| </ul> |
| </div></blockquote> |
| <p>Defined in src/operator/tensor/elemwise_unary_op_basic.cc:L698</p> |
| <table class="docutils field-list" frame="void" rules="none"> |
| <col class="field-name"/> |
| <col class="field-body"/> |
| <tbody valign="top"> |
| <tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple"> |
| <li><strong>data</strong> (<a class="reference internal" href="symbol.html#mxnet.symbol.Symbol" title="mxnet.symbol.Symbol"><em>Symbol</em></a>) – The input array.</li> |
| <li><strong>name</strong> (<em>string, optional.</em>) – Name of the resulting symbol.</li> |
| </ul> |
| </td> |
| </tr> |
| <tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">The result symbol.</p> |
| </td> |
| </tr> |
| <tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last"><a class="reference internal" href="symbol.html#mxnet.symbol.Symbol" title="mxnet.symbol.Symbol">Symbol</a></p> |
| </td> |
| </tr> |
| </tbody> |
| </table> |
| </dd></dl> |
| <dl class="function"> |
| <dt id="mxnet.symbol.sparse.log2"> |
| <code class="descclassname">mxnet.symbol.sparse.</code><code class="descname">log2</code><span class="sig-paren">(</span><em>data=None</em>, <em>name=None</em>, <em>attr=None</em>, <em>out=None</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#mxnet.symbol.sparse.log2" title="Permalink to this definition">¶</a></dt> |
| <dd><p>Returns element-wise Base-2 logarithmic value of the input.</p> |
| <p><code class="docutils literal"><span class="pre">2**log2(x)</span> <span class="pre">=</span> <span class="pre">x</span></code></p> |
| <p>The storage type of <code class="docutils literal"><span class="pre">log2</span></code> output is always dense</p> |
| <p>Defined in src/operator/tensor/elemwise_unary_op_basic.cc:L673</p> |
| <table class="docutils field-list" frame="void" rules="none"> |
| <col class="field-name"/> |
| <col class="field-body"/> |
| <tbody valign="top"> |
| <tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple"> |
| <li><strong>data</strong> (<a class="reference internal" href="symbol.html#mxnet.symbol.Symbol" title="mxnet.symbol.Symbol"><em>Symbol</em></a>) – The input array.</li> |
| <li><strong>name</strong> (<em>string, optional.</em>) – Name of the resulting symbol.</li> |
| </ul> |
| </td> |
| </tr> |
| <tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">The result symbol.</p> |
| </td> |
| </tr> |
| <tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last"><a class="reference internal" href="symbol.html#mxnet.symbol.Symbol" title="mxnet.symbol.Symbol">Symbol</a></p> |
| </td> |
| </tr> |
| </tbody> |
| </table> |
| </dd></dl> |
| <dl class="function"> |
| <dt id="mxnet.symbol.sparse.make_loss"> |
| <code class="descclassname">mxnet.symbol.sparse.</code><code class="descname">make_loss</code><span class="sig-paren">(</span><em>data=None</em>, <em>name=None</em>, <em>attr=None</em>, <em>out=None</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#mxnet.symbol.sparse.make_loss" title="Permalink to this definition">¶</a></dt> |
| <dd><p>Make your own loss function in network construction.</p> |
| <p>This operator accepts a customized loss function symbol as a terminal loss and |
| the symbol should be an operator with no backward dependency. |
| The output of this function is the gradient of loss with respect to the input data.</p> |
| <p>For example, if you are a making a cross entropy loss function. Assume <code class="docutils literal"><span class="pre">out</span></code> is the |
| predicted output and <code class="docutils literal"><span class="pre">label</span></code> is the true label, then the cross entropy can be defined as:</p> |
| <div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">cross_entropy</span> <span class="o">=</span> <span class="n">label</span> <span class="o">*</span> <span class="n">log</span><span class="p">(</span><span class="n">out</span><span class="p">)</span> <span class="o">+</span> <span class="p">(</span><span class="mi">1</span> <span class="o">-</span> <span class="n">label</span><span class="p">)</span> <span class="o">*</span> <span class="n">log</span><span class="p">(</span><span class="mi">1</span> <span class="o">-</span> <span class="n">out</span><span class="p">)</span> |
| <span class="n">loss</span> <span class="o">=</span> <span class="n">make_loss</span><span class="p">(</span><span class="n">cross_entropy</span><span class="p">)</span> |
| </pre></div> |
| </div> |
| <p>We will need to use <code class="docutils literal"><span class="pre">make_loss</span></code> when we are creating our own loss function or we want to |
| combine multiple loss functions. Also we may want to stop some variables’ gradients |
| from backpropagation. See more detail in <code class="docutils literal"><span class="pre">BlockGrad</span></code> or <code class="docutils literal"><span class="pre">stop_gradient</span></code>.</p> |
| <p>The storage type of <code class="docutils literal"><span class="pre">make_loss</span></code> output depends upon the input storage type:</p> |
| <blockquote> |
| <div><ul class="simple"> |
| <li>make_loss(default) = default</li> |
| <li>make_loss(row_sparse) = row_sparse</li> |
| </ul> |
| </div></blockquote> |
| <p>Defined in src/operator/tensor/elemwise_unary_op_basic.cc:L200</p> |
| <table class="docutils field-list" frame="void" rules="none"> |
| <col class="field-name"/> |
| <col class="field-body"/> |
| <tbody valign="top"> |
| <tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple"> |
| <li><strong>data</strong> (<a class="reference internal" href="symbol.html#mxnet.symbol.Symbol" title="mxnet.symbol.Symbol"><em>Symbol</em></a>) – The input array.</li> |
| <li><strong>name</strong> (<em>string, optional.</em>) – Name of the resulting symbol.</li> |
| </ul> |
| </td> |
| </tr> |
| <tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">The result symbol.</p> |
| </td> |
| </tr> |
| <tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last"><a class="reference internal" href="symbol.html#mxnet.symbol.Symbol" title="mxnet.symbol.Symbol">Symbol</a></p> |
| </td> |
| </tr> |
| </tbody> |
| </table> |
| </dd></dl> |
| <dl class="function"> |
| <dt id="mxnet.symbol.sparse.mean"> |
| <code class="descclassname">mxnet.symbol.sparse.</code><code class="descname">mean</code><span class="sig-paren">(</span><em>data=None</em>, <em>axis=_Null</em>, <em>keepdims=_Null</em>, <em>exclude=_Null</em>, <em>name=None</em>, <em>attr=None</em>, <em>out=None</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#mxnet.symbol.sparse.mean" title="Permalink to this definition">¶</a></dt> |
| <dd><p>Computes the mean of array elements over given axes.</p> |
| <p>Defined in src/operator/tensor/broadcast_reduce_op_value.cc:L101</p> |
| <table class="docutils field-list" frame="void" rules="none"> |
| <col class="field-name"/> |
| <col class="field-body"/> |
| <tbody valign="top"> |
| <tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple"> |
| <li><strong>data</strong> (<a class="reference internal" href="symbol.html#mxnet.symbol.Symbol" title="mxnet.symbol.Symbol"><em>Symbol</em></a>) – The input</li> |
| <li><strong>axis</strong> (<em>Shape(tuple), optional, default=[]</em>) – <p>The axis or axes along which to perform the reduction.</p> |
| <p>The default, <cite>axis=()</cite>, will compute over all elements into a |
| scalar array with shape <cite>(1,)</cite>.</p> |
| <p>If <cite>axis</cite> is int, a reduction is performed on a particular axis.</p> |
| <p>If <cite>axis</cite> is a tuple of ints, a reduction is performed on all the axes |
| specified in the tuple.</p> |
| <p>If <cite>exclude</cite> is true, reduction will be performed on the axes that are |
| NOT in axis instead.</p> |
| <p>Negative values means indexing from right to left.</p> |
| </li> |
| <li><strong>keepdims</strong> (<em>boolean, optional, default=0</em>) – If this is set to <cite>True</cite>, the reduced axes are left in the result as dimension with size one.</li> |
| <li><strong>exclude</strong> (<em>boolean, optional, default=0</em>) – Whether to perform reduction on axis that are NOT in axis instead.</li> |
| <li><strong>name</strong> (<em>string, optional.</em>) – Name of the resulting symbol.</li> |
| </ul> |
| </td> |
| </tr> |
| <tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">The result symbol.</p> |
| </td> |
| </tr> |
| <tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last"><a class="reference internal" href="symbol.html#mxnet.symbol.Symbol" title="mxnet.symbol.Symbol">Symbol</a></p> |
| </td> |
| </tr> |
| </tbody> |
| </table> |
| </dd></dl> |
| <dl class="function"> |
| <dt id="mxnet.symbol.sparse.negative"> |
| <code class="descclassname">mxnet.symbol.sparse.</code><code class="descname">negative</code><span class="sig-paren">(</span><em>data=None</em>, <em>name=None</em>, <em>attr=None</em>, <em>out=None</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#mxnet.symbol.sparse.negative" title="Permalink to this definition">¶</a></dt> |
| <dd><p>Numerical negative of the argument, element-wise.</p> |
| <p>The storage type of <code class="docutils literal"><span class="pre">negative</span></code> output depends upon the input storage type:</p> |
| <blockquote> |
| <div><ul class="simple"> |
| <li>negative(default) = default</li> |
| <li>negative(row_sparse) = row_sparse</li> |
| <li>negative(csr) = csr</li> |
| </ul> |
| </div></blockquote> |
| <table class="docutils field-list" frame="void" rules="none"> |
| <col class="field-name"/> |
| <col class="field-body"/> |
| <tbody valign="top"> |
| <tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple"> |
| <li><strong>data</strong> (<a class="reference internal" href="symbol.html#mxnet.symbol.Symbol" title="mxnet.symbol.Symbol"><em>Symbol</em></a>) – The input array.</li> |
| <li><strong>name</strong> (<em>string, optional.</em>) – Name of the resulting symbol.</li> |
| </ul> |
| </td> |
| </tr> |
| <tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">The result symbol.</p> |
| </td> |
| </tr> |
| <tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last"><a class="reference internal" href="symbol.html#mxnet.symbol.Symbol" title="mxnet.symbol.Symbol">Symbol</a></p> |
| </td> |
| </tr> |
| </tbody> |
| </table> |
| </dd></dl> |
| <dl class="function"> |
| <dt id="mxnet.symbol.sparse.radians"> |
| <code class="descclassname">mxnet.symbol.sparse.</code><code class="descname">radians</code><span class="sig-paren">(</span><em>data=None</em>, <em>name=None</em>, <em>attr=None</em>, <em>out=None</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#mxnet.symbol.sparse.radians" title="Permalink to this definition">¶</a></dt> |
| <dd><p>Converts each element of the input array from degrees to radians.</p> |
| <div class="math"> |
| \[radians([0, 90, 180, 270, 360]) = [0, \pi/2, \pi, 3\pi/2, 2\pi]\]</div> |
| <p>The storage type of <code class="docutils literal"><span class="pre">radians</span></code> output depends upon the input storage type:</p> |
| <blockquote> |
| <div><ul class="simple"> |
| <li>radians(default) = default</li> |
| <li>radians(row_sparse) = row_sparse</li> |
| </ul> |
| </div></blockquote> |
| <p>Defined in src/operator/tensor/elemwise_unary_op_trig.cc:L182</p> |
| <table class="docutils field-list" frame="void" rules="none"> |
| <col class="field-name"/> |
| <col class="field-body"/> |
| <tbody valign="top"> |
| <tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple"> |
| <li><strong>data</strong> (<a class="reference internal" href="symbol.html#mxnet.symbol.Symbol" title="mxnet.symbol.Symbol"><em>Symbol</em></a>) – The input array.</li> |
| <li><strong>name</strong> (<em>string, optional.</em>) – Name of the resulting symbol.</li> |
| </ul> |
| </td> |
| </tr> |
| <tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">The result symbol.</p> |
| </td> |
| </tr> |
| <tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last"><a class="reference internal" href="symbol.html#mxnet.symbol.Symbol" title="mxnet.symbol.Symbol">Symbol</a></p> |
| </td> |
| </tr> |
| </tbody> |
| </table> |
| </dd></dl> |
| <dl class="function"> |
| <dt id="mxnet.symbol.sparse.relu"> |
| <code class="descclassname">mxnet.symbol.sparse.</code><code class="descname">relu</code><span class="sig-paren">(</span><em>data=None</em>, <em>name=None</em>, <em>attr=None</em>, <em>out=None</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#mxnet.symbol.sparse.relu" title="Permalink to this definition">¶</a></dt> |
| <dd><p>Computes rectified linear.</p> |
| <div class="math"> |
| \[max(features, 0)\]</div> |
| <p>The storage type of <code class="docutils literal"><span class="pre">relu</span></code> output depends upon the input storage type:</p> |
| <blockquote> |
| <div><ul class="simple"> |
| <li>relu(default) = default</li> |
| <li>relu(row_sparse) = row_sparse</li> |
| </ul> |
| </div></blockquote> |
| <p>Defined in src/operator/tensor/elemwise_unary_op_basic.cc:L84</p> |
| <table class="docutils field-list" frame="void" rules="none"> |
| <col class="field-name"/> |
| <col class="field-body"/> |
| <tbody valign="top"> |
| <tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple"> |
| <li><strong>data</strong> (<a class="reference internal" href="symbol.html#mxnet.symbol.Symbol" title="mxnet.symbol.Symbol"><em>Symbol</em></a>) – The input array.</li> |
| <li><strong>name</strong> (<em>string, optional.</em>) – Name of the resulting symbol.</li> |
| </ul> |
| </td> |
| </tr> |
| <tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">The result symbol.</p> |
| </td> |
| </tr> |
| <tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last"><a class="reference internal" href="symbol.html#mxnet.symbol.Symbol" title="mxnet.symbol.Symbol">Symbol</a></p> |
| </td> |
| </tr> |
| </tbody> |
| </table> |
| </dd></dl> |
| <dl class="function"> |
| <dt id="mxnet.symbol.sparse.retain"> |
| <code class="descclassname">mxnet.symbol.sparse.</code><code class="descname">retain</code><span class="sig-paren">(</span><em>data=None</em>, <em>indices=None</em>, <em>name=None</em>, <em>attr=None</em>, <em>out=None</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#mxnet.symbol.sparse.retain" title="Permalink to this definition">¶</a></dt> |
| <dd><p>pick rows specified by user input index array from a row sparse matrix |
| and save them in the output sparse matrix.</p> |
| <p>Example:</p> |
| <div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">data</span> <span class="o">=</span> <span class="p">[[</span><span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">],</span> <span class="p">[</span><span class="mi">3</span><span class="p">,</span> <span class="mi">4</span><span class="p">],</span> <span class="p">[</span><span class="mi">5</span><span class="p">,</span> <span class="mi">6</span><span class="p">]]</span> |
| <span class="n">indices</span> <span class="o">=</span> <span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">3</span><span class="p">]</span> |
| <span class="n">shape</span> <span class="o">=</span> <span class="p">(</span><span class="mi">4</span><span class="p">,</span> <span class="mi">2</span><span class="p">)</span> |
| <span class="n">rsp_in</span> <span class="o">=</span> <span class="n">row_sparse</span><span class="p">(</span><span class="n">data</span><span class="p">,</span> <span class="n">indices</span><span class="p">)</span> |
| <span class="n">to_retain</span> <span class="o">=</span> <span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">3</span><span class="p">]</span> |
| <span class="n">rsp_out</span> <span class="o">=</span> <span class="n">retain</span><span class="p">(</span><span class="n">rsp_in</span><span class="p">,</span> <span class="n">to_retain</span><span class="p">)</span> |
| <span class="n">rsp_out</span><span class="o">.</span><span class="n">values</span> <span class="o">=</span> <span class="p">[[</span><span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">],</span> <span class="p">[</span><span class="mi">5</span><span class="p">,</span> <span class="mi">6</span><span class="p">]]</span> |
| <span class="n">rsp_out</span><span class="o">.</span><span class="n">indices</span> <span class="o">=</span> <span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">3</span><span class="p">]</span> |
| </pre></div> |
| </div> |
| <p>The storage type of <code class="docutils literal"><span class="pre">retain</span></code> output depends on storage types of inputs</p> |
| <ul class="simple"> |
| <li>retain(row_sparse, default) = row_sparse</li> |
| <li>otherwise, <code class="docutils literal"><span class="pre">retain</span></code> is not supported</li> |
| </ul> |
| <p>Defined in src/operator/tensor/sparse_retain.cc:L53</p> |
| <table class="docutils field-list" frame="void" rules="none"> |
| <col class="field-name"/> |
| <col class="field-body"/> |
| <tbody valign="top"> |
| <tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple"> |
| <li><strong>data</strong> (<a class="reference internal" href="symbol.html#mxnet.symbol.Symbol" title="mxnet.symbol.Symbol"><em>Symbol</em></a>) – The input array for sparse_retain operator.</li> |
| <li><strong>indices</strong> (<a class="reference internal" href="symbol.html#mxnet.symbol.Symbol" title="mxnet.symbol.Symbol"><em>Symbol</em></a>) – The index array of rows ids that will be retained.</li> |
| <li><strong>name</strong> (<em>string, optional.</em>) – Name of the resulting symbol.</li> |
| </ul> |
| </td> |
| </tr> |
| <tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">The result symbol.</p> |
| </td> |
| </tr> |
| <tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last"><a class="reference internal" href="symbol.html#mxnet.symbol.Symbol" title="mxnet.symbol.Symbol">Symbol</a></p> |
| </td> |
| </tr> |
| </tbody> |
| </table> |
| </dd></dl> |
| <dl class="function"> |
| <dt id="mxnet.symbol.sparse.rint"> |
| <code class="descclassname">mxnet.symbol.sparse.</code><code class="descname">rint</code><span class="sig-paren">(</span><em>data=None</em>, <em>name=None</em>, <em>attr=None</em>, <em>out=None</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#mxnet.symbol.sparse.rint" title="Permalink to this definition">¶</a></dt> |
| <dd><p>Returns element-wise rounded value to the nearest integer of the input.</p> |
| <div class="admonition note"> |
| <p class="first admonition-title">Note</p> |
| <ul class="last simple"> |
| <li>For input <code class="docutils literal"><span class="pre">n.5</span></code> <code class="docutils literal"><span class="pre">rint</span></code> returns <code class="docutils literal"><span class="pre">n</span></code> while <code class="docutils literal"><span class="pre">round</span></code> returns <code class="docutils literal"><span class="pre">n+1</span></code>.</li> |
| <li>For input <code class="docutils literal"><span class="pre">-n.5</span></code> both <code class="docutils literal"><span class="pre">rint</span></code> and <code class="docutils literal"><span class="pre">round</span></code> returns <code class="docutils literal"><span class="pre">-n-1</span></code>.</li> |
| </ul> |
| </div> |
| <p>Example:</p> |
| <div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">rint</span><span class="p">([</span><span class="o">-</span><span class="mf">1.5</span><span class="p">,</span> <span class="mf">1.5</span><span class="p">,</span> <span class="o">-</span><span class="mf">1.9</span><span class="p">,</span> <span class="mf">1.9</span><span class="p">,</span> <span class="mf">2.1</span><span class="p">])</span> <span class="o">=</span> <span class="p">[</span><span class="o">-</span><span class="mf">2.</span><span class="p">,</span> <span class="mf">1.</span><span class="p">,</span> <span class="o">-</span><span class="mf">2.</span><span class="p">,</span> <span class="mf">2.</span><span class="p">,</span> <span class="mf">2.</span><span class="p">]</span> |
| </pre></div> |
| </div> |
| <p>The storage type of <code class="docutils literal"><span class="pre">rint</span></code> output depends upon the input storage type:</p> |
| <blockquote> |
| <div><ul class="simple"> |
| <li>rint(default) = default</li> |
| <li>rint(row_sparse) = row_sparse</li> |
| </ul> |
| </div></blockquote> |
| <p>Defined in src/operator/tensor/elemwise_unary_op_basic.cc:L445</p> |
| <table class="docutils field-list" frame="void" rules="none"> |
| <col class="field-name"/> |
| <col class="field-body"/> |
| <tbody valign="top"> |
| <tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple"> |
| <li><strong>data</strong> (<a class="reference internal" href="symbol.html#mxnet.symbol.Symbol" title="mxnet.symbol.Symbol"><em>Symbol</em></a>) – The input array.</li> |
| <li><strong>name</strong> (<em>string, optional.</em>) – Name of the resulting symbol.</li> |
| </ul> |
| </td> |
| </tr> |
| <tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">The result symbol.</p> |
| </td> |
| </tr> |
| <tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last"><a class="reference internal" href="symbol.html#mxnet.symbol.Symbol" title="mxnet.symbol.Symbol">Symbol</a></p> |
| </td> |
| </tr> |
| </tbody> |
| </table> |
| </dd></dl> |
| <dl class="function"> |
| <dt id="mxnet.symbol.sparse.round"> |
| <code class="descclassname">mxnet.symbol.sparse.</code><code class="descname">round</code><span class="sig-paren">(</span><em>data=None</em>, <em>name=None</em>, <em>attr=None</em>, <em>out=None</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#mxnet.symbol.sparse.round" title="Permalink to this definition">¶</a></dt> |
| <dd><p>Returns element-wise rounded value to the nearest integer of the input.</p> |
| <p>Example:</p> |
| <div class="highlight-python"><div class="highlight"><pre><span></span><span class="nb">round</span><span class="p">([</span><span class="o">-</span><span class="mf">1.5</span><span class="p">,</span> <span class="mf">1.5</span><span class="p">,</span> <span class="o">-</span><span class="mf">1.9</span><span class="p">,</span> <span class="mf">1.9</span><span class="p">,</span> <span class="mf">2.1</span><span class="p">])</span> <span class="o">=</span> <span class="p">[</span><span class="o">-</span><span class="mf">2.</span><span class="p">,</span> <span class="mf">2.</span><span class="p">,</span> <span class="o">-</span><span class="mf">2.</span><span class="p">,</span> <span class="mf">2.</span><span class="p">,</span> <span class="mf">2.</span><span class="p">]</span> |
| </pre></div> |
| </div> |
| <p>The storage type of <code class="docutils literal"><span class="pre">round</span></code> output depends upon the input storage type:</p> |
| <blockquote> |
| <div><ul class="simple"> |
| <li>round(default) = default</li> |
| <li>round(row_sparse) = row_sparse</li> |
| </ul> |
| </div></blockquote> |
| <p>Defined in src/operator/tensor/elemwise_unary_op_basic.cc:L424</p> |
| <table class="docutils field-list" frame="void" rules="none"> |
| <col class="field-name"/> |
| <col class="field-body"/> |
| <tbody valign="top"> |
| <tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple"> |
| <li><strong>data</strong> (<a class="reference internal" href="symbol.html#mxnet.symbol.Symbol" title="mxnet.symbol.Symbol"><em>Symbol</em></a>) – The input array.</li> |
| <li><strong>name</strong> (<em>string, optional.</em>) – Name of the resulting symbol.</li> |
| </ul> |
| </td> |
| </tr> |
| <tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">The result symbol.</p> |
| </td> |
| </tr> |
| <tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last"><a class="reference internal" href="symbol.html#mxnet.symbol.Symbol" title="mxnet.symbol.Symbol">Symbol</a></p> |
| </td> |
| </tr> |
| </tbody> |
| </table> |
| </dd></dl> |
| <dl class="function"> |
| <dt id="mxnet.symbol.sparse.rsqrt"> |
| <code class="descclassname">mxnet.symbol.sparse.</code><code class="descname">rsqrt</code><span class="sig-paren">(</span><em>data=None</em>, <em>name=None</em>, <em>attr=None</em>, <em>out=None</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#mxnet.symbol.sparse.rsqrt" title="Permalink to this definition">¶</a></dt> |
| <dd><p>Returns element-wise inverse square-root value of the input.</p> |
| <div class="math"> |
| \[rsqrt(x) = 1/\sqrt{x}\]</div> |
| <p>Example:</p> |
| <div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">rsqrt</span><span class="p">([</span><span class="mi">4</span><span class="p">,</span><span class="mi">9</span><span class="p">,</span><span class="mi">16</span><span class="p">])</span> <span class="o">=</span> <span class="p">[</span><span class="mf">0.5</span><span class="p">,</span> <span class="mf">0.33333334</span><span class="p">,</span> <span class="mf">0.25</span><span class="p">]</span> |
| </pre></div> |
| </div> |
| <p>The storage type of <code class="docutils literal"><span class="pre">rsqrt</span></code> output is always dense</p> |
| <p>Defined in src/operator/tensor/elemwise_unary_op_basic.cc:L580</p> |
| <table class="docutils field-list" frame="void" rules="none"> |
| <col class="field-name"/> |
| <col class="field-body"/> |
| <tbody valign="top"> |
| <tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple"> |
| <li><strong>data</strong> (<a class="reference internal" href="symbol.html#mxnet.symbol.Symbol" title="mxnet.symbol.Symbol"><em>Symbol</em></a>) – The input array.</li> |
| <li><strong>name</strong> (<em>string, optional.</em>) – Name of the resulting symbol.</li> |
| </ul> |
| </td> |
| </tr> |
| <tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">The result symbol.</p> |
| </td> |
| </tr> |
| <tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last"><a class="reference internal" href="symbol.html#mxnet.symbol.Symbol" title="mxnet.symbol.Symbol">Symbol</a></p> |
| </td> |
| </tr> |
| </tbody> |
| </table> |
| </dd></dl> |
| <dl class="function"> |
| <dt id="mxnet.symbol.sparse.sgd_mom_update"> |
| <code class="descclassname">mxnet.symbol.sparse.</code><code class="descname">sgd_mom_update</code><span class="sig-paren">(</span><em>weight=None</em>, <em>grad=None</em>, <em>mom=None</em>, <em>lr=_Null</em>, <em>momentum=_Null</em>, <em>wd=_Null</em>, <em>rescale_grad=_Null</em>, <em>clip_gradient=_Null</em>, <em>name=None</em>, <em>attr=None</em>, <em>out=None</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#mxnet.symbol.sparse.sgd_mom_update" title="Permalink to this definition">¶</a></dt> |
| <dd><p>Momentum update function for Stochastic Gradient Descent (SDG) optimizer.</p> |
| <p>Momentum update has better convergence rates on neural networks. Mathematically it looks |
| like below:</p> |
| <div class="math"> |
| \[\begin{split}v_1 = \alpha * \nabla J(W_0)\\ |
| v_t = \gamma v_{t-1} - \alpha * \nabla J(W_{t-1})\\ |
| W_t = W_{t-1} + v_t\end{split}\]</div> |
| <p>It updates the weights using:</p> |
| <div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">v</span> <span class="o">=</span> <span class="n">momentum</span> <span class="o">*</span> <span class="n">v</span> <span class="o">-</span> <span class="n">learning_rate</span> <span class="o">*</span> <span class="n">gradient</span> |
| <span class="n">weight</span> <span class="o">+=</span> <span class="n">v</span> |
| </pre></div> |
| </div> |
| <p>Where the parameter <code class="docutils literal"><span class="pre">momentum</span></code> is the decay rate of momentum estimates at each epoch.</p> |
| <p>If weight and momentum are both of <code class="docutils literal"><span class="pre">row_sparse</span></code> storage type, |
| only the row slices whose indices appear in grad.indices are updated (for both weight and momentum):</p> |
| <div class="highlight-python"><div class="highlight"><pre><span></span><span class="k">for</span> <span class="n">row</span> <span class="ow">in</span> <span class="n">gradient</span><span class="o">.</span><span class="n">indices</span><span class="p">:</span> |
| <span class="n">v</span><span class="p">[</span><span class="n">row</span><span class="p">]</span> <span class="o">=</span> <span class="n">momentum</span><span class="p">[</span><span class="n">row</span><span class="p">]</span> <span class="o">*</span> <span class="n">v</span><span class="p">[</span><span class="n">row</span><span class="p">]</span> <span class="o">-</span> <span class="n">learning_rate</span> <span class="o">*</span> <span class="n">gradient</span><span class="p">[</span><span class="n">row</span><span class="p">]</span> |
| <span class="n">weight</span><span class="p">[</span><span class="n">row</span><span class="p">]</span> <span class="o">+=</span> <span class="n">v</span><span class="p">[</span><span class="n">row</span><span class="p">]</span> |
| </pre></div> |
| </div> |
| <p>Defined in src/operator/optimizer_op.cc:L93</p> |
| <table class="docutils field-list" frame="void" rules="none"> |
| <col class="field-name"/> |
| <col class="field-body"/> |
| <tbody valign="top"> |
| <tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple"> |
| <li><strong>weight</strong> (<a class="reference internal" href="symbol.html#mxnet.symbol.Symbol" title="mxnet.symbol.Symbol"><em>Symbol</em></a>) – Weight</li> |
| <li><strong>grad</strong> (<a class="reference internal" href="symbol.html#mxnet.symbol.Symbol" title="mxnet.symbol.Symbol"><em>Symbol</em></a>) – Gradient</li> |
| <li><strong>mom</strong> (<a class="reference internal" href="symbol.html#mxnet.symbol.Symbol" title="mxnet.symbol.Symbol"><em>Symbol</em></a>) – Momentum</li> |
| <li><strong>lr</strong> (<em>float, required</em>) – Learning rate</li> |
| <li><strong>momentum</strong> (<em>float, optional, default=0</em>) – The decay rate of momentum estimates at each epoch.</li> |
| <li><strong>wd</strong> (<em>float, optional, default=0</em>) – Weight decay augments the objective function with a regularization term that penalizes large weights. The penalty scales with the square of the magnitude of each weight.</li> |
| <li><strong>rescale_grad</strong> (<em>float, optional, default=1</em>) – Rescale gradient to grad = rescale_grad*grad.</li> |
| <li><strong>clip_gradient</strong> (<em>float, optional, default=-1</em>) – Clip gradient to the range of [-clip_gradient, clip_gradient] If clip_gradient <= 0, gradient clipping is turned off. grad = max(min(grad, clip_gradient), -clip_gradient).</li> |
| <li><strong>name</strong> (<em>string, optional.</em>) – Name of the resulting symbol.</li> |
| </ul> |
| </td> |
| </tr> |
| <tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">The result symbol.</p> |
| </td> |
| </tr> |
| <tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last"><a class="reference internal" href="symbol.html#mxnet.symbol.Symbol" title="mxnet.symbol.Symbol">Symbol</a></p> |
| </td> |
| </tr> |
| </tbody> |
| </table> |
| </dd></dl> |
| <dl class="function"> |
| <dt id="mxnet.symbol.sparse.sgd_update"> |
| <code class="descclassname">mxnet.symbol.sparse.</code><code class="descname">sgd_update</code><span class="sig-paren">(</span><em>weight=None</em>, <em>grad=None</em>, <em>lr=_Null</em>, <em>wd=_Null</em>, <em>rescale_grad=_Null</em>, <em>clip_gradient=_Null</em>, <em>name=None</em>, <em>attr=None</em>, <em>out=None</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#mxnet.symbol.sparse.sgd_update" title="Permalink to this definition">¶</a></dt> |
| <dd><p>Update function for Stochastic Gradient Descent (SDG) optimizer.</p> |
| <p>It updates the weights using:</p> |
| <div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">weight</span> <span class="o">=</span> <span class="n">weight</span> <span class="o">-</span> <span class="n">learning_rate</span> <span class="o">*</span> <span class="n">gradient</span> |
| </pre></div> |
| </div> |
| <p>If weight is of <code class="docutils literal"><span class="pre">row_sparse</span></code> storage type, |
| only the row slices whose indices appear in grad.indices are updated:</p> |
| <div class="highlight-python"><div class="highlight"><pre><span></span><span class="k">for</span> <span class="n">row</span> <span class="ow">in</span> <span class="n">gradient</span><span class="o">.</span><span class="n">indices</span><span class="p">:</span> |
| <span class="n">weight</span><span class="p">[</span><span class="n">row</span><span class="p">]</span> <span class="o">=</span> <span class="n">weight</span><span class="p">[</span><span class="n">row</span><span class="p">]</span> <span class="o">-</span> <span class="n">learning_rate</span> <span class="o">*</span> <span class="n">gradient</span><span class="p">[</span><span class="n">row</span><span class="p">]</span> |
| </pre></div> |
| </div> |
| <p>Defined in src/operator/optimizer_op.cc:L53</p> |
| <table class="docutils field-list" frame="void" rules="none"> |
| <col class="field-name"/> |
| <col class="field-body"/> |
| <tbody valign="top"> |
| <tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple"> |
| <li><strong>weight</strong> (<a class="reference internal" href="symbol.html#mxnet.symbol.Symbol" title="mxnet.symbol.Symbol"><em>Symbol</em></a>) – Weight</li> |
| <li><strong>grad</strong> (<a class="reference internal" href="symbol.html#mxnet.symbol.Symbol" title="mxnet.symbol.Symbol"><em>Symbol</em></a>) – Gradient</li> |
| <li><strong>lr</strong> (<em>float, required</em>) – Learning rate</li> |
| <li><strong>wd</strong> (<em>float, optional, default=0</em>) – Weight decay augments the objective function with a regularization term that penalizes large weights. The penalty scales with the square of the magnitude of each weight.</li> |
| <li><strong>rescale_grad</strong> (<em>float, optional, default=1</em>) – Rescale gradient to grad = rescale_grad*grad.</li> |
| <li><strong>clip_gradient</strong> (<em>float, optional, default=-1</em>) – Clip gradient to the range of [-clip_gradient, clip_gradient] If clip_gradient <= 0, gradient clipping is turned off. grad = max(min(grad, clip_gradient), -clip_gradient).</li> |
| <li><strong>name</strong> (<em>string, optional.</em>) – Name of the resulting symbol.</li> |
| </ul> |
| </td> |
| </tr> |
| <tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">The result symbol.</p> |
| </td> |
| </tr> |
| <tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last"><a class="reference internal" href="symbol.html#mxnet.symbol.Symbol" title="mxnet.symbol.Symbol">Symbol</a></p> |
| </td> |
| </tr> |
| </tbody> |
| </table> |
| </dd></dl> |
| <dl class="function"> |
| <dt id="mxnet.symbol.sparse.sigmoid"> |
| <code class="descclassname">mxnet.symbol.sparse.</code><code class="descname">sigmoid</code><span class="sig-paren">(</span><em>data=None</em>, <em>name=None</em>, <em>attr=None</em>, <em>out=None</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#mxnet.symbol.sparse.sigmoid" title="Permalink to this definition">¶</a></dt> |
| <dd><p>Computes sigmoid of x element-wise.</p> |
| <div class="math"> |
| \[y = 1 / (1 + exp(-x))\]</div> |
| <p>The storage type of <code class="docutils literal"><span class="pre">sigmoid</span></code> output is always dense</p> |
| <p>Defined in src/operator/tensor/elemwise_unary_op_basic.cc:L103</p> |
| <table class="docutils field-list" frame="void" rules="none"> |
| <col class="field-name"/> |
| <col class="field-body"/> |
| <tbody valign="top"> |
| <tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple"> |
| <li><strong>data</strong> (<a class="reference internal" href="symbol.html#mxnet.symbol.Symbol" title="mxnet.symbol.Symbol"><em>Symbol</em></a>) – The input array.</li> |
| <li><strong>name</strong> (<em>string, optional.</em>) – Name of the resulting symbol.</li> |
| </ul> |
| </td> |
| </tr> |
| <tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">The result symbol.</p> |
| </td> |
| </tr> |
| <tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last"><a class="reference internal" href="symbol.html#mxnet.symbol.Symbol" title="mxnet.symbol.Symbol">Symbol</a></p> |
| </td> |
| </tr> |
| </tbody> |
| </table> |
| </dd></dl> |
| <dl class="function"> |
| <dt id="mxnet.symbol.sparse.sign"> |
| <code class="descclassname">mxnet.symbol.sparse.</code><code class="descname">sign</code><span class="sig-paren">(</span><em>data=None</em>, <em>name=None</em>, <em>attr=None</em>, <em>out=None</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#mxnet.symbol.sparse.sign" title="Permalink to this definition">¶</a></dt> |
| <dd><p>Returns element-wise sign of the input.</p> |
| <p>Example:</p> |
| <div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">sign</span><span class="p">([</span><span class="o">-</span><span class="mi">2</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">3</span><span class="p">])</span> <span class="o">=</span> <span class="p">[</span><span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">]</span> |
| </pre></div> |
| </div> |
| <p>The storage type of <code class="docutils literal"><span class="pre">sign</span></code> output depends upon the input storage type:</p> |
| <blockquote> |
| <div><ul class="simple"> |
| <li>sign(default) = default</li> |
| <li>sign(row_sparse) = row_sparse</li> |
| </ul> |
| </div></blockquote> |
| <p>Defined in src/operator/tensor/elemwise_unary_op_basic.cc:L405</p> |
| <table class="docutils field-list" frame="void" rules="none"> |
| <col class="field-name"/> |
| <col class="field-body"/> |
| <tbody valign="top"> |
| <tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple"> |
| <li><strong>data</strong> (<a class="reference internal" href="symbol.html#mxnet.symbol.Symbol" title="mxnet.symbol.Symbol"><em>Symbol</em></a>) – The input array.</li> |
| <li><strong>name</strong> (<em>string, optional.</em>) – Name of the resulting symbol.</li> |
| </ul> |
| </td> |
| </tr> |
| <tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">The result symbol.</p> |
| </td> |
| </tr> |
| <tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last"><a class="reference internal" href="symbol.html#mxnet.symbol.Symbol" title="mxnet.symbol.Symbol">Symbol</a></p> |
| </td> |
| </tr> |
| </tbody> |
| </table> |
| </dd></dl> |
| <dl class="function"> |
| <dt id="mxnet.symbol.sparse.sin"> |
| <code class="descclassname">mxnet.symbol.sparse.</code><code class="descname">sin</code><span class="sig-paren">(</span><em>data=None</em>, <em>name=None</em>, <em>attr=None</em>, <em>out=None</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#mxnet.symbol.sparse.sin" title="Permalink to this definition">¶</a></dt> |
| <dd><p>Computes the element-wise sine of the input array.</p> |
| <p>The input should be in radians (<span class="math">\(2\pi\)</span> rad equals 360 degrees).</p> |
| <div class="math"> |
| \[sin([0, \pi/4, \pi/2]) = [0, 0.707, 1]\]</div> |
| <p>The storage type of <code class="docutils literal"><span class="pre">sin</span></code> output depends upon the input storage type:</p> |
| <blockquote> |
| <div><ul class="simple"> |
| <li>sin(default) = default</li> |
| <li>sin(row_sparse) = row_sparse</li> |
| </ul> |
| </div></blockquote> |
| <p>Defined in src/operator/tensor/elemwise_unary_op_trig.cc:L46</p> |
| <table class="docutils field-list" frame="void" rules="none"> |
| <col class="field-name"/> |
| <col class="field-body"/> |
| <tbody valign="top"> |
| <tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple"> |
| <li><strong>data</strong> (<a class="reference internal" href="symbol.html#mxnet.symbol.Symbol" title="mxnet.symbol.Symbol"><em>Symbol</em></a>) – The input array.</li> |
| <li><strong>name</strong> (<em>string, optional.</em>) – Name of the resulting symbol.</li> |
| </ul> |
| </td> |
| </tr> |
| <tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">The result symbol.</p> |
| </td> |
| </tr> |
| <tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last"><a class="reference internal" href="symbol.html#mxnet.symbol.Symbol" title="mxnet.symbol.Symbol">Symbol</a></p> |
| </td> |
| </tr> |
| </tbody> |
| </table> |
| </dd></dl> |
| <dl class="function"> |
| <dt id="mxnet.symbol.sparse.sinh"> |
| <code class="descclassname">mxnet.symbol.sparse.</code><code class="descname">sinh</code><span class="sig-paren">(</span><em>data=None</em>, <em>name=None</em>, <em>attr=None</em>, <em>out=None</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#mxnet.symbol.sparse.sinh" title="Permalink to this definition">¶</a></dt> |
| <dd><p>Returns the hyperbolic sine of the input array, computed element-wise.</p> |
| <div class="math"> |
| \[sinh(x) = 0.5\times(exp(x) - exp(-x))\]</div> |
| <p>The storage type of <code class="docutils literal"><span class="pre">sinh</span></code> output depends upon the input storage type:</p> |
| <blockquote> |
| <div><ul class="simple"> |
| <li>sinh(default) = default</li> |
| <li>sinh(row_sparse) = row_sparse</li> |
| </ul> |
| </div></blockquote> |
| <p>Defined in src/operator/tensor/elemwise_unary_op_trig.cc:L201</p> |
| <table class="docutils field-list" frame="void" rules="none"> |
| <col class="field-name"/> |
| <col class="field-body"/> |
| <tbody valign="top"> |
| <tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple"> |
| <li><strong>data</strong> (<a class="reference internal" href="symbol.html#mxnet.symbol.Symbol" title="mxnet.symbol.Symbol"><em>Symbol</em></a>) – The input array.</li> |
| <li><strong>name</strong> (<em>string, optional.</em>) – Name of the resulting symbol.</li> |
| </ul> |
| </td> |
| </tr> |
| <tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">The result symbol.</p> |
| </td> |
| </tr> |
| <tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last"><a class="reference internal" href="symbol.html#mxnet.symbol.Symbol" title="mxnet.symbol.Symbol">Symbol</a></p> |
| </td> |
| </tr> |
| </tbody> |
| </table> |
| </dd></dl> |
| <dl class="function"> |
| <dt id="mxnet.symbol.sparse.slice"> |
| <code class="descclassname">mxnet.symbol.sparse.</code><code class="descname">slice</code><span class="sig-paren">(</span><em>data=None</em>, <em>begin=_Null</em>, <em>end=_Null</em>, <em>step=_Null</em>, <em>name=None</em>, <em>attr=None</em>, <em>out=None</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#mxnet.symbol.sparse.slice" title="Permalink to this definition">¶</a></dt> |
| <dd><p>Slices a region of the array.</p> |
| <div class="admonition note"> |
| <p class="first admonition-title">Note</p> |
| <p class="last"><code class="docutils literal"><span class="pre">crop</span></code> is deprecated. Use <code class="docutils literal"><span class="pre">slice</span></code> instead.</p> |
| </div> |
| <p>This function returns a sliced array between the indices given |
| by <cite>begin</cite> and <cite>end</cite> with the corresponding <cite>step</cite>.</p> |
| <p>For an input array of <code class="docutils literal"><span class="pre">shape=(d_0,</span> <span class="pre">d_1,</span> <span class="pre">...,</span> <span class="pre">d_n-1)</span></code>, |
| slice operation with <code class="docutils literal"><span class="pre">begin=(b_0,</span> <span class="pre">b_1...b_m-1)</span></code>, |
| <code class="docutils literal"><span class="pre">end=(e_0,</span> <span class="pre">e_1,</span> <span class="pre">...,</span> <span class="pre">e_m-1)</span></code>, and <code class="docutils literal"><span class="pre">step=(s_0,</span> <span class="pre">s_1,</span> <span class="pre">...,</span> <span class="pre">s_m-1)</span></code>, |
| where m <= n, results in an array with the shape |
| <code class="docutils literal"><span class="pre">(|e_0-b_0|/|s_0|,</span> <span class="pre">...,</span> <span class="pre">|e_m-1-b_m-1|/|s_m-1|,</span> <span class="pre">d_m,</span> <span class="pre">...,</span> <span class="pre">d_n-1)</span></code>.</p> |
| <p>The resulting array’s <em>k</em>-th dimension contains elements |
| from the <em>k</em>-th dimension of the input array starting |
| from index <code class="docutils literal"><span class="pre">b_k</span></code> (inclusive) with step <code class="docutils literal"><span class="pre">s_k</span></code> |
| until reaching <code class="docutils literal"><span class="pre">e_k</span></code> (exclusive).</p> |
| <p>If the <em>k</em>-th elements are <cite>None</cite> in the sequence of <cite>begin</cite>, <cite>end</cite>, |
| and <cite>step</cite>, the following rule will be used to set default values. |
| If <cite>s_k</cite> is <cite>None</cite>, set <cite>s_k=1</cite>. If <cite>s_k > 0</cite>, set <cite>b_k=0</cite>, <cite>e_k=d_k</cite>; |
| else, set <cite>b_k=d_k-1</cite>, <cite>e_k=-1</cite>.</p> |
| <p>The storage type of <code class="docutils literal"><span class="pre">slice</span></code> output depends on storage types of inputs</p> |
| <ul class="simple"> |
| <li>slice(csr) = csr</li> |
| <li>otherwise, <code class="docutils literal"><span class="pre">slice</span></code> generates output with default storage</li> |
| </ul> |
| <div class="admonition note"> |
| <p class="first admonition-title">Note</p> |
| <p class="last">When input data storage type is csr, it only supports</p> |
| </div> |
| <p>step=(), or step=(None,), or step=(1,) to generate a csr output. |
| For other step parameter values, it falls back to slicing |
| a dense tensor.</p> |
| <p>Example:</p> |
| <div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">x</span> <span class="o">=</span> <span class="p">[[</span> <span class="mf">1.</span><span class="p">,</span> <span class="mf">2.</span><span class="p">,</span> <span class="mf">3.</span><span class="p">,</span> <span class="mf">4.</span><span class="p">],</span> |
| <span class="p">[</span> <span class="mf">5.</span><span class="p">,</span> <span class="mf">6.</span><span class="p">,</span> <span class="mf">7.</span><span class="p">,</span> <span class="mf">8.</span><span class="p">],</span> |
| <span class="p">[</span> <span class="mf">9.</span><span class="p">,</span> <span class="mf">10.</span><span class="p">,</span> <span class="mf">11.</span><span class="p">,</span> <span class="mf">12.</span><span class="p">]]</span> |
| |
| <span class="nb">slice</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">begin</span><span class="o">=</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span><span class="mi">1</span><span class="p">),</span> <span class="n">end</span><span class="o">=</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span><span class="mi">4</span><span class="p">))</span> <span class="o">=</span> <span class="p">[[</span> <span class="mf">2.</span><span class="p">,</span> <span class="mf">3.</span><span class="p">,</span> <span class="mf">4.</span><span class="p">],</span> |
| <span class="p">[</span> <span class="mf">6.</span><span class="p">,</span> <span class="mf">7.</span><span class="p">,</span> <span class="mf">8.</span><span class="p">]]</span> |
| <span class="nb">slice</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">begin</span><span class="o">=</span><span class="p">(</span><span class="bp">None</span><span class="p">,</span> <span class="mi">0</span><span class="p">),</span> <span class="n">end</span><span class="o">=</span><span class="p">(</span><span class="bp">None</span><span class="p">,</span> <span class="mi">3</span><span class="p">),</span> <span class="n">step</span><span class="o">=</span><span class="p">(</span><span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">))</span> <span class="o">=</span> <span class="p">[[</span><span class="mf">9.</span><span class="p">,</span> <span class="mf">11.</span><span class="p">],</span> |
| <span class="p">[</span><span class="mf">5.</span><span class="p">,</span> <span class="mf">7.</span><span class="p">],</span> |
| <span class="p">[</span><span class="mf">1.</span><span class="p">,</span> <span class="mf">3.</span><span class="p">]]</span> |
| </pre></div> |
| </div> |
| <p>Defined in src/operator/tensor/matrix_op.cc:L297</p> |
| <table class="docutils field-list" frame="void" rules="none"> |
| <col class="field-name"/> |
| <col class="field-body"/> |
| <tbody valign="top"> |
| <tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple"> |
| <li><strong>data</strong> (<a class="reference internal" href="symbol.html#mxnet.symbol.Symbol" title="mxnet.symbol.Symbol"><em>Symbol</em></a>) – Source input</li> |
| <li><strong>begin</strong> (<em>Shape(tuple), required</em>) – starting indices for the slice operation, supports negative indices.</li> |
| <li><strong>end</strong> (<em>Shape(tuple), required</em>) – ending indices for the slice operation, supports negative indices.</li> |
| <li><strong>step</strong> (<em>Shape(tuple), optional, default=[]</em>) – step for the slice operation, supports negative values.</li> |
| <li><strong>name</strong> (<em>string, optional.</em>) – Name of the resulting symbol.</li> |
| </ul> |
| </td> |
| </tr> |
| <tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">The result symbol.</p> |
| </td> |
| </tr> |
| <tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last"><a class="reference internal" href="symbol.html#mxnet.symbol.Symbol" title="mxnet.symbol.Symbol">Symbol</a></p> |
| </td> |
| </tr> |
| </tbody> |
| </table> |
| </dd></dl> |
| <dl class="function"> |
| <dt id="mxnet.symbol.sparse.sqrt"> |
| <code class="descclassname">mxnet.symbol.sparse.</code><code class="descname">sqrt</code><span class="sig-paren">(</span><em>data=None</em>, <em>name=None</em>, <em>attr=None</em>, <em>out=None</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#mxnet.symbol.sparse.sqrt" title="Permalink to this definition">¶</a></dt> |
| <dd><p>Returns element-wise square-root value of the input.</p> |
| <div class="math"> |
| \[\textrm{sqrt}(x) = \sqrt{x}\]</div> |
| <p>Example:</p> |
| <div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">sqrt</span><span class="p">([</span><span class="mi">4</span><span class="p">,</span> <span class="mi">9</span><span class="p">,</span> <span class="mi">16</span><span class="p">])</span> <span class="o">=</span> <span class="p">[</span><span class="mi">2</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="mi">4</span><span class="p">]</span> |
| </pre></div> |
| </div> |
| <p>The storage type of <code class="docutils literal"><span class="pre">sqrt</span></code> output depends upon the input storage type:</p> |
| <blockquote> |
| <div><ul class="simple"> |
| <li>sqrt(default) = default</li> |
| <li>sqrt(row_sparse) = row_sparse</li> |
| </ul> |
| </div></blockquote> |
| <p>Defined in src/operator/tensor/elemwise_unary_op_basic.cc:L560</p> |
| <table class="docutils field-list" frame="void" rules="none"> |
| <col class="field-name"/> |
| <col class="field-body"/> |
| <tbody valign="top"> |
| <tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple"> |
| <li><strong>data</strong> (<a class="reference internal" href="symbol.html#mxnet.symbol.Symbol" title="mxnet.symbol.Symbol"><em>Symbol</em></a>) – The input array.</li> |
| <li><strong>name</strong> (<em>string, optional.</em>) – Name of the resulting symbol.</li> |
| </ul> |
| </td> |
| </tr> |
| <tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">The result symbol.</p> |
| </td> |
| </tr> |
| <tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last"><a class="reference internal" href="symbol.html#mxnet.symbol.Symbol" title="mxnet.symbol.Symbol">Symbol</a></p> |
| </td> |
| </tr> |
| </tbody> |
| </table> |
| </dd></dl> |
| <dl class="function"> |
| <dt id="mxnet.symbol.sparse.square"> |
| <code class="descclassname">mxnet.symbol.sparse.</code><code class="descname">square</code><span class="sig-paren">(</span><em>data=None</em>, <em>name=None</em>, <em>attr=None</em>, <em>out=None</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#mxnet.symbol.sparse.square" title="Permalink to this definition">¶</a></dt> |
| <dd><p>Returns element-wise squared value of the input.</p> |
| <div class="math"> |
| \[square(x) = x^2\]</div> |
| <p>Example:</p> |
| <div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">square</span><span class="p">([</span><span class="mi">2</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="mi">4</span><span class="p">])</span> <span class="o">=</span> <span class="p">[</span><span class="mi">4</span><span class="p">,</span> <span class="mi">9</span><span class="p">,</span> <span class="mi">16</span><span class="p">]</span> |
| </pre></div> |
| </div> |
| <p>The storage type of <code class="docutils literal"><span class="pre">square</span></code> output depends upon the input storage type:</p> |
| <blockquote> |
| <div><ul class="simple"> |
| <li>square(default) = default</li> |
| <li>square(row_sparse) = row_sparse</li> |
| <li>square(csr) = csr</li> |
| </ul> |
| </div></blockquote> |
| <p>Defined in src/operator/tensor/elemwise_unary_op_basic.cc:L537</p> |
| <table class="docutils field-list" frame="void" rules="none"> |
| <col class="field-name"/> |
| <col class="field-body"/> |
| <tbody valign="top"> |
| <tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple"> |
| <li><strong>data</strong> (<a class="reference internal" href="symbol.html#mxnet.symbol.Symbol" title="mxnet.symbol.Symbol"><em>Symbol</em></a>) – The input array.</li> |
| <li><strong>name</strong> (<em>string, optional.</em>) – Name of the resulting symbol.</li> |
| </ul> |
| </td> |
| </tr> |
| <tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">The result symbol.</p> |
| </td> |
| </tr> |
| <tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last"><a class="reference internal" href="symbol.html#mxnet.symbol.Symbol" title="mxnet.symbol.Symbol">Symbol</a></p> |
| </td> |
| </tr> |
| </tbody> |
| </table> |
| </dd></dl> |
| <dl class="function"> |
| <dt id="mxnet.symbol.sparse.stop_gradient"> |
| <code class="descclassname">mxnet.symbol.sparse.</code><code class="descname">stop_gradient</code><span class="sig-paren">(</span><em>data=None</em>, <em>name=None</em>, <em>attr=None</em>, <em>out=None</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#mxnet.symbol.sparse.stop_gradient" title="Permalink to this definition">¶</a></dt> |
| <dd><p>Stops gradient computation.</p> |
| <p>Stops the accumulated gradient of the inputs from flowing through this operator |
| in the backward direction. In other words, this operator prevents the contribution |
| of its inputs to be taken into account for computing gradients.</p> |
| <p>Example:</p> |
| <div class="highlight-python"><div class="highlight"><pre><span></span>v1 = [1, 2] |
| v2 = [0, 1] |
| a = Variable('a') |
| b = Variable('b') |
| b_stop_grad = stop_gradient(3 * b) |
| loss = MakeLoss(b_stop_grad + a) |
| |
| executor = loss.simple_bind(ctx=cpu(), a=(1,2), b=(1,2)) |
| executor.forward(is_train=True, a=v1, b=v2) |
| executor.outputs |
| [ 1. 5.] |
| |
| executor.backward() |
| executor.grad_arrays |
| [ 0. 0.] |
| [ 1. 1.] |
| </pre></div> |
| </div> |
| <p>Defined in src/operator/tensor/elemwise_unary_op_basic.cc:L167</p> |
| <table class="docutils field-list" frame="void" rules="none"> |
| <col class="field-name"/> |
| <col class="field-body"/> |
| <tbody valign="top"> |
| <tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple"> |
| <li><strong>data</strong> (<a class="reference internal" href="symbol.html#mxnet.symbol.Symbol" title="mxnet.symbol.Symbol"><em>Symbol</em></a>) – The input array.</li> |
| <li><strong>name</strong> (<em>string, optional.</em>) – Name of the resulting symbol.</li> |
| </ul> |
| </td> |
| </tr> |
| <tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">The result symbol.</p> |
| </td> |
| </tr> |
| <tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last"><a class="reference internal" href="symbol.html#mxnet.symbol.Symbol" title="mxnet.symbol.Symbol">Symbol</a></p> |
| </td> |
| </tr> |
| </tbody> |
| </table> |
| </dd></dl> |
| <dl class="function"> |
| <dt id="mxnet.symbol.sparse.sum"> |
| <code class="descclassname">mxnet.symbol.sparse.</code><code class="descname">sum</code><span class="sig-paren">(</span><em>data=None</em>, <em>axis=_Null</em>, <em>keepdims=_Null</em>, <em>exclude=_Null</em>, <em>name=None</em>, <em>attr=None</em>, <em>out=None</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#mxnet.symbol.sparse.sum" title="Permalink to this definition">¶</a></dt> |
| <dd><p>Computes the sum of array elements over given axes.</p> |
| <div class="admonition note"> |
| <p class="first admonition-title">Note</p> |
| <p class="last"><cite>sum</cite> and <cite>sum_axis</cite> are equivalent. |
| For ndarray of csr storage type summation along axis 0 and axis 1 is supported. |
| Setting keepdims or exclude to True will cause a fallback to dense operator.</p> |
| </div> |
| <p>Example:</p> |
| <div class="highlight-python"><div class="highlight"><pre><span></span>data = [[[1,2],[2,3],[1,3]], |
| [[1,4],[4,3],[5,2]], |
| [[7,1],[7,2],[7,3]]] |
| |
| sum(data, axis=1) |
| [[ 4. 8.] |
| [ 10. 9.] |
| [ 21. 6.]] |
| |
| sum(data, axis=[1,2]) |
| [ 12. 19. 27.] |
| |
| data = [[1,2,0], |
| [3,0,1], |
| [4,1,0]] |
| |
| csr = cast_storage(data, 'csr') |
| |
| sum(csr, axis=0) |
| [ 8. 2. 2.] |
| |
| sum(csr, axis=1) |
| [ 3. 4. 5.] |
| </pre></div> |
| </div> |
| <p>Defined in src/operator/tensor/broadcast_reduce_op_value.cc:L85</p> |
| <table class="docutils field-list" frame="void" rules="none"> |
| <col class="field-name"/> |
| <col class="field-body"/> |
| <tbody valign="top"> |
| <tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple"> |
| <li><strong>data</strong> (<a class="reference internal" href="symbol.html#mxnet.symbol.Symbol" title="mxnet.symbol.Symbol"><em>Symbol</em></a>) – The input</li> |
| <li><strong>axis</strong> (<em>Shape(tuple), optional, default=[]</em>) – <p>The axis or axes along which to perform the reduction.</p> |
| <p>The default, <cite>axis=()</cite>, will compute over all elements into a |
| scalar array with shape <cite>(1,)</cite>.</p> |
| <p>If <cite>axis</cite> is int, a reduction is performed on a particular axis.</p> |
| <p>If <cite>axis</cite> is a tuple of ints, a reduction is performed on all the axes |
| specified in the tuple.</p> |
| <p>If <cite>exclude</cite> is true, reduction will be performed on the axes that are |
| NOT in axis instead.</p> |
| <p>Negative values means indexing from right to left.</p> |
| </li> |
| <li><strong>keepdims</strong> (<em>boolean, optional, default=0</em>) – If this is set to <cite>True</cite>, the reduced axes are left in the result as dimension with size one.</li> |
| <li><strong>exclude</strong> (<em>boolean, optional, default=0</em>) – Whether to perform reduction on axis that are NOT in axis instead.</li> |
| <li><strong>name</strong> (<em>string, optional.</em>) – Name of the resulting symbol.</li> |
| </ul> |
| </td> |
| </tr> |
| <tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">The result symbol.</p> |
| </td> |
| </tr> |
| <tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last"><a class="reference internal" href="symbol.html#mxnet.symbol.Symbol" title="mxnet.symbol.Symbol">Symbol</a></p> |
| </td> |
| </tr> |
| </tbody> |
| </table> |
| </dd></dl> |
| <dl class="function"> |
| <dt id="mxnet.symbol.sparse.tan"> |
| <code class="descclassname">mxnet.symbol.sparse.</code><code class="descname">tan</code><span class="sig-paren">(</span><em>data=None</em>, <em>name=None</em>, <em>attr=None</em>, <em>out=None</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#mxnet.symbol.sparse.tan" title="Permalink to this definition">¶</a></dt> |
| <dd><p>Computes the element-wise tangent of the input array.</p> |
| <p>The input should be in radians (<span class="math">\(2\pi\)</span> rad equals 360 degrees).</p> |
| <div class="math"> |
| \[tan([0, \pi/4, \pi/2]) = [0, 1, -inf]\]</div> |
| <p>The storage type of <code class="docutils literal"><span class="pre">tan</span></code> output depends upon the input storage type:</p> |
| <blockquote> |
| <div><ul class="simple"> |
| <li>tan(default) = default</li> |
| <li>tan(row_sparse) = row_sparse</li> |
| </ul> |
| </div></blockquote> |
| <p>Defined in src/operator/tensor/elemwise_unary_op_trig.cc:L83</p> |
| <table class="docutils field-list" frame="void" rules="none"> |
| <col class="field-name"/> |
| <col class="field-body"/> |
| <tbody valign="top"> |
| <tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple"> |
| <li><strong>data</strong> (<a class="reference internal" href="symbol.html#mxnet.symbol.Symbol" title="mxnet.symbol.Symbol"><em>Symbol</em></a>) – The input array.</li> |
| <li><strong>name</strong> (<em>string, optional.</em>) – Name of the resulting symbol.</li> |
| </ul> |
| </td> |
| </tr> |
| <tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">The result symbol.</p> |
| </td> |
| </tr> |
| <tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last"><a class="reference internal" href="symbol.html#mxnet.symbol.Symbol" title="mxnet.symbol.Symbol">Symbol</a></p> |
| </td> |
| </tr> |
| </tbody> |
| </table> |
| </dd></dl> |
| <dl class="function"> |
| <dt id="mxnet.symbol.sparse.tanh"> |
| <code class="descclassname">mxnet.symbol.sparse.</code><code class="descname">tanh</code><span class="sig-paren">(</span><em>data=None</em>, <em>name=None</em>, <em>attr=None</em>, <em>out=None</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#mxnet.symbol.sparse.tanh" title="Permalink to this definition">¶</a></dt> |
| <dd><p>Returns the hyperbolic tangent of the input array, computed element-wise.</p> |
| <div class="math"> |
| \[tanh(x) = sinh(x) / cosh(x)\]</div> |
| <p>The storage type of <code class="docutils literal"><span class="pre">tanh</span></code> output depends upon the input storage type:</p> |
| <blockquote> |
| <div><ul class="simple"> |
| <li>tanh(default) = default</li> |
| <li>tanh(row_sparse) = row_sparse</li> |
| </ul> |
| </div></blockquote> |
| <p>Defined in src/operator/tensor/elemwise_unary_op_trig.cc:L234</p> |
| <table class="docutils field-list" frame="void" rules="none"> |
| <col class="field-name"/> |
| <col class="field-body"/> |
| <tbody valign="top"> |
| <tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple"> |
| <li><strong>data</strong> (<a class="reference internal" href="symbol.html#mxnet.symbol.Symbol" title="mxnet.symbol.Symbol"><em>Symbol</em></a>) – The input array.</li> |
| <li><strong>name</strong> (<em>string, optional.</em>) – Name of the resulting symbol.</li> |
| </ul> |
| </td> |
| </tr> |
| <tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">The result symbol.</p> |
| </td> |
| </tr> |
| <tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last"><a class="reference internal" href="symbol.html#mxnet.symbol.Symbol" title="mxnet.symbol.Symbol">Symbol</a></p> |
| </td> |
| </tr> |
| </tbody> |
| </table> |
| </dd></dl> |
| <dl class="function"> |
| <dt id="mxnet.symbol.sparse.trunc"> |
| <code class="descclassname">mxnet.symbol.sparse.</code><code class="descname">trunc</code><span class="sig-paren">(</span><em>data=None</em>, <em>name=None</em>, <em>attr=None</em>, <em>out=None</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#mxnet.symbol.sparse.trunc" title="Permalink to this definition">¶</a></dt> |
| <dd><p>Return the element-wise truncated value of the input.</p> |
| <p>The truncated value of the scalar x is the nearest integer i which is closer to |
| zero than x is. In short, the fractional part of the signed number x is discarded.</p> |
| <p>Example:</p> |
| <div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">trunc</span><span class="p">([</span><span class="o">-</span><span class="mf">2.1</span><span class="p">,</span> <span class="o">-</span><span class="mf">1.9</span><span class="p">,</span> <span class="mf">1.5</span><span class="p">,</span> <span class="mf">1.9</span><span class="p">,</span> <span class="mf">2.1</span><span class="p">])</span> <span class="o">=</span> <span class="p">[</span><span class="o">-</span><span class="mf">2.</span><span class="p">,</span> <span class="o">-</span><span class="mf">1.</span><span class="p">,</span> <span class="mf">1.</span><span class="p">,</span> <span class="mf">1.</span><span class="p">,</span> <span class="mf">2.</span><span class="p">]</span> |
| </pre></div> |
| </div> |
| <p>The storage type of <code class="docutils literal"><span class="pre">trunc</span></code> output depends upon the input storage type:</p> |
| <blockquote> |
| <div><ul class="simple"> |
| <li>trunc(default) = default</li> |
| <li>trunc(row_sparse) = row_sparse</li> |
| </ul> |
| </div></blockquote> |
| <p>Defined in src/operator/tensor/elemwise_unary_op_basic.cc:L500</p> |
| <table class="docutils field-list" frame="void" rules="none"> |
| <col class="field-name"/> |
| <col class="field-body"/> |
| <tbody valign="top"> |
| <tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple"> |
| <li><strong>data</strong> (<a class="reference internal" href="symbol.html#mxnet.symbol.Symbol" title="mxnet.symbol.Symbol"><em>Symbol</em></a>) – The input array.</li> |
| <li><strong>name</strong> (<em>string, optional.</em>) – Name of the resulting symbol.</li> |
| </ul> |
| </td> |
| </tr> |
| <tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">The result symbol.</p> |
| </td> |
| </tr> |
| <tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last"><a class="reference internal" href="symbol.html#mxnet.symbol.Symbol" title="mxnet.symbol.Symbol">Symbol</a></p> |
| </td> |
| </tr> |
| </tbody> |
| </table> |
| </dd></dl> |
| <dl class="function"> |
| <dt id="mxnet.symbol.sparse.zeros_like"> |
| <code class="descclassname">mxnet.symbol.sparse.</code><code class="descname">zeros_like</code><span class="sig-paren">(</span><em>data=None</em>, <em>name=None</em>, <em>attr=None</em>, <em>out=None</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#mxnet.symbol.sparse.zeros_like" title="Permalink to this definition">¶</a></dt> |
| <dd><p>Return an array of zeros with the same shape and type |
| as the input array.</p> |
| <p>The storage type of <code class="docutils literal"><span class="pre">zeros_like</span></code> output depends on the storage type of the input</p> |
| <ul class="simple"> |
| <li>zeros_like(row_sparse) = row_sparse</li> |
| <li>zeros_like(csr) = csr</li> |
| <li>zeros_like(default) = default</li> |
| </ul> |
| <p>Examples:</p> |
| <div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">x</span> <span class="o">=</span> <span class="p">[[</span> <span class="mf">1.</span><span class="p">,</span> <span class="mf">1.</span><span class="p">,</span> <span class="mf">1.</span><span class="p">],</span> |
| <span class="p">[</span> <span class="mf">1.</span><span class="p">,</span> <span class="mf">1.</span><span class="p">,</span> <span class="mf">1.</span><span class="p">]]</span> |
| |
| <span class="n">zeros_like</span><span class="p">(</span><span class="n">x</span><span class="p">)</span> <span class="o">=</span> <span class="p">[[</span> <span class="mf">0.</span><span class="p">,</span> <span class="mf">0.</span><span class="p">,</span> <span class="mf">0.</span><span class="p">],</span> |
| <span class="p">[</span> <span class="mf">0.</span><span class="p">,</span> <span class="mf">0.</span><span class="p">,</span> <span class="mf">0.</span><span class="p">]]</span> |
| </pre></div> |
| </div> |
| <table class="docutils field-list" frame="void" rules="none"> |
| <col class="field-name"/> |
| <col class="field-body"/> |
| <tbody valign="top"> |
| <tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple"> |
| <li><strong>data</strong> (<a class="reference internal" href="symbol.html#mxnet.symbol.Symbol" title="mxnet.symbol.Symbol"><em>Symbol</em></a>) – The input</li> |
| <li><strong>name</strong> (<em>string, optional.</em>) – Name of the resulting symbol.</li> |
| </ul> |
| </td> |
| </tr> |
| <tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">The result symbol.</p> |
| </td> |
| </tr> |
| <tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last"><a class="reference internal" href="symbol.html#mxnet.symbol.Symbol" title="mxnet.symbol.Symbol">Symbol</a></p> |
| </td> |
| </tr> |
| </tbody> |
| </table> |
| </dd></dl> |
| <script>auto_index("api-reference");</script></div> |
| </div> |
| </div> |
| </div> |
| <div aria-label="main navigation" class="sphinxsidebar rightsidebar" role="navigation"> |
| <div class="sphinxsidebarwrapper"> |
| <h3><a href="../../../index.html">Table Of Contents</a></h3> |
| <ul> |
| <li><a class="reference internal" href="#">Sparse Symbol API</a><ul> |
| <li><a class="reference internal" href="#overview">Overview</a></li> |
| <li><a class="reference internal" href="#symbol-creation-routines">Symbol creation routines</a></li> |
| <li><a class="reference internal" href="#symbol-manipulation-routines">Symbol manipulation routines</a><ul> |
| <li><a class="reference internal" href="#changing-symbol-storage-type">Changing symbol storage type</a></li> |
| <li><a class="reference internal" href="#indexing-routines">Indexing routines</a></li> |
| </ul> |
| </li> |
| <li><a class="reference internal" href="#mathematical-functions">Mathematical functions</a><ul> |
| <li><a class="reference internal" href="#arithmetic-operations">Arithmetic operations</a></li> |
| <li><a class="reference internal" href="#trigonometric-functions">Trigonometric functions</a></li> |
| <li><a class="reference internal" href="#hyperbolic-functions">Hyperbolic functions</a></li> |
| <li><a class="reference internal" href="#reduce-functions">Reduce functions</a></li> |
| <li><a class="reference internal" href="#rounding">Rounding</a></li> |
| <li><a class="reference internal" href="#exponents-and-logarithms">Exponents and logarithms</a></li> |
| <li><a class="reference internal" href="#powers">Powers</a></li> |
| <li><a class="reference internal" href="#miscellaneous">Miscellaneous</a></li> |
| </ul> |
| </li> |
| <li><a class="reference internal" href="#neural-network">Neural network</a><ul> |
| <li><a class="reference internal" href="#more">More</a></li> |
| </ul> |
| </li> |
| <li><a class="reference internal" href="#api-reference">API Reference</a></li> |
| </ul> |
| </li> |
| </ul> |
| </div> |
| </div> |
| </div><div class="footer"> |
| <div class="section-disclaimer"> |
| <div class="container"> |
| <div> |
| <img height="60" src="https://raw.githubusercontent.com/dmlc/web-data/master/mxnet/image/apache_incubator_logo.png"/> |
| <p> |
| Apache MXNet is an effort undergoing incubation at The Apache Software Foundation (ASF), <strong>sponsored by the <i>Apache Incubator</i></strong>. Incubation is required of all newly accepted projects until a further review indicates that the infrastructure, communications, and decision making process have stabilized in a manner consistent with other successful ASF projects. While incubation status is not necessarily a reflection of the completeness or stability of the code, it does indicate that the project has yet to be fully endorsed by the ASF. |
| </p> |
| <p> |
| "Copyright © 2017, The Apache Software Foundation |
| Apache MXNet, MXNet, Apache, the Apache feather, and the Apache MXNet project logo are either registered trademarks or trademarks of the Apache Software Foundation." |
| </p> |
| </div> |
| </div> |
| </div> |
| </div> <!-- pagename != index --> |
| </div> |
| <script crossorigin="anonymous" integrity="sha384-0mSbJDEHialfmuBBQP6A4Qrprq5OVfW37PRR3j5ELqxss1yVqOtnepnHVP9aJ7xS" src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/js/bootstrap.min.js"></script> |
| <script src="../../../_static/js/sidebar.js" type="text/javascript"></script> |
| <script src="../../../_static/js/search.js" type="text/javascript"></script> |
| <script src="../../../_static/js/navbar.js" type="text/javascript"></script> |
| <script src="../../../_static/js/clipboard.min.js" type="text/javascript"></script> |
| <script src="../../../_static/js/copycode.js" type="text/javascript"></script> |
| <script src="../../../_static/js/page.js" type="text/javascript"></script> |
| <script type="text/javascript"> |
| $('body').ready(function () { |
| $('body').css('visibility', 'visible'); |
| }); |
| </script> |
| </body> |
| </html> |