blob: ceae016af3f6f4dc66b62bfedac9f4cf619b821f [file] [log] [blame]
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8"/>
<meta content="IE=edge" http-equiv="X-UA-Compatible"/>
<meta content="width=device-width, initial-scale=1" name="viewport"/>
<title>Gluon Contrib API — mxnet documentation</title>
<link crossorigin="anonymous" href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/css/bootstrap.min.css" integrity="sha384-1q8mTJOASx8j1Au+a5WDVnPi2lkFfwwEAa8hDDdjZlpLegxhjVME1fgjWPGmkzs7" rel="stylesheet"/>
<link href="https://maxcdn.bootstrapcdn.com/font-awesome/4.5.0/css/font-awesome.min.css" rel="stylesheet"/>
<link href="../../../_static/basic.css" rel="stylesheet" type="text/css">
<link href="../../../_static/pygments.css" rel="stylesheet" type="text/css">
<link href="../../../_static/mxnet.css" rel="stylesheet" type="text/css"/>
<script type="text/javascript">
var DOCUMENTATION_OPTIONS = {
URL_ROOT: '../../../',
VERSION: '',
COLLAPSE_INDEX: false,
FILE_SUFFIX: '.html',
HAS_SOURCE: true,
SOURCELINK_SUFFIX: ''
};
</script>
<script src="https://code.jquery.com/jquery-1.11.1.min.js" type="text/javascript"></script>
<script src="../../../_static/underscore.js" type="text/javascript"></script>
<script src="../../../_static/searchtools_custom.js" type="text/javascript"></script>
<script src="../../../_static/doctools.js" type="text/javascript"></script>
<script src="../../../_static/selectlang.js" type="text/javascript"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.1/MathJax.js?config=TeX-AMS-MML_HTMLorMML" type="text/javascript"></script>
<script type="text/javascript"> jQuery(function() { Search.loadIndex("/searchindex.js"); Search.init();}); </script>
<script>
(function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){
(i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new
Date();a=s.createElement(o),
m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m)
})(window,document,'script','https://www.google-analytics.com/analytics.js','ga');
ga('create', 'UA-96378503-1', 'auto');
ga('send', 'pageview');
</script>
<!-- -->
<!-- <script type="text/javascript" src="../../../_static/jquery.js"></script> -->
<!-- -->
<!-- <script type="text/javascript" src="../../../_static/underscore.js"></script> -->
<!-- -->
<!-- <script type="text/javascript" src="../../../_static/doctools.js"></script> -->
<!-- -->
<!-- <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script> -->
<!-- -->
<link href="gluon.html" rel="up" title="Gluon Package">
<link href="../kvstore/kvstore.html" rel="next" title="KVStore API"/>
<link href="model_zoo.html" rel="prev" title="Gluon Model Zoo"/>
<link href="https://raw.githubusercontent.com/dmlc/web-data/master/mxnet/image/mxnet-icon.png" rel="icon" type="image/png"/>
</link></link></link></head>
<body background="https://raw.githubusercontent.com/dmlc/web-data/master/mxnet/image/mxnet-background-compressed.jpeg" role="document">
<div class="content-block"><div class="navbar navbar-fixed-top">
<div class="container" id="navContainer">
<div class="innder" id="header-inner">
<h1 id="logo-wrap">
<a href="../../../" id="logo"><img src="https://raw.githubusercontent.com/dmlc/web-data/master/mxnet/image/mxnet_logo.png"/></a>
</h1>
<nav class="nav-bar" id="main-nav">
<a class="main-nav-link" href="../../../install/index.html">Install</a>
<a class="main-nav-link" href="../../../tutorials/index.html">Tutorials</a>
<span id="dropdown-menu-position-anchor">
<a aria-expanded="true" aria-haspopup="true" class="main-nav-link dropdown-toggle" data-toggle="dropdown" href="#" role="button">Gluon <span class="caret"></span></a>
<ul class="dropdown-menu navbar-menu" id="package-dropdown-menu">
<li><a class="main-nav-link" href="../../../gluon/index.html">About</a></li>
<li><a class="main-nav-link" href="http://gluon.mxnet.io">Tutorials</a></li>
</ul>
</span>
<span id="dropdown-menu-position-anchor">
<a aria-expanded="true" aria-haspopup="true" class="main-nav-link dropdown-toggle" data-toggle="dropdown" href="#" role="button">API <span class="caret"></span></a>
<ul class="dropdown-menu navbar-menu" id="package-dropdown-menu">
<li><a class="main-nav-link" href="../../../api/python/index.html">Python</a></li>
<li><a class="main-nav-link" href="../../../api/scala/index.html">Scala</a></li>
<li><a class="main-nav-link" href="../../../api/r/index.html">R</a></li>
<li><a class="main-nav-link" href="../../../api/julia/index.html">Julia</a></li>
<li><a class="main-nav-link" href="../../../api/c++/index.html">C++</a></li>
<li><a class="main-nav-link" href="../../../api/perl/index.html">Perl</a></li>
</ul>
</span>
<span id="dropdown-menu-position-anchor-docs">
<a aria-expanded="true" aria-haspopup="true" class="main-nav-link dropdown-toggle" data-toggle="dropdown" href="#" role="button">Docs <span class="caret"></span></a>
<ul class="dropdown-menu navbar-menu" id="package-dropdown-menu-docs">
<li><a class="main-nav-link" href="../../../faq/index.html">FAQ</a></li>
<li><a class="main-nav-link" href="../../../architecture/index.html">Architecture</a></li>
<li><a class="main-nav-link" href="https://github.com/apache/incubator-mxnet/tree/1.0.0/example">Examples</a></li>
<li><a class="main-nav-link" href="../../../model_zoo/index.html">Model Zoo</a></li>
</ul>
</span>
<a class="main-nav-link" href="https://github.com/dmlc/mxnet">Github</a>
<span id="dropdown-menu-position-anchor-community">
<a aria-expanded="true" aria-haspopup="true" class="main-nav-link dropdown-toggle" data-toggle="dropdown" href="#" role="button">Community <span class="caret"></span></a>
<ul class="dropdown-menu navbar-menu" id="package-dropdown-menu-community">
<li><a class="main-nav-link" href="../../../community/index.html">Community</a></li>
<li><a class="main-nav-link" href="../../../community/contribute.html">Contribute</a></li>
<li><a class="main-nav-link" href="../../../community/powered_by.html">Powered By</a></li>
</ul>
</span>
<a class="main-nav-link" href="http://discuss.mxnet.io">Discuss</a>
<span id="dropdown-menu-position-anchor-version" style="position: relative"><a href="#" class="main-nav-link dropdown-toggle" data-toggle="dropdown" role="button" aria-haspopup="true" aria-expanded="true">Versions(1.0.0)<span class="caret"></span></a><ul id="package-dropdown-menu" class="dropdown-menu"><li><a class="main-nav-link" href=https://mxnet.incubator.apache.org/>1.0.0</a></li><li><a class="main-nav-link" href=https://mxnet.incubator.apache.org/versions/0.12.1/index.html>0.12.1</a></li><li><a class="main-nav-link" href=https://mxnet.incubator.apache.org/versions/0.12.0/index.html>0.12.0</a></li><li><a class="main-nav-link" href=https://mxnet.incubator.apache.org/versions/0.11.0/index.html>0.11.0</a></li><li><a class="main-nav-link" href=https://mxnet.incubator.apache.org/versions/master/index.html>master</a></li></ul></span></nav>
<script> function getRootPath(){ return "../../../" } </script>
<div class="burgerIcon dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#" role="button"></a>
<ul class="dropdown-menu" id="burgerMenu">
<li><a href="../../../install/index.html">Install</a></li>
<li><a class="main-nav-link" href="../../../tutorials/index.html">Tutorials</a></li>
<li class="dropdown-submenu">
<a href="#" tabindex="-1">Community</a>
<ul class="dropdown-menu">
<li><a href="../../../community/index.html" tabindex="-1">Community</a></li>
<li><a href="../../../community/contribute.html" tabindex="-1">Contribute</a></li>
<li><a href="../../../community/powered_by.html" tabindex="-1">Powered By</a></li>
</ul>
</li>
<li class="dropdown-submenu">
<a href="#" tabindex="-1">API</a>
<ul class="dropdown-menu">
<li><a href="../../../api/python/index.html" tabindex="-1">Python</a>
</li>
<li><a href="../../../api/scala/index.html" tabindex="-1">Scala</a>
</li>
<li><a href="../../../api/r/index.html" tabindex="-1">R</a>
</li>
<li><a href="../../../api/julia/index.html" tabindex="-1">Julia</a>
</li>
<li><a href="../../../api/c++/index.html" tabindex="-1">C++</a>
</li>
<li><a href="../../../api/perl/index.html" tabindex="-1">Perl</a>
</li>
</ul>
</li>
<li class="dropdown-submenu">
<a href="#" tabindex="-1">Docs</a>
<ul class="dropdown-menu">
<li><a href="../../../tutorials/index.html" tabindex="-1">Tutorials</a></li>
<li><a href="../../../faq/index.html" tabindex="-1">FAQ</a></li>
<li><a href="../../../architecture/index.html" tabindex="-1">Architecture</a></li>
<li><a href="https://github.com/apache/incubator-mxnet/tree/1.0.0/example" tabindex="-1">Examples</a></li>
<li><a href="../../../model_zoo/index.html" tabindex="-1">Model Zoo</a></li>
</ul>
</li>
<li><a href="../../../architecture/index.html">Architecture</a></li>
<li><a class="main-nav-link" href="https://github.com/dmlc/mxnet">Github</a></li>
<li id="dropdown-menu-position-anchor-version-mobile" class="dropdown-submenu" style="position: relative"><a href="#" tabindex="-1">Versions(1.0.0)</a><ul class="dropdown-menu"><li><a tabindex="-1" href=https://mxnet.incubator.apache.org/>1.0.0</a></li><li><a tabindex="-1" href=https://mxnet.incubator.apache.org/versions/0.12.1/index.html>0.12.1</a></li><li><a tabindex="-1" href=https://mxnet.incubator.apache.org/versions/0.12.0/index.html>0.12.0</a></li><li><a tabindex="-1" href=https://mxnet.incubator.apache.org/versions/0.11.0/index.html>0.11.0</a></li><li><a tabindex="-1" href=https://mxnet.incubator.apache.org/versions/master/index.html>master</a></li></ul></li></ul>
</div>
<div class="plusIcon dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#" role="button"><span aria-hidden="true" class="glyphicon glyphicon-plus"></span></a>
<ul class="dropdown-menu dropdown-menu-right" id="plusMenu"></ul>
</div>
<div id="search-input-wrap">
<form action="../../../search.html" autocomplete="off" class="" method="get" role="search">
<div class="form-group inner-addon left-addon">
<i class="glyphicon glyphicon-search"></i>
<input class="form-control" name="q" placeholder="Search" type="text"/>
</div>
<input name="check_keywords" type="hidden" value="yes">
<input name="area" type="hidden" value="default"/>
</input></form>
<div id="search-preview"></div>
</div>
<div id="searchIcon">
<span aria-hidden="true" class="glyphicon glyphicon-search"></span>
</div>
<!-- <div id="lang-select-wrap"> -->
<!-- <label id="lang-select-label"> -->
<!-- <\!-- <i class="fa fa-globe"></i> -\-> -->
<!-- <span></span> -->
<!-- </label> -->
<!-- <select id="lang-select"> -->
<!-- <option value="en">Eng</option> -->
<!-- <option value="zh">中文</option> -->
<!-- </select> -->
<!-- </div> -->
<!-- <a id="mobile-nav-toggle">
<span class="mobile-nav-toggle-bar"></span>
<span class="mobile-nav-toggle-bar"></span>
<span class="mobile-nav-toggle-bar"></span>
</a> -->
</div>
</div>
</div>
<script type="text/javascript">
$('body').css('background', 'white');
</script>
<div class="container">
<div class="row">
<div aria-label="main navigation" class="sphinxsidebar leftsidebar" role="navigation">
<div class="sphinxsidebarwrapper">
<ul class="current">
<li class="toctree-l1 current"><a class="reference internal" href="../index.html">Python Documents</a><ul class="current">
<li class="toctree-l2"><a class="reference internal" href="../index.html#ndarray-api">NDArray API</a></li>
<li class="toctree-l2"><a class="reference internal" href="../index.html#symbol-api">Symbol API</a></li>
<li class="toctree-l2"><a class="reference internal" href="../index.html#module-api">Module API</a></li>
<li class="toctree-l2"><a class="reference internal" href="../index.html#autograd-api">Autograd API</a></li>
<li class="toctree-l2 current"><a class="reference internal" href="../index.html#gluon-api">Gluon API</a><ul class="current">
<li class="toctree-l3 current"><a class="reference internal" href="gluon.html">Gluon Package</a><ul class="current">
<li class="toctree-l4 current"><a class="reference internal" href="gluon.html#overview">Overview</a></li>
<li class="toctree-l4"><a class="reference internal" href="gluon.html#parameter">Parameter</a></li>
<li class="toctree-l4"><a class="reference internal" href="gluon.html#containers">Containers</a></li>
<li class="toctree-l4"><a class="reference internal" href="gluon.html#trainer">Trainer</a></li>
<li class="toctree-l4"><a class="reference internal" href="gluon.html#utilities">Utilities</a></li>
<li class="toctree-l4"><a class="reference internal" href="gluon.html#api-reference">API Reference</a></li>
</ul>
</li>
<li class="toctree-l3"><a class="reference internal" href="nn.html">Gluon Neural Network Layers</a></li>
<li class="toctree-l3"><a class="reference internal" href="rnn.html">Gluon Recurrent Neural Network API</a></li>
<li class="toctree-l3"><a class="reference internal" href="loss.html">Gluon Loss API</a></li>
<li class="toctree-l3"><a class="reference internal" href="data.html">Gluon Data API</a></li>
<li class="toctree-l3"><a class="reference internal" href="model_zoo.html">Gluon Model Zoo</a></li>
<li class="toctree-l3 current"><a class="current reference internal" href="">Gluon Contrib API</a><ul>
<li class="toctree-l4"><a class="reference internal" href="#overview">Overview</a></li>
<li class="toctree-l4"><a class="reference internal" href="#contrib">Contrib</a></li>
<li class="toctree-l4"><a class="reference internal" href="#api-reference">API Reference</a></li>
</ul>
</li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../index.html#kvstore-api">KVStore API</a></li>
<li class="toctree-l2"><a class="reference internal" href="../index.html#io-api">IO API</a></li>
<li class="toctree-l2"><a class="reference internal" href="../index.html#image-api">Image API</a></li>
<li class="toctree-l2"><a class="reference internal" href="../index.html#optimization-api">Optimization API</a></li>
<li class="toctree-l2"><a class="reference internal" href="../index.html#callback-api">Callback API</a></li>
<li class="toctree-l2"><a class="reference internal" href="../index.html#metric-api">Metric API</a></li>
<li class="toctree-l2"><a class="reference internal" href="../index.html#run-time-compilation-api">Run-Time Compilation API</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../r/index.html">R Documents</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../julia/index.html">Julia Documents</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../c++/index.html">C++ Documents</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../scala/index.html">Scala Documents</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../perl/index.html">Perl Documents</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../faq/index.html">HowTo Documents</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../architecture/index.html">System Documents</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../tutorials/index.html">Tutorials</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../community/index.html">Community</a></li>
</ul>
</div>
</div>
<div class="content">
<div class="page-tracker"></div>
<div class="section" id="gluon-contrib-api">
<span id="gluon-contrib-api"></span><h1>Gluon Contrib API<a class="headerlink" href="#gluon-contrib-api" title="Permalink to this headline"></a></h1>
<div class="section" id="overview">
<span id="overview"></span><h2>Overview<a class="headerlink" href="#overview" title="Permalink to this headline"></a></h2>
<p>This document lists the contrib APIs in Gluon:</p>
<table border="1" class="longtable docutils">
<colgroup>
<col width="10%"/>
<col width="90%"/>
</colgroup>
<tbody valign="top">
<tr class="row-odd"><td><a class="reference internal" href="#module-mxnet.gluon.contrib" title="mxnet.gluon.contrib"><code class="xref py py-obj docutils literal"><span class="pre">mxnet.gluon.contrib</span></code></a></td>
<td>Contrib neural network module.</td>
</tr>
</tbody>
</table>
<p>The <code class="docutils literal"><span class="pre">Gluon</span> <span class="pre">Contrib</span></code> API, defined in the <code class="docutils literal"><span class="pre">gluon.contrib</span></code> package, provides
many useful experimental APIs for new features.
This is a place for the community to try out the new features,
so that feature contributors can receive feedback.</p>
<div class="admonition warning">
<p class="first admonition-title">Warning</p>
<p class="last">This package contains experimental APIs and may change in the near future.</p>
</div>
<p>In the rest of this document, we list routines provided by the <code class="docutils literal"><span class="pre">gluon.contrib</span></code> package.</p>
</div>
<div class="section" id="contrib">
<span id="contrib"></span><h2>Contrib<a class="headerlink" href="#contrib" title="Permalink to this headline"></a></h2>
<table border="1" class="longtable docutils">
<colgroup>
<col width="10%"/>
<col width="90%"/>
</colgroup>
<tbody valign="top">
<tr class="row-odd"><td><a class="reference internal" href="#mxnet.gluon.contrib.rnn.VariationalDropoutCell" title="mxnet.gluon.contrib.rnn.VariationalDropoutCell"><code class="xref py py-obj docutils literal"><span class="pre">rnn.VariationalDropoutCell</span></code></a></td>
<td>Applies Variational Dropout on base cell.</td>
</tr>
<tr class="row-even"><td><a class="reference internal" href="#mxnet.gluon.contrib.rnn.Conv1DRNNCell" title="mxnet.gluon.contrib.rnn.Conv1DRNNCell"><code class="xref py py-obj docutils literal"><span class="pre">rnn.Conv1DRNNCell</span></code></a></td>
<td>1D Convolutional RNN cell.</td>
</tr>
<tr class="row-odd"><td><a class="reference internal" href="#mxnet.gluon.contrib.rnn.Conv2DRNNCell" title="mxnet.gluon.contrib.rnn.Conv2DRNNCell"><code class="xref py py-obj docutils literal"><span class="pre">rnn.Conv2DRNNCell</span></code></a></td>
<td>2D Convolutional RNN cell.</td>
</tr>
<tr class="row-even"><td><a class="reference internal" href="#mxnet.gluon.contrib.rnn.Conv3DRNNCell" title="mxnet.gluon.contrib.rnn.Conv3DRNNCell"><code class="xref py py-obj docutils literal"><span class="pre">rnn.Conv3DRNNCell</span></code></a></td>
<td>3D Convolutional RNN cells</td>
</tr>
<tr class="row-odd"><td><a class="reference internal" href="#mxnet.gluon.contrib.rnn.Conv1DLSTMCell" title="mxnet.gluon.contrib.rnn.Conv1DLSTMCell"><code class="xref py py-obj docutils literal"><span class="pre">rnn.Conv1DLSTMCell</span></code></a></td>
<td>1D Convolutional LSTM network cell.</td>
</tr>
<tr class="row-even"><td><a class="reference internal" href="#mxnet.gluon.contrib.rnn.Conv2DLSTMCell" title="mxnet.gluon.contrib.rnn.Conv2DLSTMCell"><code class="xref py py-obj docutils literal"><span class="pre">rnn.Conv2DLSTMCell</span></code></a></td>
<td>2D Convolutional LSTM network cell.</td>
</tr>
<tr class="row-odd"><td><a class="reference internal" href="#mxnet.gluon.contrib.rnn.Conv3DLSTMCell" title="mxnet.gluon.contrib.rnn.Conv3DLSTMCell"><code class="xref py py-obj docutils literal"><span class="pre">rnn.Conv3DLSTMCell</span></code></a></td>
<td>3D Convolutional LSTM network cell.</td>
</tr>
<tr class="row-even"><td><a class="reference internal" href="#mxnet.gluon.contrib.rnn.Conv1DGRUCell" title="mxnet.gluon.contrib.rnn.Conv1DGRUCell"><code class="xref py py-obj docutils literal"><span class="pre">rnn.Conv1DGRUCell</span></code></a></td>
<td>1D Convolutional Gated Rectified Unit (GRU) network cell.</td>
</tr>
<tr class="row-odd"><td><a class="reference internal" href="#mxnet.gluon.contrib.rnn.Conv2DGRUCell" title="mxnet.gluon.contrib.rnn.Conv2DGRUCell"><code class="xref py py-obj docutils literal"><span class="pre">rnn.Conv2DGRUCell</span></code></a></td>
<td>2D Convolutional Gated Rectified Unit (GRU) network cell.</td>
</tr>
<tr class="row-even"><td><a class="reference internal" href="#mxnet.gluon.contrib.rnn.Conv3DGRUCell" title="mxnet.gluon.contrib.rnn.Conv3DGRUCell"><code class="xref py py-obj docutils literal"><span class="pre">rnn.Conv3DGRUCell</span></code></a></td>
<td>3D Convolutional Gated Rectified Unit (GRU) network cell.</td>
</tr>
</tbody>
</table>
</div>
<div class="section" id="api-reference">
<span id="api-reference"></span><h2>API Reference<a class="headerlink" href="#api-reference" title="Permalink to this headline"></a></h2>
<script src="../../../_static/js/auto_module_index.js" type="text/javascript"></script><span class="target" id="module-mxnet.gluon.contrib"></span><p>Contrib neural network module.</p>
<span class="target" id="module-mxnet.gluon.contrib.rnn"></span><p>Contrib recurrent neural network module.</p>
<dl class="class">
<dt id="mxnet.gluon.contrib.rnn.Conv1DRNNCell">
<em class="property">class </em><code class="descclassname">mxnet.gluon.contrib.rnn.</code><code class="descname">Conv1DRNNCell</code><span class="sig-paren">(</span><em>input_shape</em>, <em>hidden_channels</em>, <em>i2h_kernel</em>, <em>h2h_kernel</em>, <em>i2h_pad=(0</em>, <em>)</em>, <em>i2h_dilate=(1</em>, <em>)</em>, <em>h2h_dilate=(1</em>, <em>)</em>, <em>i2h_weight_initializer=None</em>, <em>h2h_weight_initializer=None</em>, <em>i2h_bias_initializer='zeros'</em>, <em>h2h_bias_initializer='zeros'</em>, <em>conv_layout='NCW'</em>, <em>activation='tanh'</em>, <em>prefix=None</em>, <em>params=None</em><span class="sig-paren">)</span><a class="reference internal" href="../../../_modules/mxnet/gluon/contrib/rnn/conv_rnn_cell.html#Conv1DRNNCell"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#mxnet.gluon.contrib.rnn.Conv1DRNNCell" title="Permalink to this definition"></a></dt>
<dd><p>1D Convolutional RNN cell.</p>
<div class="math">
\[h_t = tanh(W_i \ast x_t + R_i \ast h_{t-1} + b_i)\]</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name"/>
<col class="field-body"/>
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first last simple">
<li><strong>input_shape</strong> (<em>tuple of int</em>) – Input tensor shape at each time step for each sample, excluding dimension of the batch size
and sequence length. Must be consistent with <cite>conv_layout</cite>.
For example, for layout ‘NCW’ the shape should be (C, W).</li>
<li><strong>hidden_channels</strong> (<em>int</em>) – Number of output channels.</li>
<li><strong>i2h_kernel</strong> (<em>int or tuple of int</em>) – Input convolution kernel sizes.</li>
<li><strong>h2h_kernel</strong> (<em>int or tuple of int</em>) – Recurrent convolution kernel sizes. Only odd-numbered sizes are supported.</li>
<li><strong>i2h_pad</strong> (<em>int or tuple of int, default (0,)</em>) – Pad for input convolution.</li>
<li><strong>i2h_dilate</strong> (<em>int or tuple of int, default (1,)</em>) – Input convolution dilate.</li>
<li><strong>h2h_dilate</strong> (<em>int or tuple of int, default (1,)</em>) – Recurrent convolution dilate.</li>
<li><strong>i2h_weight_initializer</strong> (<em>str or Initializer</em>) – Initializer for the input weights matrix, used for the input convolutions.</li>
<li><strong>h2h_weight_initializer</strong> (<em>str or Initializer</em>) – Initializer for the recurrent weights matrix, used for the input convolutions.</li>
<li><strong>i2h_bias_initializer</strong> (<em>str or Initializer, default zeros</em>) – Initializer for the input convolution bias vectors.</li>
<li><strong>h2h_bias_initializer</strong> (<em>str or Initializer, default zeros</em>) – Initializer for the recurrent convolution bias vectors.</li>
<li><strong>conv_layout</strong> (<em>str, default 'NCW'</em>) – Layout for all convolution inputs, outputs and weights. Options are ‘NCW’ and ‘NWC’.</li>
<li><strong>activation</strong> (<em>str or Block, default 'tanh'</em>) – Type of activation function.
If argument type is string, it’s equivalent to nn.Activation(act_type=str). See
<a class="reference internal" href="../ndarray/ndarray.html#mxnet.ndarray.Activation" title="mxnet.ndarray.Activation"><code class="xref py py-func docutils literal"><span class="pre">Activation()</span></code></a> for available choices.
Alternatively, other activation blocks such as nn.LeakyReLU can be used.</li>
<li><strong>prefix</strong> (str, default ‘<a href="#id3"><span class="problematic" id="id4">conv_rnn_</span></a>‘) – Prefix for name of layers (and name of weight if params is None).</li>
<li><strong>params</strong> (<em>RNNParams, default None</em>) – Container for weight sharing between cells. Created if None.</li>
</ul>
</td>
</tr>
</tbody>
</table>
</dd></dl>
<dl class="class">
<dt id="mxnet.gluon.contrib.rnn.Conv2DRNNCell">
<em class="property">class </em><code class="descclassname">mxnet.gluon.contrib.rnn.</code><code class="descname">Conv2DRNNCell</code><span class="sig-paren">(</span><em>input_shape</em>, <em>hidden_channels</em>, <em>i2h_kernel</em>, <em>h2h_kernel</em>, <em>i2h_pad=(0</em>, <em>0)</em>, <em>i2h_dilate=(1</em>, <em>1)</em>, <em>h2h_dilate=(1</em>, <em>1)</em>, <em>i2h_weight_initializer=None</em>, <em>h2h_weight_initializer=None</em>, <em>i2h_bias_initializer='zeros'</em>, <em>h2h_bias_initializer='zeros'</em>, <em>conv_layout='NCHW'</em>, <em>activation='tanh'</em>, <em>prefix=None</em>, <em>params=None</em><span class="sig-paren">)</span><a class="reference internal" href="../../../_modules/mxnet/gluon/contrib/rnn/conv_rnn_cell.html#Conv2DRNNCell"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#mxnet.gluon.contrib.rnn.Conv2DRNNCell" title="Permalink to this definition"></a></dt>
<dd><p>2D Convolutional RNN cell.</p>
<div class="math">
\[h_t = tanh(W_i \ast x_t + R_i \ast h_{t-1} + b_i)\]</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name"/>
<col class="field-body"/>
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first last simple">
<li><strong>input_shape</strong> (<em>tuple of int</em>) – Input tensor shape at each time step for each sample, excluding dimension of the batch size
and sequence length. Must be consistent with <cite>conv_layout</cite>.
For example, for layout ‘NCHW’ the shape should be (C, H, W).</li>
<li><strong>hidden_channels</strong> (<em>int</em>) – Number of output channels.</li>
<li><strong>i2h_kernel</strong> (<em>int or tuple of int</em>) – Input convolution kernel sizes.</li>
<li><strong>h2h_kernel</strong> (<em>int or tuple of int</em>) – Recurrent convolution kernel sizes. Only odd-numbered sizes are supported.</li>
<li><strong>i2h_pad</strong> (<em>int or tuple of int, default (0, 0)</em>) – Pad for input convolution.</li>
<li><strong>i2h_dilate</strong> (<em>int or tuple of int, default (1, 1)</em>) – Input convolution dilate.</li>
<li><strong>h2h_dilate</strong> (<em>int or tuple of int, default (1, 1)</em>) – Recurrent convolution dilate.</li>
<li><strong>i2h_weight_initializer</strong> (<em>str or Initializer</em>) – Initializer for the input weights matrix, used for the input convolutions.</li>
<li><strong>h2h_weight_initializer</strong> (<em>str or Initializer</em>) – Initializer for the recurrent weights matrix, used for the input convolutions.</li>
<li><strong>i2h_bias_initializer</strong> (<em>str or Initializer, default zeros</em>) – Initializer for the input convolution bias vectors.</li>
<li><strong>h2h_bias_initializer</strong> (<em>str or Initializer, default zeros</em>) – Initializer for the recurrent convolution bias vectors.</li>
<li><strong>conv_layout</strong> (<em>str, default 'NCHW'</em>) – Layout for all convolution inputs, outputs and weights. Options are ‘NCHW’ and ‘NHWC’.</li>
<li><strong>activation</strong> (<em>str or Block, default 'tanh'</em>) – Type of activation function.
If argument type is string, it’s equivalent to nn.Activation(act_type=str). See
<a class="reference internal" href="../ndarray/ndarray.html#mxnet.ndarray.Activation" title="mxnet.ndarray.Activation"><code class="xref py py-func docutils literal"><span class="pre">Activation()</span></code></a> for available choices.
Alternatively, other activation blocks such as nn.LeakyReLU can be used.</li>
<li><strong>prefix</strong> (str, default ‘<a href="#id5"><span class="problematic" id="id6">conv_rnn_</span></a>‘) – Prefix for name of layers (and name of weight if params is None).</li>
<li><strong>params</strong> (<em>RNNParams, default None</em>) – Container for weight sharing between cells. Created if None.</li>
</ul>
</td>
</tr>
</tbody>
</table>
</dd></dl>
<dl class="class">
<dt id="mxnet.gluon.contrib.rnn.Conv3DRNNCell">
<em class="property">class </em><code class="descclassname">mxnet.gluon.contrib.rnn.</code><code class="descname">Conv3DRNNCell</code><span class="sig-paren">(</span><em>input_shape</em>, <em>hidden_channels</em>, <em>i2h_kernel</em>, <em>h2h_kernel</em>, <em>i2h_pad=(0</em>, <em>0</em>, <em>0)</em>, <em>i2h_dilate=(1</em>, <em>1</em>, <em>1)</em>, <em>h2h_dilate=(1</em>, <em>1</em>, <em>1)</em>, <em>i2h_weight_initializer=None</em>, <em>h2h_weight_initializer=None</em>, <em>i2h_bias_initializer='zeros'</em>, <em>h2h_bias_initializer='zeros'</em>, <em>conv_layout='NCDHW'</em>, <em>activation='tanh'</em>, <em>prefix=None</em>, <em>params=None</em><span class="sig-paren">)</span><a class="reference internal" href="../../../_modules/mxnet/gluon/contrib/rnn/conv_rnn_cell.html#Conv3DRNNCell"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#mxnet.gluon.contrib.rnn.Conv3DRNNCell" title="Permalink to this definition"></a></dt>
<dd><p>3D Convolutional RNN cells</p>
<div class="math">
\[h_t = tanh(W_i \ast x_t + R_i \ast h_{t-1} + b_i)\]</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name"/>
<col class="field-body"/>
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first last simple">
<li><strong>input_shape</strong> (<em>tuple of int</em>) – Input tensor shape at each time step for each sample, excluding dimension of the batch size
and sequence length. Must be consistent with <cite>conv_layout</cite>.
For example, for layout ‘NCDHW’ the shape should be (C, D, H, W).</li>
<li><strong>hidden_channels</strong> (<em>int</em>) – Number of output channels.</li>
<li><strong>i2h_kernel</strong> (<em>int or tuple of int</em>) – Input convolution kernel sizes.</li>
<li><strong>h2h_kernel</strong> (<em>int or tuple of int</em>) – Recurrent convolution kernel sizes. Only odd-numbered sizes are supported.</li>
<li><strong>i2h_pad</strong> (<em>int or tuple of int, default (0, 0, 0)</em>) – Pad for input convolution.</li>
<li><strong>i2h_dilate</strong> (<em>int or tuple of int, default (1, 1, 1)</em>) – Input convolution dilate.</li>
<li><strong>h2h_dilate</strong> (<em>int or tuple of int, default (1, 1, 1)</em>) – Recurrent convolution dilate.</li>
<li><strong>i2h_weight_initializer</strong> (<em>str or Initializer</em>) – Initializer for the input weights matrix, used for the input convolutions.</li>
<li><strong>h2h_weight_initializer</strong> (<em>str or Initializer</em>) – Initializer for the recurrent weights matrix, used for the input convolutions.</li>
<li><strong>i2h_bias_initializer</strong> (<em>str or Initializer, default zeros</em>) – Initializer for the input convolution bias vectors.</li>
<li><strong>h2h_bias_initializer</strong> (<em>str or Initializer, default zeros</em>) – Initializer for the recurrent convolution bias vectors.</li>
<li><strong>conv_layout</strong> (<em>str, default 'NCDHW'</em>) – Layout for all convolution inputs, outputs and weights. Options are ‘NCDHW’ and ‘NDHWC’.</li>
<li><strong>activation</strong> (<em>str or Block, default 'tanh'</em>) – Type of activation function.
If argument type is string, it’s equivalent to nn.Activation(act_type=str). See
<a class="reference internal" href="../ndarray/ndarray.html#mxnet.ndarray.Activation" title="mxnet.ndarray.Activation"><code class="xref py py-func docutils literal"><span class="pre">Activation()</span></code></a> for available choices.
Alternatively, other activation blocks such as nn.LeakyReLU can be used.</li>
<li><strong>prefix</strong> (str, default ‘<a href="#id7"><span class="problematic" id="id8">conv_rnn_</span></a>‘) – Prefix for name of layers (and name of weight if params is None).</li>
<li><strong>params</strong> (<em>RNNParams, default None</em>) – Container for weight sharing between cells. Created if None.</li>
</ul>
</td>
</tr>
</tbody>
</table>
</dd></dl>
<dl class="class">
<dt id="mxnet.gluon.contrib.rnn.Conv1DLSTMCell">
<em class="property">class </em><code class="descclassname">mxnet.gluon.contrib.rnn.</code><code class="descname">Conv1DLSTMCell</code><span class="sig-paren">(</span><em>input_shape</em>, <em>hidden_channels</em>, <em>i2h_kernel</em>, <em>h2h_kernel</em>, <em>i2h_pad=(0</em>, <em>)</em>, <em>i2h_dilate=(1</em>, <em>)</em>, <em>h2h_dilate=(1</em>, <em>)</em>, <em>i2h_weight_initializer=None</em>, <em>h2h_weight_initializer=None</em>, <em>i2h_bias_initializer='zeros'</em>, <em>h2h_bias_initializer='zeros'</em>, <em>conv_layout='NCW'</em>, <em>activation='tanh'</em>, <em>prefix=None</em>, <em>params=None</em><span class="sig-paren">)</span><a class="reference internal" href="../../../_modules/mxnet/gluon/contrib/rnn/conv_rnn_cell.html#Conv1DLSTMCell"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#mxnet.gluon.contrib.rnn.Conv1DLSTMCell" title="Permalink to this definition"></a></dt>
<dd><p>1D Convolutional LSTM network cell.</p>
<p><a class="reference external" href="https://arxiv.org/abs/1506.04214">“Convolutional LSTM Network: A Machine Learning Approach for Precipitation Nowcasting”</a> paper. Xingjian et al. NIPS2015</p>
<div class="math">
\[\begin{split}\begin{array}{ll}
i_t = \sigma(W_i \ast x_t + R_i \ast h_{t-1} + b_i) \\
f_t = \sigma(W_f \ast x_t + R_f \ast h_{t-1} + b_f) \\
o_t = \sigma(W_o \ast x_t + R_o \ast h_{t-1} + b_o) \\
c^\prime_t = tanh(W_c \ast x_t + R_c \ast h_{t-1} + b_c) \\
c_t = f_t \circ c_{t-1} + i_t \circ c^\prime_t \\
h_t = o_t \circ tanh(c_t) \\
\end{array}\end{split}\]</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name"/>
<col class="field-body"/>
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first last simple">
<li><strong>input_shape</strong> (<em>tuple of int</em>) – Input tensor shape at each time step for each sample, excluding dimension of the batch size
and sequence length. Must be consistent with <cite>conv_layout</cite>.
For example, for layout ‘NCW’ the shape should be (C, W).</li>
<li><strong>hidden_channels</strong> (<em>int</em>) – Number of output channels.</li>
<li><strong>i2h_kernel</strong> (<em>int or tuple of int</em>) – Input convolution kernel sizes.</li>
<li><strong>h2h_kernel</strong> (<em>int or tuple of int</em>) – Recurrent convolution kernel sizes. Only odd-numbered sizes are supported.</li>
<li><strong>i2h_pad</strong> (<em>int or tuple of int, default (0,)</em>) – Pad for input convolution.</li>
<li><strong>i2h_dilate</strong> (<em>int or tuple of int, default (1,)</em>) – Input convolution dilate.</li>
<li><strong>h2h_dilate</strong> (<em>int or tuple of int, default (1,)</em>) – Recurrent convolution dilate.</li>
<li><strong>i2h_weight_initializer</strong> (<em>str or Initializer</em>) – Initializer for the input weights matrix, used for the input convolutions.</li>
<li><strong>h2h_weight_initializer</strong> (<em>str or Initializer</em>) – Initializer for the recurrent weights matrix, used for the input convolutions.</li>
<li><strong>i2h_bias_initializer</strong> (<em>str or Initializer, default zeros</em>) – Initializer for the input convolution bias vectors.</li>
<li><strong>h2h_bias_initializer</strong> (<em>str or Initializer, default zeros</em>) – Initializer for the recurrent convolution bias vectors.</li>
<li><strong>conv_layout</strong> (<em>str, default 'NCW'</em>) – Layout for all convolution inputs, outputs and weights. Options are ‘NCW’ and ‘NWC’.</li>
<li><strong>activation</strong> (<em>str or Block, default 'tanh'</em>) – Type of activation function used in c^prime_t.
If argument type is string, it’s equivalent to nn.Activation(act_type=str). See
<a class="reference internal" href="../ndarray/ndarray.html#mxnet.ndarray.Activation" title="mxnet.ndarray.Activation"><code class="xref py py-func docutils literal"><span class="pre">Activation()</span></code></a> for available choices.
Alternatively, other activation blocks such as nn.LeakyReLU can be used.</li>
<li><strong>prefix</strong> (str, default ‘<a href="#id9"><span class="problematic" id="id10">conv_lstm_</span></a>‘) – Prefix for name of layers (and name of weight if params is None).</li>
<li><strong>params</strong> (<em>RNNParams, default None</em>) – Container for weight sharing between cells. Created if None.</li>
</ul>
</td>
</tr>
</tbody>
</table>
</dd></dl>
<dl class="class">
<dt id="mxnet.gluon.contrib.rnn.Conv2DLSTMCell">
<em class="property">class </em><code class="descclassname">mxnet.gluon.contrib.rnn.</code><code class="descname">Conv2DLSTMCell</code><span class="sig-paren">(</span><em>input_shape</em>, <em>hidden_channels</em>, <em>i2h_kernel</em>, <em>h2h_kernel</em>, <em>i2h_pad=(0</em>, <em>0)</em>, <em>i2h_dilate=(1</em>, <em>1)</em>, <em>h2h_dilate=(1</em>, <em>1)</em>, <em>i2h_weight_initializer=None</em>, <em>h2h_weight_initializer=None</em>, <em>i2h_bias_initializer='zeros'</em>, <em>h2h_bias_initializer='zeros'</em>, <em>conv_layout='NCHW'</em>, <em>activation='tanh'</em>, <em>prefix=None</em>, <em>params=None</em><span class="sig-paren">)</span><a class="reference internal" href="../../../_modules/mxnet/gluon/contrib/rnn/conv_rnn_cell.html#Conv2DLSTMCell"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#mxnet.gluon.contrib.rnn.Conv2DLSTMCell" title="Permalink to this definition"></a></dt>
<dd><p>2D Convolutional LSTM network cell.</p>
<p><a class="reference external" href="https://arxiv.org/abs/1506.04214">“Convolutional LSTM Network: A Machine Learning Approach for Precipitation Nowcasting”</a> paper. Xingjian et al. NIPS2015</p>
<div class="math">
\[\begin{split}\begin{array}{ll}
i_t = \sigma(W_i \ast x_t + R_i \ast h_{t-1} + b_i) \\
f_t = \sigma(W_f \ast x_t + R_f \ast h_{t-1} + b_f) \\
o_t = \sigma(W_o \ast x_t + R_o \ast h_{t-1} + b_o) \\
c^\prime_t = tanh(W_c \ast x_t + R_c \ast h_{t-1} + b_c) \\
c_t = f_t \circ c_{t-1} + i_t \circ c^\prime_t \\
h_t = o_t \circ tanh(c_t) \\
\end{array}\end{split}\]</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name"/>
<col class="field-body"/>
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first last simple">
<li><strong>input_shape</strong> (<em>tuple of int</em>) – Input tensor shape at each time step for each sample, excluding dimension of the batch size
and sequence length. Must be consistent with <cite>conv_layout</cite>.
For example, for layout ‘NCHW’ the shape should be (C, H, W).</li>
<li><strong>hidden_channels</strong> (<em>int</em>) – Number of output channels.</li>
<li><strong>i2h_kernel</strong> (<em>int or tuple of int</em>) – Input convolution kernel sizes.</li>
<li><strong>h2h_kernel</strong> (<em>int or tuple of int</em>) – Recurrent convolution kernel sizes. Only odd-numbered sizes are supported.</li>
<li><strong>i2h_pad</strong> (<em>int or tuple of int, default (0, 0)</em>) – Pad for input convolution.</li>
<li><strong>i2h_dilate</strong> (<em>int or tuple of int, default (1, 1)</em>) – Input convolution dilate.</li>
<li><strong>h2h_dilate</strong> (<em>int or tuple of int, default (1, 1)</em>) – Recurrent convolution dilate.</li>
<li><strong>i2h_weight_initializer</strong> (<em>str or Initializer</em>) – Initializer for the input weights matrix, used for the input convolutions.</li>
<li><strong>h2h_weight_initializer</strong> (<em>str or Initializer</em>) – Initializer for the recurrent weights matrix, used for the input convolutions.</li>
<li><strong>i2h_bias_initializer</strong> (<em>str or Initializer, default zeros</em>) – Initializer for the input convolution bias vectors.</li>
<li><strong>h2h_bias_initializer</strong> (<em>str or Initializer, default zeros</em>) – Initializer for the recurrent convolution bias vectors.</li>
<li><strong>conv_layout</strong> (<em>str, default 'NCHW'</em>) – Layout for all convolution inputs, outputs and weights. Options are ‘NCHW’ and ‘NHWC’.</li>
<li><strong>activation</strong> (<em>str or Block, default 'tanh'</em>) – Type of activation function used in c^prime_t.
If argument type is string, it’s equivalent to nn.Activation(act_type=str). See
<a class="reference internal" href="../ndarray/ndarray.html#mxnet.ndarray.Activation" title="mxnet.ndarray.Activation"><code class="xref py py-func docutils literal"><span class="pre">Activation()</span></code></a> for available choices.
Alternatively, other activation blocks such as nn.LeakyReLU can be used.</li>
<li><strong>prefix</strong> (str, default ‘<a href="#id11"><span class="problematic" id="id12">conv_lstm_</span></a>‘) – Prefix for name of layers (and name of weight if params is None).</li>
<li><strong>params</strong> (<em>RNNParams, default None</em>) – Container for weight sharing between cells. Created if None.</li>
</ul>
</td>
</tr>
</tbody>
</table>
</dd></dl>
<dl class="class">
<dt id="mxnet.gluon.contrib.rnn.Conv3DLSTMCell">
<em class="property">class </em><code class="descclassname">mxnet.gluon.contrib.rnn.</code><code class="descname">Conv3DLSTMCell</code><span class="sig-paren">(</span><em>input_shape</em>, <em>hidden_channels</em>, <em>i2h_kernel</em>, <em>h2h_kernel</em>, <em>i2h_pad=(0</em>, <em>0</em>, <em>0)</em>, <em>i2h_dilate=(1</em>, <em>1</em>, <em>1)</em>, <em>h2h_dilate=(1</em>, <em>1</em>, <em>1)</em>, <em>i2h_weight_initializer=None</em>, <em>h2h_weight_initializer=None</em>, <em>i2h_bias_initializer='zeros'</em>, <em>h2h_bias_initializer='zeros'</em>, <em>conv_layout='NCDHW'</em>, <em>activation='tanh'</em>, <em>prefix=None</em>, <em>params=None</em><span class="sig-paren">)</span><a class="reference internal" href="../../../_modules/mxnet/gluon/contrib/rnn/conv_rnn_cell.html#Conv3DLSTMCell"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#mxnet.gluon.contrib.rnn.Conv3DLSTMCell" title="Permalink to this definition"></a></dt>
<dd><p>3D Convolutional LSTM network cell.</p>
<p><a class="reference external" href="https://arxiv.org/abs/1506.04214">“Convolutional LSTM Network: A Machine Learning Approach for Precipitation Nowcasting”</a> paper. Xingjian et al. NIPS2015</p>
<div class="math">
\[\begin{split}\begin{array}{ll}
i_t = \sigma(W_i \ast x_t + R_i \ast h_{t-1} + b_i) \\
f_t = \sigma(W_f \ast x_t + R_f \ast h_{t-1} + b_f) \\
o_t = \sigma(W_o \ast x_t + R_o \ast h_{t-1} + b_o) \\
c^\prime_t = tanh(W_c \ast x_t + R_c \ast h_{t-1} + b_c) \\
c_t = f_t \circ c_{t-1} + i_t \circ c^\prime_t \\
h_t = o_t \circ tanh(c_t) \\
\end{array}\end{split}\]</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name"/>
<col class="field-body"/>
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first last simple">
<li><strong>input_shape</strong> (<em>tuple of int</em>) – Input tensor shape at each time step for each sample, excluding dimension of the batch size
and sequence length. Must be consistent with <cite>conv_layout</cite>.
For example, for layout ‘NCDHW’ the shape should be (C, D, H, W).</li>
<li><strong>hidden_channels</strong> (<em>int</em>) – Number of output channels.</li>
<li><strong>i2h_kernel</strong> (<em>int or tuple of int</em>) – Input convolution kernel sizes.</li>
<li><strong>h2h_kernel</strong> (<em>int or tuple of int</em>) – Recurrent convolution kernel sizes. Only odd-numbered sizes are supported.</li>
<li><strong>i2h_pad</strong> (<em>int or tuple of int, default (0, 0, 0)</em>) – Pad for input convolution.</li>
<li><strong>i2h_dilate</strong> (<em>int or tuple of int, default (1, 1, 1)</em>) – Input convolution dilate.</li>
<li><strong>h2h_dilate</strong> (<em>int or tuple of int, default (1, 1, 1)</em>) – Recurrent convolution dilate.</li>
<li><strong>i2h_weight_initializer</strong> (<em>str or Initializer</em>) – Initializer for the input weights matrix, used for the input convolutions.</li>
<li><strong>h2h_weight_initializer</strong> (<em>str or Initializer</em>) – Initializer for the recurrent weights matrix, used for the input convolutions.</li>
<li><strong>i2h_bias_initializer</strong> (<em>str or Initializer, default zeros</em>) – Initializer for the input convolution bias vectors.</li>
<li><strong>h2h_bias_initializer</strong> (<em>str or Initializer, default zeros</em>) – Initializer for the recurrent convolution bias vectors.</li>
<li><strong>conv_layout</strong> (<em>str, default 'NCDHW'</em>) – Layout for all convolution inputs, outputs and weights. Options are ‘NCDHW’ and ‘NDHWC’.</li>
<li><strong>activation</strong> (<em>str or Block, default 'tanh'</em>) – Type of activation function used in c^prime_t.
If argument type is string, it’s equivalent to nn.Activation(act_type=str). See
<a class="reference internal" href="../ndarray/ndarray.html#mxnet.ndarray.Activation" title="mxnet.ndarray.Activation"><code class="xref py py-func docutils literal"><span class="pre">Activation()</span></code></a> for available choices.
Alternatively, other activation blocks such as nn.LeakyReLU can be used.</li>
<li><strong>prefix</strong> (str, default ‘<a href="#id13"><span class="problematic" id="id14">conv_lstm_</span></a>‘) – Prefix for name of layers (and name of weight if params is None).</li>
<li><strong>params</strong> (<em>RNNParams, default None</em>) – Container for weight sharing between cells. Created if None.</li>
</ul>
</td>
</tr>
</tbody>
</table>
</dd></dl>
<dl class="class">
<dt id="mxnet.gluon.contrib.rnn.Conv1DGRUCell">
<em class="property">class </em><code class="descclassname">mxnet.gluon.contrib.rnn.</code><code class="descname">Conv1DGRUCell</code><span class="sig-paren">(</span><em>input_shape</em>, <em>hidden_channels</em>, <em>i2h_kernel</em>, <em>h2h_kernel</em>, <em>i2h_pad=(0</em>, <em>)</em>, <em>i2h_dilate=(1</em>, <em>)</em>, <em>h2h_dilate=(1</em>, <em>)</em>, <em>i2h_weight_initializer=None</em>, <em>h2h_weight_initializer=None</em>, <em>i2h_bias_initializer='zeros'</em>, <em>h2h_bias_initializer='zeros'</em>, <em>conv_layout='NCW'</em>, <em>activation='tanh'</em>, <em>prefix=None</em>, <em>params=None</em><span class="sig-paren">)</span><a class="reference internal" href="../../../_modules/mxnet/gluon/contrib/rnn/conv_rnn_cell.html#Conv1DGRUCell"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#mxnet.gluon.contrib.rnn.Conv1DGRUCell" title="Permalink to this definition"></a></dt>
<dd><p>1D Convolutional Gated Rectified Unit (GRU) network cell.</p>
<div class="math">
\[\begin{split}\begin{array}{ll}
r_t = \sigma(W_r \ast x_t + R_r \ast h_{t-1} + b_r) \\
z_t = \sigma(W_z \ast x_t + R_z \ast h_{t-1} + b_z) \\
n_t = tanh(W_i \ast x_t + b_i + r_t \circ (R_n \ast h_{t-1} + b_n)) \\
h^\prime_t = (1 - z_t) \circ n_t + z_t \circ h \\
\end{array}\end{split}\]</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name"/>
<col class="field-body"/>
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first last simple">
<li><strong>input_shape</strong> (<em>tuple of int</em>) – Input tensor shape at each time step for each sample, excluding dimension of the batch size
and sequence length. Must be consistent with <cite>conv_layout</cite>.
For example, for layout ‘NCW’ the shape should be (C, W).</li>
<li><strong>hidden_channels</strong> (<em>int</em>) – Number of output channels.</li>
<li><strong>i2h_kernel</strong> (<em>int or tuple of int</em>) – Input convolution kernel sizes.</li>
<li><strong>h2h_kernel</strong> (<em>int or tuple of int</em>) – Recurrent convolution kernel sizes. Only odd-numbered sizes are supported.</li>
<li><strong>i2h_pad</strong> (<em>int or tuple of int, default (0,)</em>) – Pad for input convolution.</li>
<li><strong>i2h_dilate</strong> (<em>int or tuple of int, default (1,)</em>) – Input convolution dilate.</li>
<li><strong>h2h_dilate</strong> (<em>int or tuple of int, default (1,)</em>) – Recurrent convolution dilate.</li>
<li><strong>i2h_weight_initializer</strong> (<em>str or Initializer</em>) – Initializer for the input weights matrix, used for the input convolutions.</li>
<li><strong>h2h_weight_initializer</strong> (<em>str or Initializer</em>) – Initializer for the recurrent weights matrix, used for the input convolutions.</li>
<li><strong>i2h_bias_initializer</strong> (<em>str or Initializer, default zeros</em>) – Initializer for the input convolution bias vectors.</li>
<li><strong>h2h_bias_initializer</strong> (<em>str or Initializer, default zeros</em>) – Initializer for the recurrent convolution bias vectors.</li>
<li><strong>conv_layout</strong> (<em>str, default 'NCW'</em>) – Layout for all convolution inputs, outputs and weights. Options are ‘NCW’ and ‘NWC’.</li>
<li><strong>activation</strong> (<em>str or Block, default 'tanh'</em>) – Type of activation function used in n_t.
If argument type is string, it’s equivalent to nn.Activation(act_type=str). See
<a class="reference internal" href="../ndarray/ndarray.html#mxnet.ndarray.Activation" title="mxnet.ndarray.Activation"><code class="xref py py-func docutils literal"><span class="pre">Activation()</span></code></a> for available choices.
Alternatively, other activation blocks such as nn.LeakyReLU can be used.</li>
<li><strong>prefix</strong> (str, default ‘<a href="#id15"><span class="problematic" id="id16">conv_gru_</span></a>‘) – Prefix for name of layers (and name of weight if params is None).</li>
<li><strong>params</strong> (<em>RNNParams, default None</em>) – Container for weight sharing between cells. Created if None.</li>
</ul>
</td>
</tr>
</tbody>
</table>
</dd></dl>
<dl class="class">
<dt id="mxnet.gluon.contrib.rnn.Conv2DGRUCell">
<em class="property">class </em><code class="descclassname">mxnet.gluon.contrib.rnn.</code><code class="descname">Conv2DGRUCell</code><span class="sig-paren">(</span><em>input_shape</em>, <em>hidden_channels</em>, <em>i2h_kernel</em>, <em>h2h_kernel</em>, <em>i2h_pad=(0</em>, <em>0)</em>, <em>i2h_dilate=(1</em>, <em>1)</em>, <em>h2h_dilate=(1</em>, <em>1)</em>, <em>i2h_weight_initializer=None</em>, <em>h2h_weight_initializer=None</em>, <em>i2h_bias_initializer='zeros'</em>, <em>h2h_bias_initializer='zeros'</em>, <em>conv_layout='NCHW'</em>, <em>activation='tanh'</em>, <em>prefix=None</em>, <em>params=None</em><span class="sig-paren">)</span><a class="reference internal" href="../../../_modules/mxnet/gluon/contrib/rnn/conv_rnn_cell.html#Conv2DGRUCell"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#mxnet.gluon.contrib.rnn.Conv2DGRUCell" title="Permalink to this definition"></a></dt>
<dd><p>2D Convolutional Gated Rectified Unit (GRU) network cell.</p>
<div class="math">
\[\begin{split}\begin{array}{ll}
r_t = \sigma(W_r \ast x_t + R_r \ast h_{t-1} + b_r) \\
z_t = \sigma(W_z \ast x_t + R_z \ast h_{t-1} + b_z) \\
n_t = tanh(W_i \ast x_t + b_i + r_t \circ (R_n \ast h_{t-1} + b_n)) \\
h^\prime_t = (1 - z_t) \circ n_t + z_t \circ h \\
\end{array}\end{split}\]</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name"/>
<col class="field-body"/>
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first last simple">
<li><strong>input_shape</strong> (<em>tuple of int</em>) – Input tensor shape at each time step for each sample, excluding dimension of the batch size
and sequence length. Must be consistent with <cite>conv_layout</cite>.
For example, for layout ‘NCHW’ the shape should be (C, H, W).</li>
<li><strong>hidden_channels</strong> (<em>int</em>) – Number of output channels.</li>
<li><strong>i2h_kernel</strong> (<em>int or tuple of int</em>) – Input convolution kernel sizes.</li>
<li><strong>h2h_kernel</strong> (<em>int or tuple of int</em>) – Recurrent convolution kernel sizes. Only odd-numbered sizes are supported.</li>
<li><strong>i2h_pad</strong> (<em>int or tuple of int, default (0, 0)</em>) – Pad for input convolution.</li>
<li><strong>i2h_dilate</strong> (<em>int or tuple of int, default (1, 1)</em>) – Input convolution dilate.</li>
<li><strong>h2h_dilate</strong> (<em>int or tuple of int, default (1, 1)</em>) – Recurrent convolution dilate.</li>
<li><strong>i2h_weight_initializer</strong> (<em>str or Initializer</em>) – Initializer for the input weights matrix, used for the input convolutions.</li>
<li><strong>h2h_weight_initializer</strong> (<em>str or Initializer</em>) – Initializer for the recurrent weights matrix, used for the input convolutions.</li>
<li><strong>i2h_bias_initializer</strong> (<em>str or Initializer, default zeros</em>) – Initializer for the input convolution bias vectors.</li>
<li><strong>h2h_bias_initializer</strong> (<em>str or Initializer, default zeros</em>) – Initializer for the recurrent convolution bias vectors.</li>
<li><strong>conv_layout</strong> (<em>str, default 'NCHW'</em>) – Layout for all convolution inputs, outputs and weights. Options are ‘NCHW’ and ‘NHWC’.</li>
<li><strong>activation</strong> (<em>str or Block, default 'tanh'</em>) – Type of activation function used in n_t.
If argument type is string, it’s equivalent to nn.Activation(act_type=str). See
<a class="reference internal" href="../ndarray/ndarray.html#mxnet.ndarray.Activation" title="mxnet.ndarray.Activation"><code class="xref py py-func docutils literal"><span class="pre">Activation()</span></code></a> for available choices.
Alternatively, other activation blocks such as nn.LeakyReLU can be used.</li>
<li><strong>prefix</strong> (str, default ‘<a href="#id17"><span class="problematic" id="id18">conv_gru_</span></a>‘) – Prefix for name of layers (and name of weight if params is None).</li>
<li><strong>params</strong> (<em>RNNParams, default None</em>) – Container for weight sharing between cells. Created if None.</li>
</ul>
</td>
</tr>
</tbody>
</table>
</dd></dl>
<dl class="class">
<dt id="mxnet.gluon.contrib.rnn.Conv3DGRUCell">
<em class="property">class </em><code class="descclassname">mxnet.gluon.contrib.rnn.</code><code class="descname">Conv3DGRUCell</code><span class="sig-paren">(</span><em>input_shape</em>, <em>hidden_channels</em>, <em>i2h_kernel</em>, <em>h2h_kernel</em>, <em>i2h_pad=(0</em>, <em>0</em>, <em>0)</em>, <em>i2h_dilate=(1</em>, <em>1</em>, <em>1)</em>, <em>h2h_dilate=(1</em>, <em>1</em>, <em>1)</em>, <em>i2h_weight_initializer=None</em>, <em>h2h_weight_initializer=None</em>, <em>i2h_bias_initializer='zeros'</em>, <em>h2h_bias_initializer='zeros'</em>, <em>conv_layout='NCDHW'</em>, <em>activation='tanh'</em>, <em>prefix=None</em>, <em>params=None</em><span class="sig-paren">)</span><a class="reference internal" href="../../../_modules/mxnet/gluon/contrib/rnn/conv_rnn_cell.html#Conv3DGRUCell"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#mxnet.gluon.contrib.rnn.Conv3DGRUCell" title="Permalink to this definition"></a></dt>
<dd><p>3D Convolutional Gated Rectified Unit (GRU) network cell.</p>
<div class="math">
\[\begin{split}\begin{array}{ll}
r_t = \sigma(W_r \ast x_t + R_r \ast h_{t-1} + b_r) \\
z_t = \sigma(W_z \ast x_t + R_z \ast h_{t-1} + b_z) \\
n_t = tanh(W_i \ast x_t + b_i + r_t \circ (R_n \ast h_{t-1} + b_n)) \\
h^\prime_t = (1 - z_t) \circ n_t + z_t \circ h \\
\end{array}\end{split}\]</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name"/>
<col class="field-body"/>
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first last simple">
<li><strong>input_shape</strong> (<em>tuple of int</em>) – Input tensor shape at each time step for each sample, excluding dimension of the batch size
and sequence length. Must be consistent with <cite>conv_layout</cite>.
For example, for layout ‘NCDHW’ the shape should be (C, D, H, W).</li>
<li><strong>hidden_channels</strong> (<em>int</em>) – Number of output channels.</li>
<li><strong>i2h_kernel</strong> (<em>int or tuple of int</em>) – Input convolution kernel sizes.</li>
<li><strong>h2h_kernel</strong> (<em>int or tuple of int</em>) – Recurrent convolution kernel sizes. Only odd-numbered sizes are supported.</li>
<li><strong>i2h_pad</strong> (<em>int or tuple of int, default (0, 0, 0)</em>) – Pad for input convolution.</li>
<li><strong>i2h_dilate</strong> (<em>int or tuple of int, default (1, 1, 1)</em>) – Input convolution dilate.</li>
<li><strong>h2h_dilate</strong> (<em>int or tuple of int, default (1, 1, 1)</em>) – Recurrent convolution dilate.</li>
<li><strong>i2h_weight_initializer</strong> (<em>str or Initializer</em>) – Initializer for the input weights matrix, used for the input convolutions.</li>
<li><strong>h2h_weight_initializer</strong> (<em>str or Initializer</em>) – Initializer for the recurrent weights matrix, used for the input convolutions.</li>
<li><strong>i2h_bias_initializer</strong> (<em>str or Initializer, default zeros</em>) – Initializer for the input convolution bias vectors.</li>
<li><strong>h2h_bias_initializer</strong> (<em>str or Initializer, default zeros</em>) – Initializer for the recurrent convolution bias vectors.</li>
<li><strong>conv_layout</strong> (<em>str, default 'NCDHW'</em>) – Layout for all convolution inputs, outputs and weights. Options are ‘NCDHW’ and ‘NDHWC’.</li>
<li><strong>activation</strong> (<em>str or Block, default 'tanh'</em>) – Type of activation function used in n_t.
If argument type is string, it’s equivalent to nn.Activation(act_type=str). See
<a class="reference internal" href="../ndarray/ndarray.html#mxnet.ndarray.Activation" title="mxnet.ndarray.Activation"><code class="xref py py-func docutils literal"><span class="pre">Activation()</span></code></a> for available choices.
Alternatively, other activation blocks such as nn.LeakyReLU can be used.</li>
<li><strong>prefix</strong> (str, default ‘<a href="#id19"><span class="problematic" id="id20">conv_gru_</span></a>‘) – Prefix for name of layers (and name of weight if params is None).</li>
<li><strong>params</strong> (<em>RNNParams, default None</em>) – Container for weight sharing between cells. Created if None.</li>
</ul>
</td>
</tr>
</tbody>
</table>
</dd></dl>
<dl class="class">
<dt id="mxnet.gluon.contrib.rnn.VariationalDropoutCell">
<em class="property">class </em><code class="descclassname">mxnet.gluon.contrib.rnn.</code><code class="descname">VariationalDropoutCell</code><span class="sig-paren">(</span><em>base_cell</em>, <em>drop_inputs=0.0</em>, <em>drop_states=0.0</em>, <em>drop_outputs=0.0</em><span class="sig-paren">)</span><a class="reference internal" href="../../../_modules/mxnet/gluon/contrib/rnn/rnn_cell.html#VariationalDropoutCell"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#mxnet.gluon.contrib.rnn.VariationalDropoutCell" title="Permalink to this definition"></a></dt>
<dd><p>Applies Variational Dropout on base cell.
(<a class="reference external" href="https://arxiv.org/pdf/1512.05287.pdf">https://arxiv.org/pdf/1512.05287.pdf</a>,</p>
<blockquote>
<div><a class="reference external" href="https://www.stat.berkeley.edu/~tsmoon/files/Conference/asru2015.pdf">https://www.stat.berkeley.edu/~tsmoon/files/Conference/asru2015.pdf</a>).</div></blockquote>
<p>Variational dropout uses the same dropout mask across time-steps. It can be applied to RNN
inputs, outputs, and states. The masks for them are not shared.</p>
<p>The dropout mask is initialized when stepping forward for the first time and will remain
the same until .reset() is called. Thus, if using the cell and stepping manually without calling
.unroll(), the .reset() should be called after each sequence.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name"/>
<col class="field-body"/>
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first last simple">
<li><strong>base_cell</strong> (<a class="reference internal" href="rnn.html#mxnet.gluon.rnn.RecurrentCell" title="mxnet.gluon.rnn.RecurrentCell"><em>RecurrentCell</em></a>) – The cell on which to perform variational dropout.</li>
<li><strong>drop_inputs</strong> (<em>float, default 0.</em>) – The dropout rate for inputs. Won’t apply dropout if it equals 0.</li>
<li><strong>drop_states</strong> (<em>float, default 0.</em>) – The dropout rate for state inputs on the first state channel.
Won’t apply dropout if it equals 0.</li>
<li><strong>drop_outputs</strong> (<em>float, default 0.</em>) – The dropout rate for outputs. Won’t apply dropout if it equals 0.</li>
</ul>
</td>
</tr>
</tbody>
</table>
<dl class="method">
<dt id="mxnet.gluon.contrib.rnn.VariationalDropoutCell.unroll">
<code class="descname">unroll</code><span class="sig-paren">(</span><em>length</em>, <em>inputs</em>, <em>begin_state=None</em>, <em>layout='NTC'</em>, <em>merge_outputs=None</em><span class="sig-paren">)</span><a class="reference internal" href="../../../_modules/mxnet/gluon/contrib/rnn/rnn_cell.html#VariationalDropoutCell.unroll"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#mxnet.gluon.contrib.rnn.VariationalDropoutCell.unroll" title="Permalink to this definition"></a></dt>
<dd><p>Unrolls an RNN cell across time steps.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name"/>
<col class="field-body"/>
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>length</strong> (<em>int</em>) – Number of steps to unroll.</li>
<li><strong>inputs</strong> (<em>Symbol, list of Symbol, or None</em>) – <p>If <cite>inputs</cite> is a single Symbol (usually the output
of Embedding symbol), it should have shape
(batch_size, length, ...) if <cite>layout</cite> is ‘NTC’,
or (length, batch_size, ...) if <cite>layout</cite> is ‘TNC’.</p>
<p>If <cite>inputs</cite> is a list of symbols (usually output of
previous unroll), they should all have shape
(batch_size, ...).</p>
</li>
<li><strong>begin_state</strong> (<em>nested list of Symbol, optional</em>) – Input states created by <cite>begin_state()</cite>
or output state of another cell.
Created from <cite>begin_state()</cite> if <cite>None</cite>.</li>
<li><strong>layout</strong> (<em>str, optional</em>) – <cite>layout</cite> of input symbol. Only used if inputs
is a single Symbol.</li>
<li><strong>merge_outputs</strong> (<em>bool, optional</em>) – If <cite>False</cite>, returns outputs as a list of Symbols.
If <cite>True</cite>, concatenates output across time steps
and returns a single symbol with shape
(batch_size, length, ...) if layout is ‘NTC’,
or (length, batch_size, ...) if layout is ‘TNC’.
If <cite>None</cite>, output whatever is faster.</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first last"><ul class="simple">
<li><strong>outputs</strong> (<em>list of Symbol or Symbol</em>) –
Symbol (if <cite>merge_outputs</cite> is True) or list of Symbols
(if <cite>merge_outputs</cite> is False) corresponding to the output from
the RNN from this unrolling.</li>
<li><strong>states</strong> (<em>list of Symbol</em>) –
The new state of this RNN after this unrolling.
The type of this symbol is same as the output of <cite>begin_state()</cite>.</li>
</ul>
</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>
</dd></dl>
<script>auto_index("api-reference");</script></div>
</div>
</div>
</div>
<div aria-label="main navigation" class="sphinxsidebar rightsidebar" role="navigation">
<div class="sphinxsidebarwrapper">
<h3><a href="../../../index.html">Table Of Contents</a></h3>
<ul>
<li><a class="reference internal" href="#">Gluon Contrib API</a><ul>
<li><a class="reference internal" href="#overview">Overview</a></li>
<li><a class="reference internal" href="#contrib">Contrib</a></li>
<li><a class="reference internal" href="#api-reference">API Reference</a></li>
</ul>
</li>
</ul>
</div>
</div>
</div><div class="footer">
<div class="section-disclaimer">
<div class="container">
<div>
<img height="60" src="https://raw.githubusercontent.com/dmlc/web-data/master/mxnet/image/apache_incubator_logo.png"/>
<p>
Apache MXNet is an effort undergoing incubation at The Apache Software Foundation (ASF), <strong>sponsored by the <i>Apache Incubator</i></strong>. Incubation is required of all newly accepted projects until a further review indicates that the infrastructure, communications, and decision making process have stabilized in a manner consistent with other successful ASF projects. While incubation status is not necessarily a reflection of the completeness or stability of the code, it does indicate that the project has yet to be fully endorsed by the ASF.
</p>
<p>
"Copyright © 2017, The Apache Software Foundation
Apache MXNet, MXNet, Apache, the Apache feather, and the Apache MXNet project logo are either registered trademarks or trademarks of the Apache Software Foundation."
</p>
</div>
</div>
</div>
</div> <!-- pagename != index -->
</div>
<script crossorigin="anonymous" integrity="sha384-0mSbJDEHialfmuBBQP6A4Qrprq5OVfW37PRR3j5ELqxss1yVqOtnepnHVP9aJ7xS" src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/js/bootstrap.min.js"></script>
<script src="../../../_static/js/sidebar.js" type="text/javascript"></script>
<script src="../../../_static/js/search.js" type="text/javascript"></script>
<script src="../../../_static/js/navbar.js" type="text/javascript"></script>
<script src="../../../_static/js/clipboard.min.js" type="text/javascript"></script>
<script src="../../../_static/js/copycode.js" type="text/javascript"></script>
<script src="../../../_static/js/page.js" type="text/javascript"></script>
<script type="text/javascript">
$('body').ready(function () {
$('body').css('visibility', 'visible');
});
</script>
</body>
</html>