| <!DOCTYPE html> |
| |
| <html xmlns="http://www.w3.org/1999/xhtml"> |
| <head> |
| <meta charset="utf-8" /> |
| <meta charset="utf-8"> |
| <meta name="viewport" content="width=device-width, initial-scale=1, shrink-to-fit=no"> |
| <meta http-equiv="x-ua-compatible" content="ie=edge"> |
| <style> |
| .dropdown { |
| position: relative; |
| display: inline-block; |
| } |
| |
| .dropdown-content { |
| display: none; |
| position: absolute; |
| background-color: #f9f9f9; |
| min-width: 160px; |
| box-shadow: 0px 8px 16px 0px rgba(0,0,0,0.2); |
| padding: 12px 16px; |
| z-index: 1; |
| text-align: left; |
| } |
| |
| .dropdown:hover .dropdown-content { |
| display: block; |
| } |
| |
| .dropdown-option:hover { |
| color: #FF4500; |
| } |
| |
| .dropdown-option-active { |
| color: #FF4500; |
| font-weight: lighter; |
| } |
| |
| .dropdown-option { |
| color: #000000; |
| font-weight: lighter; |
| } |
| |
| .dropdown-header { |
| color: #FFFFFF; |
| display: inline-flex; |
| } |
| |
| .dropdown-caret { |
| width: 18px; |
| } |
| |
| .dropdown-caret-path { |
| fill: #FFFFFF; |
| } |
| </style> |
| |
| <title>The N-dimensional array (ndarray) — Apache MXNet documentation</title> |
| |
| <link rel="stylesheet" href="../../../../_static/basic.css" type="text/css" /> |
| <link rel="stylesheet" href="../../../../_static/pygments.css" type="text/css" /> |
| <link rel="stylesheet" type="text/css" href="../../../../_static/mxnet.css" /> |
| <link rel="stylesheet" href="../../../../_static/material-design-lite-1.3.0/material.blue-deep_orange.min.css" type="text/css" /> |
| <link rel="stylesheet" href="../../../../_static/sphinx_materialdesign_theme.css" type="text/css" /> |
| <link rel="stylesheet" href="../../../../_static/fontawesome/all.css" type="text/css" /> |
| <link rel="stylesheet" href="../../../../_static/fonts.css" type="text/css" /> |
| <link rel="stylesheet" href="../../../../_static/feedback.css" type="text/css" /> |
| <script id="documentation_options" data-url_root="../../../../" src="../../../../_static/documentation_options.js"></script> |
| <script src="../../../../_static/jquery.js"></script> |
| <script src="../../../../_static/underscore.js"></script> |
| <script src="../../../../_static/doctools.js"></script> |
| <script src="../../../../_static/language_data.js"></script> |
| <script src="../../../../_static/google_analytics.js"></script> |
| <script src="../../../../_static/autodoc.js"></script> |
| <script crossorigin="anonymous" integrity="sha256-Ae2Vz/4ePdIu6ZyI/5ZGsYnb+m0JlOmKPjt6XZ9JJkA=" src="https://cdnjs.cloudflare.com/ajax/libs/require.js/2.3.4/require.min.js"></script> |
| <script async="async" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/latest.js?config=TeX-AMS-MML_HTMLorMML"></script> |
| <script type="text/x-mathjax-config">MathJax.Hub.Config({"tex2jax": {"inlineMath": [["$", "$"], ["\\(", "\\)"]], "processEscapes": true, "ignoreClass": "document", "processClass": "math|output_area"}})</script> |
| <link rel="shortcut icon" href="../../../../_static/mxnet-icon.png"/> |
| <link rel="index" title="Index" href="../../../../genindex.html" /> |
| <link rel="search" title="Search" href="../../../../search.html" /> |
| <link rel="next" title="Indexing" href="arrays.indexing.html" /> |
| <link rel="prev" title="Array objects" href="arrays.html" /> |
| </head> |
| <body><header class="site-header" role="banner"> |
| <div class="wrapper"> |
| <a class="site-title" rel="author" href="/"><img |
| src="../../../../_static/mxnet_logo.png" class="site-header-logo"></a> |
| <nav class="site-nav"> |
| <input type="checkbox" id="nav-trigger" class="nav-trigger"/> |
| <label for="nav-trigger"> |
| <span class="menu-icon"> |
| <svg viewBox="0 0 18 15" width="18px" height="15px"> |
| <path d="M18,1.484c0,0.82-0.665,1.484-1.484,1.484H1.484C0.665,2.969,0,2.304,0,1.484l0,0C0,0.665,0.665,0,1.484,0 h15.032C17.335,0,18,0.665,18,1.484L18,1.484z M18,7.516C18,8.335,17.335,9,16.516,9H1.484C0.665,9,0,8.335,0,7.516l0,0 c0-0.82,0.665-1.484,1.484-1.484h15.032C17.335,6.031,18,6.696,18,7.516L18,7.516z M18,13.516C18,14.335,17.335,15,16.516,15H1.484 C0.665,15,0,14.335,0,13.516l0,0c0-0.82,0.665-1.483,1.484-1.483h15.032C17.335,12.031,18,12.695,18,13.516L18,13.516z"/> |
| </svg> |
| </span> |
| </label> |
| |
| <div class="trigger"> |
| <a class="page-link" href="/get_started">Get Started</a> |
| <a class="page-link" href="/blog">Blog</a> |
| <a class="page-link" href="/features">Features</a> |
| <a class="page-link" href="/ecosystem">Ecosystem</a> |
| <a class="page-link page-current" href="/api">Docs & Tutorials</a> |
| <a class="page-link" href="https://github.com/apache/incubator-mxnet">GitHub</a> |
| <div class="dropdown"> |
| <span class="dropdown-header">master |
| <svg class="dropdown-caret" viewBox="0 0 32 32" class="icon icon-caret-bottom" aria-hidden="true"><path class="dropdown-caret-path" d="M24 11.305l-7.997 11.39L8 11.305z"></path></svg> |
| </span> |
| <div class="dropdown-content"> |
| <a class="dropdown-option-active" href="/">master</a><br> |
| <a class="dropdown-option" href="/versions/1.6/">1.6</a><br> |
| <a class="dropdown-option" href="/versions/1.5.0/">1.5.0</a><br> |
| <a class="dropdown-option" href="/versions/1.4.1/">1.4.1</a><br> |
| <a class="dropdown-option" href="/versions/1.3.1/">1.3.1</a><br> |
| <a class="dropdown-option" href="/versions/1.2.1/">1.2.1</a><br> |
| <a class="dropdown-option" href="/versions/1.1.0/">1.1.0</a><br> |
| <a class="dropdown-option" href="/versions/1.0.0/">1.0.0</a><br> |
| <a class="dropdown-option" href="/versions/0.12.1/">0.12.1</a><br> |
| <a class="dropdown-option" href="/versions/0.11.0/">0.11.0</a> |
| </div> |
| </div> |
| </div> |
| </nav> |
| </div> |
| </header> |
| <div class="mdl-layout mdl-js-layout mdl-layout--fixed-header mdl-layout--fixed-drawer"><header class="mdl-layout__header mdl-layout__header--waterfall "> |
| <div class="mdl-layout__header-row"> |
| |
| <nav class="mdl-navigation breadcrumb"> |
| <a class="mdl-navigation__link" href="../../../index.html">Python Tutorials</a><i class="material-icons">navigate_next</i> |
| <a class="mdl-navigation__link" href="../../index.html">Packages</a><i class="material-icons">navigate_next</i> |
| <a class="mdl-navigation__link" href="../index.html">NDArray</a><i class="material-icons">navigate_next</i> |
| <a class="mdl-navigation__link" href="index.html">NP on MXNet reference</a><i class="material-icons">navigate_next</i> |
| <a class="mdl-navigation__link" href="arrays.html">Array objects</a><i class="material-icons">navigate_next</i> |
| <a class="mdl-navigation__link is-active">The N-dimensional array (<code class="xref py py-class docutils literal notranslate"><span class="pre">ndarray</span></code>)</a> |
| </nav> |
| <div class="mdl-layout-spacer"></div> |
| <nav class="mdl-navigation"> |
| |
| <form class="form-inline pull-sm-right" action="../../../../search.html" method="get"> |
| <div class="mdl-textfield mdl-js-textfield mdl-textfield--expandable mdl-textfield--floating-label mdl-textfield--align-right"> |
| <label id="quick-search-icon" class="mdl-button mdl-js-button mdl-button--icon" for="waterfall-exp"> |
| <i class="material-icons">search</i> |
| </label> |
| <div class="mdl-textfield__expandable-holder"> |
| <input class="mdl-textfield__input" type="text" name="q" id="waterfall-exp" placeholder="Search" /> |
| <input type="hidden" name="check_keywords" value="yes" /> |
| <input type="hidden" name="area" value="default" /> |
| </div> |
| </div> |
| <div class="mdl-tooltip" data-mdl-for="quick-search-icon"> |
| Quick search |
| </div> |
| </form> |
| |
| <a id="button-show-source" |
| class="mdl-button mdl-js-button mdl-button--icon" |
| href="../../../../_sources/tutorials/packages/ndarray/deepnumpy/arrays.ndarray.rst" rel="nofollow"> |
| <i class="material-icons">code</i> |
| </a> |
| <div class="mdl-tooltip" data-mdl-for="button-show-source"> |
| Show Source |
| </div> |
| </nav> |
| </div> |
| <div class="mdl-layout__header-row header-links"> |
| <div class="mdl-layout-spacer"></div> |
| <nav class="mdl-navigation"> |
| </nav> |
| </div> |
| </header><header class="mdl-layout__drawer"> |
| |
| <div class="globaltoc"> |
| <span class="mdl-layout-title toc">Table Of Contents</span> |
| |
| |
| |
| <nav class="mdl-navigation"> |
| <ul class="current"> |
| <li class="toctree-l1 current"><a class="reference internal" href="../../../index.html">Python Tutorials</a><ul class="current"> |
| <li class="toctree-l2"><a class="reference internal" href="../../../getting-started/index.html">Getting Started</a><ul> |
| <li class="toctree-l3"><a class="reference internal" href="../../../getting-started/crash-course/index.html">Getting started with NP on MXNet</a><ul> |
| <li class="toctree-l4"><a class="reference internal" href="../../../getting-started/crash-course/1-ndarray.html">Step 1: Manipulate data with NP on MXNet</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="../../../getting-started/crash-course/2-nn.html">Step 2: Create a neural network</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="../../../getting-started/crash-course/3-autograd.html">Step 3: Automatic differentiation with autograd</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="../../../getting-started/crash-course/4-train.html">Step 4: Train the neural network</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="../../../getting-started/crash-course/5-predict.html">Step 5: Predict with a pretrained model</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="../../../getting-started/crash-course/6-use_gpus.html">Step 6: Use GPUs to increase efficiency</a></li> |
| </ul> |
| </li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../getting-started/deepnumpy/index.html">What is NP on MXNet</a><ul> |
| <li class="toctree-l4"><a class="reference internal" href="../../../getting-started/deepnumpy/cheat-sheet.html">The NP on MXNet cheat sheet</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="../../../getting-started/deepnumpy/deepnumpy-vs-numpy.html">Differences between NP on MXNet and NumPy</a></li> |
| </ul> |
| </li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../getting-started/to-mxnet/index.html">Moving to MXNet from Other Frameworks</a><ul> |
| <li class="toctree-l4"><a class="reference internal" href="../../../getting-started/to-mxnet/pytorch.html">PyTorch vs Apache MXNet</a></li> |
| </ul> |
| </li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../getting-started/gluon_from_experiment_to_deployment.html">Gluon: from experiment to deployment</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../getting-started/logistic_regression_explained.html">Logistic regression explained</a></li> |
| <li class="toctree-l3"><a class="reference external" href="https://mxnet.apache.org/api/python/docs/tutorials/packages/gluon/image/mnist.html">MNIST</a></li> |
| </ul> |
| </li> |
| <li class="toctree-l2 current"><a class="reference internal" href="../../index.html">Packages</a><ul class="current"> |
| <li class="toctree-l3"><a class="reference internal" href="../../autograd/index.html">Automatic Differentiation</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../gluon/index.html">Gluon</a><ul> |
| <li class="toctree-l4"><a class="reference internal" href="../../gluon/blocks/index.html">Blocks</a><ul> |
| <li class="toctree-l5"><a class="reference internal" href="../../gluon/blocks/custom-layer.html">Custom Layers</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../gluon/blocks/custom_layer_beginners.html">Customer Layers (Beginners)</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../gluon/blocks/hybridize.html">Hybridize</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../gluon/blocks/init.html">Initialization</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../gluon/blocks/naming.html">Parameter and Block Naming</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../gluon/blocks/nn.html">Layers and Blocks</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../gluon/blocks/parameters.html">Parameter Management</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../gluon/blocks/save_load_params.html">Saving and Loading Gluon Models</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../gluon/blocks/activations/activations.html">Activation Blocks</a></li> |
| </ul> |
| </li> |
| <li class="toctree-l4"><a class="reference internal" href="../../gluon/data/index.html">Data Tutorials</a><ul> |
| <li class="toctree-l5"><a class="reference internal" href="../../gluon/data/data_augmentation.html">Image Augmentation</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../gluon/data/data_augmentation.html#Spatial-Augmentation">Spatial Augmentation</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../gluon/data/data_augmentation.html#Color-Augmentation">Color Augmentation</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../gluon/data/data_augmentation.html#Composed-Augmentations">Composed Augmentations</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../gluon/data/datasets.html">Gluon <code class="docutils literal notranslate"><span class="pre">Dataset</span></code>s and <code class="docutils literal notranslate"><span class="pre">DataLoader</span></code></a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../gluon/data/datasets.html#Using-own-data-with-included-Datasets">Using own data with included <code class="docutils literal notranslate"><span class="pre">Dataset</span></code>s</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../gluon/data/datasets.html#Using-own-data-with-custom-Datasets">Using own data with custom <code class="docutils literal notranslate"><span class="pre">Dataset</span></code>s</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../gluon/data/datasets.html#Appendix:-Upgrading-from-Module-DataIter-to-Gluon-DataLoader">Appendix: Upgrading from Module <code class="docutils literal notranslate"><span class="pre">DataIter</span></code> to Gluon <code class="docutils literal notranslate"><span class="pre">DataLoader</span></code></a></li> |
| </ul> |
| </li> |
| <li class="toctree-l4"><a class="reference internal" href="../../gluon/image/index.html">Image Tutorials</a><ul> |
| <li class="toctree-l5"><a class="reference internal" href="../../gluon/image/image-augmentation.html">Image Augmentation</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../gluon/image/info_gan.html">Image similarity search with InfoGAN</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../gluon/image/mnist.html">Handwritten Digit Recognition</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../gluon/image/pretrained_models.html">Using pre-trained models in MXNet</a></li> |
| </ul> |
| </li> |
| <li class="toctree-l4"><a class="reference internal" href="../../gluon/loss/index.html">Losses</a><ul> |
| <li class="toctree-l5"><a class="reference internal" href="../../gluon/loss/custom-loss.html">Custom Loss Blocks</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../gluon/loss/kl_divergence.html">Kullback-Leibler (KL) Divergence</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../gluon/loss/loss.html">Loss functions</a></li> |
| </ul> |
| </li> |
| <li class="toctree-l4"><a class="reference internal" href="../../gluon/text/index.html">Text Tutorials</a><ul> |
| <li class="toctree-l5"><a class="reference internal" href="../../gluon/text/gnmt.html">Google Neural Machine Translation</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../gluon/text/transformer.html">Machine Translation with Transformer</a></li> |
| </ul> |
| </li> |
| <li class="toctree-l4"><a class="reference internal" href="../../gluon/training/index.html">Training</a><ul> |
| <li class="toctree-l5"><a class="reference internal" href="../../gluon/training/fit_api_tutorial.html">MXNet Gluon Fit API</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../gluon/training/trainer.html">Trainer</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../gluon/training/learning_rates/index.html">Learning Rates</a><ul> |
| <li class="toctree-l6"><a class="reference internal" href="../../gluon/training/learning_rates/learning_rate_finder.html">Learning Rate Finder</a></li> |
| <li class="toctree-l6"><a class="reference internal" href="../../gluon/training/learning_rates/learning_rate_schedules.html">Learning Rate Schedules</a></li> |
| <li class="toctree-l6"><a class="reference internal" href="../../gluon/training/learning_rates/learning_rate_schedules_advanced.html">Advanced Learning Rate Schedules</a></li> |
| </ul> |
| </li> |
| <li class="toctree-l5"><a class="reference internal" href="../../gluon/training/normalization/index.html">Normalization Blocks</a></li> |
| </ul> |
| </li> |
| </ul> |
| </li> |
| <li class="toctree-l3"><a class="reference internal" href="../../kvstore/index.html">KVStore</a><ul> |
| <li class="toctree-l4"><a class="reference internal" href="../../kvstore/kvstore.html">Distributed Key-Value Store</a></li> |
| </ul> |
| </li> |
| <li class="toctree-l3 current"><a class="reference internal" href="../index.html">NDArray</a><ul class="current"> |
| <li class="toctree-l4"><a class="reference internal" href="../01-ndarray-intro.html">An Intro: Manipulate Data the MXNet Way with NDArray</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="../02-ndarray-operations.html">NDArray Operations</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="../03-ndarray-contexts.html">NDArray Contexts</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="../gotchas_numpy_in_mxnet.html">Gotchas using NumPy in Apache MXNet</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="../sparse/index.html">Tutorials</a><ul> |
| <li class="toctree-l5"><a class="reference internal" href="../sparse/csr.html">CSRNDArray - NDArray in Compressed Sparse Row Storage Format</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../sparse/row_sparse.html">RowSparseNDArray - NDArray for Sparse Gradient Updates</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../sparse/train_gluon.html">Sparse NDArrays with Gluon</a></li> |
| </ul> |
| </li> |
| <li class="toctree-l4 current"><a class="reference internal" href="index.html">NP on MXNet reference</a><ul class="current"> |
| <li class="toctree-l5 current"><a class="reference internal" href="arrays.html">Array objects</a><ul class="current"> |
| <li class="toctree-l6 current"><a class="current reference internal" href="#">The N-dimensional array (<code class="xref py py-class docutils literal notranslate"><span class="pre">ndarray</span></code>)</a></li> |
| <li class="toctree-l6"><a class="reference internal" href="arrays.indexing.html">Indexing</a></li> |
| </ul> |
| </li> |
| <li class="toctree-l5"><a class="reference internal" href="routines.html">Routines</a><ul> |
| <li class="toctree-l6"><a class="reference internal" href="routines.array-creation.html">Array creation routines</a></li> |
| <li class="toctree-l6"><a class="reference internal" href="routines.array-manipulation.html">Array manipulation routines</a></li> |
| <li class="toctree-l6"><a class="reference internal" href="routines.io.html">Input and output</a></li> |
| <li class="toctree-l6"><a class="reference internal" href="routines.linalg.html">Linear algebra (<code class="xref py py-mod docutils literal notranslate"><span class="pre">numpy.linalg</span></code>)</a></li> |
| <li class="toctree-l6"><a class="reference internal" href="routines.math.html">Mathematical functions</a></li> |
| <li class="toctree-l6"><a class="reference internal" href="random/index.html">np.random</a></li> |
| <li class="toctree-l6"><a class="reference internal" href="routines.sort.html">Sorting, searching, and counting</a></li> |
| <li class="toctree-l6"><a class="reference internal" href="routines.statistics.html">Statistics</a></li> |
| </ul> |
| </li> |
| <li class="toctree-l5"><a class="reference internal" href="npx.html">NP Extensions</a></li> |
| </ul> |
| </li> |
| </ul> |
| </li> |
| <li class="toctree-l3"><a class="reference internal" href="../../onnx/index.html">ONNX</a><ul> |
| <li class="toctree-l4"><a class="reference internal" href="../../onnx/fine_tuning_gluon.html">Fine-tuning an ONNX model</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="../../onnx/inference_on_onnx_model.html">Running inference on MXNet/Gluon from an ONNX model</a></li> |
| <li class="toctree-l4"><a class="reference external" href="https://mxnet.apache.org/api/python/docs/tutorials/deploy/export/onnx.html">Export ONNX Models</a></li> |
| </ul> |
| </li> |
| <li class="toctree-l3"><a class="reference internal" href="../../optimizer/index.html">Optimizers</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../viz/index.html">Visualization</a><ul> |
| <li class="toctree-l4"><a class="reference external" href="https://mxnet.apache.org/api/faq/visualize_graph">Visualize networks</a></li> |
| </ul> |
| </li> |
| </ul> |
| </li> |
| <li class="toctree-l2"><a class="reference internal" href="../../../performance/index.html">Performance</a><ul> |
| <li class="toctree-l3"><a class="reference internal" href="../../../performance/compression/index.html">Compression</a><ul> |
| <li class="toctree-l4"><a class="reference internal" href="../../../performance/compression/int8.html">Deploy with int-8</a></li> |
| <li class="toctree-l4"><a class="reference external" href="https://mxnet.apache.org/api/faq/float16">Float16</a></li> |
| <li class="toctree-l4"><a class="reference external" href="https://mxnet.apache.org/api/faq/gradient_compression">Gradient Compression</a></li> |
| <li class="toctree-l4"><a class="reference external" href="https://gluon-cv.mxnet.io/build/examples_deployment/int8_inference.html">GluonCV with Quantized Models</a></li> |
| </ul> |
| </li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../performance/backend/index.html">Accelerated Backend Tools</a><ul> |
| <li class="toctree-l4"><a class="reference internal" href="../../../performance/backend/mkldnn/index.html">Intel MKL-DNN</a><ul> |
| <li class="toctree-l5"><a class="reference internal" href="../../../performance/backend/mkldnn/mkldnn_readme.html">Install MXNet with MKL-DNN</a></li> |
| </ul> |
| </li> |
| <li class="toctree-l4"><a class="reference internal" href="../../../performance/backend/tensorrt/index.html">TensorRT</a><ul class="simple"> |
| </ul> |
| </li> |
| <li class="toctree-l4"><a class="reference internal" href="../../../performance/backend/tvm.html">Use TVM</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="../../../performance/backend/profiler.html">Profiling MXNet Models</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="../../../performance/backend/amp.html">Using AMP: Automatic Mixed Precision</a></li> |
| </ul> |
| </li> |
| </ul> |
| </li> |
| <li class="toctree-l2"><a class="reference internal" href="../../../deploy/index.html">Deployment</a><ul> |
| <li class="toctree-l3"><a class="reference internal" href="../../../deploy/export/index.html">Export</a><ul> |
| <li class="toctree-l4"><a class="reference internal" href="../../../deploy/export/onnx.html">Exporting to ONNX format</a></li> |
| <li class="toctree-l4"><a class="reference external" href="https://gluon-cv.mxnet.io/build/examples_deployment/export_network.html">Export Gluon CV Models</a></li> |
| <li class="toctree-l4"><a class="reference external" href="https://mxnet.apache.org/api/python/docs/tutorials/packages/gluon/blocks/save_load_params.html">Save / Load Parameters</a></li> |
| </ul> |
| </li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../deploy/inference/index.html">Inference</a><ul> |
| <li class="toctree-l4"><a class="reference internal" href="../../../deploy/inference/cpp.html">Deploy into C++</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="../../../deploy/inference/image_classification_jetson.html">Image Classication using pretrained ResNet-50 model on Jetson module</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="../../../deploy/inference/scala.html">Deploy into a Java or Scala Environment</a></li> |
| </ul> |
| </li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../deploy/run-on-aws/index.html">Run on AWS</a><ul> |
| <li class="toctree-l4"><a class="reference internal" href="../../../deploy/run-on-aws/use_ec2.html">Run on an EC2 Instance</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="../../../deploy/run-on-aws/use_sagemaker.html">Run on Amazon SageMaker</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="../../../deploy/run-on-aws/cloud.html">MXNet on the Cloud</a></li> |
| </ul> |
| </li> |
| </ul> |
| </li> |
| <li class="toctree-l2"><a class="reference internal" href="../../../extend/index.html">Extend</a><ul> |
| <li class="toctree-l3"><a class="reference internal" href="../../../extend/custom_layer.html">Custom Layers</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../extend/customop.html">Custom Numpy Operators</a></li> |
| <li class="toctree-l3"><a class="reference external" href="https://mxnet.apache.org/api/faq/new_op">New Operator Creation</a></li> |
| <li class="toctree-l3"><a class="reference external" href="https://mxnet.apache.org/api/faq/add_op_in_backend">New Operator in MXNet Backend</a></li> |
| </ul> |
| </li> |
| </ul> |
| </li> |
| <li class="toctree-l1"><a class="reference internal" href="../../../../api/index.html">Python API</a><ul> |
| <li class="toctree-l2"><a class="reference internal" href="../../../../api/ndarray/index.html">mxnet.ndarray</a><ul> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../api/ndarray/ndarray.html">ndarray</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../api/ndarray/contrib/index.html">ndarray.contrib</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../api/ndarray/image/index.html">ndarray.image</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../api/ndarray/linalg/index.html">ndarray.linalg</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../api/ndarray/op/index.html">ndarray.op</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../api/ndarray/random/index.html">ndarray.random</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../api/ndarray/register/index.html">ndarray.register</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../api/ndarray/sparse/index.html">ndarray.sparse</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../api/ndarray/utils/index.html">ndarray.utils</a></li> |
| </ul> |
| </li> |
| <li class="toctree-l2"><a class="reference internal" href="../../../../api/gluon/index.html">mxnet.gluon</a><ul> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../api/gluon/block.html">gluon.Block</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../api/gluon/hybrid_block.html">gluon.HybridBlock</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../api/gluon/symbol_block.html">gluon.SymbolBlock</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../api/gluon/constant.html">gluon.Constant</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../api/gluon/parameter.html">gluon.Parameter</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../api/gluon/parameter_dict.html">gluon.ParameterDict</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../api/gluon/trainer.html">gluon.Trainer</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../api/gluon/contrib/index.html">gluon.contrib</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../api/gluon/data/index.html">gluon.data</a><ul> |
| <li class="toctree-l4"><a class="reference internal" href="../../../../api/gluon/data/vision/index.html">data.vision</a><ul> |
| <li class="toctree-l5"><a class="reference internal" href="../../../../api/gluon/data/vision/datasets/index.html">vision.datasets</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../../api/gluon/data/vision/transforms/index.html">vision.transforms</a></li> |
| </ul> |
| </li> |
| </ul> |
| </li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../api/gluon/loss/index.html">gluon.loss</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../api/gluon/model_zoo/index.html">gluon.model_zoo.vision</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../api/gluon/nn/index.html">gluon.nn</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../api/gluon/rnn/index.html">gluon.rnn</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../api/gluon/utils/index.html">gluon.utils</a></li> |
| </ul> |
| </li> |
| <li class="toctree-l2"><a class="reference internal" href="../../../../api/autograd/index.html">mxnet.autograd</a></li> |
| <li class="toctree-l2"><a class="reference internal" href="../../../../api/initializer/index.html">mxnet.initializer</a></li> |
| <li class="toctree-l2"><a class="reference internal" href="../../../../api/optimizer/index.html">mxnet.optimizer</a></li> |
| <li class="toctree-l2"><a class="reference internal" href="../../../../api/lr_scheduler/index.html">mxnet.lr_scheduler</a></li> |
| <li class="toctree-l2"><a class="reference internal" href="../../../../api/kvstore/index.html">mxnet.kvstore</a></li> |
| <li class="toctree-l2"><a class="reference internal" href="../../../../api/symbol/index.html">mxnet.symbol</a><ul> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../api/symbol/symbol.html">symbol</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../api/symbol/contrib/index.html">symbol.contrib</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../api/symbol/image/index.html">symbol.image</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../api/symbol/linalg/index.html">symbol.linalg</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../api/symbol/op/index.html">symbol.op</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../api/symbol/random/index.html">symbol.random</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../api/symbol/register/index.html">symbol.register</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../api/symbol/sparse/index.html">symbol.sparse</a></li> |
| </ul> |
| </li> |
| <li class="toctree-l2"><a class="reference internal" href="../../../../api/module/index.html">mxnet.module</a></li> |
| <li class="toctree-l2"><a class="reference internal" href="../../../../api/contrib/index.html">mxnet.contrib</a><ul> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../api/contrib/autograd/index.html">contrib.autograd</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../api/contrib/io/index.html">contrib.io</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../api/contrib/ndarray/index.html">contrib.ndarray</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../api/contrib/onnx/index.html">contrib.onnx</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../api/contrib/quantization/index.html">contrib.quantization</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../api/contrib/symbol/index.html">contrib.symbol</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../api/contrib/tensorboard/index.html">contrib.tensorboard</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../api/contrib/tensorrt/index.html">contrib.tensorrt</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../api/contrib/text/index.html">contrib.text</a></li> |
| </ul> |
| </li> |
| <li class="toctree-l2"><a class="reference internal" href="../../../../api/mxnet/index.html">mxnet</a><ul> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../api/mxnet/attribute/index.html">mxnet.attribute</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../api/mxnet/base/index.html">mxnet.base</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../api/mxnet/callback/index.html">mxnet.callback</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../api/mxnet/context/index.html">mxnet.context</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../api/mxnet/engine/index.html">mxnet.engine</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../api/mxnet/executor/index.html">mxnet.executor</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../api/mxnet/executor_manager/index.html">mxnet.executor_manager</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../api/mxnet/image/index.html">mxnet.image</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../api/mxnet/io/index.html">mxnet.io</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../api/mxnet/kvstore_server/index.html">mxnet.kvstore_server</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../api/mxnet/libinfo/index.html">mxnet.libinfo</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../api/mxnet/log/index.html">mxnet.log</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../api/mxnet/model/index.html">mxnet.model</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../api/mxnet/monitor/index.html">mxnet.monitor</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../api/mxnet/name/index.html">mxnet.name</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../api/mxnet/notebook/index.html">mxnet.notebook</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../api/mxnet/operator/index.html">mxnet.operator</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../api/mxnet/profiler/index.html">mxnet.profiler</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../api/mxnet/random/index.html">mxnet.random</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../api/mxnet/recordio/index.html">mxnet.recordio</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../api/mxnet/registry/index.html">mxnet.registry</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../api/mxnet/rtc/index.html">mxnet.rtc</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../api/mxnet/runtime/index.html">mxnet.runtime</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../api/mxnet/test_utils/index.html">mxnet.test_utils</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../api/mxnet/torch/index.html">mxnet.torch</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../api/mxnet/util/index.html">mxnet.util</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../api/mxnet/visualization/index.html">mxnet.visualization</a></li> |
| </ul> |
| </li> |
| </ul> |
| </li> |
| </ul> |
| |
| </nav> |
| |
| </div> |
| |
| </header> |
| <main class="mdl-layout__content" tabIndex="0"> |
| |
| <script type="text/javascript" src="../../../../_static/sphinx_materialdesign_theme.js "></script> |
| <script type="text/javascript" src="../../../../_static/feedback.js"></script> |
| <header class="mdl-layout__drawer"> |
| |
| <div class="globaltoc"> |
| <span class="mdl-layout-title toc">Table Of Contents</span> |
| |
| |
| |
| <nav class="mdl-navigation"> |
| <ul class="current"> |
| <li class="toctree-l1 current"><a class="reference internal" href="../../../index.html">Python Tutorials</a><ul class="current"> |
| <li class="toctree-l2"><a class="reference internal" href="../../../getting-started/index.html">Getting Started</a><ul> |
| <li class="toctree-l3"><a class="reference internal" href="../../../getting-started/crash-course/index.html">Getting started with NP on MXNet</a><ul> |
| <li class="toctree-l4"><a class="reference internal" href="../../../getting-started/crash-course/1-ndarray.html">Step 1: Manipulate data with NP on MXNet</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="../../../getting-started/crash-course/2-nn.html">Step 2: Create a neural network</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="../../../getting-started/crash-course/3-autograd.html">Step 3: Automatic differentiation with autograd</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="../../../getting-started/crash-course/4-train.html">Step 4: Train the neural network</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="../../../getting-started/crash-course/5-predict.html">Step 5: Predict with a pretrained model</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="../../../getting-started/crash-course/6-use_gpus.html">Step 6: Use GPUs to increase efficiency</a></li> |
| </ul> |
| </li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../getting-started/deepnumpy/index.html">What is NP on MXNet</a><ul> |
| <li class="toctree-l4"><a class="reference internal" href="../../../getting-started/deepnumpy/cheat-sheet.html">The NP on MXNet cheat sheet</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="../../../getting-started/deepnumpy/deepnumpy-vs-numpy.html">Differences between NP on MXNet and NumPy</a></li> |
| </ul> |
| </li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../getting-started/to-mxnet/index.html">Moving to MXNet from Other Frameworks</a><ul> |
| <li class="toctree-l4"><a class="reference internal" href="../../../getting-started/to-mxnet/pytorch.html">PyTorch vs Apache MXNet</a></li> |
| </ul> |
| </li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../getting-started/gluon_from_experiment_to_deployment.html">Gluon: from experiment to deployment</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../getting-started/logistic_regression_explained.html">Logistic regression explained</a></li> |
| <li class="toctree-l3"><a class="reference external" href="https://mxnet.apache.org/api/python/docs/tutorials/packages/gluon/image/mnist.html">MNIST</a></li> |
| </ul> |
| </li> |
| <li class="toctree-l2 current"><a class="reference internal" href="../../index.html">Packages</a><ul class="current"> |
| <li class="toctree-l3"><a class="reference internal" href="../../autograd/index.html">Automatic Differentiation</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../gluon/index.html">Gluon</a><ul> |
| <li class="toctree-l4"><a class="reference internal" href="../../gluon/blocks/index.html">Blocks</a><ul> |
| <li class="toctree-l5"><a class="reference internal" href="../../gluon/blocks/custom-layer.html">Custom Layers</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../gluon/blocks/custom_layer_beginners.html">Customer Layers (Beginners)</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../gluon/blocks/hybridize.html">Hybridize</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../gluon/blocks/init.html">Initialization</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../gluon/blocks/naming.html">Parameter and Block Naming</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../gluon/blocks/nn.html">Layers and Blocks</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../gluon/blocks/parameters.html">Parameter Management</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../gluon/blocks/save_load_params.html">Saving and Loading Gluon Models</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../gluon/blocks/activations/activations.html">Activation Blocks</a></li> |
| </ul> |
| </li> |
| <li class="toctree-l4"><a class="reference internal" href="../../gluon/data/index.html">Data Tutorials</a><ul> |
| <li class="toctree-l5"><a class="reference internal" href="../../gluon/data/data_augmentation.html">Image Augmentation</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../gluon/data/data_augmentation.html#Spatial-Augmentation">Spatial Augmentation</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../gluon/data/data_augmentation.html#Color-Augmentation">Color Augmentation</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../gluon/data/data_augmentation.html#Composed-Augmentations">Composed Augmentations</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../gluon/data/datasets.html">Gluon <code class="docutils literal notranslate"><span class="pre">Dataset</span></code>s and <code class="docutils literal notranslate"><span class="pre">DataLoader</span></code></a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../gluon/data/datasets.html#Using-own-data-with-included-Datasets">Using own data with included <code class="docutils literal notranslate"><span class="pre">Dataset</span></code>s</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../gluon/data/datasets.html#Using-own-data-with-custom-Datasets">Using own data with custom <code class="docutils literal notranslate"><span class="pre">Dataset</span></code>s</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../gluon/data/datasets.html#Appendix:-Upgrading-from-Module-DataIter-to-Gluon-DataLoader">Appendix: Upgrading from Module <code class="docutils literal notranslate"><span class="pre">DataIter</span></code> to Gluon <code class="docutils literal notranslate"><span class="pre">DataLoader</span></code></a></li> |
| </ul> |
| </li> |
| <li class="toctree-l4"><a class="reference internal" href="../../gluon/image/index.html">Image Tutorials</a><ul> |
| <li class="toctree-l5"><a class="reference internal" href="../../gluon/image/image-augmentation.html">Image Augmentation</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../gluon/image/info_gan.html">Image similarity search with InfoGAN</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../gluon/image/mnist.html">Handwritten Digit Recognition</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../gluon/image/pretrained_models.html">Using pre-trained models in MXNet</a></li> |
| </ul> |
| </li> |
| <li class="toctree-l4"><a class="reference internal" href="../../gluon/loss/index.html">Losses</a><ul> |
| <li class="toctree-l5"><a class="reference internal" href="../../gluon/loss/custom-loss.html">Custom Loss Blocks</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../gluon/loss/kl_divergence.html">Kullback-Leibler (KL) Divergence</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../gluon/loss/loss.html">Loss functions</a></li> |
| </ul> |
| </li> |
| <li class="toctree-l4"><a class="reference internal" href="../../gluon/text/index.html">Text Tutorials</a><ul> |
| <li class="toctree-l5"><a class="reference internal" href="../../gluon/text/gnmt.html">Google Neural Machine Translation</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../gluon/text/transformer.html">Machine Translation with Transformer</a></li> |
| </ul> |
| </li> |
| <li class="toctree-l4"><a class="reference internal" href="../../gluon/training/index.html">Training</a><ul> |
| <li class="toctree-l5"><a class="reference internal" href="../../gluon/training/fit_api_tutorial.html">MXNet Gluon Fit API</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../gluon/training/trainer.html">Trainer</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../gluon/training/learning_rates/index.html">Learning Rates</a><ul> |
| <li class="toctree-l6"><a class="reference internal" href="../../gluon/training/learning_rates/learning_rate_finder.html">Learning Rate Finder</a></li> |
| <li class="toctree-l6"><a class="reference internal" href="../../gluon/training/learning_rates/learning_rate_schedules.html">Learning Rate Schedules</a></li> |
| <li class="toctree-l6"><a class="reference internal" href="../../gluon/training/learning_rates/learning_rate_schedules_advanced.html">Advanced Learning Rate Schedules</a></li> |
| </ul> |
| </li> |
| <li class="toctree-l5"><a class="reference internal" href="../../gluon/training/normalization/index.html">Normalization Blocks</a></li> |
| </ul> |
| </li> |
| </ul> |
| </li> |
| <li class="toctree-l3"><a class="reference internal" href="../../kvstore/index.html">KVStore</a><ul> |
| <li class="toctree-l4"><a class="reference internal" href="../../kvstore/kvstore.html">Distributed Key-Value Store</a></li> |
| </ul> |
| </li> |
| <li class="toctree-l3 current"><a class="reference internal" href="../index.html">NDArray</a><ul class="current"> |
| <li class="toctree-l4"><a class="reference internal" href="../01-ndarray-intro.html">An Intro: Manipulate Data the MXNet Way with NDArray</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="../02-ndarray-operations.html">NDArray Operations</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="../03-ndarray-contexts.html">NDArray Contexts</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="../gotchas_numpy_in_mxnet.html">Gotchas using NumPy in Apache MXNet</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="../sparse/index.html">Tutorials</a><ul> |
| <li class="toctree-l5"><a class="reference internal" href="../sparse/csr.html">CSRNDArray - NDArray in Compressed Sparse Row Storage Format</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../sparse/row_sparse.html">RowSparseNDArray - NDArray for Sparse Gradient Updates</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../sparse/train_gluon.html">Sparse NDArrays with Gluon</a></li> |
| </ul> |
| </li> |
| <li class="toctree-l4 current"><a class="reference internal" href="index.html">NP on MXNet reference</a><ul class="current"> |
| <li class="toctree-l5 current"><a class="reference internal" href="arrays.html">Array objects</a><ul class="current"> |
| <li class="toctree-l6 current"><a class="current reference internal" href="#">The N-dimensional array (<code class="xref py py-class docutils literal notranslate"><span class="pre">ndarray</span></code>)</a></li> |
| <li class="toctree-l6"><a class="reference internal" href="arrays.indexing.html">Indexing</a></li> |
| </ul> |
| </li> |
| <li class="toctree-l5"><a class="reference internal" href="routines.html">Routines</a><ul> |
| <li class="toctree-l6"><a class="reference internal" href="routines.array-creation.html">Array creation routines</a></li> |
| <li class="toctree-l6"><a class="reference internal" href="routines.array-manipulation.html">Array manipulation routines</a></li> |
| <li class="toctree-l6"><a class="reference internal" href="routines.io.html">Input and output</a></li> |
| <li class="toctree-l6"><a class="reference internal" href="routines.linalg.html">Linear algebra (<code class="xref py py-mod docutils literal notranslate"><span class="pre">numpy.linalg</span></code>)</a></li> |
| <li class="toctree-l6"><a class="reference internal" href="routines.math.html">Mathematical functions</a></li> |
| <li class="toctree-l6"><a class="reference internal" href="random/index.html">np.random</a></li> |
| <li class="toctree-l6"><a class="reference internal" href="routines.sort.html">Sorting, searching, and counting</a></li> |
| <li class="toctree-l6"><a class="reference internal" href="routines.statistics.html">Statistics</a></li> |
| </ul> |
| </li> |
| <li class="toctree-l5"><a class="reference internal" href="npx.html">NP Extensions</a></li> |
| </ul> |
| </li> |
| </ul> |
| </li> |
| <li class="toctree-l3"><a class="reference internal" href="../../onnx/index.html">ONNX</a><ul> |
| <li class="toctree-l4"><a class="reference internal" href="../../onnx/fine_tuning_gluon.html">Fine-tuning an ONNX model</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="../../onnx/inference_on_onnx_model.html">Running inference on MXNet/Gluon from an ONNX model</a></li> |
| <li class="toctree-l4"><a class="reference external" href="https://mxnet.apache.org/api/python/docs/tutorials/deploy/export/onnx.html">Export ONNX Models</a></li> |
| </ul> |
| </li> |
| <li class="toctree-l3"><a class="reference internal" href="../../optimizer/index.html">Optimizers</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../viz/index.html">Visualization</a><ul> |
| <li class="toctree-l4"><a class="reference external" href="https://mxnet.apache.org/api/faq/visualize_graph">Visualize networks</a></li> |
| </ul> |
| </li> |
| </ul> |
| </li> |
| <li class="toctree-l2"><a class="reference internal" href="../../../performance/index.html">Performance</a><ul> |
| <li class="toctree-l3"><a class="reference internal" href="../../../performance/compression/index.html">Compression</a><ul> |
| <li class="toctree-l4"><a class="reference internal" href="../../../performance/compression/int8.html">Deploy with int-8</a></li> |
| <li class="toctree-l4"><a class="reference external" href="https://mxnet.apache.org/api/faq/float16">Float16</a></li> |
| <li class="toctree-l4"><a class="reference external" href="https://mxnet.apache.org/api/faq/gradient_compression">Gradient Compression</a></li> |
| <li class="toctree-l4"><a class="reference external" href="https://gluon-cv.mxnet.io/build/examples_deployment/int8_inference.html">GluonCV with Quantized Models</a></li> |
| </ul> |
| </li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../performance/backend/index.html">Accelerated Backend Tools</a><ul> |
| <li class="toctree-l4"><a class="reference internal" href="../../../performance/backend/mkldnn/index.html">Intel MKL-DNN</a><ul> |
| <li class="toctree-l5"><a class="reference internal" href="../../../performance/backend/mkldnn/mkldnn_readme.html">Install MXNet with MKL-DNN</a></li> |
| </ul> |
| </li> |
| <li class="toctree-l4"><a class="reference internal" href="../../../performance/backend/tensorrt/index.html">TensorRT</a><ul class="simple"> |
| </ul> |
| </li> |
| <li class="toctree-l4"><a class="reference internal" href="../../../performance/backend/tvm.html">Use TVM</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="../../../performance/backend/profiler.html">Profiling MXNet Models</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="../../../performance/backend/amp.html">Using AMP: Automatic Mixed Precision</a></li> |
| </ul> |
| </li> |
| </ul> |
| </li> |
| <li class="toctree-l2"><a class="reference internal" href="../../../deploy/index.html">Deployment</a><ul> |
| <li class="toctree-l3"><a class="reference internal" href="../../../deploy/export/index.html">Export</a><ul> |
| <li class="toctree-l4"><a class="reference internal" href="../../../deploy/export/onnx.html">Exporting to ONNX format</a></li> |
| <li class="toctree-l4"><a class="reference external" href="https://gluon-cv.mxnet.io/build/examples_deployment/export_network.html">Export Gluon CV Models</a></li> |
| <li class="toctree-l4"><a class="reference external" href="https://mxnet.apache.org/api/python/docs/tutorials/packages/gluon/blocks/save_load_params.html">Save / Load Parameters</a></li> |
| </ul> |
| </li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../deploy/inference/index.html">Inference</a><ul> |
| <li class="toctree-l4"><a class="reference internal" href="../../../deploy/inference/cpp.html">Deploy into C++</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="../../../deploy/inference/image_classification_jetson.html">Image Classication using pretrained ResNet-50 model on Jetson module</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="../../../deploy/inference/scala.html">Deploy into a Java or Scala Environment</a></li> |
| </ul> |
| </li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../deploy/run-on-aws/index.html">Run on AWS</a><ul> |
| <li class="toctree-l4"><a class="reference internal" href="../../../deploy/run-on-aws/use_ec2.html">Run on an EC2 Instance</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="../../../deploy/run-on-aws/use_sagemaker.html">Run on Amazon SageMaker</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="../../../deploy/run-on-aws/cloud.html">MXNet on the Cloud</a></li> |
| </ul> |
| </li> |
| </ul> |
| </li> |
| <li class="toctree-l2"><a class="reference internal" href="../../../extend/index.html">Extend</a><ul> |
| <li class="toctree-l3"><a class="reference internal" href="../../../extend/custom_layer.html">Custom Layers</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../extend/customop.html">Custom Numpy Operators</a></li> |
| <li class="toctree-l3"><a class="reference external" href="https://mxnet.apache.org/api/faq/new_op">New Operator Creation</a></li> |
| <li class="toctree-l3"><a class="reference external" href="https://mxnet.apache.org/api/faq/add_op_in_backend">New Operator in MXNet Backend</a></li> |
| </ul> |
| </li> |
| </ul> |
| </li> |
| <li class="toctree-l1"><a class="reference internal" href="../../../../api/index.html">Python API</a><ul> |
| <li class="toctree-l2"><a class="reference internal" href="../../../../api/ndarray/index.html">mxnet.ndarray</a><ul> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../api/ndarray/ndarray.html">ndarray</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../api/ndarray/contrib/index.html">ndarray.contrib</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../api/ndarray/image/index.html">ndarray.image</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../api/ndarray/linalg/index.html">ndarray.linalg</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../api/ndarray/op/index.html">ndarray.op</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../api/ndarray/random/index.html">ndarray.random</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../api/ndarray/register/index.html">ndarray.register</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../api/ndarray/sparse/index.html">ndarray.sparse</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../api/ndarray/utils/index.html">ndarray.utils</a></li> |
| </ul> |
| </li> |
| <li class="toctree-l2"><a class="reference internal" href="../../../../api/gluon/index.html">mxnet.gluon</a><ul> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../api/gluon/block.html">gluon.Block</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../api/gluon/hybrid_block.html">gluon.HybridBlock</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../api/gluon/symbol_block.html">gluon.SymbolBlock</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../api/gluon/constant.html">gluon.Constant</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../api/gluon/parameter.html">gluon.Parameter</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../api/gluon/parameter_dict.html">gluon.ParameterDict</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../api/gluon/trainer.html">gluon.Trainer</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../api/gluon/contrib/index.html">gluon.contrib</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../api/gluon/data/index.html">gluon.data</a><ul> |
| <li class="toctree-l4"><a class="reference internal" href="../../../../api/gluon/data/vision/index.html">data.vision</a><ul> |
| <li class="toctree-l5"><a class="reference internal" href="../../../../api/gluon/data/vision/datasets/index.html">vision.datasets</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../../api/gluon/data/vision/transforms/index.html">vision.transforms</a></li> |
| </ul> |
| </li> |
| </ul> |
| </li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../api/gluon/loss/index.html">gluon.loss</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../api/gluon/model_zoo/index.html">gluon.model_zoo.vision</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../api/gluon/nn/index.html">gluon.nn</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../api/gluon/rnn/index.html">gluon.rnn</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../api/gluon/utils/index.html">gluon.utils</a></li> |
| </ul> |
| </li> |
| <li class="toctree-l2"><a class="reference internal" href="../../../../api/autograd/index.html">mxnet.autograd</a></li> |
| <li class="toctree-l2"><a class="reference internal" href="../../../../api/initializer/index.html">mxnet.initializer</a></li> |
| <li class="toctree-l2"><a class="reference internal" href="../../../../api/optimizer/index.html">mxnet.optimizer</a></li> |
| <li class="toctree-l2"><a class="reference internal" href="../../../../api/lr_scheduler/index.html">mxnet.lr_scheduler</a></li> |
| <li class="toctree-l2"><a class="reference internal" href="../../../../api/kvstore/index.html">mxnet.kvstore</a></li> |
| <li class="toctree-l2"><a class="reference internal" href="../../../../api/symbol/index.html">mxnet.symbol</a><ul> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../api/symbol/symbol.html">symbol</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../api/symbol/contrib/index.html">symbol.contrib</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../api/symbol/image/index.html">symbol.image</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../api/symbol/linalg/index.html">symbol.linalg</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../api/symbol/op/index.html">symbol.op</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../api/symbol/random/index.html">symbol.random</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../api/symbol/register/index.html">symbol.register</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../api/symbol/sparse/index.html">symbol.sparse</a></li> |
| </ul> |
| </li> |
| <li class="toctree-l2"><a class="reference internal" href="../../../../api/module/index.html">mxnet.module</a></li> |
| <li class="toctree-l2"><a class="reference internal" href="../../../../api/contrib/index.html">mxnet.contrib</a><ul> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../api/contrib/autograd/index.html">contrib.autograd</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../api/contrib/io/index.html">contrib.io</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../api/contrib/ndarray/index.html">contrib.ndarray</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../api/contrib/onnx/index.html">contrib.onnx</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../api/contrib/quantization/index.html">contrib.quantization</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../api/contrib/symbol/index.html">contrib.symbol</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../api/contrib/tensorboard/index.html">contrib.tensorboard</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../api/contrib/tensorrt/index.html">contrib.tensorrt</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../api/contrib/text/index.html">contrib.text</a></li> |
| </ul> |
| </li> |
| <li class="toctree-l2"><a class="reference internal" href="../../../../api/mxnet/index.html">mxnet</a><ul> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../api/mxnet/attribute/index.html">mxnet.attribute</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../api/mxnet/base/index.html">mxnet.base</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../api/mxnet/callback/index.html">mxnet.callback</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../api/mxnet/context/index.html">mxnet.context</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../api/mxnet/engine/index.html">mxnet.engine</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../api/mxnet/executor/index.html">mxnet.executor</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../api/mxnet/executor_manager/index.html">mxnet.executor_manager</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../api/mxnet/image/index.html">mxnet.image</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../api/mxnet/io/index.html">mxnet.io</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../api/mxnet/kvstore_server/index.html">mxnet.kvstore_server</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../api/mxnet/libinfo/index.html">mxnet.libinfo</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../api/mxnet/log/index.html">mxnet.log</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../api/mxnet/model/index.html">mxnet.model</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../api/mxnet/monitor/index.html">mxnet.monitor</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../api/mxnet/name/index.html">mxnet.name</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../api/mxnet/notebook/index.html">mxnet.notebook</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../api/mxnet/operator/index.html">mxnet.operator</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../api/mxnet/profiler/index.html">mxnet.profiler</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../api/mxnet/random/index.html">mxnet.random</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../api/mxnet/recordio/index.html">mxnet.recordio</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../api/mxnet/registry/index.html">mxnet.registry</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../api/mxnet/rtc/index.html">mxnet.rtc</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../api/mxnet/runtime/index.html">mxnet.runtime</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../api/mxnet/test_utils/index.html">mxnet.test_utils</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../api/mxnet/torch/index.html">mxnet.torch</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../api/mxnet/util/index.html">mxnet.util</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../api/mxnet/visualization/index.html">mxnet.visualization</a></li> |
| </ul> |
| </li> |
| </ul> |
| </li> |
| </ul> |
| |
| </nav> |
| |
| </div> |
| |
| </header> |
| |
| <div class="document"> |
| <div class="page-content" role="main"> |
| |
| <div class="section" id="the-n-dimensional-array-ndarray"> |
| <span id="arrays-ndarray"></span><h1>The N-dimensional array (<code class="xref py py-class docutils literal notranslate"><span class="pre">ndarray</span></code>)<a class="headerlink" href="#the-n-dimensional-array-ndarray" title="Permalink to this headline">¶</a></h1> |
| <p>An <code class="xref py py-class docutils literal notranslate"><span class="pre">ndarray</span></code> is a (usually fixed-size) multidimensional |
| container of items of the same type and size. The number of dimensions |
| and items in an array is defined by its <code class="xref py py-attr docutils literal notranslate"><span class="pre">shape</span></code>, |
| which is a <code class="xref py py-class docutils literal notranslate"><span class="pre">tuple</span></code> of <em>N</em> non-negative integers that specify the |
| sizes of each dimension. The type of items in the array is specified by |
| a separate <span class="xref std std-ref">data-type object (dtype)</span>, one of which |
| is associated with each ndarray.</p> |
| <p>As with other container objects in Python, the contents of an |
| <code class="xref py py-class docutils literal notranslate"><span class="pre">ndarray</span></code> can be accessed and modified by <a class="reference internal" href="arrays.indexing.html#arrays-indexing"><span class="std std-ref">indexing or |
| slicing</span></a> the array (using, for example, <em>N</em> integers), |
| and via the methods and attributes of the <code class="xref py py-class docutils literal notranslate"><span class="pre">ndarray</span></code>.</p> |
| <p id="index-0">Different <code class="xref py py-class docutils literal notranslate"><span class="pre">ndarrays</span></code> can share the same data, so that |
| changes made in one <code class="xref py py-class docutils literal notranslate"><span class="pre">ndarray</span></code> may be visible in another. That |
| is, an ndarray can be a <em>“view”</em> to another ndarray, and the data it |
| is referring to is taken care of by the <em>“base”</em> ndarray.</p> |
| <div class="admonition-example admonition"> |
| <p class="admonition-title">Example</p> |
| <p>A 2-dimensional array of size 2 x 3, composed of 4-byte integer |
| elements:</p> |
| <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">x</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">([[</span><span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">3</span><span class="p">],</span> <span class="p">[</span><span class="mi">4</span><span class="p">,</span> <span class="mi">5</span><span class="p">,</span> <span class="mi">6</span><span class="p">]],</span> <span class="n">np</span><span class="o">.</span><span class="n">int32</span><span class="p">)</span> |
| <span class="gp">>>> </span><span class="nb">type</span><span class="p">(</span><span class="n">x</span><span class="p">)</span> |
| <span class="go"><class 'mxnet.numpy.ndarray'></span> |
| <span class="gp">>>> </span><span class="n">x</span><span class="o">.</span><span class="n">shape</span> |
| <span class="go">(2, 3)</span> |
| <span class="gp">>>> </span><span class="n">x</span><span class="o">.</span><span class="n">dtype</span> |
| <span class="go">dtype('int32')</span> |
| </pre></div> |
| </div> |
| <p>The array can be indexed using Python container-like syntax:</p> |
| <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="c1"># The element of x in the *second* row, *third* column, namely, 6.</span> |
| <span class="gp">>>> </span><span class="n">x</span><span class="p">[</span><span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">]</span> |
| <span class="go">array(6, dtype=int32) # this is different than the official NumPy which returns a np.int32 object</span> |
| </pre></div> |
| </div> |
| <p>For example <a class="reference internal" href="arrays.indexing.html#arrays-indexing"><span class="std std-ref">slicing</span></a> can produce views of |
| the array if the elements to be sliced is continguous in memory:</p> |
| <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">y</span> <span class="o">=</span> <span class="n">x</span><span class="p">[</span><span class="mi">1</span><span class="p">,:]</span> |
| <span class="gp">>>> </span><span class="n">y</span> |
| <span class="go">array([9, 5, 6], dtype=int32) # this also changes the corresponding element in x</span> |
| <span class="gp">>>> </span><span class="n">x</span> |
| <span class="go">array([[1, 2, 3],</span> |
| <span class="go"> [9, 5, 6]], dtype=int32)</span> |
| </pre></div> |
| </div> |
| </div> |
| <div class="section" id="constructing-arrays"> |
| <h2>Constructing arrays<a class="headerlink" href="#constructing-arrays" title="Permalink to this headline">¶</a></h2> |
| <p>New arrays can be constructed using the routines detailed in |
| <a class="reference internal" href="routines.array-creation.html#routines-array-creation"><span class="std std-ref">Array creation routines</span></a>, and also by using the low-level |
| <code class="xref py py-class docutils literal notranslate"><span class="pre">ndarray</span></code> constructor:</p> |
| <table class="longtable docutils align-default"> |
| <colgroup> |
| <col style="width: 10%" /> |
| <col style="width: 90%" /> |
| </colgroup> |
| <tbody> |
| <tr class="row-odd"><td><p><code class="xref py py-obj docutils literal notranslate"><span class="pre">ndarray</span></code></p></td> |
| <td><p></p></td> |
| </tr> |
| </tbody> |
| </table> |
| </div> |
| <div class="section" id="indexing-arrays"> |
| <h2>Indexing arrays<a class="headerlink" href="#indexing-arrays" title="Permalink to this headline">¶</a></h2> |
| <p>Arrays can be indexed using an extended Python slicing syntax, |
| <code class="docutils literal notranslate"><span class="pre">array[selection]</span></code>. Similar syntax is also used for accessing |
| fields in a <span class="xref std std-term">structured data type</span>.</p> |
| <div class="admonition seealso"> |
| <p class="admonition-title">See also</p> |
| <p><a class="reference internal" href="arrays.indexing.html#arrays-indexing"><span class="std std-ref">Array Indexing</span></a>.</p> |
| </div> |
| </div> |
| <div class="section" id="internal-memory-layout-of-an-ndarray"> |
| <span id="memory-layout"></span><h2>Internal memory layout of an ndarray<a class="headerlink" href="#internal-memory-layout-of-an-ndarray" title="Permalink to this headline">¶</a></h2> |
| <p>An instance of class <code class="xref py py-class docutils literal notranslate"><span class="pre">ndarray</span></code> consists of a contiguous |
| one-dimensional segment of computer memory (owned by the array, or by |
| some other object), combined with an indexing scheme that maps <em>N</em> |
| integers into the location of an item in the block. The ranges in |
| which the indices can vary is specified by the <code class="xref py py-obj docutils literal notranslate"><span class="pre">shape</span></code> of the array. How many bytes each item takes and how |
| the bytes are interpreted is defined by the <span class="xref std std-ref">data-type object</span> associated with the array.</p> |
| <div class="admonition note" id="index-1"> |
| <p class="admonition-title">Note</p> |
| <p><cite>mxnet.numpy.ndarray</cite> currently only supports storing elements in |
| C-order/row-major and contiguous memory space. The following content |
| on explaining a variety of memory layouts of an ndarray |
| are copied from the official NumPy documentation as a comprehensive reference.</p> |
| </div> |
| <p>A segment of memory is inherently 1-dimensional, and there are many |
| different schemes for arranging the items of an <em>N</em>-dimensional array |
| in a 1-dimensional block. NumPy is flexible, and <code class="xref py py-class docutils literal notranslate"><span class="pre">ndarray</span></code> |
| objects can accommodate any <em>strided indexing scheme</em>. In a strided |
| scheme, the N-dimensional index <span class="math notranslate nohighlight">\((n_0, n_1, ..., n_{N-1})\)</span> |
| corresponds to the offset (in bytes):</p> |
| <div class="math notranslate nohighlight"> |
| \[n_{\mathrm{offset}} = \sum_{k=0}^{N-1} s_k n_k\]</div> |
| <p>from the beginning of the memory block associated with the |
| array. Here, <span class="math notranslate nohighlight">\(s_k\)</span> are integers which specify the <code class="xref py py-obj docutils literal notranslate"><span class="pre">strides</span></code> of the array. The <span class="xref std std-term">column-major</span> order (used, |
| for example, in the Fortran language and in <em>Matlab</em>) and |
| <span class="xref std std-term">row-major</span> order (used in C) schemes are just specific kinds of |
| strided scheme, and correspond to memory that can be <em>addressed</em> by the strides:</p> |
| <div class="math notranslate nohighlight"> |
| \[s_k^{\mathrm{column}} = \mathrm{itemsize} \prod_{j=0}^{k-1} d_j , |
| \quad s_k^{\mathrm{row}} = \mathrm{itemsize} \prod_{j=k+1}^{N-1} d_j .\]</div> |
| <p id="index-2">where <span class="math notranslate nohighlight">\(d_j\)</span> <cite>= self.shape[j]</cite>.</p> |
| <p>Both the C and Fortran orders are <span class="xref std std-term">contiguous</span>, <em>i.e.,</em> |
| single-segment, memory layouts, in which every part of the |
| memory block can be accessed by some combination of the indices.</p> |
| <p>While a C-style and Fortran-style contiguous array, which has the corresponding |
| flags set, can be addressed with the above strides, the actual strides may be |
| different. This can happen in two cases:</p> |
| <blockquote> |
| <div><ol class="arabic simple"> |
| <li><p>If <code class="docutils literal notranslate"><span class="pre">self.shape[k]</span> <span class="pre">==</span> <span class="pre">1</span></code> then for any legal index <code class="docutils literal notranslate"><span class="pre">index[k]</span> <span class="pre">==</span> <span class="pre">0</span></code>. |
| This means that in the formula for the offset <span class="math notranslate nohighlight">\(n_k = 0\)</span> and thus |
| <span class="math notranslate nohighlight">\(s_k n_k = 0\)</span> and the value of <span class="math notranslate nohighlight">\(s_k\)</span> <cite>= self.strides[k]</cite> is |
| arbitrary.</p></li> |
| <li><p>If an array has no elements (<code class="docutils literal notranslate"><span class="pre">self.size</span> <span class="pre">==</span> <span class="pre">0</span></code>) there is no legal |
| index and the strides are never used. Any array with no elements may be |
| considered C-style and Fortran-style contiguous.</p></li> |
| </ol> |
| </div></blockquote> |
| <p>Point 1. means that <code class="docutils literal notranslate"><span class="pre">self</span></code> and <code class="docutils literal notranslate"><span class="pre">self.squeeze()</span></code> always have the same |
| contiguity and <code class="docutils literal notranslate"><span class="pre">aligned</span></code> flags value. This also means |
| that even a high dimensional array could be C-style and Fortran-style |
| contiguous at the same time.</p> |
| <p id="index-3">An array is considered aligned if the memory offsets for all elements and the |
| base offset itself is a multiple of <cite>self.itemsize</cite>. Understanding |
| <cite>memory-alignment</cite> leads to better performance on most hardware.</p> |
| <div class="admonition note"> |
| <p class="admonition-title">Note</p> |
| <p>Points (1) and (2) are not yet applied by default. Beginning with |
| NumPy 1.8.0, they are applied consistently only if the environment |
| variable <code class="docutils literal notranslate"><span class="pre">NPY_RELAXED_STRIDES_CHECKING=1</span></code> was defined when NumPy |
| was built. Eventually this will become the default.</p> |
| <p>You can check whether this option was enabled when your NumPy was |
| built by looking at the value of <code class="docutils literal notranslate"><span class="pre">np.ones((10,1),</span> |
| <span class="pre">order='C').flags.f_contiguous</span></code>. If this is <code class="docutils literal notranslate"><span class="pre">True</span></code>, then your |
| NumPy has relaxed strides checking enabled.</p> |
| </div> |
| <div class="admonition warning"> |
| <p class="admonition-title">Warning</p> |
| <p>It does <em>not</em> generally hold that <code class="docutils literal notranslate"><span class="pre">self.strides[-1]</span> <span class="pre">==</span> <span class="pre">self.itemsize</span></code> |
| for C-style contiguous arrays or <code class="docutils literal notranslate"><span class="pre">self.strides[0]</span> <span class="pre">==</span> <span class="pre">self.itemsize</span></code> for |
| Fortran-style contiguous arrays is true.</p> |
| </div> |
| <p>Data in new <code class="xref py py-class docutils literal notranslate"><span class="pre">ndarrays</span></code> is in the <span class="xref std std-term">row-major</span> |
| (C) order, unless otherwise specified, but, for example, <a class="reference internal" href="arrays.indexing.html#arrays-indexing"><span class="std std-ref">basic |
| array slicing</span></a> often produces <span class="xref std std-term">views</span> |
| in a different scheme.</p> |
| <div class="admonition note"> |
| <p class="admonition-title">Note</p> |
| <p>Several algorithms in NumPy work on arbitrarily strided arrays. |
| However, some algorithms require single-segment arrays. When an |
| irregularly strided array is passed in to such algorithms, a copy |
| is automatically made.</p> |
| </div> |
| </div> |
| <div class="section" id="array-attributes"> |
| <span id="arrays-ndarray-attributes"></span><h2>Array attributes<a class="headerlink" href="#array-attributes" title="Permalink to this headline">¶</a></h2> |
| <p>Array attributes reflect information that is intrinsic to the array |
| itself. Generally, accessing an array through its attributes allows |
| you to get and sometimes set intrinsic properties of the array without |
| creating a new array. The exposed attributes are the core parts of an |
| array and only some of them can be reset meaningfully without creating |
| a new array. Information on each attribute is given below.</p> |
| <div class="section" id="id1"> |
| <h3>Memory layout<a class="headerlink" href="#id1" title="Permalink to this headline">¶</a></h3> |
| <p>The following attributes contain information about the memory layout |
| of the array:</p> |
| <table class="longtable docutils align-default"> |
| <colgroup> |
| <col style="width: 10%" /> |
| <col style="width: 90%" /> |
| </colgroup> |
| <tbody> |
| <tr class="row-odd"><td><p><code class="xref py py-obj docutils literal notranslate"><span class="pre">ndarray.shape</span></code></p></td> |
| <td><p></p></td> |
| </tr> |
| <tr class="row-even"><td><p><code class="xref py py-obj docutils literal notranslate"><span class="pre">ndarray.ndim</span></code></p></td> |
| <td><p></p></td> |
| </tr> |
| <tr class="row-odd"><td><p><code class="xref py py-obj docutils literal notranslate"><span class="pre">ndarray.size</span></code></p></td> |
| <td><p></p></td> |
| </tr> |
| </tbody> |
| </table> |
| <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">ndarray</span><span class="o">.</span><span class="n">flags</span> |
| <span class="n">ndarray</span><span class="o">.</span><span class="n">strides</span> |
| <span class="n">ndarray</span><span class="o">.</span><span class="n">data</span> |
| <span class="n">ndarray</span><span class="o">.</span><span class="n">itemsize</span> |
| <span class="n">ndarray</span><span class="o">.</span><span class="n">nbytes</span> |
| <span class="n">ndarray</span><span class="o">.</span><span class="n">base</span> |
| </pre></div> |
| </div> |
| </div> |
| <div class="section" id="data-type"> |
| <h3>Data type<a class="headerlink" href="#data-type" title="Permalink to this headline">¶</a></h3> |
| <div class="admonition seealso"> |
| <p class="admonition-title">See also</p> |
| <p><span class="xref std std-ref">Data type objects</span></p> |
| </div> |
| <p>The data type object associated with the array can be found in the |
| <code class="xref py py-attr docutils literal notranslate"><span class="pre">dtype</span></code> attribute:</p> |
| <table class="longtable docutils align-default"> |
| <colgroup> |
| <col style="width: 10%" /> |
| <col style="width: 90%" /> |
| </colgroup> |
| <tbody> |
| <tr class="row-odd"><td><p><code class="xref py py-obj docutils literal notranslate"><span class="pre">ndarray.dtype</span></code></p></td> |
| <td><p></p></td> |
| </tr> |
| </tbody> |
| </table> |
| </div> |
| <div class="section" id="other-attributes"> |
| <h3>Other attributes<a class="headerlink" href="#other-attributes" title="Permalink to this headline">¶</a></h3> |
| <table class="longtable docutils align-default"> |
| <colgroup> |
| <col style="width: 10%" /> |
| <col style="width: 90%" /> |
| </colgroup> |
| <tbody> |
| <tr class="row-odd"><td><p><code class="xref py py-obj docutils literal notranslate"><span class="pre">ndarray.T</span></code></p></td> |
| <td><p></p></td> |
| </tr> |
| </tbody> |
| </table> |
| <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">ndarray</span><span class="o">.</span><span class="n">real</span> |
| <span class="n">ndarray</span><span class="o">.</span><span class="n">imag</span> |
| <span class="n">ndarray</span><span class="o">.</span><span class="n">flat</span> |
| <span class="n">ndarray</span><span class="o">.</span><span class="n">ctypes</span> |
| </pre></div> |
| </div> |
| </div> |
| </div> |
| <div class="section" id="array-methods"> |
| <span id="array-ndarray-methods"></span><h2>Array methods<a class="headerlink" href="#array-methods" title="Permalink to this headline">¶</a></h2> |
| <p>An <code class="xref py py-class docutils literal notranslate"><span class="pre">ndarray</span></code> object has many methods which operate on or with |
| the array in some fashion, typically returning an array result. These |
| methods are briefly explained below. (Each method’s docstring has a |
| more complete description.)</p> |
| <p>For the following methods there are also corresponding functions in |
| <code class="xref py py-mod docutils literal notranslate"><span class="pre">numpy</span></code>: <code class="xref py py-func docutils literal notranslate"><span class="pre">all()</span></code>, <code class="xref py py-func docutils literal notranslate"><span class="pre">any()</span></code>, <code class="xref py py-func docutils literal notranslate"><span class="pre">argmax()</span></code>, |
| <code class="xref py py-func docutils literal notranslate"><span class="pre">argmin()</span></code>, <code class="xref py py-func docutils literal notranslate"><span class="pre">argpartition()</span></code>, <code class="xref py py-func docutils literal notranslate"><span class="pre">argsort()</span></code>, <code class="xref py py-func docutils literal notranslate"><span class="pre">choose()</span></code>, |
| <code class="xref py py-func docutils literal notranslate"><span class="pre">clip()</span></code>, <code class="xref py py-func docutils literal notranslate"><span class="pre">compress()</span></code>, <code class="xref py py-func docutils literal notranslate"><span class="pre">copy()</span></code>, <code class="xref py py-func docutils literal notranslate"><span class="pre">cumprod()</span></code>, |
| <code class="xref py py-func docutils literal notranslate"><span class="pre">cumsum()</span></code>, <code class="xref py py-func docutils literal notranslate"><span class="pre">diagonal()</span></code>, <code class="xref py py-func docutils literal notranslate"><span class="pre">imag()</span></code>, <code class="xref py py-func docutils literal notranslate"><span class="pre">max</span></code>, |
| <code class="xref py py-func docutils literal notranslate"><span class="pre">mean()</span></code>, <code class="xref py py-func docutils literal notranslate"><span class="pre">min</span></code>, <code class="xref py py-func docutils literal notranslate"><span class="pre">nonzero()</span></code>, <code class="xref py py-func docutils literal notranslate"><span class="pre">partition()</span></code>, |
| <code class="xref py py-func docutils literal notranslate"><span class="pre">prod()</span></code>, <code class="xref py py-func docutils literal notranslate"><span class="pre">ptp()</span></code>, <code class="xref py py-func docutils literal notranslate"><span class="pre">put()</span></code>, <code class="xref py py-func docutils literal notranslate"><span class="pre">ravel()</span></code>, <code class="xref py py-func docutils literal notranslate"><span class="pre">real()</span></code>, |
| <code class="xref py py-func docutils literal notranslate"><span class="pre">repeat()</span></code>, <code class="xref py py-func docutils literal notranslate"><span class="pre">reshape()</span></code>, <code class="xref py py-func docutils literal notranslate"><span class="pre">round</span></code>, |
| <code class="xref py py-func docutils literal notranslate"><span class="pre">searchsorted()</span></code>, <code class="xref py py-func docutils literal notranslate"><span class="pre">sort()</span></code>, <code class="xref py py-func docutils literal notranslate"><span class="pre">squeeze()</span></code>, <code class="xref py py-func docutils literal notranslate"><span class="pre">std()</span></code>, |
| <code class="xref py py-func docutils literal notranslate"><span class="pre">sum()</span></code>, <code class="xref py py-func docutils literal notranslate"><span class="pre">swapaxes()</span></code>, <code class="xref py py-func docutils literal notranslate"><span class="pre">take()</span></code>, <code class="xref py py-func docutils literal notranslate"><span class="pre">trace()</span></code>, |
| <code class="xref py py-func docutils literal notranslate"><span class="pre">transpose()</span></code>, <code class="xref py py-func docutils literal notranslate"><span class="pre">var()</span></code>.</p> |
| <div class="section" id="array-conversion"> |
| <h3>Array conversion<a class="headerlink" href="#array-conversion" title="Permalink to this headline">¶</a></h3> |
| <table class="longtable docutils align-default"> |
| <colgroup> |
| <col style="width: 10%" /> |
| <col style="width: 90%" /> |
| </colgroup> |
| <tbody> |
| <tr class="row-odd"><td><p><code class="xref py py-obj docutils literal notranslate"><span class="pre">ndarray.item</span></code></p></td> |
| <td><p></p></td> |
| </tr> |
| <tr class="row-even"><td><p><code class="xref py py-obj docutils literal notranslate"><span class="pre">ndarray.copy</span></code></p></td> |
| <td><p></p></td> |
| </tr> |
| <tr class="row-odd"><td><p><code class="xref py py-obj docutils literal notranslate"><span class="pre">ndarray.tolist</span></code></p></td> |
| <td><p></p></td> |
| </tr> |
| <tr class="row-even"><td><p><code class="xref py py-obj docutils literal notranslate"><span class="pre">ndarray.astype</span></code></p></td> |
| <td><p></p></td> |
| </tr> |
| </tbody> |
| </table> |
| <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">ndarray</span><span class="o">.</span><span class="n">itemset</span> |
| <span class="n">ndarray</span><span class="o">.</span><span class="n">tostring</span> |
| <span class="n">ndarray</span><span class="o">.</span><span class="n">tobytes</span> |
| <span class="n">ndarray</span><span class="o">.</span><span class="n">tofile</span> |
| <span class="n">ndarray</span><span class="o">.</span><span class="n">dump</span> |
| <span class="n">ndarray</span><span class="o">.</span><span class="n">dumps</span> |
| <span class="n">ndarray</span><span class="o">.</span><span class="n">byteswap</span> |
| <span class="n">ndarray</span><span class="o">.</span><span class="n">view</span> |
| <span class="n">ndarray</span><span class="o">.</span><span class="n">getfield</span> |
| <span class="n">ndarray</span><span class="o">.</span><span class="n">setflags</span> |
| <span class="n">ndarray</span><span class="o">.</span><span class="n">fill</span> |
| </pre></div> |
| </div> |
| </div> |
| <div class="section" id="shape-manipulation"> |
| <h3>Shape manipulation<a class="headerlink" href="#shape-manipulation" title="Permalink to this headline">¶</a></h3> |
| <p>For reshape, resize, and transpose, the single tuple argument may be |
| replaced with <code class="docutils literal notranslate"><span class="pre">n</span></code> integers which will be interpreted as an n-tuple.</p> |
| <table class="longtable docutils align-default"> |
| <colgroup> |
| <col style="width: 10%" /> |
| <col style="width: 90%" /> |
| </colgroup> |
| <tbody> |
| <tr class="row-odd"><td><p><code class="xref py py-obj docutils literal notranslate"><span class="pre">ndarray.reshape</span></code></p></td> |
| <td><p></p></td> |
| </tr> |
| <tr class="row-even"><td><p><code class="xref py py-obj docutils literal notranslate"><span class="pre">ndarray.transpose</span></code></p></td> |
| <td><p></p></td> |
| </tr> |
| <tr class="row-odd"><td><p><code class="xref py py-obj docutils literal notranslate"><span class="pre">ndarray.swapaxes</span></code></p></td> |
| <td><p></p></td> |
| </tr> |
| <tr class="row-even"><td><p><code class="xref py py-obj docutils literal notranslate"><span class="pre">ndarray.flatten</span></code></p></td> |
| <td><p></p></td> |
| </tr> |
| <tr class="row-odd"><td><p><code class="xref py py-obj docutils literal notranslate"><span class="pre">ndarray.squeeze</span></code></p></td> |
| <td><p></p></td> |
| </tr> |
| </tbody> |
| </table> |
| <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">ndarray</span><span class="o">.</span><span class="n">resize</span> |
| <span class="n">ndarray</span><span class="o">.</span><span class="n">ravel</span> |
| </pre></div> |
| </div> |
| </div> |
| <div class="section" id="item-selection-and-manipulation"> |
| <h3>Item selection and manipulation<a class="headerlink" href="#item-selection-and-manipulation" title="Permalink to this headline">¶</a></h3> |
| <p>For array methods that take an <em>axis</em> keyword, it defaults to |
| <code class="xref py py-const docutils literal notranslate"><span class="pre">None</span></code>. If axis is <em>None</em>, then the array is treated as a 1-D |
| array. Any other value for <em>axis</em> represents the dimension along which |
| the operation should proceed.</p> |
| <table class="longtable docutils align-default"> |
| <colgroup> |
| <col style="width: 10%" /> |
| <col style="width: 90%" /> |
| </colgroup> |
| <tbody> |
| <tr class="row-odd"><td><p><code class="xref py py-obj docutils literal notranslate"><span class="pre">ndarray.nonzero</span></code></p></td> |
| <td><p></p></td> |
| </tr> |
| <tr class="row-even"><td><p><code class="xref py py-obj docutils literal notranslate"><span class="pre">ndarray.take</span></code></p></td> |
| <td><p></p></td> |
| </tr> |
| <tr class="row-odd"><td><p><code class="xref py py-obj docutils literal notranslate"><span class="pre">ndarray.repeat</span></code></p></td> |
| <td><p></p></td> |
| </tr> |
| </tbody> |
| </table> |
| <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">ndarray</span><span class="o">.</span><span class="n">argsort</span> |
| <span class="n">ndarray</span><span class="o">.</span><span class="n">sort</span> |
| <span class="n">ndarray</span><span class="o">.</span><span class="n">put</span> |
| <span class="n">ndarray</span><span class="o">.</span><span class="n">choose</span> |
| <span class="n">ndarray</span><span class="o">.</span><span class="n">partition</span> |
| <span class="n">ndarray</span><span class="o">.</span><span class="n">argpartition</span> |
| <span class="n">ndarray</span><span class="o">.</span><span class="n">searchsorted</span> |
| <span class="n">ndarray</span><span class="o">.</span><span class="n">compress</span> |
| <span class="n">ndarray</span><span class="o">.</span><span class="n">diagonal</span> |
| </pre></div> |
| </div> |
| </div> |
| <div class="section" id="calculation"> |
| <h3>Calculation<a class="headerlink" href="#calculation" title="Permalink to this headline">¶</a></h3> |
| <p id="index-4">Many of these methods take an argument named <em>axis</em>. In such cases,</p> |
| <ul class="simple"> |
| <li><p>If <em>axis</em> is <em>None</em> (the default), the array is treated as a 1-D |
| array and the operation is performed over the entire array. This |
| behavior is also the default if self is a 0-dimensional array or |
| array scalar. (An array scalar is an instance of the types/classes |
| float32, float64, etc., whereas a 0-dimensional array is an ndarray |
| instance containing precisely one array scalar.)</p></li> |
| <li><p>If <em>axis</em> is an integer, then the operation is done over the given |
| axis (for each 1-D subarray that can be created along the given axis).</p></li> |
| </ul> |
| <div class="admonition-example-of-the-axis-argument admonition"> |
| <p class="admonition-title">Example of the <em>axis</em> argument</p> |
| <p>A 3-dimensional array of size 3 x 3 x 3, summed over each of its |
| three axes</p> |
| <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">x</span> |
| <span class="go">array([[[ 0, 1, 2],</span> |
| <span class="go"> [ 3, 4, 5],</span> |
| <span class="go"> [ 6, 7, 8]],</span> |
| <span class="go"> [[ 9, 10, 11],</span> |
| <span class="go"> [12, 13, 14],</span> |
| <span class="go"> [15, 16, 17]],</span> |
| <span class="go"> [[18, 19, 20],</span> |
| <span class="go"> [21, 22, 23],</span> |
| <span class="go"> [24, 25, 26]]])</span> |
| <span class="gp">>>> </span><span class="n">x</span><span class="o">.</span><span class="n">sum</span><span class="p">(</span><span class="n">axis</span><span class="o">=</span><span class="mi">0</span><span class="p">)</span> |
| <span class="go">array([[27, 30, 33],</span> |
| <span class="go"> [36, 39, 42],</span> |
| <span class="go"> [45, 48, 51]])</span> |
| <span class="gp">>>> </span><span class="c1"># for sum, axis is the first keyword, so we may omit it,</span> |
| <span class="gp">>>> </span><span class="c1"># specifying only its value</span> |
| <span class="gp">>>> </span><span class="n">x</span><span class="o">.</span><span class="n">sum</span><span class="p">(</span><span class="mi">0</span><span class="p">),</span> <span class="n">x</span><span class="o">.</span><span class="n">sum</span><span class="p">(</span><span class="mi">1</span><span class="p">),</span> <span class="n">x</span><span class="o">.</span><span class="n">sum</span><span class="p">(</span><span class="mi">2</span><span class="p">)</span> |
| <span class="go">(array([[27, 30, 33],</span> |
| <span class="go"> [36, 39, 42],</span> |
| <span class="go"> [45, 48, 51]]),</span> |
| <span class="go"> array([[ 9, 12, 15],</span> |
| <span class="go"> [36, 39, 42],</span> |
| <span class="go"> [63, 66, 69]]),</span> |
| <span class="go"> array([[ 3, 12, 21],</span> |
| <span class="go"> [30, 39, 48],</span> |
| <span class="go"> [57, 66, 75]]))</span> |
| </pre></div> |
| </div> |
| </div> |
| <p>The parameter <em>dtype</em> specifies the data type over which a reduction |
| operation (like summing) should take place. The default reduce data |
| type is the same as the data type of <em>self</em>. To avoid overflow, it can |
| be useful to perform the reduction using a larger data type.</p> |
| <p>For several methods, an optional <em>out</em> argument can also be provided |
| and the result will be placed into the output array given. The <em>out</em> |
| argument must be an <code class="xref py py-class docutils literal notranslate"><span class="pre">ndarray</span></code> and have the same number of |
| elements. It can have a different data type in which case casting will |
| be performed.</p> |
| <table class="longtable docutils align-default"> |
| <colgroup> |
| <col style="width: 10%" /> |
| <col style="width: 90%" /> |
| </colgroup> |
| <tbody> |
| <tr class="row-odd"><td><p><code class="xref py py-obj docutils literal notranslate"><span class="pre">ndarray.max</span></code></p></td> |
| <td><p></p></td> |
| </tr> |
| <tr class="row-even"><td><p><code class="xref py py-obj docutils literal notranslate"><span class="pre">ndarray.argmax</span></code></p></td> |
| <td><p></p></td> |
| </tr> |
| <tr class="row-odd"><td><p><code class="xref py py-obj docutils literal notranslate"><span class="pre">ndarray.min</span></code></p></td> |
| <td><p></p></td> |
| </tr> |
| <tr class="row-even"><td><p><code class="xref py py-obj docutils literal notranslate"><span class="pre">ndarray.argmin</span></code></p></td> |
| <td><p></p></td> |
| </tr> |
| <tr class="row-odd"><td><p><code class="xref py py-obj docutils literal notranslate"><span class="pre">ndarray.clip</span></code></p></td> |
| <td><p></p></td> |
| </tr> |
| <tr class="row-even"><td><p><code class="xref py py-obj docutils literal notranslate"><span class="pre">ndarray.sum</span></code></p></td> |
| <td><p></p></td> |
| </tr> |
| <tr class="row-odd"><td><p><code class="xref py py-obj docutils literal notranslate"><span class="pre">ndarray.mean</span></code></p></td> |
| <td><p></p></td> |
| </tr> |
| <tr class="row-even"><td><p><code class="xref py py-obj docutils literal notranslate"><span class="pre">ndarray.prod</span></code></p></td> |
| <td><p></p></td> |
| </tr> |
| <tr class="row-odd"><td><p><code class="xref py py-obj docutils literal notranslate"><span class="pre">ndarray.cumsum</span></code></p></td> |
| <td><p></p></td> |
| </tr> |
| <tr class="row-even"><td><p><code class="xref py py-obj docutils literal notranslate"><span class="pre">ndarray.var</span></code></p></td> |
| <td><p></p></td> |
| </tr> |
| <tr class="row-odd"><td><p><code class="xref py py-obj docutils literal notranslate"><span class="pre">ndarray.std</span></code></p></td> |
| <td><p></p></td> |
| </tr> |
| </tbody> |
| </table> |
| <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">ndarray</span><span class="o">.</span><span class="n">round</span> |
| <span class="n">ndarray</span><span class="o">.</span><span class="n">ptp</span> |
| <span class="n">ndarray</span><span class="o">.</span><span class="n">conj</span> |
| <span class="n">ndarray</span><span class="o">.</span><span class="n">trace</span> |
| <span class="n">ndarray</span><span class="o">.</span><span class="n">cumprod</span> |
| <span class="n">ndarray</span><span class="o">.</span><span class="n">all</span> |
| <span class="n">ndarray</span><span class="o">.</span><span class="n">any</span> |
| </pre></div> |
| </div> |
| </div> |
| </div> |
| <div class="section" id="arithmetic-matrix-multiplication-and-comparison-operations"> |
| <h2>Arithmetic, matrix multiplication, and comparison operations<a class="headerlink" href="#arithmetic-matrix-multiplication-and-comparison-operations" title="Permalink to this headline">¶</a></h2> |
| <p id="index-5">Arithmetic and comparison operations on <code class="xref py py-class docutils literal notranslate"><span class="pre">ndarrays</span></code> |
| are defined as element-wise operations, and generally yield |
| <code class="xref py py-class docutils literal notranslate"><span class="pre">ndarray</span></code> objects as results.</p> |
| <p>Each of the arithmetic operations (<code class="docutils literal notranslate"><span class="pre">+</span></code>, <code class="docutils literal notranslate"><span class="pre">-</span></code>, <code class="docutils literal notranslate"><span class="pre">*</span></code>, <code class="docutils literal notranslate"><span class="pre">/</span></code>, <code class="docutils literal notranslate"><span class="pre">//</span></code>, |
| <code class="docutils literal notranslate"><span class="pre">%</span></code>, <code class="docutils literal notranslate"><span class="pre">divmod()</span></code>, <code class="docutils literal notranslate"><span class="pre">**</span></code> or <code class="docutils literal notranslate"><span class="pre">pow()</span></code>, <code class="docutils literal notranslate"><span class="pre"><<</span></code>, <code class="docutils literal notranslate"><span class="pre">>></span></code>, <code class="docutils literal notranslate"><span class="pre">&</span></code>, |
| <code class="docutils literal notranslate"><span class="pre">^</span></code>, <code class="docutils literal notranslate"><span class="pre">|</span></code>, <code class="docutils literal notranslate"><span class="pre">~</span></code>) and the comparisons (<code class="docutils literal notranslate"><span class="pre">==</span></code>, <code class="docutils literal notranslate"><span class="pre"><</span></code>, <code class="docutils literal notranslate"><span class="pre">></span></code>, |
| <code class="docutils literal notranslate"><span class="pre"><=</span></code>, <code class="docutils literal notranslate"><span class="pre">>=</span></code>, <code class="docutils literal notranslate"><span class="pre">!=</span></code>) is equivalent to the corresponding |
| universal function (or <span class="xref std std-term">ufunc</span> for short) in NumPy. For |
| more information, see the section on <span class="xref std std-ref">Universal Functions</span>.</p> |
| <p>Comparison operators:</p> |
| <table class="longtable docutils align-default"> |
| <colgroup> |
| <col style="width: 10%" /> |
| <col style="width: 90%" /> |
| </colgroup> |
| <tbody> |
| <tr class="row-odd"><td><p><code class="xref py py-obj docutils literal notranslate"><span class="pre">ndarray.__lt__</span></code></p></td> |
| <td><p></p></td> |
| </tr> |
| <tr class="row-even"><td><p><code class="xref py py-obj docutils literal notranslate"><span class="pre">ndarray.__le__</span></code></p></td> |
| <td><p></p></td> |
| </tr> |
| <tr class="row-odd"><td><p><code class="xref py py-obj docutils literal notranslate"><span class="pre">ndarray.__gt__</span></code></p></td> |
| <td><p></p></td> |
| </tr> |
| <tr class="row-even"><td><p><code class="xref py py-obj docutils literal notranslate"><span class="pre">ndarray.__ge__</span></code></p></td> |
| <td><p></p></td> |
| </tr> |
| <tr class="row-odd"><td><p><code class="xref py py-obj docutils literal notranslate"><span class="pre">ndarray.__eq__</span></code></p></td> |
| <td><p></p></td> |
| </tr> |
| <tr class="row-even"><td><p><code class="xref py py-obj docutils literal notranslate"><span class="pre">ndarray.__ne__</span></code></p></td> |
| <td><p></p></td> |
| </tr> |
| </tbody> |
| </table> |
| <p>Truth value of an array (<code class="xref py py-func docutils literal notranslate"><span class="pre">bool()</span></code>):</p> |
| <table class="longtable docutils align-default"> |
| <colgroup> |
| <col style="width: 10%" /> |
| <col style="width: 90%" /> |
| </colgroup> |
| <tbody> |
| <tr class="row-odd"><td><p><code class="xref py py-obj docutils literal notranslate"><span class="pre">ndarray.__bool__</span></code></p></td> |
| <td><p></p></td> |
| </tr> |
| </tbody> |
| </table> |
| <div class="admonition note"> |
| <p class="admonition-title">Note</p> |
| <p>Truth-value testing of an array invokes |
| <code class="xref py py-meth docutils literal notranslate"><span class="pre">ndarray.__bool__()</span></code>, which raises an error if the number of |
| elements in the array is larger than 1, because the truth value |
| of such arrays is ambiguous.</p> |
| </div> |
| <p>Unary operations:</p> |
| <table class="longtable docutils align-default"> |
| <colgroup> |
| <col style="width: 10%" /> |
| <col style="width: 90%" /> |
| </colgroup> |
| <tbody> |
| <tr class="row-odd"><td><p><code class="xref py py-obj docutils literal notranslate"><span class="pre">ndarray.__neg__</span></code></p></td> |
| <td><p></p></td> |
| </tr> |
| </tbody> |
| </table> |
| <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">ndarray</span><span class="o">.</span><span class="fm">__pos__</span> |
| <span class="n">ndarray</span><span class="o">.</span><span class="fm">__abs__</span> |
| <span class="n">ndarray</span><span class="o">.</span><span class="fm">__invert__</span> |
| </pre></div> |
| </div> |
| <p>Arithmetic:</p> |
| <table class="longtable docutils align-default"> |
| <colgroup> |
| <col style="width: 10%" /> |
| <col style="width: 90%" /> |
| </colgroup> |
| <tbody> |
| <tr class="row-odd"><td><p><code class="xref py py-obj docutils literal notranslate"><span class="pre">ndarray.__add__</span></code></p></td> |
| <td><p></p></td> |
| </tr> |
| <tr class="row-even"><td><p><code class="xref py py-obj docutils literal notranslate"><span class="pre">ndarray.__sub__</span></code></p></td> |
| <td><p></p></td> |
| </tr> |
| <tr class="row-odd"><td><p><code class="xref py py-obj docutils literal notranslate"><span class="pre">ndarray.__mul__</span></code></p></td> |
| <td><p></p></td> |
| </tr> |
| <tr class="row-even"><td><p><code class="xref py py-obj docutils literal notranslate"><span class="pre">ndarray.__truediv__</span></code></p></td> |
| <td><p></p></td> |
| </tr> |
| <tr class="row-odd"><td><p><code class="xref py py-obj docutils literal notranslate"><span class="pre">ndarray.__mod__</span></code></p></td> |
| <td><p></p></td> |
| </tr> |
| <tr class="row-even"><td><p><code class="xref py py-obj docutils literal notranslate"><span class="pre">ndarray.__pow__</span></code></p></td> |
| <td><p></p></td> |
| </tr> |
| </tbody> |
| </table> |
| <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">ndarray</span><span class="o">.</span><span class="fm">__floordiv__</span> |
| <span class="n">ndarray</span><span class="o">.</span><span class="fm">__divmod__</span> |
| <span class="n">ndarray</span><span class="o">.</span><span class="fm">__lshift__</span> |
| <span class="n">ndarray</span><span class="o">.</span><span class="fm">__rshift__</span> |
| <span class="n">ndarray</span><span class="o">.</span><span class="fm">__and__</span> |
| <span class="n">ndarray</span><span class="o">.</span><span class="fm">__or__</span> |
| <span class="n">ndarray</span><span class="o">.</span><span class="fm">__xor__</span> |
| </pre></div> |
| </div> |
| <div class="admonition note"> |
| <p class="admonition-title">Note</p> |
| <ul class="simple"> |
| <li><p>Any third argument to <code class="xref py py-func docutils literal notranslate"><span class="pre">pow()</span></code> is silently ignored, |
| as the underlying <code class="xref py py-func docutils literal notranslate"><span class="pre">ufunc</span></code> takes only two arguments.</p></li> |
| <li><p>The three division operators are all defined; <code class="xref py py-obj docutils literal notranslate"><span class="pre">div</span></code> is active |
| by default, <code class="xref py py-obj docutils literal notranslate"><span class="pre">truediv</span></code> is active when |
| <code class="xref py py-obj docutils literal notranslate"><span class="pre">__future__</span></code> division is in effect.</p></li> |
| <li><p>Because <code class="xref py py-class docutils literal notranslate"><span class="pre">ndarray</span></code> is a built-in type (written in C), the |
| <code class="docutils literal notranslate"><span class="pre">__r{op}__</span></code> special methods are not directly defined.</p></li> |
| <li><p>The functions called to implement many arithmetic special methods |
| for arrays can be modified using <code class="xref py py-class docutils literal notranslate"><span class="pre">__array_ufunc__</span></code>.</p></li> |
| </ul> |
| </div> |
| <p>Arithmetic, in-place:</p> |
| <table class="longtable docutils align-default"> |
| <colgroup> |
| <col style="width: 10%" /> |
| <col style="width: 90%" /> |
| </colgroup> |
| <tbody> |
| <tr class="row-odd"><td><p><code class="xref py py-obj docutils literal notranslate"><span class="pre">ndarray.__iadd__</span></code></p></td> |
| <td><p></p></td> |
| </tr> |
| <tr class="row-even"><td><p><code class="xref py py-obj docutils literal notranslate"><span class="pre">ndarray.__isub__</span></code></p></td> |
| <td><p></p></td> |
| </tr> |
| <tr class="row-odd"><td><p><code class="xref py py-obj docutils literal notranslate"><span class="pre">ndarray.__imul__</span></code></p></td> |
| <td><p></p></td> |
| </tr> |
| <tr class="row-even"><td><p><code class="xref py py-obj docutils literal notranslate"><span class="pre">ndarray.__itruediv__</span></code></p></td> |
| <td><p></p></td> |
| </tr> |
| <tr class="row-odd"><td><p><code class="xref py py-obj docutils literal notranslate"><span class="pre">ndarray.__imod__</span></code></p></td> |
| <td><p></p></td> |
| </tr> |
| </tbody> |
| </table> |
| <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">ndarray</span><span class="o">.</span><span class="fm">__ifloordiv__</span> |
| <span class="n">ndarray</span><span class="o">.</span><span class="fm">__ipow__</span> |
| <span class="n">ndarray</span><span class="o">.</span><span class="fm">__ilshift__</span> |
| <span class="n">ndarray</span><span class="o">.</span><span class="fm">__irshift__</span> |
| <span class="n">ndarray</span><span class="o">.</span><span class="fm">__iand__</span> |
| <span class="n">ndarray</span><span class="o">.</span><span class="fm">__ior__</span> |
| <span class="n">ndarray</span><span class="o">.</span><span class="fm">__ixor__</span> |
| </pre></div> |
| </div> |
| <div class="admonition warning"> |
| <p class="admonition-title">Warning</p> |
| <p>In place operations will perform the calculation using the |
| precision decided by the data type of the two operands, but will |
| silently downcast the result (if necessary) so it can fit back into |
| the array. Therefore, for mixed precision calculations, <code class="docutils literal notranslate"><span class="pre">A</span> <span class="pre">{op}=</span> |
| <span class="pre">B</span></code> can be different than <code class="docutils literal notranslate"><span class="pre">A</span> <span class="pre">=</span> <span class="pre">A</span> <span class="pre">{op}</span> <span class="pre">B</span></code>. For example, suppose |
| <code class="docutils literal notranslate"><span class="pre">a</span> <span class="pre">=</span> <span class="pre">ones((3,3))</span></code>. Then, <code class="docutils literal notranslate"><span class="pre">a</span> <span class="pre">+=</span> <span class="pre">3j</span></code> is different than <code class="docutils literal notranslate"><span class="pre">a</span> <span class="pre">=</span> <span class="pre">a</span> <span class="pre">+</span> |
| <span class="pre">3j</span></code>: while they both perform the same computation, <code class="docutils literal notranslate"><span class="pre">a</span> <span class="pre">+=</span> <span class="pre">3</span></code> |
| casts the result to fit back in <code class="docutils literal notranslate"><span class="pre">a</span></code>, whereas <code class="docutils literal notranslate"><span class="pre">a</span> <span class="pre">=</span> <span class="pre">a</span> <span class="pre">+</span> <span class="pre">3j</span></code> |
| re-binds the name <code class="docutils literal notranslate"><span class="pre">a</span></code> to the result.</p> |
| </div> |
| <p>Matrix Multiplication:</p> |
| <table class="longtable docutils align-default"> |
| <colgroup> |
| <col style="width: 10%" /> |
| <col style="width: 90%" /> |
| </colgroup> |
| <tbody> |
| </tbody> |
| </table> |
| <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">ndarray</span><span class="o">.</span><span class="fm">__matmul__</span> |
| </pre></div> |
| </div> |
| </div> |
| <div class="section" id="special-methods"> |
| <h2>Special methods<a class="headerlink" href="#special-methods" title="Permalink to this headline">¶</a></h2> |
| <p>For standard library functions:</p> |
| <table class="longtable docutils align-default"> |
| <colgroup> |
| <col style="width: 10%" /> |
| <col style="width: 90%" /> |
| </colgroup> |
| <tbody> |
| <tr class="row-odd"><td><p><code class="xref py py-obj docutils literal notranslate"><span class="pre">ndarray.__reduce__</span></code></p></td> |
| <td><p></p></td> |
| </tr> |
| <tr class="row-even"><td><p><code class="xref py py-obj docutils literal notranslate"><span class="pre">ndarray.__setstate__</span></code></p></td> |
| <td><p></p></td> |
| </tr> |
| </tbody> |
| </table> |
| <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">ndarray</span><span class="o">.</span><span class="n">__copy__</span> |
| <span class="n">ndarray</span><span class="o">.</span><span class="n">__deepcopy__</span> |
| </pre></div> |
| </div> |
| <p>Basic customization:</p> |
| <table class="longtable docutils align-default"> |
| <colgroup> |
| <col style="width: 10%" /> |
| <col style="width: 90%" /> |
| </colgroup> |
| <tbody> |
| </tbody> |
| </table> |
| <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">ndarray</span><span class="o">.</span><span class="n">__array__</span> |
| <span class="n">ndarray</span><span class="o">.</span><span class="fm">__new__</span> |
| <span class="n">ndarray</span><span class="o">.</span><span class="n">__array_wrap__</span> |
| </pre></div> |
| </div> |
| <p>Container customization: (see <a class="reference internal" href="arrays.indexing.html#arrays-indexing"><span class="std std-ref">Indexing</span></a>)</p> |
| <table class="longtable docutils align-default"> |
| <colgroup> |
| <col style="width: 10%" /> |
| <col style="width: 90%" /> |
| </colgroup> |
| <tbody> |
| <tr class="row-odd"><td><p><code class="xref py py-obj docutils literal notranslate"><span class="pre">ndarray.__len__</span></code></p></td> |
| <td><p></p></td> |
| </tr> |
| <tr class="row-even"><td><p><code class="xref py py-obj docutils literal notranslate"><span class="pre">ndarray.__getitem__</span></code></p></td> |
| <td><p></p></td> |
| </tr> |
| <tr class="row-odd"><td><p><code class="xref py py-obj docutils literal notranslate"><span class="pre">ndarray.__setitem__</span></code></p></td> |
| <td><p></p></td> |
| </tr> |
| </tbody> |
| </table> |
| <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">ndarray</span><span class="o">.</span><span class="fm">__contains__</span> |
| </pre></div> |
| </div> |
| <p>Conversion; the operations <code class="xref py py-func docutils literal notranslate"><span class="pre">int()</span></code> and <code class="xref py py-func docutils literal notranslate"><span class="pre">float()</span></code>. |
| They work only on arrays that have one element in them |
| and return the appropriate scalar.</p> |
| <table class="longtable docutils align-default"> |
| <colgroup> |
| <col style="width: 10%" /> |
| <col style="width: 90%" /> |
| </colgroup> |
| <tbody> |
| <tr class="row-odd"><td><p><code class="xref py py-obj docutils literal notranslate"><span class="pre">ndarray.__int__</span></code></p></td> |
| <td><p></p></td> |
| </tr> |
| <tr class="row-even"><td><p><code class="xref py py-obj docutils literal notranslate"><span class="pre">ndarray.__float__</span></code></p></td> |
| <td><p></p></td> |
| </tr> |
| </tbody> |
| </table> |
| <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">ndarray</span><span class="o">.</span><span class="fm">__complex__</span> |
| </pre></div> |
| </div> |
| <p>String representations:</p> |
| <table class="longtable docutils align-default"> |
| <colgroup> |
| <col style="width: 10%" /> |
| <col style="width: 90%" /> |
| </colgroup> |
| <tbody> |
| <tr class="row-odd"><td><p><code class="xref py py-obj docutils literal notranslate"><span class="pre">ndarray.__str__</span></code></p></td> |
| <td><p></p></td> |
| </tr> |
| <tr class="row-even"><td><p><code class="xref py py-obj docutils literal notranslate"><span class="pre">ndarray.__repr__</span></code></p></td> |
| <td><p></p></td> |
| </tr> |
| </tbody> |
| </table> |
| </div> |
| </div> |
| |
| |
| <hr class="feedback-hr-top" /> |
| <div class="feedback-container"> |
| <div class="feedback-question">Did this page help you?</div> |
| <div class="feedback-answer-container"> |
| <div class="feedback-answer yes-link" data-response="yes">Yes</div> |
| <div class="feedback-answer no-link" data-response="no">No</div> |
| </div> |
| <div class="feedback-thank-you">Thanks for your feedback!</div> |
| </div> |
| <hr class="feedback-hr-bottom" /> |
| </div> |
| <div class="side-doc-outline"> |
| <div class="side-doc-outline--content"> |
| <div class="localtoc"> |
| <p class="caption"> |
| <span class="caption-text">Table Of Contents</span> |
| </p> |
| <ul> |
| <li><a class="reference internal" href="#">The N-dimensional array (<code class="xref py py-class docutils literal notranslate"><span class="pre">ndarray</span></code>)</a><ul> |
| <li><a class="reference internal" href="#constructing-arrays">Constructing arrays</a></li> |
| <li><a class="reference internal" href="#indexing-arrays">Indexing arrays</a></li> |
| <li><a class="reference internal" href="#internal-memory-layout-of-an-ndarray">Internal memory layout of an ndarray</a></li> |
| <li><a class="reference internal" href="#array-attributes">Array attributes</a><ul> |
| <li><a class="reference internal" href="#id1">Memory layout</a></li> |
| <li><a class="reference internal" href="#data-type">Data type</a></li> |
| <li><a class="reference internal" href="#other-attributes">Other attributes</a></li> |
| </ul> |
| </li> |
| <li><a class="reference internal" href="#array-methods">Array methods</a><ul> |
| <li><a class="reference internal" href="#array-conversion">Array conversion</a></li> |
| <li><a class="reference internal" href="#shape-manipulation">Shape manipulation</a></li> |
| <li><a class="reference internal" href="#item-selection-and-manipulation">Item selection and manipulation</a></li> |
| <li><a class="reference internal" href="#calculation">Calculation</a></li> |
| </ul> |
| </li> |
| <li><a class="reference internal" href="#arithmetic-matrix-multiplication-and-comparison-operations">Arithmetic, matrix multiplication, and comparison operations</a></li> |
| <li><a class="reference internal" href="#special-methods">Special methods</a></li> |
| </ul> |
| </li> |
| </ul> |
| |
| </div> |
| </div> |
| </div> |
| |
| <div class="clearer"></div> |
| </div><div class="pagenation"> |
| <a id="button-prev" href="arrays.html" class="mdl-button mdl-js-button mdl-js-ripple-effect mdl-button--colored" role="botton" accesskey="P"> |
| <i class="pagenation-arrow-L fas fa-arrow-left fa-lg"></i> |
| <div class="pagenation-text"> |
| <span class="pagenation-direction">Previous</span> |
| <div>Array objects</div> |
| </div> |
| </a> |
| <a id="button-next" href="arrays.indexing.html" class="mdl-button mdl-js-button mdl-js-ripple-effect mdl-button--colored" role="botton" accesskey="N"> |
| <i class="pagenation-arrow-R fas fa-arrow-right fa-lg"></i> |
| <div class="pagenation-text"> |
| <span class="pagenation-direction">Next</span> |
| <div>Indexing</div> |
| </div> |
| </a> |
| </div> |
| <footer class="site-footer h-card"> |
| <div class="wrapper"> |
| <div class="row"> |
| <div class="col-4"> |
| <h4 class="footer-category-title">Resources</h4> |
| <ul class="contact-list"> |
| <li><a class="u-email" href="mailto:dev@mxnet.apache.org">Dev list</a></li> |
| <li><a class="u-email" href="mailto:user@mxnet.apache.org">User mailing list</a></li> |
| <li><a href="https://cwiki.apache.org/confluence/display/MXNET/Apache+MXNet+Home">Developer Wiki</a></li> |
| <li><a href="https://issues.apache.org/jira/projects/MXNET/issues">Jira Tracker</a></li> |
| <li><a href="https://github.com/apache/incubator-mxnet/labels/Roadmap">Github Roadmap</a></li> |
| <li><a href="https://discuss.mxnet.io">MXNet Discuss forum</a></li> |
| <li><a href="/community/contribute">Contribute To MXNet</a></li> |
| |
| </ul> |
| </div> |
| |
| <div class="col-4"><ul class="social-media-list"><li><a href="https://github.com/apache/incubator-mxnet"><svg class="svg-icon"><use xlink:href="../../../../_static/minima-social-icons.svg#github"></use></svg> <span class="username">apache/incubator-mxnet</span></a></li><li><a href="https://www.twitter.com/apachemxnet"><svg class="svg-icon"><use xlink:href="../../../../_static/minima-social-icons.svg#twitter"></use></svg> <span class="username">apachemxnet</span></a></li><li><a href="https://youtube.com/apachemxnet"><svg class="svg-icon"><use xlink:href="../../../../_static/minima-social-icons.svg#youtube"></use></svg> <span class="username">apachemxnet</span></a></li></ul> |
| </div> |
| |
| <div class="col-4 footer-text"> |
| <p>A flexible and efficient library for deep learning.</p> |
| </div> |
| </div> |
| </div> |
| </footer> |
| |
| <footer class="site-footer2"> |
| <div class="wrapper"> |
| <div class="row"> |
| <div class="col-3"> |
| <img src="../../../../_static/apache_incubator_logo.png" class="footer-logo col-2"> |
| </div> |
| <div class="footer-bottom-warning col-9"> |
| <p>Apache MXNet is an effort undergoing incubation at The Apache Software Foundation (ASF), <span style="font-weight:bold">sponsored by the <i>Apache Incubator</i></span>. Incubation is required |
| of all newly accepted projects until a further review indicates that the infrastructure, |
| communications, and decision making process have stabilized in a manner consistent with other |
| successful ASF projects. While incubation status is not necessarily a reflection of the completeness |
| or stability of the code, it does indicate that the project has yet to be fully endorsed by the ASF. |
| </p><p>"Copyright © 2017-2018, The Apache Software Foundation Apache MXNet, MXNet, Apache, the Apache |
| feather, and the Apache MXNet project logo are either registered trademarks or trademarks of the |
| Apache Software Foundation."</p> |
| </div> |
| </div> |
| </div> |
| </footer> |
| |
| </body> |
| </html> |