blob: 15acde2ba0bd6489fc85465fcd5cf1446040d941 [file] [log] [blame]
<!---
Licensed to the Apache Software Foundation (ASF) under one
or more contributor license agreements. See the NOTICE file
distributed with this work for additional information
regarding copyright ownership. The ASF licenses this file
to you under the Apache License, Version 2.0 (the
"License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing,
software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
KIND, either express or implied. See the License for the
specific language governing permissions and limitations
under the License.
-->
---
layout: default
---
<script>
</script>
<article class="post">
<header class="post-header wrapper">
<h1 class="post-title">Features</h1>
<h3>Whether you are looking for a flexible library to quickly develop cutting-edge deep learning research or a robust framework to push production workload, MXNet caters to all needs.</h3><a style="float:left; margin-top:20px" href="/versions/master/get_started" class="btn btn-action">Get Started
<span class="span-accented"></span></a></header>
<div class="post-content">
<div class="wrapper">
<!---
Licensed to the Apache Software Foundation (ASF) under one
or more contributor license agreements. See the NOTICE file
distributed with this work for additional information
regarding copyright ownership. The ASF licenses this file
to you under the Apache License, Version 2.0 (the
"License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing,
software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
KIND, either express or implied. See the License for the
specific language governing permissions and limitations
under the License.
-->
<!-- HYBRID FRONTEND -->
<div class="row">
<div class="col-12">
<h3 class="feature-title">Hybrid Front-End</h3>
</div>
<div class="col-5">
<p class="feature-paragraph">The Gluon Python API lets you use MXNet in a fully imperative manner. It also
allows you to simply switch to
symbolic mode by calling the <a
href="/api/python/docs/tutorials/packages/gluon/blocks/hybridize.html">hybridize</a>
functionality. The symbolic execution provides faster and more optimized
execution as well as the ability to export the network for inference in different language bindings like
java or C++.
</p>
</div>
<div class="col-1">
</div>
<div class="col-6 code-block">
<figure class="highlight"><pre><code class="language-python" data-lang="python"><span class="n">net</span> <span class="o">=</span> <span class="n">model_zoo</span><span class="o">.</span><span class="n">vision</span><span class="o">.</span><span class="n">resnet50_v2</span><span class="p">(</span><span class="n">pretrained</span><span class="o">=</span><span class="bp">True</span><span class="p">)</span>
<span class="n">net</span><span class="o">.</span><span class="n">hybridize</span><span class="p">()</span>
<span class="n">dummy_input</span> <span class="o">=</span> <span class="n">mx</span><span class="o">.</span><span class="n">nd</span><span class="o">.</span><span class="n">ones</span><span class="p">(</span><span class="n">shape</span><span class="o">=</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span><span class="mi">3</span><span class="p">,</span><span class="mi">224</span><span class="p">,</span><span class="mi">224</span><span class="p">))</span>
<span class="n">net</span><span class="p">(</span><span class="n">dummy_input</span><span class="p">)</span>
<span class="n">net</span><span class="o">.</span><span class="n">export</span><span class="p">(</span><span class="s">"symbolic_resnet50"</span><span class="p">)</span>
</code></pre></figure>
</div>
</div>
<!-- DISTRIBUTED TRAINING -->
<br>
<br>
<div class="row ">
<div class="col-7"></div>
<div class="col-5">
<h3 class="feature-title">Distributed Training</h3>
</div>
<div class="col-6 code-block">
<figure class="highlight"><pre><code class="language-python" data-lang="python"><span class="kn">import</span> <span class="nn">horovod.mxnet</span> <span class="k">as</span> <span class="n">hvd</span>
<span class="c1"># Horovod: initialize Horovod
</span><span class="n">hvd</span><span class="o">.</span><span class="n">init</span><span class="p">()</span>
<span class="c1"># Horovod: pin a GPU to be used to local rank
</span><span class="n">context</span> <span class="o">=</span> <span class="n">mx</span><span class="o">.</span><span class="n">gpu</span><span class="p">(</span><span class="n">hvd</span><span class="o">.</span><span class="n">local_rank</span><span class="p">())</span>
</code></pre></figure>
</div>
<div class="col-1"></div>
<div class="col-5">
<p class="feature-paragraph">MXNet allows you to make the most out of your hardware, whether it is multi-gpu or
multi-host training with near-linear scaling efficiency. MXNet recently introduced support for
<a href="https://medium.com/apache-mxnet/distributed-training-using-apache-mxnet-with-horovod-44f98bf0e7b7">Horovod</a>,
the distributed learning framework developed by Uber.
</p>
</div>
</div>
<!-- 8 Language Bindings -->
<br><br>
<div class="row">
<div class="col-12">
<h3 class="feature-title">8 Language Bindings</h3>
</div>
<div class="col-5">
<p class="feature-paragraph">Deep integration into Python and support for Scala, Julia, Clojure, Java, C++, R
and Perl.
Combined with the hybridization feature, this allows a very smooth transition from Python training to
deployment
in the language of your choice to shorten the time to production.
</p>
</div>
<div class="col-1">
</div>
<div class="col-6 code-block">
<figure class="highlight"><pre><code class="language-java" data-lang="java"><span class="kn">import</span> <span class="nn">org.apache.mxnet.javaapi.*</span><span class="o">;</span>
<span class="o">...</span>
<span class="nc">List</span>
<span class="o">&lt;</span><span class="nc">DataDesc</span><span class="o">&gt;</span> <span class="n">inputDesc</span> <span class="o">=</span> <span class="k">new</span> <span class="nc">ArrayList</span><span class="o">&lt;&gt;();</span>
<span class="nc">Shape</span> <span class="n">inputShape</span> <span class="o">=</span> <span class="k">new</span> <span class="nc">Shape</span><span class="o">(</span><span class="k">new</span> <span class="kt">int</span><span class="o">[]{</span><span class="mi">1</span><span class="o">,</span> <span class="mi">3</span><span class="o">,</span> <span class="mi">224</span><span class="o">,</span> <span class="mi">224</span><span class="o">});</span>
<span class="n">inputDesc</span><span class="o">.</span><span class="na">add</span><span class="o">(</span><span class="k">new</span> <span class="nc">DataDesc</span><span class="o">(</span><span class="s">"data"</span><span class="o">,</span> <span class="n">inputShape</span><span class="o">,</span> <span class="nc">DType</span><span class="o">.</span><span class="na">Float32</span><span class="o">(),</span> <span class="s">"NCHW"</span><span class="o">));</span>
<span class="nc">Predictor</span> <span class="n">predictor</span> <span class="o">=</span> <span class="k">new</span> <span class="nc">Predictor</span><span class="o">(</span><span class="n">inst</span><span class="o">.</span><span class="na">modelPathPrefix</span><span class="o">,</span> <span class="n">inputDesc</span><span class="o">,</span> <span class="n">context</span><span class="o">,</span><span class="mi">0</span><span class="o">);</span>
<span class="o">...</span>
<span class="kt">float</span><span class="o">[][]</span> <span class="n">result</span> <span class="o">=</span> <span class="n">predictor</span><span class="o">.</span><span class="na">predict</span><span class="o">(</span><span class="k">new</span> <span class="kt">float</span><span class="o">[][]{</span><span class="n">img</span><span class="o">.</span><span class="na">toArray</span><span class="o">()});</span>
</code></pre></figure>
</div>
</div>
</div>
</div>
</div>
</article>