blob: f7191443579691b130e796bc873ef166e82a6e6e [file] [log] [blame]
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8"/>
<meta content="IE=edge" http-equiv="X-UA-Compatible"/>
<meta content="width=device-width, initial-scale=1" name="viewport"/>
<meta content="mxnet.symbol.symbol" property="og:title">
<meta content="https://raw.githubusercontent.com/dmlc/web-data/master/mxnet/image/og-logo.png" property="og:image">
<meta content="https://raw.githubusercontent.com/dmlc/web-data/master/mxnet/image/og-logo.png" property="og:image:secure_url">
<meta content="mxnet.symbol.symbol" property="og:description"/>
<title>mxnet.symbol.symbol — mxnet documentation</title>
<link crossorigin="anonymous" href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/css/bootstrap.min.css" integrity="sha384-1q8mTJOASx8j1Au+a5WDVnPi2lkFfwwEAa8hDDdjZlpLegxhjVME1fgjWPGmkzs7" rel="stylesheet"/>
<link href="https://maxcdn.bootstrapcdn.com/font-awesome/4.5.0/css/font-awesome.min.css" rel="stylesheet"/>
<link href="../../../_static/basic.css" rel="stylesheet" type="text/css">
<link href="../../../_static/pygments.css" rel="stylesheet" type="text/css">
<link href="../../../_static/mxnet.css" rel="stylesheet" type="text/css"/>
<script type="text/javascript">
var DOCUMENTATION_OPTIONS = {
URL_ROOT: '../../../',
VERSION: '',
COLLAPSE_INDEX: false,
FILE_SUFFIX: '.html',
HAS_SOURCE: true,
SOURCELINK_SUFFIX: '.txt'
};
</script>
<script src="https://code.jquery.com/jquery-1.11.1.min.js" type="text/javascript"></script>
<script src="../../../_static/underscore.js" type="text/javascript"></script>
<script src="../../../_static/searchtools_custom.js" type="text/javascript"></script>
<script src="../../../_static/doctools.js" type="text/javascript"></script>
<script src="../../../_static/selectlang.js" type="text/javascript"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.1/MathJax.js?config=TeX-AMS-MML_HTMLorMML" type="text/javascript"></script>
<script type="text/javascript"> jQuery(function() { Search.loadIndex("/versions/1.3.1/searchindex.js"); Search.init();}); </script>
<script>
(function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){
(i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new
Date();a=s.createElement(o),
m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m)
})(window,document,'script','https://www.google-analytics.com/analytics.js','ga');
ga('create', 'UA-96378503-1', 'auto');
ga('send', 'pageview');
</script>
<!-- -->
<!-- <script type="text/javascript" src="../../../_static/jquery.js"></script> -->
<!-- -->
<!-- <script type="text/javascript" src="../../../_static/underscore.js"></script> -->
<!-- -->
<!-- <script type="text/javascript" src="../../../_static/doctools.js"></script> -->
<!-- -->
<!-- <script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script> -->
<!-- -->
<link href="../../../genindex.html" rel="index" title="Index">
<link href="../../../search.html" rel="search" title="Search"/>
<link href="../../index.html" rel="up" title="Module code"/>
<link href="https://raw.githubusercontent.com/dmlc/web-data/master/mxnet/image/mxnet-icon.png" rel="icon" type="image/png"/>
</link></link></link></meta></meta></meta></head>
<body background="https://raw.githubusercontent.com/dmlc/web-data/master/mxnet/image/mxnet-background-compressed.jpeg" role="document">
<div class="content-block"><div class="navbar navbar-fixed-top">
<div class="container" id="navContainer">
<div class="innder" id="header-inner">
<h1 id="logo-wrap">
<a href="../../../" id="logo"><img src="https://raw.githubusercontent.com/dmlc/web-data/master/mxnet/image/mxnet_logo.png"/></a>
</h1>
<nav class="nav-bar" id="main-nav">
<a class="main-nav-link" href="/versions/1.3.1/install/index.html">Install</a>
<span id="dropdown-menu-position-anchor">
<a aria-expanded="true" aria-haspopup="true" class="main-nav-link dropdown-toggle" data-toggle="dropdown" href="#" role="button">Gluon <span class="caret"></span></a>
<ul class="dropdown-menu navbar-menu" id="package-dropdown-menu">
<li><a class="main-nav-link" href="/versions/1.3.1/tutorials/gluon/gluon.html">About</a></li>
<li><a class="main-nav-link" href="https://www.d2l.ai/">Dive into Deep Learning</a></li>
<li><a class="main-nav-link" href="https://gluon-cv.mxnet.io">GluonCV Toolkit</a></li>
<li><a class="main-nav-link" href="https://gluon-nlp.mxnet.io/">GluonNLP Toolkit</a></li>
</ul>
</span>
<span id="dropdown-menu-position-anchor">
<a aria-expanded="true" aria-haspopup="true" class="main-nav-link dropdown-toggle" data-toggle="dropdown" href="#" role="button">API <span class="caret"></span></a>
<ul class="dropdown-menu navbar-menu" id="package-dropdown-menu">
<li><a class="main-nav-link" href="/versions/1.3.1/api/python/index.html">Python</a></li>
<li><a class="main-nav-link" href="/versions/1.3.1/api/c++/index.html">C++</a></li>
<li><a class="main-nav-link" href="/versions/1.3.1/api/clojure/index.html">Clojure</a></li>
<li><a class="main-nav-link" href="/versions/1.3.1/api/julia/index.html">Julia</a></li>
<li><a class="main-nav-link" href="/versions/1.3.1/api/perl/index.html">Perl</a></li>
<li><a class="main-nav-link" href="/versions/1.3.1/api/r/index.html">R</a></li>
<li><a class="main-nav-link" href="/versions/1.3.1/api/scala/index.html">Scala</a></li>
</ul>
</span>
<span id="dropdown-menu-position-anchor-docs">
<a aria-expanded="true" aria-haspopup="true" class="main-nav-link dropdown-toggle" data-toggle="dropdown" href="#" role="button">Docs <span class="caret"></span></a>
<ul class="dropdown-menu navbar-menu" id="package-dropdown-menu-docs">
<li><a class="main-nav-link" href="/versions/1.3.1/faq/index.html">FAQ</a></li>
<li><a class="main-nav-link" href="/versions/1.3.1/tutorials/index.html">Tutorials</a>
<li><a class="main-nav-link" href="https://github.com/apache/incubator-mxnet/tree/1.3.1/example">Examples</a></li>
<li><a class="main-nav-link" href="/versions/1.3.1/architecture/index.html">Architecture</a></li>
<li><a class="main-nav-link" href="https://cwiki.apache.org/confluence/display/MXNET/Apache+MXNet+Home">Developer Wiki</a></li>
<li><a class="main-nav-link" href="/versions/1.3.1/model_zoo/index.html">Model Zoo</a></li>
<li><a class="main-nav-link" href="https://github.com/onnx/onnx-mxnet">ONNX</a></li>
</li></ul>
</span>
<span id="dropdown-menu-position-anchor-community">
<a aria-expanded="true" aria-haspopup="true" class="main-nav-link dropdown-toggle" data-toggle="dropdown" href="#" role="button">Community <span class="caret"></span></a>
<ul class="dropdown-menu navbar-menu" id="package-dropdown-menu-community">
<li><a class="main-nav-link" href="http://discuss.mxnet.io">Forum</a></li>
<li><a class="main-nav-link" href="https://github.com/apache/incubator-mxnet/tree/1.3.1">Github</a></li>
<li><a class="main-nav-link" href="/versions/1.3.1/community/contribute.html">Contribute</a></li>
<li><a class="main-nav-link" href="/versions/1.3.1/community/ecosystem.html">Ecosystem</a></li>
<li><a class="main-nav-link" href="/versions/1.3.1/community/powered_by.html">Powered By</a></li>
</ul>
</span>
<span id="dropdown-menu-position-anchor-version" style="position: relative"><a href="#" class="main-nav-link dropdown-toggle" data-toggle="dropdown" role="button" aria-haspopup="true" aria-expanded="true">1.3.1<span class="caret"></span></a><ul id="package-dropdown-menu" class="dropdown-menu"><li><a href="/">master</a></li><li><a href="/versions/1.7.0/">1.7.0</a></li><li><a href=/versions/1.6.0/>1.6.0</a></li><li><a href=/versions/1.5.0/>1.5.0</a></li><li><a href=/versions/1.4.1/>1.4.1</a></li><li><a href=/versions/1.3.1/>1.3.1</a></li><li><a href=/versions/1.2.1/>1.2.1</a></li><li><a href=/versions/1.1.0/>1.1.0</a></li><li><a href=/versions/1.0.0/>1.0.0</a></li><li><a href=/versions/0.12.1/>0.12.1</a></li><li><a href=/versions/0.11.0/>0.11.0</a></li></ul></span></nav>
<script> function getRootPath(){ return "../../../" } </script>
<div class="burgerIcon dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#" role="button"></a>
<ul class="dropdown-menu" id="burgerMenu">
<li><a href="/versions/1.3.1/install/index.html">Install</a></li>
<li><a class="main-nav-link" href="/versions/1.3.1/tutorials/index.html">Tutorials</a></li>
<li class="dropdown-submenu dropdown">
<a aria-expanded="true" aria-haspopup="true" class="dropdown-toggle burger-link" data-toggle="dropdown" href="#" tabindex="-1">Gluon</a>
<ul class="dropdown-menu navbar-menu" id="package-dropdown-menu">
<li><a class="main-nav-link" href="/versions/1.3.1/tutorials/gluon/gluon.html">About</a></li>
<li><a class="main-nav-link" href="http://gluon.mxnet.io">The Straight Dope (Tutorials)</a></li>
<li><a class="main-nav-link" href="https://gluon-cv.mxnet.io">GluonCV Toolkit</a></li>
<li><a class="main-nav-link" href="https://gluon-nlp.mxnet.io/">GluonNLP Toolkit</a></li>
</ul>
</li>
<li class="dropdown-submenu">
<a aria-expanded="true" aria-haspopup="true" class="dropdown-toggle burger-link" data-toggle="dropdown" href="#" tabindex="-1">API</a>
<ul class="dropdown-menu">
<li><a class="main-nav-link" href="/versions/1.3.1/api/python/index.html">Python</a></li>
<li><a class="main-nav-link" href="/versions/1.3.1/api/c++/index.html">C++</a></li>
<li><a class="main-nav-link" href="/versions/1.3.1/api/clojure/index.html">Clojure</a></li>
<li><a class="main-nav-link" href="/versions/1.3.1/api/julia/index.html">Julia</a></li>
<li><a class="main-nav-link" href="/versions/1.3.1/api/perl/index.html">Perl</a></li>
<li><a class="main-nav-link" href="/versions/1.3.1/api/r/index.html">R</a></li>
<li><a class="main-nav-link" href="/versions/1.3.1/api/scala/index.html">Scala</a></li>
</ul>
</li>
<li class="dropdown-submenu">
<a aria-expanded="true" aria-haspopup="true" class="dropdown-toggle burger-link" data-toggle="dropdown" href="#" tabindex="-1">Docs</a>
<ul class="dropdown-menu">
<li><a href="/versions/1.3.1/faq/index.html" tabindex="-1">FAQ</a></li>
<li><a href="/versions/1.3.1/tutorials/index.html" tabindex="-1">Tutorials</a></li>
<li><a href="https://github.com/apache/incubator-mxnet/tree/1.3.1/example" tabindex="-1">Examples</a></li>
<li><a href="/versions/1.3.1/architecture/index.html" tabindex="-1">Architecture</a></li>
<li><a href="https://cwiki.apache.org/confluence/display/MXNET/Apache+MXNet+Home" tabindex="-1">Developer Wiki</a></li>
<li><a href="/versions/1.3.1/model_zoo/index.html" tabindex="-1">Gluon Model Zoo</a></li>
<li><a href="https://github.com/onnx/onnx-mxnet" tabindex="-1">ONNX</a></li>
</ul>
</li>
<li class="dropdown-submenu dropdown">
<a aria-haspopup="true" class="dropdown-toggle burger-link" data-toggle="dropdown" href="#" role="button" tabindex="-1">Community</a>
<ul class="dropdown-menu">
<li><a href="http://discuss.mxnet.io" tabindex="-1">Forum</a></li>
<li><a href="https://github.com/apache/incubator-mxnet/tree/1.3.1" tabindex="-1">Github</a></li>
<li><a href="/versions/1.3.1/community/contribute.html" tabindex="-1">Contribute</a></li>
<li><a href="/versions/1.3.1/community/ecosystem.html" tabindex="-1">Ecosystem</a></li>
<li><a href="/versions/1.3.1/community/powered_by.html" tabindex="-1">Powered By</a></li>
</ul>
</li>
<li id="dropdown-menu-position-anchor-version-mobile" class="dropdown-submenu" style="position: relative"><a href="#" tabindex="-1">1.3.1</a><ul class="dropdown-menu"><li><a tabindex="-1" href=/>master</a></li><li><a tabindex="-1" href=/versions/1.6.0/>1.6.0</a></li><li><a tabindex="-1" href=/versions/1.5.0/>1.5.0</a></li><li><a tabindex="-1" href=/versions/1.4.1/>1.4.1</a></li><li><a tabindex="-1" href=/versions/1.3.1/>1.3.1</a></li><li><a tabindex="-1" href=/versions/1.2.1/>1.2.1</a></li><li><a tabindex="-1" href=/versions/1.1.0/>1.1.0</a></li><li><a tabindex="-1" href=/versions/1.0.0/>1.0.0</a></li><li><a tabindex="-1" href=/versions/0.12.1/>0.12.1</a></li><li><a tabindex="-1" href=/versions/0.11.0/>0.11.0</a></li></ul></li></ul>
</div>
<div class="plusIcon dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#" role="button"><span aria-hidden="true" class="glyphicon glyphicon-plus"></span></a>
<ul class="dropdown-menu dropdown-menu-right" id="plusMenu"></ul>
</div>
<div id="search-input-wrap">
<form action="../../../search.html" autocomplete="off" class="" method="get" role="search">
<div class="form-group inner-addon left-addon">
<i class="glyphicon glyphicon-search"></i>
<input class="form-control" name="q" placeholder="Search" type="text"/>
</div>
<input name="check_keywords" type="hidden" value="yes">
<input name="area" type="hidden" value="default"/>
</input></form>
<div id="search-preview"></div>
</div>
<div id="searchIcon">
<span aria-hidden="true" class="glyphicon glyphicon-search"></span>
</div>
<!-- <div id="lang-select-wrap"> -->
<!-- <label id="lang-select-label"> -->
<!-- <\!-- <i class="fa fa-globe"></i> -\-> -->
<!-- <span></span> -->
<!-- </label> -->
<!-- <select id="lang-select"> -->
<!-- <option value="en">Eng</option> -->
<!-- <option value="zh">中文</option> -->
<!-- </select> -->
<!-- </div> -->
<!-- <a id="mobile-nav-toggle">
<span class="mobile-nav-toggle-bar"></span>
<span class="mobile-nav-toggle-bar"></span>
<span class="mobile-nav-toggle-bar"></span>
</a> -->
</div>
</div>
</div>
<script type="text/javascript">
$('body').css('background', 'white');
</script>
<div class="container">
<div class="row">
<div aria-label="main navigation" class="sphinxsidebar leftsidebar" role="navigation">
<div class="sphinxsidebarwrapper">
<ul>
<li class="toctree-l1"><a class="reference internal" href="../../../api/python/index.html">Python Documents</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../api/r/index.html">R Documents</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../api/julia/index.html">Julia Documents</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../api/c++/index.html">C++ Documents</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../api/scala/index.html">Scala Documents</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../api/perl/index.html">Perl Documents</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../faq/index.html">HowTo Documents</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../architecture/index.html">System Documents</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../tutorials/index.html">Tutorials</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../community/contribute.html">Community</a></li>
</ul>
</div>
</div>
<div class="content">
<div class="page-tracker"></div>
<h1>Source code for mxnet.symbol.symbol</h1><div class="highlight"><pre>
<span></span><span class="c1"># Licensed to the Apache Software Foundation (ASF) under one</span>
<span class="c1"># or more contributor license agreements. See the NOTICE file</span>
<span class="c1"># distributed with this work for additional information</span>
<span class="c1"># regarding copyright ownership. The ASF licenses this file</span>
<span class="c1"># to you under the Apache License, Version 2.0 (the</span>
<span class="c1"># "License"); you may not use this file except in compliance</span>
<span class="c1"># with the License. You may obtain a copy of the License at</span>
<span class="c1">#</span>
<span class="c1"># http://www.apache.org/licenses/LICENSE-2.0</span>
<span class="c1">#</span>
<span class="c1"># Unless required by applicable law or agreed to in writing,</span>
<span class="c1"># software distributed under the License is distributed on an</span>
<span class="c1"># "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY</span>
<span class="c1"># KIND, either express or implied. See the License for the</span>
<span class="c1"># specific language governing permissions and limitations</span>
<span class="c1"># under the License.</span>
<span class="c1"># coding: utf-8</span>
<span class="c1"># pylint: disable=invalid-name, protected-access, too-many-arguments, too-many-lines</span>
<span class="c1"># pylint: disable=import-error, no-name-in-module</span>
<span class="sd">"""Symbolic configuration API of MXNet."""</span>
<span class="kn">from</span> <span class="nn">__future__</span> <span class="k">import</span> <span class="n">absolute_import</span> <span class="k">as</span> <span class="n">_abs</span>
<span class="k">try</span><span class="p">:</span>
<span class="kn">from</span> <span class="nn">__builtin__</span> <span class="k">import</span> <span class="nb">slice</span> <span class="k">as</span> <span class="n">py_slice</span>
<span class="k">except</span> <span class="ne">ImportError</span><span class="p">:</span>
<span class="kn">from</span> <span class="nn">builtins</span> <span class="k">import</span> <span class="nb">slice</span> <span class="k">as</span> <span class="n">py_slice</span>
<span class="kn">from</span> <span class="nn">array</span> <span class="k">import</span> <span class="n">array</span>
<span class="kn">import</span> <span class="nn">ctypes</span>
<span class="kn">import</span> <span class="nn">warnings</span>
<span class="kn">from</span> <span class="nn">numbers</span> <span class="k">import</span> <span class="n">Number</span>
<span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">_numpy</span>
<span class="kn">from</span> <span class="nn">..attribute</span> <span class="k">import</span> <span class="n">AttrScope</span>
<span class="kn">from</span> <span class="nn">..base</span> <span class="k">import</span> <span class="n">_LIB</span><span class="p">,</span> <span class="n">numeric_types</span><span class="p">,</span> <span class="n">c_array</span><span class="p">,</span> <span class="n">c_array_buf</span><span class="p">,</span> <span class="n">c_str</span><span class="p">,</span> <span class="n">c_str_array</span><span class="p">,</span> <span class="n">c_handle_array</span>
<span class="kn">from</span> <span class="nn">..base</span> <span class="k">import</span> <span class="n">mx_uint</span><span class="p">,</span> <span class="n">py_str</span><span class="p">,</span> <span class="n">string_types</span><span class="p">,</span> <span class="n">integer_types</span>
<span class="kn">from</span> <span class="nn">..base</span> <span class="k">import</span> <span class="n">NDArrayHandle</span><span class="p">,</span> <span class="n">ExecutorHandle</span><span class="p">,</span> <span class="n">SymbolHandle</span>
<span class="kn">from</span> <span class="nn">..base</span> <span class="k">import</span> <span class="n">check_call</span><span class="p">,</span> <span class="n">MXNetError</span><span class="p">,</span> <span class="n">NotImplementedForSymbol</span>
<span class="kn">from</span> <span class="nn">..context</span> <span class="k">import</span> <span class="n">Context</span><span class="p">,</span> <span class="n">current_context</span>
<span class="kn">from</span> <span class="nn">..ndarray</span> <span class="k">import</span> <span class="n">NDArray</span><span class="p">,</span> <span class="n">_DTYPE_NP_TO_MX</span><span class="p">,</span> <span class="n">_DTYPE_MX_TO_NP</span><span class="p">,</span> <span class="n">_GRAD_REQ_MAP</span>
<span class="kn">from</span> <span class="nn">..ndarray.ndarray</span> <span class="k">import</span> <span class="n">_STORAGE_TYPE_STR_TO_ID</span>
<span class="kn">from</span> <span class="nn">..ndarray</span> <span class="k">import</span> <span class="n">_ndarray_cls</span>
<span class="kn">from</span> <span class="nn">..executor</span> <span class="k">import</span> <span class="n">Executor</span>
<span class="kn">from</span> <span class="nn">.</span> <span class="k">import</span> <span class="n">_internal</span>
<span class="kn">from</span> <span class="nn">.</span> <span class="k">import</span> <span class="n">op</span>
<span class="kn">from</span> <span class="nn">._internal</span> <span class="k">import</span> <span class="n">SymbolBase</span><span class="p">,</span> <span class="n">_set_symbol_class</span>
<span class="n">__all__</span> <span class="o">=</span> <span class="p">[</span><span class="s2">"Symbol"</span><span class="p">,</span> <span class="s2">"var"</span><span class="p">,</span> <span class="s2">"Variable"</span><span class="p">,</span> <span class="s2">"Group"</span><span class="p">,</span> <span class="s2">"load"</span><span class="p">,</span> <span class="s2">"load_json"</span><span class="p">,</span>
<span class="s2">"pow"</span><span class="p">,</span> <span class="s2">"maximum"</span><span class="p">,</span> <span class="s2">"minimum"</span><span class="p">,</span> <span class="s2">"hypot"</span><span class="p">,</span> <span class="s2">"eye"</span><span class="p">,</span> <span class="s2">"zeros"</span><span class="p">,</span> <span class="s2">"ones"</span><span class="p">,</span> <span class="s2">"full"</span><span class="p">,</span> <span class="s2">"arange"</span><span class="p">,</span>
<span class="s2">"histogram"</span><span class="p">]</span>
<div class="viewcode-block" id="Symbol"><a class="viewcode-back" href="../../../api/python/symbol/symbol.html#mxnet.symbol.Symbol">[docs]</a><span class="k">class</span> <span class="nc">Symbol</span><span class="p">(</span><span class="n">SymbolBase</span><span class="p">):</span>
<span class="sd">"""Symbol is symbolic graph of the mxnet."""</span>
<span class="c1"># disable dictionary storage, also do not have parent type.</span>
<span class="c1"># pylint: disable=no-member</span>
<span class="vm">__slots__</span> <span class="o">=</span> <span class="p">[]</span>
<span class="c1"># Make numpy functions return Symbol instead of numpy object array</span>
<span class="n">__array_priority__</span> <span class="o">=</span> <span class="mf">1000.0</span>
<div class="viewcode-block" id="Symbol.__repr__"><a class="viewcode-back" href="../../../api/python/symbol/symbol.html#mxnet.symbol.Symbol.__repr__">[docs]</a> <span class="k">def</span> <span class="nf">__repr__</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="sd">"""Gets a string representation of the symbol."""</span>
<span class="n">name</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">name</span>
<span class="k">if</span> <span class="n">name</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">name</span> <span class="o">=</span> <span class="s1">', '</span><span class="o">.</span><span class="n">join</span><span class="p">([</span><span class="n">i</span><span class="o">.</span><span class="n">name</span> <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="bp">self</span><span class="p">])</span>
<span class="k">return</span> <span class="s1">'<</span><span class="si">%s</span><span class="s1"> group [</span><span class="si">%s</span><span class="s1">]>'</span> <span class="o">%</span> <span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="vm">__class__</span><span class="o">.</span><span class="vm">__name__</span><span class="p">,</span> <span class="n">name</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">return</span> <span class="s1">'<</span><span class="si">%s</span><span class="s1"> </span><span class="si">%s</span><span class="s1">>'</span> <span class="o">%</span> <span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="vm">__class__</span><span class="o">.</span><span class="vm">__name__</span><span class="p">,</span> <span class="n">name</span><span class="p">)</span></div>
<div class="viewcode-block" id="Symbol.__iter__"><a class="viewcode-back" href="../../../api/python/symbol/symbol.html#mxnet.symbol.Symbol.__iter__">[docs]</a> <span class="k">def</span> <span class="nf">__iter__</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="sd">"""Returns a generator object of symbol.</span>
<span class="sd"> One can loop through the returned object list to get outputs.</span>
<span class="sd"> Example</span>
<span class="sd"> -------</span>
<span class="sd"> >>> a = mx.sym.Variable('a')</span>
<span class="sd"> >>> b = mx.sym.Variable('b')</span>
<span class="sd"> >>> c = a+b</span>
<span class="sd"> >>> d = mx.sym.Variable('d')</span>
<span class="sd"> >>> e = d+c</span>
<span class="sd"> >>> out = e.get_children()</span>
<span class="sd"> >>> out</span>
<span class="sd"> <Symbol Grouped></span>
<span class="sd"> >>> for i in out:</span>
<span class="sd"> ... i</span>
<span class="sd"> ...</span>
<span class="sd"> <Symbol d></span>
<span class="sd"> <Symbol _plus0></span>
<span class="sd"> """</span>
<span class="k">return</span> <span class="p">(</span><span class="bp">self</span><span class="p">[</span><span class="n">i</span><span class="p">]</span> <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">list_outputs</span><span class="p">())</span></div>
<div class="viewcode-block" id="Symbol.__add__"><a class="viewcode-back" href="../../../api/python/symbol/symbol.html#mxnet.symbol.Symbol.__add__">[docs]</a> <span class="k">def</span> <span class="nf">__add__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">other</span><span class="p">):</span>
<span class="sd">"""x.__add__(y) <=> x+y</span>
<span class="sd"> Scalar input is supported.</span>
<span class="sd"> Broadcasting is not supported. Use `broadcast_add` instead. """</span>
<span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">other</span><span class="p">,</span> <span class="n">Symbol</span><span class="p">):</span>
<span class="k">return</span> <span class="n">_internal</span><span class="o">.</span><span class="n">_Plus</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">other</span><span class="p">)</span>
<span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">other</span><span class="p">,</span> <span class="n">Number</span><span class="p">):</span>
<span class="k">return</span> <span class="n">_internal</span><span class="o">.</span><span class="n">_PlusScalar</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">scalar</span><span class="o">=</span><span class="n">other</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">raise</span> <span class="ne">TypeError</span><span class="p">(</span><span class="s1">'type </span><span class="si">%s</span><span class="s1"> not supported'</span> <span class="o">%</span> <span class="nb">str</span><span class="p">(</span><span class="nb">type</span><span class="p">(</span><span class="n">other</span><span class="p">)))</span></div>
<span class="k">def</span> <span class="nf">__bool__</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="k">raise</span> <span class="n">NotImplementedForSymbol</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="fm">__bool__</span><span class="p">,</span> <span class="s1">'bool'</span><span class="p">)</span>
<span class="n">__nonzero__</span> <span class="o">=</span> <span class="fm">__bool__</span>
<span class="k">def</span> <span class="nf">__iadd__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">other</span><span class="p">):</span>
<span class="k">raise</span> <span class="n">NotImplementedForSymbol</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="fm">__iadd__</span><span class="p">,</span> <span class="s1">'+='</span><span class="p">,</span> <span class="n">other</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">__radd__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">other</span><span class="p">):</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="fm">__add__</span><span class="p">(</span><span class="n">other</span><span class="p">)</span>
<div class="viewcode-block" id="Symbol.__sub__"><a class="viewcode-back" href="../../../api/python/symbol/symbol.html#mxnet.symbol.Symbol.__sub__">[docs]</a> <span class="k">def</span> <span class="nf">__sub__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">other</span><span class="p">):</span>
<span class="sd">"""x.__sub__(y) <=> x-y</span>
<span class="sd"> Scalar input is supported.</span>
<span class="sd"> Broadcasting is not supported. Use `broadcast_sub` instead. """</span>
<span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">other</span><span class="p">,</span> <span class="n">Symbol</span><span class="p">):</span>
<span class="k">return</span> <span class="n">_internal</span><span class="o">.</span><span class="n">_Minus</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">other</span><span class="p">)</span>
<span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">other</span><span class="p">,</span> <span class="n">Number</span><span class="p">):</span>
<span class="k">return</span> <span class="n">_internal</span><span class="o">.</span><span class="n">_MinusScalar</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">scalar</span><span class="o">=</span><span class="n">other</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">raise</span> <span class="ne">TypeError</span><span class="p">(</span><span class="s1">'type </span><span class="si">%s</span><span class="s1"> not supported'</span> <span class="o">%</span> <span class="nb">str</span><span class="p">(</span><span class="nb">type</span><span class="p">(</span><span class="n">other</span><span class="p">)))</span></div>
<span class="k">def</span> <span class="nf">__isub__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">other</span><span class="p">):</span>
<span class="k">raise</span> <span class="n">NotImplementedForSymbol</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="fm">__isub__</span><span class="p">,</span> <span class="s1">'-='</span><span class="p">,</span> <span class="n">other</span><span class="p">)</span>
<div class="viewcode-block" id="Symbol.__rsub__"><a class="viewcode-back" href="../../../api/python/symbol/symbol.html#mxnet.symbol.Symbol.__rsub__">[docs]</a> <span class="k">def</span> <span class="nf">__rsub__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">other</span><span class="p">):</span>
<span class="sd">"""x.__rsub__(y) <=> y-x</span>
<span class="sd"> Only `NDArray` is supported for now.</span>
<span class="sd"> Example</span>
<span class="sd"> -------</span>
<span class="sd"> >>> x = mx.nd.ones((2,3))*3</span>
<span class="sd"> >>> y = mx.nd.ones((2,3))</span>
<span class="sd"> >>> x.__rsub__(y).asnumpy()</span>
<span class="sd"> array([[-2., -2., -2.],</span>
<span class="sd"> [-2., -2., -2.]], dtype=float32)</span>
<span class="sd"> """</span>
<span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">other</span><span class="p">,</span> <span class="n">Number</span><span class="p">):</span>
<span class="k">return</span> <span class="n">_internal</span><span class="o">.</span><span class="n">_RMinusScalar</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">scalar</span><span class="o">=</span><span class="n">other</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">raise</span> <span class="ne">TypeError</span><span class="p">(</span><span class="s1">'type </span><span class="si">%s</span><span class="s1"> not supported'</span> <span class="o">%</span> <span class="nb">str</span><span class="p">(</span><span class="nb">type</span><span class="p">(</span><span class="n">other</span><span class="p">)))</span></div>
<div class="viewcode-block" id="Symbol.__mul__"><a class="viewcode-back" href="../../../api/python/symbol/symbol.html#mxnet.symbol.Symbol.__mul__">[docs]</a> <span class="k">def</span> <span class="nf">__mul__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">other</span><span class="p">):</span>
<span class="sd">"""x.__mul__(y) <=> x*y</span>
<span class="sd"> Scalar input is supported.</span>
<span class="sd"> Broadcasting is not supported. Use `broadcast_mul` instead. """</span>
<span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">other</span><span class="p">,</span> <span class="n">Symbol</span><span class="p">):</span>
<span class="k">return</span> <span class="n">_internal</span><span class="o">.</span><span class="n">_Mul</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">other</span><span class="p">)</span>
<span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">other</span><span class="p">,</span> <span class="n">Number</span><span class="p">):</span>
<span class="k">return</span> <span class="n">_internal</span><span class="o">.</span><span class="n">_MulScalar</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">scalar</span><span class="o">=</span><span class="n">other</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">raise</span> <span class="ne">TypeError</span><span class="p">(</span><span class="s1">'type </span><span class="si">%s</span><span class="s1"> not supported'</span> <span class="o">%</span> <span class="nb">str</span><span class="p">(</span><span class="nb">type</span><span class="p">(</span><span class="n">other</span><span class="p">)))</span></div>
<span class="k">def</span> <span class="nf">__imul__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">other</span><span class="p">):</span>
<span class="k">raise</span> <span class="n">NotImplementedForSymbol</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="fm">__imul__</span><span class="p">,</span> <span class="s1">'*='</span><span class="p">,</span> <span class="n">other</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">__rmul__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">other</span><span class="p">):</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="fm">__mul__</span><span class="p">(</span><span class="n">other</span><span class="p">)</span>
<div class="viewcode-block" id="Symbol.__div__"><a class="viewcode-back" href="../../../api/python/symbol/symbol.html#mxnet.symbol.Symbol.__div__">[docs]</a> <span class="k">def</span> <span class="nf">__div__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">other</span><span class="p">):</span>
<span class="sd">"""x.__div__(y) <=> x/y</span>
<span class="sd"> Scalar input is supported.</span>
<span class="sd"> Broadcasting is not supported. Use `broadcast_div` instead. """</span>
<span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">other</span><span class="p">,</span> <span class="n">Symbol</span><span class="p">):</span>
<span class="k">return</span> <span class="n">_internal</span><span class="o">.</span><span class="n">_Div</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">other</span><span class="p">)</span>
<span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">other</span><span class="p">,</span> <span class="n">Number</span><span class="p">):</span>
<span class="k">return</span> <span class="n">_internal</span><span class="o">.</span><span class="n">_DivScalar</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">scalar</span><span class="o">=</span><span class="n">other</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">raise</span> <span class="ne">TypeError</span><span class="p">(</span><span class="s1">'type </span><span class="si">%s</span><span class="s1"> not supported'</span> <span class="o">%</span> <span class="nb">str</span><span class="p">(</span><span class="nb">type</span><span class="p">(</span><span class="n">other</span><span class="p">)))</span></div>
<div class="viewcode-block" id="Symbol.__rdiv__"><a class="viewcode-back" href="../../../api/python/symbol/symbol.html#mxnet.symbol.Symbol.__rdiv__">[docs]</a> <span class="k">def</span> <span class="nf">__rdiv__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">other</span><span class="p">):</span>
<span class="sd">"""x.__rdiv__(y) <=> y/x</span>
<span class="sd"> Only `NDArray` is supported for now.</span>
<span class="sd"> Example</span>
<span class="sd"> -------</span>
<span class="sd"> >>> x = mx.nd.ones((2,3))*3</span>
<span class="sd"> >>> y = mx.nd.ones((2,3))</span>
<span class="sd"> >>> x.__rdiv__(y).asnumpy()</span>
<span class="sd"> array([[ 0.33333334, 0.33333334, 0.33333334],</span>
<span class="sd"> [ 0.33333334, 0.33333334, 0.33333334]], dtype=float32)</span>
<span class="sd"> """</span>
<span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">other</span><span class="p">,</span> <span class="n">Number</span><span class="p">):</span>
<span class="k">return</span> <span class="n">_internal</span><span class="o">.</span><span class="n">_RDivScalar</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">scalar</span><span class="o">=</span><span class="n">other</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">raise</span> <span class="ne">TypeError</span><span class="p">(</span><span class="s1">'type </span><span class="si">%s</span><span class="s1"> not supported'</span> <span class="o">%</span> <span class="nb">str</span><span class="p">(</span><span class="nb">type</span><span class="p">(</span><span class="n">other</span><span class="p">)))</span></div>
<div class="viewcode-block" id="Symbol.__mod__"><a class="viewcode-back" href="../../../api/python/symbol/symbol.html#mxnet.symbol.Symbol.__mod__">[docs]</a> <span class="k">def</span> <span class="nf">__mod__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">other</span><span class="p">):</span>
<span class="sd">"""x.__mod__(y) <=> x%y</span>
<span class="sd"> Scalar input is supported.</span>
<span class="sd"> Broadcasting is not supported. Use `broadcast_mod` instead. """</span>
<span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">other</span><span class="p">,</span> <span class="n">Symbol</span><span class="p">):</span>
<span class="k">return</span> <span class="n">_internal</span><span class="o">.</span><span class="n">_Mod</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">other</span><span class="p">)</span>
<span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">other</span><span class="p">,</span> <span class="n">Number</span><span class="p">):</span>
<span class="k">return</span> <span class="n">_internal</span><span class="o">.</span><span class="n">_ModScalar</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">scalar</span><span class="o">=</span><span class="n">other</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">raise</span> <span class="ne">TypeError</span><span class="p">(</span><span class="s1">'type </span><span class="si">%s</span><span class="s1"> not supported'</span> <span class="o">%</span> <span class="nb">str</span><span class="p">(</span><span class="nb">type</span><span class="p">(</span><span class="n">other</span><span class="p">)))</span></div>
<div class="viewcode-block" id="Symbol.__rmod__"><a class="viewcode-back" href="../../../api/python/symbol/symbol.html#mxnet.symbol.Symbol.__rmod__">[docs]</a> <span class="k">def</span> <span class="nf">__rmod__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">other</span><span class="p">):</span>
<span class="sd">"""x.__rmod__(y) <=> y%x</span>
<span class="sd"> Only `NDArray` is supported for now.</span>
<span class="sd"> Example</span>
<span class="sd"> -------</span>
<span class="sd"> >>> x = mx.nd.ones((2,3))*3</span>
<span class="sd"> >>> y = mx.nd.ones((2,3))</span>
<span class="sd"> >>> x.__rmod__(y).asnumpy()</span>
<span class="sd"> array([[ 1., 1., 1.,</span>
<span class="sd"> [ 1., 1., 1., dtype=float32)</span>
<span class="sd"> """</span>
<span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">other</span><span class="p">,</span> <span class="n">Number</span><span class="p">):</span>
<span class="k">return</span> <span class="n">_internal</span><span class="o">.</span><span class="n">_RModScalar</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">scalar</span><span class="o">=</span><span class="n">other</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">raise</span> <span class="ne">TypeError</span><span class="p">(</span><span class="s1">'type </span><span class="si">%s</span><span class="s1"> not supported'</span> <span class="o">%</span> <span class="nb">str</span><span class="p">(</span><span class="nb">type</span><span class="p">(</span><span class="n">other</span><span class="p">)))</span></div>
<span class="k">def</span> <span class="nf">__idiv__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">other</span><span class="p">):</span>
<span class="k">raise</span> <span class="n">NotImplementedForSymbol</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">__idiv__</span><span class="p">,</span> <span class="s1">'/='</span><span class="p">,</span> <span class="n">other</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">__truediv__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">other</span><span class="p">):</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">__div__</span><span class="p">(</span><span class="n">other</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">__rtruediv__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">other</span><span class="p">):</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">__rdiv__</span><span class="p">(</span><span class="n">other</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">__itruediv__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">other</span><span class="p">):</span>
<span class="k">raise</span> <span class="n">NotImplementedForSymbol</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="fm">__itruediv__</span><span class="p">,</span> <span class="s1">'/='</span><span class="p">,</span> <span class="n">other</span><span class="p">)</span>
<div class="viewcode-block" id="Symbol.__pow__"><a class="viewcode-back" href="../../../api/python/symbol/symbol.html#mxnet.symbol.Symbol.__pow__">[docs]</a> <span class="k">def</span> <span class="nf">__pow__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">other</span><span class="p">):</span>
<span class="sd">"""x.__pow__(y) <=> x**y</span>
<span class="sd"> Scalar input is supported.</span>
<span class="sd"> Broadcasting is not supported. Use `broadcast_pow` instead. """</span>
<span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">other</span><span class="p">,</span> <span class="n">Symbol</span><span class="p">):</span>
<span class="k">return</span> <span class="n">_internal</span><span class="o">.</span><span class="n">_Power</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">other</span><span class="p">)</span>
<span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">other</span><span class="p">,</span> <span class="n">Number</span><span class="p">):</span>
<span class="k">return</span> <span class="n">_internal</span><span class="o">.</span><span class="n">_PowerScalar</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">scalar</span><span class="o">=</span><span class="n">other</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">raise</span> <span class="ne">TypeError</span><span class="p">(</span><span class="s1">'type </span><span class="si">%s</span><span class="s1"> not supported'</span> <span class="o">%</span> <span class="nb">str</span><span class="p">(</span><span class="nb">type</span><span class="p">(</span><span class="n">other</span><span class="p">)))</span></div>
<span class="k">def</span> <span class="nf">__rpow__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">other</span><span class="p">):</span>
<span class="k">raise</span> <span class="n">NotImplementedForSymbol</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="fm">__rpow__</span><span class="p">,</span> <span class="s1">'y**x'</span><span class="p">,</span> <span class="n">other</span><span class="p">)</span>
<div class="viewcode-block" id="Symbol.__neg__"><a class="viewcode-back" href="../../../api/python/symbol/symbol.html#mxnet.symbol.Symbol.__neg__">[docs]</a> <span class="k">def</span> <span class="nf">__neg__</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="sd">"""x.__neg__() <=> -x</span>
<span class="sd"> Numerical negative, element-wise.</span>
<span class="sd"> Example</span>
<span class="sd"> -------</span>
<span class="sd"> >>> a = mx.sym.Variable('a')</span>
<span class="sd"> >>> a</span>
<span class="sd"> <Symbol a></span>
<span class="sd"> >>> -a</span>
<span class="sd"> <Symbol _mulscalar0></span>
<span class="sd"> >>> a_neg = a.__neg__()</span>
<span class="sd"> >>> c = a_neg*b</span>
<span class="sd"> >>> ex = c.eval(ctx=mx.cpu(), a=mx.nd.ones([2,3]), b=mx.nd.ones([2,3]))</span>
<span class="sd"> >>> ex[0].asnumpy()</span>
<span class="sd"> array([[-1., -1., -1.],</span>
<span class="sd"> [-1., -1., -1.]], dtype=float32)</span>
<span class="sd"> """</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="fm">__mul__</span><span class="p">(</span><span class="o">-</span><span class="mf">1.0</span><span class="p">)</span></div>
<span class="k">def</span> <span class="nf">__copy__</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">__deepcopy__</span><span class="p">(</span><span class="kc">None</span><span class="p">)</span>
<div class="viewcode-block" id="Symbol.__deepcopy__"><a class="viewcode-back" href="../../../api/python/symbol/symbol.html#mxnet.symbol.Symbol.__deepcopy__">[docs]</a> <span class="k">def</span> <span class="nf">__deepcopy__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">_</span><span class="p">):</span>
<span class="sd">"""Returns a deep copy of the input object.</span>
<span class="sd"> This function returns a deep copy of the input object including the current state</span>
<span class="sd"> of all its parameters such as weights, biases, etc.</span>
<span class="sd"> Any changes made to the deep copy do not reflect in the original object.</span>
<span class="sd"> Example</span>
<span class="sd"> -------</span>
<span class="sd"> >>> import copy</span>
<span class="sd"> >>> data = mx.sym.Variable('data')</span>
<span class="sd"> >>> data_1 = copy.deepcopy(data)</span>
<span class="sd"> >>> data_1 = 2*data</span>
<span class="sd"> >>> data_1.tojson()</span>
<span class="sd"> >>> data_1 is data # Data got modified</span>
<span class="sd"> False</span>
<span class="sd"> """</span>
<span class="n">handle</span> <span class="o">=</span> <span class="n">SymbolHandle</span><span class="p">()</span>
<span class="n">check_call</span><span class="p">(</span><span class="n">_LIB</span><span class="o">.</span><span class="n">MXSymbolCopy</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">handle</span><span class="p">,</span>
<span class="n">ctypes</span><span class="o">.</span><span class="n">byref</span><span class="p">(</span><span class="n">handle</span><span class="p">)))</span>
<span class="k">return</span> <span class="n">Symbol</span><span class="p">(</span><span class="n">handle</span><span class="p">)</span></div>
<div class="viewcode-block" id="Symbol.__eq__"><a class="viewcode-back" href="../../../api/python/symbol/symbol.html#mxnet.symbol.Symbol.__eq__">[docs]</a> <span class="k">def</span> <span class="nf">__eq__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">other</span><span class="p">):</span>
<span class="sd">"""x.__eq__(y) <=> x==y</span>
<span class="sd"> Scalar input is supported.</span>
<span class="sd"> Broadcasting is not supported. Use `broadcast_equal` instead. """</span>
<span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">other</span><span class="p">,</span> <span class="n">Symbol</span><span class="p">):</span>
<span class="k">return</span> <span class="n">_internal</span><span class="o">.</span><span class="n">_equal</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">other</span><span class="p">)</span>
<span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">other</span><span class="p">,</span> <span class="n">numeric_types</span><span class="p">):</span>
<span class="k">return</span> <span class="n">_internal</span><span class="o">.</span><span class="n">_equal_scalar</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">scalar</span><span class="o">=</span><span class="n">other</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">raise</span> <span class="ne">TypeError</span><span class="p">(</span><span class="s1">'type </span><span class="si">%s</span><span class="s1"> not supported'</span> <span class="o">%</span> <span class="nb">str</span><span class="p">(</span><span class="nb">type</span><span class="p">(</span><span class="n">other</span><span class="p">)))</span></div>
<div class="viewcode-block" id="Symbol.__ne__"><a class="viewcode-back" href="../../../api/python/symbol/symbol.html#mxnet.symbol.Symbol.__ne__">[docs]</a> <span class="k">def</span> <span class="nf">__ne__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">other</span><span class="p">):</span>
<span class="sd">"""x.__ne__(y) <=> x!=y</span>
<span class="sd"> Scalar input is supported.</span>
<span class="sd"> Broadcasting is not supported. Use `broadcast_not_equal` instead. """</span>
<span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">other</span><span class="p">,</span> <span class="n">Symbol</span><span class="p">):</span>
<span class="k">return</span> <span class="n">_internal</span><span class="o">.</span><span class="n">_not_equal</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">other</span><span class="p">)</span>
<span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">other</span><span class="p">,</span> <span class="n">numeric_types</span><span class="p">):</span>
<span class="k">return</span> <span class="n">_internal</span><span class="o">.</span><span class="n">_not_equal_scalar</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">scalar</span><span class="o">=</span><span class="n">other</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">raise</span> <span class="ne">TypeError</span><span class="p">(</span><span class="s1">'type </span><span class="si">%s</span><span class="s1"> not supported'</span> <span class="o">%</span> <span class="nb">str</span><span class="p">(</span><span class="nb">type</span><span class="p">(</span><span class="n">other</span><span class="p">)))</span></div>
<div class="viewcode-block" id="Symbol.__gt__"><a class="viewcode-back" href="../../../api/python/symbol/symbol.html#mxnet.symbol.Symbol.__gt__">[docs]</a> <span class="k">def</span> <span class="nf">__gt__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">other</span><span class="p">):</span>
<span class="sd">"""x.__gt__(y) <=> x>y</span>
<span class="sd"> Scalar input is supported.</span>
<span class="sd"> Broadcasting is not supported. Use `broadcast_greater` instead. """</span>
<span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">other</span><span class="p">,</span> <span class="n">Symbol</span><span class="p">):</span>
<span class="k">return</span> <span class="n">_internal</span><span class="o">.</span><span class="n">_greater</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">other</span><span class="p">)</span>
<span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">other</span><span class="p">,</span> <span class="n">numeric_types</span><span class="p">):</span>
<span class="k">return</span> <span class="n">_internal</span><span class="o">.</span><span class="n">_greater_scalar</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">scalar</span><span class="o">=</span><span class="n">other</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">raise</span> <span class="ne">TypeError</span><span class="p">(</span><span class="s1">'type </span><span class="si">%s</span><span class="s1"> not supported'</span> <span class="o">%</span> <span class="nb">str</span><span class="p">(</span><span class="nb">type</span><span class="p">(</span><span class="n">other</span><span class="p">)))</span></div>
<div class="viewcode-block" id="Symbol.__ge__"><a class="viewcode-back" href="../../../api/python/symbol/symbol.html#mxnet.symbol.Symbol.__ge__">[docs]</a> <span class="k">def</span> <span class="nf">__ge__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">other</span><span class="p">):</span>
<span class="sd">"""x.__ge__(y) <=> x>=y</span>
<span class="sd"> Scalar input is supported.</span>
<span class="sd"> Broadcasting is not supported. Use `broadcast_greater_equal` instead. """</span>
<span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">other</span><span class="p">,</span> <span class="n">Symbol</span><span class="p">):</span>
<span class="k">return</span> <span class="n">_internal</span><span class="o">.</span><span class="n">_greater_equal</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">other</span><span class="p">)</span>
<span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">other</span><span class="p">,</span> <span class="n">numeric_types</span><span class="p">):</span>
<span class="k">return</span> <span class="n">_internal</span><span class="o">.</span><span class="n">_greater_equal_scalar</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">scalar</span><span class="o">=</span><span class="n">other</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">raise</span> <span class="ne">TypeError</span><span class="p">(</span><span class="s1">'type </span><span class="si">%s</span><span class="s1"> not supported'</span> <span class="o">%</span> <span class="nb">str</span><span class="p">(</span><span class="nb">type</span><span class="p">(</span><span class="n">other</span><span class="p">)))</span></div>
<div class="viewcode-block" id="Symbol.__lt__"><a class="viewcode-back" href="../../../api/python/symbol/symbol.html#mxnet.symbol.Symbol.__lt__">[docs]</a> <span class="k">def</span> <span class="nf">__lt__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">other</span><span class="p">):</span>
<span class="sd">"""x.__lt__(y) <=> x<y</span>
<span class="sd"> Scalar input is supported.</span>
<span class="sd"> Broadcasting is not supported. Use `broadcast_lesser` instead. """</span>
<span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">other</span><span class="p">,</span> <span class="n">Symbol</span><span class="p">):</span>
<span class="k">return</span> <span class="n">_internal</span><span class="o">.</span><span class="n">_lesser</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">other</span><span class="p">)</span>
<span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">other</span><span class="p">,</span> <span class="n">numeric_types</span><span class="p">):</span>
<span class="k">return</span> <span class="n">_internal</span><span class="o">.</span><span class="n">_lesser_scalar</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">scalar</span><span class="o">=</span><span class="n">other</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">raise</span> <span class="ne">TypeError</span><span class="p">(</span><span class="s1">'type </span><span class="si">%s</span><span class="s1"> not supported'</span> <span class="o">%</span> <span class="nb">str</span><span class="p">(</span><span class="nb">type</span><span class="p">(</span><span class="n">other</span><span class="p">)))</span></div>
<div class="viewcode-block" id="Symbol.__le__"><a class="viewcode-back" href="../../../api/python/symbol/symbol.html#mxnet.symbol.Symbol.__le__">[docs]</a> <span class="k">def</span> <span class="nf">__le__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">other</span><span class="p">):</span>
<span class="sd">"""x.__le__(y) <=> x<=y</span>
<span class="sd"> Scalar input is supported.</span>
<span class="sd"> Broadcasting is not supported. Use `broadcast_lesser_equal` instead. """</span>
<span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">other</span><span class="p">,</span> <span class="n">Symbol</span><span class="p">):</span>
<span class="k">return</span> <span class="n">_internal</span><span class="o">.</span><span class="n">_lesser_equal</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">other</span><span class="p">)</span>
<span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">other</span><span class="p">,</span> <span class="n">numeric_types</span><span class="p">):</span>
<span class="k">return</span> <span class="n">_internal</span><span class="o">.</span><span class="n">_lesser_equal_scalar</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">scalar</span><span class="o">=</span><span class="n">other</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">raise</span> <span class="ne">TypeError</span><span class="p">(</span><span class="s1">'type </span><span class="si">%s</span><span class="s1"> not supported'</span> <span class="o">%</span> <span class="nb">str</span><span class="p">(</span><span class="nb">type</span><span class="p">(</span><span class="n">other</span><span class="p">)))</span></div>
<span class="k">def</span> <span class="nf">__getstate__</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="n">handle</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">handle</span>
<span class="k">if</span> <span class="n">handle</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="k">return</span> <span class="p">{</span><span class="s1">'handle'</span><span class="p">:</span> <span class="bp">self</span><span class="o">.</span><span class="n">tojson</span><span class="p">()}</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">return</span> <span class="p">{</span><span class="s1">'handle'</span><span class="p">:</span> <span class="kc">None</span><span class="p">}</span>
<span class="k">def</span> <span class="nf">__setstate__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">state</span><span class="p">):</span>
<span class="c1"># pylint: disable=assigning-non-slot</span>
<span class="n">handle</span> <span class="o">=</span> <span class="n">state</span><span class="p">[</span><span class="s1">'handle'</span><span class="p">]</span>
<span class="k">if</span> <span class="n">handle</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">json_str</span> <span class="o">=</span> <span class="n">handle</span>
<span class="n">handle</span> <span class="o">=</span> <span class="n">SymbolHandle</span><span class="p">()</span>
<span class="n">check_call</span><span class="p">(</span><span class="n">_LIB</span><span class="o">.</span><span class="n">MXSymbolCreateFromJSON</span><span class="p">(</span><span class="n">c_str</span><span class="p">(</span><span class="n">json_str</span><span class="p">),</span> <span class="n">ctypes</span><span class="o">.</span><span class="n">byref</span><span class="p">(</span><span class="n">handle</span><span class="p">)))</span>
<span class="bp">self</span><span class="o">.</span><span class="n">handle</span> <span class="o">=</span> <span class="n">handle</span>
<span class="k">else</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">handle</span> <span class="o">=</span> <span class="kc">None</span>
<div class="viewcode-block" id="Symbol.__call__"><a class="viewcode-back" href="../../../api/python/symbol/symbol.html#mxnet.symbol.Symbol.__call__">[docs]</a> <span class="k">def</span> <span class="nf">__call__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
<span class="sd">"""Composes symbol using inputs.</span>
<span class="sd"> x.__call__(y, z) <=> x(y,z)</span>
<span class="sd"> This function internally calls `_compose` to compose the symbol and</span>
<span class="sd"> returns the composed symbol.</span>
<span class="sd"> Example</span>
<span class="sd"> -------</span>
<span class="sd"> >>> data = mx.symbol.Variable('data')</span>
<span class="sd"> >>> net1 = mx.symbol.FullyConnected(data=data, name='fc1', num_hidden=10)</span>
<span class="sd"> >>> net2 = mx.symbol.FullyConnected(name='fc3', num_hidden=10)</span>
<span class="sd"> >>> composed = net2(fc3_data=net1, name='composed')</span>
<span class="sd"> >>> composed</span>
<span class="sd"> <Symbol composed></span>
<span class="sd"> >>> called = net2.__call__(fc3_data=net1, name='composed')</span>
<span class="sd"> >>> called</span>
<span class="sd"> <Symbol composed></span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> args:</span>
<span class="sd"> Positional arguments.</span>
<span class="sd"> kwargs:</span>
<span class="sd"> Keyword arguments.</span>
<span class="sd"> Returns</span>
<span class="sd"> -------</span>
<span class="sd"> The resulting symbol.</span>
<span class="sd"> """</span>
<span class="n">s</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">__copy__</span><span class="p">()</span>
<span class="n">s</span><span class="o">.</span><span class="n">_compose</span><span class="p">(</span><span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span>
<span class="k">return</span> <span class="n">s</span></div>
<span class="k">def</span> <span class="nf">_compose</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
<span class="sd">"""Composes symbol using inputs.</span>
<span class="sd"> x._compose(y, z) <=> x(y,z)</span>
<span class="sd"> This function mutates the current symbol.</span>
<span class="sd"> Example</span>
<span class="sd"> -------</span>
<span class="sd"> >>> data = mx.symbol.Variable('data')</span>
<span class="sd"> >>> net1 = mx.symbol.FullyConnected(data=data, name='fc1', num_hidden=10)</span>
<span class="sd"> >>> net2 = mx.symbol.FullyConnected(name='fc3', num_hidden=10)</span>
<span class="sd"> >>> net2</span>
<span class="sd"> <Symbol fc3></span>
<span class="sd"> >>> net2._compose(fc3_data=net1, name='composed')</span>
<span class="sd"> >>> net2</span>
<span class="sd"> <Symbol composed></span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> args:</span>
<span class="sd"> Positional arguments.</span>
<span class="sd"> kwargs:</span>
<span class="sd"> Keyword arguments.</span>
<span class="sd"> Returns</span>
<span class="sd"> -------</span>
<span class="sd"> The resulting symbol.</span>
<span class="sd"> """</span>
<span class="n">name</span> <span class="o">=</span> <span class="n">kwargs</span><span class="o">.</span><span class="n">pop</span><span class="p">(</span><span class="s1">'name'</span><span class="p">,</span> <span class="kc">None</span><span class="p">)</span>
<span class="k">if</span> <span class="n">name</span><span class="p">:</span>
<span class="n">name</span> <span class="o">=</span> <span class="n">c_str</span><span class="p">(</span><span class="n">name</span><span class="p">)</span>
<span class="k">if</span> <span class="nb">len</span><span class="p">(</span><span class="n">args</span><span class="p">)</span> <span class="o">!=</span> <span class="mi">0</span> <span class="ow">and</span> <span class="nb">len</span><span class="p">(</span><span class="n">kwargs</span><span class="p">)</span> <span class="o">!=</span> <span class="mi">0</span><span class="p">:</span>
<span class="k">raise</span> <span class="ne">TypeError</span><span class="p">(</span><span class="s1">'compose only accept input Symbols </span><span class="se">\</span>
<span class="s1"> either as positional or keyword arguments, not both'</span><span class="p">)</span>
<span class="k">for</span> <span class="n">arg</span> <span class="ow">in</span> <span class="n">args</span><span class="p">:</span>
<span class="k">if</span> <span class="ow">not</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">arg</span><span class="p">,</span> <span class="n">Symbol</span><span class="p">):</span>
<span class="k">raise</span> <span class="ne">TypeError</span><span class="p">(</span><span class="s1">'Compose expect `Symbol` as arguments'</span><span class="p">)</span>
<span class="k">for</span> <span class="n">val</span> <span class="ow">in</span> <span class="n">kwargs</span><span class="o">.</span><span class="n">values</span><span class="p">():</span>
<span class="k">if</span> <span class="ow">not</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">val</span><span class="p">,</span> <span class="n">Symbol</span><span class="p">):</span>
<span class="k">raise</span> <span class="ne">TypeError</span><span class="p">(</span><span class="s1">'Compose expect `Symbol` as arguments'</span><span class="p">)</span>
<span class="n">num_args</span> <span class="o">=</span> <span class="nb">len</span><span class="p">(</span><span class="n">args</span><span class="p">)</span> <span class="o">+</span> <span class="nb">len</span><span class="p">(</span><span class="n">kwargs</span><span class="p">)</span>
<span class="k">if</span> <span class="nb">len</span><span class="p">(</span><span class="n">kwargs</span><span class="p">)</span> <span class="o">!=</span> <span class="mi">0</span><span class="p">:</span>
<span class="n">keys</span> <span class="o">=</span> <span class="n">c_str_array</span><span class="p">(</span><span class="n">kwargs</span><span class="o">.</span><span class="n">keys</span><span class="p">())</span>
<span class="n">args</span> <span class="o">=</span> <span class="n">c_handle_array</span><span class="p">(</span><span class="n">kwargs</span><span class="o">.</span><span class="n">values</span><span class="p">())</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">keys</span> <span class="o">=</span> <span class="kc">None</span>
<span class="n">args</span> <span class="o">=</span> <span class="n">c_handle_array</span><span class="p">(</span><span class="n">args</span><span class="p">)</span>
<span class="n">check_call</span><span class="p">(</span><span class="n">_LIB</span><span class="o">.</span><span class="n">MXSymbolCompose</span><span class="p">(</span>
<span class="bp">self</span><span class="o">.</span><span class="n">handle</span><span class="p">,</span> <span class="n">name</span><span class="p">,</span> <span class="n">num_args</span><span class="p">,</span> <span class="n">keys</span><span class="p">,</span> <span class="n">args</span><span class="p">))</span>
<div class="viewcode-block" id="Symbol.__getitem__"><a class="viewcode-back" href="../../../api/python/symbol/symbol.html#mxnet.symbol.Symbol.__getitem__">[docs]</a> <span class="k">def</span> <span class="nf">__getitem__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">index</span><span class="p">):</span>
<span class="sd">"""x.__getitem__(i) <=> x[i]</span>
<span class="sd"> Returns a sliced view of the input symbol.</span>
<span class="sd"> Example</span>
<span class="sd"> -------</span>
<span class="sd"> >>> a = mx.sym.var('a')</span>
<span class="sd"> >>> a.__getitem__(0)</span>
<span class="sd"> <Symbol a></span>
<span class="sd"> >>> a[0]</span>
<span class="sd"> <Symbol a></span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> index : int or str</span>
<span class="sd"> Indexing key</span>
<span class="sd"> """</span>
<span class="n">output_count</span> <span class="o">=</span> <span class="nb">len</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span>
<span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">index</span><span class="p">,</span> <span class="n">py_slice</span><span class="p">):</span>
<span class="n">start</span> <span class="o">=</span> <span class="mi">0</span> <span class="k">if</span> <span class="n">index</span><span class="o">.</span><span class="n">start</span> <span class="ow">is</span> <span class="kc">None</span> <span class="k">else</span> <span class="n">index</span><span class="o">.</span><span class="n">start</span>
<span class="n">stop</span> <span class="o">=</span> <span class="n">output_count</span> <span class="k">if</span> <span class="n">index</span><span class="o">.</span><span class="n">stop</span> <span class="ow">is</span> <span class="kc">None</span> <span class="k">else</span> <span class="n">index</span><span class="o">.</span><span class="n">stop</span>
<span class="n">step</span> <span class="o">=</span> <span class="mi">1</span> <span class="k">if</span> <span class="n">index</span><span class="o">.</span><span class="n">step</span> <span class="ow">is</span> <span class="kc">None</span> <span class="k">else</span> <span class="n">index</span><span class="o">.</span><span class="n">step</span>
<span class="k">return</span> <span class="n">Group</span><span class="p">([</span><span class="bp">self</span><span class="p">[</span><span class="n">i</span><span class="p">]</span> <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">start</span><span class="p">,</span> <span class="n">stop</span><span class="p">,</span> <span class="n">step</span><span class="p">)])</span>
<span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">index</span><span class="p">,</span> <span class="n">string_types</span><span class="p">):</span>
<span class="c1"># Returning this list of names is expensive. Some symbols may have hundreds of outputs</span>
<span class="n">output_names</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">list_outputs</span><span class="p">()</span>
<span class="n">idx</span> <span class="o">=</span> <span class="kc">None</span>
<span class="k">for</span> <span class="n">i</span><span class="p">,</span> <span class="n">name</span> <span class="ow">in</span> <span class="nb">enumerate</span><span class="p">(</span><span class="n">output_names</span><span class="p">):</span>
<span class="k">if</span> <span class="n">name</span> <span class="o">==</span> <span class="n">index</span><span class="p">:</span>
<span class="k">if</span> <span class="n">idx</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span><span class="s1">'There are multiple outputs with name </span><span class="se">\"</span><span class="si">%s</span><span class="se">\"</span><span class="s1">'</span> <span class="o">%</span> <span class="n">index</span><span class="p">)</span>
<span class="n">idx</span> <span class="o">=</span> <span class="n">i</span>
<span class="k">if</span> <span class="n">idx</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span><span class="s1">'Cannot find output that matches name </span><span class="se">\"</span><span class="si">%s</span><span class="se">\"</span><span class="s1">'</span> <span class="o">%</span> <span class="n">index</span><span class="p">)</span>
<span class="n">index</span> <span class="o">=</span> <span class="n">idx</span>
<span class="k">if</span> <span class="ow">not</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">index</span><span class="p">,</span> <span class="nb">int</span><span class="p">):</span>
<span class="k">raise</span> <span class="ne">TypeError</span><span class="p">(</span><span class="s1">'Symbol only support integer index to fetch i-th output'</span><span class="p">)</span>
<span class="k">if</span> <span class="n">index</span> <span class="o">>=</span> <span class="n">output_count</span><span class="p">:</span>
<span class="c1"># Important, python determines the end by this exception</span>
<span class="k">raise</span> <span class="ne">IndexError</span>
<span class="n">handle</span> <span class="o">=</span> <span class="n">SymbolHandle</span><span class="p">()</span>
<span class="n">check_call</span><span class="p">(</span><span class="n">_LIB</span><span class="o">.</span><span class="n">MXSymbolGetOutput</span><span class="p">(</span>
<span class="bp">self</span><span class="o">.</span><span class="n">handle</span><span class="p">,</span> <span class="n">mx_uint</span><span class="p">(</span><span class="n">index</span><span class="p">),</span> <span class="n">ctypes</span><span class="o">.</span><span class="n">byref</span><span class="p">(</span><span class="n">handle</span><span class="p">)))</span>
<span class="k">return</span> <span class="n">Symbol</span><span class="p">(</span><span class="n">handle</span><span class="o">=</span><span class="n">handle</span><span class="p">)</span></div>
<span class="nd">@property</span>
<span class="k">def</span> <span class="nf">name</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="sd">"""Gets name string from the symbol, this function only works for non-grouped symbol.</span>
<span class="sd"> Returns</span>
<span class="sd"> -------</span>
<span class="sd"> value : str</span>
<span class="sd"> The name of this symbol, returns ``None`` for grouped symbol.</span>
<span class="sd"> """</span>
<span class="n">ret</span> <span class="o">=</span> <span class="n">ctypes</span><span class="o">.</span><span class="n">c_char_p</span><span class="p">()</span>
<span class="n">success</span> <span class="o">=</span> <span class="n">ctypes</span><span class="o">.</span><span class="n">c_int</span><span class="p">()</span>
<span class="n">check_call</span><span class="p">(</span><span class="n">_LIB</span><span class="o">.</span><span class="n">MXSymbolGetName</span><span class="p">(</span>
<span class="bp">self</span><span class="o">.</span><span class="n">handle</span><span class="p">,</span> <span class="n">ctypes</span><span class="o">.</span><span class="n">byref</span><span class="p">(</span><span class="n">ret</span><span class="p">),</span> <span class="n">ctypes</span><span class="o">.</span><span class="n">byref</span><span class="p">(</span><span class="n">success</span><span class="p">)))</span>
<span class="k">if</span> <span class="n">success</span><span class="o">.</span><span class="n">value</span> <span class="o">!=</span> <span class="mi">0</span><span class="p">:</span>
<span class="k">return</span> <span class="n">py_str</span><span class="p">(</span><span class="n">ret</span><span class="o">.</span><span class="n">value</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">return</span> <span class="kc">None</span>
<div class="viewcode-block" id="Symbol.attr"><a class="viewcode-back" href="../../../api/python/symbol/symbol.html#mxnet.symbol.Symbol.attr">[docs]</a> <span class="k">def</span> <span class="nf">attr</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">key</span><span class="p">):</span>
<span class="sd">"""Returns the attribute string for corresponding input key from the symbol.</span>
<span class="sd"> This function only works for non-grouped symbols.</span>
<span class="sd"> Example</span>
<span class="sd"> -------</span>
<span class="sd"> >>> data = mx.sym.Variable('data', attr={'mood': 'angry'})</span>
<span class="sd"> >>> data.attr('mood')</span>
<span class="sd"> 'angry'</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> key : str</span>
<span class="sd"> The key corresponding to the desired attribute.</span>
<span class="sd"> Returns</span>
<span class="sd"> -------</span>
<span class="sd"> value : str</span>
<span class="sd"> The desired attribute value, returns ``None`` if the attribute does not exist.</span>
<span class="sd"> """</span>
<span class="n">ret</span> <span class="o">=</span> <span class="n">ctypes</span><span class="o">.</span><span class="n">c_char_p</span><span class="p">()</span>
<span class="n">success</span> <span class="o">=</span> <span class="n">ctypes</span><span class="o">.</span><span class="n">c_int</span><span class="p">()</span>
<span class="n">check_call</span><span class="p">(</span><span class="n">_LIB</span><span class="o">.</span><span class="n">MXSymbolGetAttr</span><span class="p">(</span>
<span class="bp">self</span><span class="o">.</span><span class="n">handle</span><span class="p">,</span> <span class="n">c_str</span><span class="p">(</span><span class="n">key</span><span class="p">),</span> <span class="n">ctypes</span><span class="o">.</span><span class="n">byref</span><span class="p">(</span><span class="n">ret</span><span class="p">),</span> <span class="n">ctypes</span><span class="o">.</span><span class="n">byref</span><span class="p">(</span><span class="n">success</span><span class="p">)))</span>
<span class="k">if</span> <span class="n">success</span><span class="o">.</span><span class="n">value</span> <span class="o">!=</span> <span class="mi">0</span><span class="p">:</span>
<span class="k">return</span> <span class="n">py_str</span><span class="p">(</span><span class="n">ret</span><span class="o">.</span><span class="n">value</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">return</span> <span class="kc">None</span></div>
<div class="viewcode-block" id="Symbol.list_attr"><a class="viewcode-back" href="../../../api/python/symbol/symbol.html#mxnet.symbol.Symbol.list_attr">[docs]</a> <span class="k">def</span> <span class="nf">list_attr</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">recursive</span><span class="o">=</span><span class="kc">False</span><span class="p">):</span>
<span class="sd">"""Gets all attributes from the symbol.</span>
<span class="sd"> Example</span>
<span class="sd"> -------</span>
<span class="sd"> >>> data = mx.sym.Variable('data', attr={'mood': 'angry'})</span>
<span class="sd"> >>> data.list_attr()</span>
<span class="sd"> {'mood': 'angry'}</span>
<span class="sd"> Returns</span>
<span class="sd"> -------</span>
<span class="sd"> ret : Dict of str to str</span>
<span class="sd"> A dictionary mapping attribute keys to values.</span>
<span class="sd"> """</span>
<span class="k">if</span> <span class="n">recursive</span><span class="p">:</span>
<span class="k">raise</span> <span class="ne">DeprecationWarning</span><span class="p">(</span><span class="s2">"Symbol.list_attr with recursive=True has been deprecated. "</span>
<span class="s2">"Please use attr_dict instead."</span><span class="p">)</span>
<span class="n">size</span> <span class="o">=</span> <span class="n">mx_uint</span><span class="p">()</span>
<span class="n">pairs</span> <span class="o">=</span> <span class="n">ctypes</span><span class="o">.</span><span class="n">POINTER</span><span class="p">(</span><span class="n">ctypes</span><span class="o">.</span><span class="n">c_char_p</span><span class="p">)()</span>
<span class="n">f_handle</span> <span class="o">=</span> <span class="n">_LIB</span><span class="o">.</span><span class="n">MXSymbolListAttrShallow</span>
<span class="n">check_call</span><span class="p">(</span><span class="n">f_handle</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">handle</span><span class="p">,</span> <span class="n">ctypes</span><span class="o">.</span><span class="n">byref</span><span class="p">(</span><span class="n">size</span><span class="p">),</span> <span class="n">ctypes</span><span class="o">.</span><span class="n">byref</span><span class="p">(</span><span class="n">pairs</span><span class="p">)))</span>
<span class="k">return</span> <span class="p">{</span><span class="n">py_str</span><span class="p">(</span><span class="n">pairs</span><span class="p">[</span><span class="n">i</span> <span class="o">*</span> <span class="mi">2</span><span class="p">]):</span> <span class="n">py_str</span><span class="p">(</span><span class="n">pairs</span><span class="p">[</span><span class="n">i</span> <span class="o">*</span> <span class="mi">2</span> <span class="o">+</span> <span class="mi">1</span><span class="p">])</span> <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">size</span><span class="o">.</span><span class="n">value</span><span class="p">)}</span></div>
<div class="viewcode-block" id="Symbol.attr_dict"><a class="viewcode-back" href="../../../api/python/symbol/symbol.html#mxnet.symbol.Symbol.attr_dict">[docs]</a> <span class="k">def</span> <span class="nf">attr_dict</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="sd">"""Recursively gets all attributes from the symbol and its children.</span>
<span class="sd"> Example</span>
<span class="sd"> -------</span>
<span class="sd"> >>> a = mx.sym.Variable('a', attr={'a1':'a2'})</span>
<span class="sd"> >>> b = mx.sym.Variable('b', attr={'b1':'b2'})</span>
<span class="sd"> >>> c = a+b</span>
<span class="sd"> >>> c.attr_dict()</span>
<span class="sd"> {'a': {'a1': 'a2'}, 'b': {'b1': 'b2'}}</span>
<span class="sd"> Returns</span>
<span class="sd"> -------</span>
<span class="sd"> ret : Dict of str to dict</span>
<span class="sd"> There is a key in the returned dict for every child with non-empty attribute set.</span>
<span class="sd"> For each symbol, the name of the symbol is its key in the dict</span>
<span class="sd"> and the correspond value is that symbol's attribute list (itself a dictionary).</span>
<span class="sd"> """</span>
<span class="n">size</span> <span class="o">=</span> <span class="n">mx_uint</span><span class="p">()</span>
<span class="n">pairs</span> <span class="o">=</span> <span class="n">ctypes</span><span class="o">.</span><span class="n">POINTER</span><span class="p">(</span><span class="n">ctypes</span><span class="o">.</span><span class="n">c_char_p</span><span class="p">)()</span>
<span class="n">f_handle</span> <span class="o">=</span> <span class="n">_LIB</span><span class="o">.</span><span class="n">MXSymbolListAttr</span>
<span class="n">check_call</span><span class="p">(</span><span class="n">f_handle</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">handle</span><span class="p">,</span> <span class="n">ctypes</span><span class="o">.</span><span class="n">byref</span><span class="p">(</span><span class="n">size</span><span class="p">),</span> <span class="n">ctypes</span><span class="o">.</span><span class="n">byref</span><span class="p">(</span><span class="n">pairs</span><span class="p">)))</span>
<span class="n">ret</span> <span class="o">=</span> <span class="p">{}</span>
<span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">size</span><span class="o">.</span><span class="n">value</span><span class="p">):</span>
<span class="n">name</span><span class="p">,</span> <span class="n">key</span> <span class="o">=</span> <span class="n">py_str</span><span class="p">(</span><span class="n">pairs</span><span class="p">[</span><span class="n">i</span> <span class="o">*</span> <span class="mi">2</span><span class="p">])</span><span class="o">.</span><span class="n">split</span><span class="p">(</span><span class="s1">'$'</span><span class="p">)</span>
<span class="n">val</span> <span class="o">=</span> <span class="n">py_str</span><span class="p">(</span><span class="n">pairs</span><span class="p">[</span><span class="n">i</span> <span class="o">*</span> <span class="mi">2</span> <span class="o">+</span> <span class="mi">1</span><span class="p">])</span>
<span class="k">if</span> <span class="n">name</span> <span class="ow">not</span> <span class="ow">in</span> <span class="n">ret</span><span class="p">:</span>
<span class="n">ret</span><span class="p">[</span><span class="n">name</span><span class="p">]</span> <span class="o">=</span> <span class="p">{}</span>
<span class="n">ret</span><span class="p">[</span><span class="n">name</span><span class="p">][</span><span class="n">key</span><span class="p">]</span> <span class="o">=</span> <span class="n">val</span>
<span class="k">return</span> <span class="n">ret</span></div>
<span class="k">def</span> <span class="nf">_set_attr</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
<span class="sd">"""Sets an attribute of the symbol.</span>
<span class="sd"> For example. A._set_attr(foo="bar") adds the mapping ``"{foo: bar}"``</span>
<span class="sd"> to the symbol's attribute dictionary.</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> **kwargs</span>
<span class="sd"> The attributes to set</span>
<span class="sd"> """</span>
<span class="k">for</span> <span class="n">key</span><span class="p">,</span> <span class="n">value</span> <span class="ow">in</span> <span class="n">kwargs</span><span class="o">.</span><span class="n">items</span><span class="p">():</span>
<span class="k">if</span> <span class="ow">not</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">value</span><span class="p">,</span> <span class="n">string_types</span><span class="p">):</span>
<span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span><span class="s2">"Set Attr only accepts string values"</span><span class="p">)</span>
<span class="n">check_call</span><span class="p">(</span><span class="n">_LIB</span><span class="o">.</span><span class="n">MXSymbolSetAttr</span><span class="p">(</span>
<span class="bp">self</span><span class="o">.</span><span class="n">handle</span><span class="p">,</span> <span class="n">c_str</span><span class="p">(</span><span class="n">key</span><span class="p">),</span> <span class="n">c_str</span><span class="p">(</span><span class="nb">str</span><span class="p">(</span><span class="n">value</span><span class="p">))))</span>
<div class="viewcode-block" id="Symbol.get_internals"><a class="viewcode-back" href="../../../api/python/symbol/symbol.html#mxnet.symbol.Symbol.get_internals">[docs]</a> <span class="k">def</span> <span class="nf">get_internals</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="sd">"""Gets a new grouped symbol `sgroup`. The output of `sgroup` is a list of</span>
<span class="sd"> outputs of all of the internal nodes.</span>
<span class="sd"> Consider the following code:</span>
<span class="sd"> Example</span>
<span class="sd"> -------</span>
<span class="sd"> >>> a = mx.sym.var('a')</span>
<span class="sd"> >>> b = mx.sym.var('b')</span>
<span class="sd"> >>> c = a + b</span>
<span class="sd"> >>> d = c.get_internals()</span>
<span class="sd"> >>> d</span>
<span class="sd"> <Symbol Grouped></span>
<span class="sd"> >>> d.list_outputs()</span>
<span class="sd"> ['a', 'b', '_plus4_output']</span>
<span class="sd"> Returns</span>
<span class="sd"> -------</span>
<span class="sd"> sgroup : Symbol</span>
<span class="sd"> A symbol group containing all internal and leaf nodes of the computation graph</span>
<span class="sd"> used to compute the symbol.</span>
<span class="sd"> """</span>
<span class="n">handle</span> <span class="o">=</span> <span class="n">SymbolHandle</span><span class="p">()</span>
<span class="n">check_call</span><span class="p">(</span><span class="n">_LIB</span><span class="o">.</span><span class="n">MXSymbolGetInternals</span><span class="p">(</span>
<span class="bp">self</span><span class="o">.</span><span class="n">handle</span><span class="p">,</span> <span class="n">ctypes</span><span class="o">.</span><span class="n">byref</span><span class="p">(</span><span class="n">handle</span><span class="p">)))</span>
<span class="k">return</span> <span class="n">Symbol</span><span class="p">(</span><span class="n">handle</span><span class="o">=</span><span class="n">handle</span><span class="p">)</span></div>
<div class="viewcode-block" id="Symbol.get_children"><a class="viewcode-back" href="../../../api/python/symbol/symbol.html#mxnet.symbol.Symbol.get_children">[docs]</a> <span class="k">def</span> <span class="nf">get_children</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="sd">"""Gets a new grouped symbol whose output contains</span>
<span class="sd"> inputs to output nodes of the original symbol.</span>
<span class="sd"> Example</span>
<span class="sd"> -------</span>
<span class="sd"> >>> x = mx.sym.Variable('x')</span>
<span class="sd"> >>> y = mx.sym.Variable('y')</span>
<span class="sd"> >>> z = mx.sym.Variable('z')</span>
<span class="sd"> >>> a = y+z</span>
<span class="sd"> >>> b = x+a</span>
<span class="sd"> >>> b.get_children()</span>
<span class="sd"> <Symbol Grouped></span>
<span class="sd"> >>> b.get_children().list_outputs()</span>
<span class="sd"> ['x', '_plus10_output']</span>
<span class="sd"> >>> b.get_children().get_children().list_outputs()</span>
<span class="sd"> ['y', 'z']</span>
<span class="sd"> Returns</span>
<span class="sd"> -------</span>
<span class="sd"> sgroup : Symbol or None</span>
<span class="sd"> The children of the head node. If the symbol has no</span>
<span class="sd"> inputs then ``None`` will be returned.</span>
<span class="sd"> """</span>
<span class="n">handle</span> <span class="o">=</span> <span class="n">SymbolHandle</span><span class="p">()</span>
<span class="n">check_call</span><span class="p">(</span><span class="n">_LIB</span><span class="o">.</span><span class="n">MXSymbolGetChildren</span><span class="p">(</span>
<span class="bp">self</span><span class="o">.</span><span class="n">handle</span><span class="p">,</span> <span class="n">ctypes</span><span class="o">.</span><span class="n">byref</span><span class="p">(</span><span class="n">handle</span><span class="p">)))</span>
<span class="n">ret</span> <span class="o">=</span> <span class="n">Symbol</span><span class="p">(</span><span class="n">handle</span><span class="o">=</span><span class="n">handle</span><span class="p">)</span>
<span class="k">if</span> <span class="nb">len</span><span class="p">(</span><span class="n">ret</span><span class="o">.</span><span class="n">list_outputs</span><span class="p">())</span> <span class="o">==</span> <span class="mi">0</span><span class="p">:</span>
<span class="k">return</span> <span class="kc">None</span>
<span class="k">return</span> <span class="n">ret</span></div>
<div class="viewcode-block" id="Symbol.list_arguments"><a class="viewcode-back" href="../../../api/python/symbol/symbol.html#mxnet.symbol.Symbol.list_arguments">[docs]</a> <span class="k">def</span> <span class="nf">list_arguments</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="sd">"""Lists all the arguments in the symbol.</span>
<span class="sd"> Example</span>
<span class="sd"> -------</span>
<span class="sd"> >>> a = mx.sym.var('a')</span>
<span class="sd"> >>> b = mx.sym.var('b')</span>
<span class="sd"> >>> c = a + b</span>
<span class="sd"> >>> c.list_arguments</span>
<span class="sd"> ['a', 'b']</span>
<span class="sd"> Returns</span>
<span class="sd"> -------</span>
<span class="sd"> args : list of string</span>
<span class="sd"> List containing the names of all the arguments required to compute the symbol.</span>
<span class="sd"> """</span>
<span class="n">size</span> <span class="o">=</span> <span class="n">ctypes</span><span class="o">.</span><span class="n">c_uint</span><span class="p">()</span>
<span class="n">sarr</span> <span class="o">=</span> <span class="n">ctypes</span><span class="o">.</span><span class="n">POINTER</span><span class="p">(</span><span class="n">ctypes</span><span class="o">.</span><span class="n">c_char_p</span><span class="p">)()</span>
<span class="n">check_call</span><span class="p">(</span><span class="n">_LIB</span><span class="o">.</span><span class="n">MXSymbolListArguments</span><span class="p">(</span>
<span class="bp">self</span><span class="o">.</span><span class="n">handle</span><span class="p">,</span> <span class="n">ctypes</span><span class="o">.</span><span class="n">byref</span><span class="p">(</span><span class="n">size</span><span class="p">),</span> <span class="n">ctypes</span><span class="o">.</span><span class="n">byref</span><span class="p">(</span><span class="n">sarr</span><span class="p">)))</span>
<span class="k">return</span> <span class="p">[</span><span class="n">py_str</span><span class="p">(</span><span class="n">sarr</span><span class="p">[</span><span class="n">i</span><span class="p">])</span> <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">size</span><span class="o">.</span><span class="n">value</span><span class="p">)]</span></div>
<div class="viewcode-block" id="Symbol.list_outputs"><a class="viewcode-back" href="../../../api/python/symbol/symbol.html#mxnet.symbol.Symbol.list_outputs">[docs]</a> <span class="k">def</span> <span class="nf">list_outputs</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="sd">"""Lists all the outputs in the symbol.</span>
<span class="sd"> Example</span>
<span class="sd"> -------</span>
<span class="sd"> >>> a = mx.sym.var('a')</span>
<span class="sd"> >>> b = mx.sym.var('b')</span>
<span class="sd"> >>> c = a + b</span>
<span class="sd"> >>> c.list_outputs()</span>
<span class="sd"> ['_plus12_output']</span>
<span class="sd"> Returns</span>
<span class="sd"> -------</span>
<span class="sd"> list of str</span>
<span class="sd"> List of all the outputs.</span>
<span class="sd"> For most symbols, this list contains only the name of this symbol.</span>
<span class="sd"> For symbol groups, this is a list with the names of all symbols</span>
<span class="sd"> in the group.</span>
<span class="sd"> """</span>
<span class="n">size</span> <span class="o">=</span> <span class="n">ctypes</span><span class="o">.</span><span class="n">c_uint</span><span class="p">()</span>
<span class="n">sarr</span> <span class="o">=</span> <span class="n">ctypes</span><span class="o">.</span><span class="n">POINTER</span><span class="p">(</span><span class="n">ctypes</span><span class="o">.</span><span class="n">c_char_p</span><span class="p">)()</span>
<span class="n">check_call</span><span class="p">(</span><span class="n">_LIB</span><span class="o">.</span><span class="n">MXSymbolListOutputs</span><span class="p">(</span>
<span class="bp">self</span><span class="o">.</span><span class="n">handle</span><span class="p">,</span> <span class="n">ctypes</span><span class="o">.</span><span class="n">byref</span><span class="p">(</span><span class="n">size</span><span class="p">),</span> <span class="n">ctypes</span><span class="o">.</span><span class="n">byref</span><span class="p">(</span><span class="n">sarr</span><span class="p">)))</span>
<span class="k">return</span> <span class="p">[</span><span class="n">py_str</span><span class="p">(</span><span class="n">sarr</span><span class="p">[</span><span class="n">i</span><span class="p">])</span> <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">size</span><span class="o">.</span><span class="n">value</span><span class="p">)]</span></div>
<span class="c1"># pylint: disable=invalid-length-returned</span>
<div class="viewcode-block" id="Symbol.__len__"><a class="viewcode-back" href="../../../api/python/symbol/symbol.html#mxnet.symbol.Symbol.__len__">[docs]</a> <span class="k">def</span> <span class="nf">__len__</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="sd">"""Get number of outputs for the symbol.</span>
<span class="sd"> Example</span>
<span class="sd"> -------</span>
<span class="sd"> >>> a = mx.sym.var('a')</span>
<span class="sd"> >>> b = mx.sym.var('b')</span>
<span class="sd"> >>> c = a + b</span>
<span class="sd"> >>> len(c)</span>
<span class="sd"> Returns</span>
<span class="sd"> -------</span>
<span class="sd"> len(self): Number of outputs</span>
<span class="sd"> Number of outputs</span>
<span class="sd"> """</span>
<span class="n">output_count</span> <span class="o">=</span> <span class="n">mx_uint</span><span class="p">()</span>
<span class="n">check_call</span><span class="p">(</span><span class="n">_LIB</span><span class="o">.</span><span class="n">MXSymbolGetNumOutputs</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">handle</span><span class="p">,</span> <span class="n">ctypes</span><span class="o">.</span><span class="n">byref</span><span class="p">(</span><span class="n">output_count</span><span class="p">)))</span>
<span class="k">return</span> <span class="n">output_count</span><span class="o">.</span><span class="n">value</span></div>
<div class="viewcode-block" id="Symbol.list_auxiliary_states"><a class="viewcode-back" href="../../../api/python/symbol/symbol.html#mxnet.symbol.Symbol.list_auxiliary_states">[docs]</a> <span class="k">def</span> <span class="nf">list_auxiliary_states</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="sd">"""Lists all the auxiliary states in the symbol.</span>
<span class="sd"> Example</span>
<span class="sd"> -------</span>
<span class="sd"> >>> a = mx.sym.var('a')</span>
<span class="sd"> >>> b = mx.sym.var('b')</span>
<span class="sd"> >>> c = a + b</span>
<span class="sd"> >>> c.list_auxiliary_states()</span>
<span class="sd"> []</span>
<span class="sd"> Example of auxiliary states in `BatchNorm`.</span>
<span class="sd"> >>> data = mx.symbol.Variable('data')</span>
<span class="sd"> >>> weight = mx.sym.Variable(name='fc1_weight')</span>
<span class="sd"> >>> fc1 = mx.symbol.FullyConnected(data = data, weight=weight, name='fc1', num_hidden=128)</span>
<span class="sd"> >>> fc2 = mx.symbol.BatchNorm(fc1, name='batchnorm0')</span>
<span class="sd"> >>> fc2.list_auxiliary_states()</span>
<span class="sd"> ['batchnorm0_moving_mean', 'batchnorm0_moving_var']</span>
<span class="sd"> Returns</span>
<span class="sd"> -------</span>
<span class="sd"> aux_states : list of str</span>
<span class="sd"> List of the auxiliary states in input symbol.</span>
<span class="sd"> Notes</span>
<span class="sd"> -----</span>
<span class="sd"> Auxiliary states are special states of symbols that do not correspond to an argument,</span>
<span class="sd"> and are not updated by gradient descent. Common examples of auxiliary states</span>
<span class="sd"> include the `moving_mean` and `moving_variance` in `BatchNorm`.</span>
<span class="sd"> Most operators do not have auxiliary states.</span>
<span class="sd"> """</span>
<span class="n">size</span> <span class="o">=</span> <span class="n">ctypes</span><span class="o">.</span><span class="n">c_uint</span><span class="p">()</span>
<span class="n">sarr</span> <span class="o">=</span> <span class="n">ctypes</span><span class="o">.</span><span class="n">POINTER</span><span class="p">(</span><span class="n">ctypes</span><span class="o">.</span><span class="n">c_char_p</span><span class="p">)()</span>
<span class="n">check_call</span><span class="p">(</span><span class="n">_LIB</span><span class="o">.</span><span class="n">MXSymbolListAuxiliaryStates</span><span class="p">(</span>
<span class="bp">self</span><span class="o">.</span><span class="n">handle</span><span class="p">,</span> <span class="n">ctypes</span><span class="o">.</span><span class="n">byref</span><span class="p">(</span><span class="n">size</span><span class="p">),</span> <span class="n">ctypes</span><span class="o">.</span><span class="n">byref</span><span class="p">(</span><span class="n">sarr</span><span class="p">)))</span>
<span class="k">return</span> <span class="p">[</span><span class="n">py_str</span><span class="p">(</span><span class="n">sarr</span><span class="p">[</span><span class="n">i</span><span class="p">])</span> <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">size</span><span class="o">.</span><span class="n">value</span><span class="p">)]</span></div>
<div class="viewcode-block" id="Symbol.list_inputs"><a class="viewcode-back" href="../../../api/python/symbol/symbol.html#mxnet.symbol.Symbol.list_inputs">[docs]</a> <span class="k">def</span> <span class="nf">list_inputs</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="sd">"""Lists all arguments and auxiliary states of this Symbol.</span>
<span class="sd"> Returns</span>
<span class="sd"> -------</span>
<span class="sd"> inputs : list of str</span>
<span class="sd"> List of all inputs.</span>
<span class="sd"> Examples</span>
<span class="sd"> --------</span>
<span class="sd"> >>> bn = mx.sym.BatchNorm(name='bn')</span>
<span class="sd"> >>> bn.list_arguments()</span>
<span class="sd"> ['bn_data', 'bn_gamma', 'bn_beta']</span>
<span class="sd"> >>> bn.list_auxiliary_states()</span>
<span class="sd"> ['bn_moving_mean', 'bn_moving_var']</span>
<span class="sd"> >>> bn.list_inputs()</span>
<span class="sd"> ['bn_data', 'bn_gamma', 'bn_beta', 'bn_moving_mean', 'bn_moving_var']</span>
<span class="sd"> """</span>
<span class="n">size</span> <span class="o">=</span> <span class="n">ctypes</span><span class="o">.</span><span class="n">c_uint</span><span class="p">()</span>
<span class="n">sarr</span> <span class="o">=</span> <span class="n">ctypes</span><span class="o">.</span><span class="n">POINTER</span><span class="p">(</span><span class="n">ctypes</span><span class="o">.</span><span class="n">c_char_p</span><span class="p">)()</span>
<span class="n">check_call</span><span class="p">(</span><span class="n">_LIB</span><span class="o">.</span><span class="n">NNSymbolListInputNames</span><span class="p">(</span>
<span class="bp">self</span><span class="o">.</span><span class="n">handle</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="n">ctypes</span><span class="o">.</span><span class="n">byref</span><span class="p">(</span><span class="n">size</span><span class="p">),</span> <span class="n">ctypes</span><span class="o">.</span><span class="n">byref</span><span class="p">(</span><span class="n">sarr</span><span class="p">)))</span>
<span class="k">return</span> <span class="p">[</span><span class="n">py_str</span><span class="p">(</span><span class="n">sarr</span><span class="p">[</span><span class="n">i</span><span class="p">])</span> <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">size</span><span class="o">.</span><span class="n">value</span><span class="p">)]</span></div>
<div class="viewcode-block" id="Symbol.infer_type"><a class="viewcode-back" href="../../../api/python/symbol/symbol.html#mxnet.symbol.Symbol.infer_type">[docs]</a> <span class="k">def</span> <span class="nf">infer_type</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
<span class="sd">"""Infers the type of all arguments and all outputs, given the known types</span>
<span class="sd"> for some arguments.</span>
<span class="sd"> This function takes the known types of some arguments in either positional way</span>
<span class="sd"> or keyword argument way as input. It returns a tuple of `None` values</span>
<span class="sd"> if there is not enough information to deduce the missing types.</span>
<span class="sd"> Inconsistencies in the known types will cause an error to be raised.</span>
<span class="sd"> Example</span>
<span class="sd"> -------</span>
<span class="sd"> >>> a = mx.sym.var('a')</span>
<span class="sd"> >>> b = mx.sym.var('b')</span>
<span class="sd"> >>> c = a + b</span>
<span class="sd"> >>> arg_types, out_types, aux_types = c.infer_type(a='float32')</span>
<span class="sd"> >>> arg_types</span>
<span class="sd"> [<type 'numpy.float32'>, <type 'numpy.float32'>]</span>
<span class="sd"> >>> out_types</span>
<span class="sd"> [<type 'numpy.float32'>]</span>
<span class="sd"> >>> aux_types</span>
<span class="sd"> []</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> *args :</span>
<span class="sd"> Type of known arguments in a positional way.</span>
<span class="sd"> Unknown type can be marked as None.</span>
<span class="sd"> **kwargs :</span>
<span class="sd"> Keyword arguments of known types.</span>
<span class="sd"> Returns</span>
<span class="sd"> -------</span>
<span class="sd"> arg_types : list of numpy.dtype or None</span>
<span class="sd"> List of argument types.</span>
<span class="sd"> The order is same as the order of list_arguments().</span>
<span class="sd"> out_types : list of numpy.dtype or None</span>
<span class="sd"> List of output types.</span>
<span class="sd"> The order is same as the order of list_outputs().</span>
<span class="sd"> aux_types : list of numpy.dtype or None</span>
<span class="sd"> List of auxiliary state types.</span>
<span class="sd"> The order is same as the order of list_auxiliary_states().</span>
<span class="sd"> """</span>
<span class="c1"># pylint: disable=too-many-locals</span>
<span class="k">if</span> <span class="nb">len</span><span class="p">(</span><span class="n">args</span><span class="p">)</span> <span class="o">!=</span> <span class="mi">0</span> <span class="ow">and</span> <span class="nb">len</span><span class="p">(</span><span class="n">kwargs</span><span class="p">)</span> <span class="o">!=</span> <span class="mi">0</span><span class="p">:</span>
<span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span><span class="s1">'Can only specify known argument </span><span class="se">\</span>
<span class="s1"> types either by positional or kwargs way.'</span><span class="p">)</span>
<span class="n">sdata</span> <span class="o">=</span> <span class="p">[]</span>
<span class="k">if</span> <span class="nb">len</span><span class="p">(</span><span class="n">args</span><span class="p">)</span> <span class="o">!=</span> <span class="mi">0</span><span class="p">:</span>
<span class="n">keys</span> <span class="o">=</span> <span class="n">c_array</span><span class="p">(</span><span class="n">ctypes</span><span class="o">.</span><span class="n">c_char_p</span><span class="p">,</span> <span class="p">[])</span>
<span class="k">for</span> <span class="n">s</span> <span class="ow">in</span> <span class="n">args</span><span class="p">:</span>
<span class="k">if</span> <span class="n">s</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">s</span> <span class="o">=</span> <span class="n">_numpy</span><span class="o">.</span><span class="n">dtype</span><span class="p">(</span><span class="n">s</span><span class="p">)</span><span class="o">.</span><span class="n">type</span>
<span class="k">if</span> <span class="n">s</span> <span class="ow">not</span> <span class="ow">in</span> <span class="n">_DTYPE_NP_TO_MX</span><span class="p">:</span>
<span class="k">raise</span> <span class="ne">TypeError</span><span class="p">(</span><span class="s1">'Argument need to be one of '</span> <span class="o">+</span> <span class="nb">str</span><span class="p">(</span><span class="n">_DTYPE_NP_TO_MX</span><span class="p">))</span>
<span class="n">sdata</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">_DTYPE_NP_TO_MX</span><span class="p">[</span><span class="n">s</span><span class="p">])</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">sdata</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="o">-</span><span class="mi">1</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">str_keys</span> <span class="o">=</span> <span class="p">[]</span>
<span class="k">for</span> <span class="n">k</span><span class="p">,</span> <span class="n">v</span> <span class="ow">in</span> <span class="n">kwargs</span><span class="o">.</span><span class="n">items</span><span class="p">():</span>
<span class="n">v</span> <span class="o">=</span> <span class="n">_numpy</span><span class="o">.</span><span class="n">dtype</span><span class="p">(</span><span class="n">v</span><span class="p">)</span><span class="o">.</span><span class="n">type</span>
<span class="k">if</span> <span class="n">v</span> <span class="ow">in</span> <span class="n">_DTYPE_NP_TO_MX</span><span class="p">:</span>
<span class="n">str_keys</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">k</span><span class="p">)</span>
<span class="n">sdata</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">_DTYPE_NP_TO_MX</span><span class="p">[</span><span class="n">v</span><span class="p">])</span>
<span class="n">keys</span> <span class="o">=</span> <span class="n">c_str_array</span><span class="p">(</span><span class="n">str_keys</span><span class="p">)</span>
<span class="n">arg_type_size</span> <span class="o">=</span> <span class="n">mx_uint</span><span class="p">()</span>
<span class="n">arg_type_data</span> <span class="o">=</span> <span class="n">ctypes</span><span class="o">.</span><span class="n">POINTER</span><span class="p">(</span><span class="n">ctypes</span><span class="o">.</span><span class="n">c_int</span><span class="p">)()</span>
<span class="n">out_type_size</span> <span class="o">=</span> <span class="n">mx_uint</span><span class="p">()</span>
<span class="n">out_type_data</span> <span class="o">=</span> <span class="n">ctypes</span><span class="o">.</span><span class="n">POINTER</span><span class="p">(</span><span class="n">ctypes</span><span class="o">.</span><span class="n">c_int</span><span class="p">)()</span>
<span class="n">aux_type_size</span> <span class="o">=</span> <span class="n">mx_uint</span><span class="p">()</span>
<span class="n">aux_type_data</span> <span class="o">=</span> <span class="n">ctypes</span><span class="o">.</span><span class="n">POINTER</span><span class="p">(</span><span class="n">ctypes</span><span class="o">.</span><span class="n">c_int</span><span class="p">)()</span>
<span class="n">complete</span> <span class="o">=</span> <span class="n">ctypes</span><span class="o">.</span><span class="n">c_int</span><span class="p">()</span>
<span class="n">check_call</span><span class="p">(</span><span class="n">_LIB</span><span class="o">.</span><span class="n">MXSymbolInferType</span><span class="p">(</span>
<span class="bp">self</span><span class="o">.</span><span class="n">handle</span><span class="p">,</span>
<span class="n">mx_uint</span><span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="n">sdata</span><span class="p">)),</span>
<span class="n">keys</span><span class="p">,</span>
<span class="n">c_array_buf</span><span class="p">(</span><span class="n">ctypes</span><span class="o">.</span><span class="n">c_int</span><span class="p">,</span> <span class="n">array</span><span class="p">(</span><span class="s1">'i'</span><span class="p">,</span> <span class="n">sdata</span><span class="p">)),</span>
<span class="n">ctypes</span><span class="o">.</span><span class="n">byref</span><span class="p">(</span><span class="n">arg_type_size</span><span class="p">),</span>
<span class="n">ctypes</span><span class="o">.</span><span class="n">byref</span><span class="p">(</span><span class="n">arg_type_data</span><span class="p">),</span>
<span class="n">ctypes</span><span class="o">.</span><span class="n">byref</span><span class="p">(</span><span class="n">out_type_size</span><span class="p">),</span>
<span class="n">ctypes</span><span class="o">.</span><span class="n">byref</span><span class="p">(</span><span class="n">out_type_data</span><span class="p">),</span>
<span class="n">ctypes</span><span class="o">.</span><span class="n">byref</span><span class="p">(</span><span class="n">aux_type_size</span><span class="p">),</span>
<span class="n">ctypes</span><span class="o">.</span><span class="n">byref</span><span class="p">(</span><span class="n">aux_type_data</span><span class="p">),</span>
<span class="n">ctypes</span><span class="o">.</span><span class="n">byref</span><span class="p">(</span><span class="n">complete</span><span class="p">)))</span>
<span class="k">if</span> <span class="n">complete</span><span class="o">.</span><span class="n">value</span> <span class="o">!=</span> <span class="mi">0</span><span class="p">:</span>
<span class="n">arg_types</span> <span class="o">=</span> <span class="p">[</span>
<span class="n">_DTYPE_MX_TO_NP</span><span class="p">[</span><span class="n">arg_type_data</span><span class="p">[</span><span class="n">i</span><span class="p">]]</span> <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">arg_type_size</span><span class="o">.</span><span class="n">value</span><span class="p">)]</span>
<span class="n">out_types</span> <span class="o">=</span> <span class="p">[</span>
<span class="n">_DTYPE_MX_TO_NP</span><span class="p">[</span><span class="n">out_type_data</span><span class="p">[</span><span class="n">i</span><span class="p">]]</span> <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">out_type_size</span><span class="o">.</span><span class="n">value</span><span class="p">)]</span>
<span class="n">aux_types</span> <span class="o">=</span> <span class="p">[</span>
<span class="n">_DTYPE_MX_TO_NP</span><span class="p">[</span><span class="n">aux_type_data</span><span class="p">[</span><span class="n">i</span><span class="p">]]</span> <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">aux_type_size</span><span class="o">.</span><span class="n">value</span><span class="p">)]</span>
<span class="k">return</span> <span class="p">(</span><span class="n">arg_types</span><span class="p">,</span> <span class="n">out_types</span><span class="p">,</span> <span class="n">aux_types</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">return</span> <span class="p">(</span><span class="kc">None</span><span class="p">,</span> <span class="kc">None</span><span class="p">,</span> <span class="kc">None</span><span class="p">)</span></div>
<span class="c1"># pylint: enable=too-many-locals</span>
<div class="viewcode-block" id="Symbol.infer_shape"><a class="viewcode-back" href="../../../api/python/symbol/symbol.html#mxnet.symbol.Symbol.infer_shape">[docs]</a> <span class="k">def</span> <span class="nf">infer_shape</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
<span class="sd">"""Infers the shapes of all arguments and all outputs given the known shapes of</span>
<span class="sd"> some arguments.</span>
<span class="sd"> This function takes the known shapes of some arguments in either positional way</span>
<span class="sd"> or keyword argument way as input. It returns a tuple of `None` values</span>
<span class="sd"> if there is not enough information to deduce the missing shapes.</span>
<span class="sd"> Example</span>
<span class="sd"> -------</span>
<span class="sd"> >>> a = mx.sym.var('a')</span>
<span class="sd"> >>> b = mx.sym.var('b')</span>
<span class="sd"> >>> c = a + b</span>
<span class="sd"> >>> arg_shapes, out_shapes, aux_shapes = c.infer_shape(a=(3,3))</span>
<span class="sd"> >>> arg_shapes</span>
<span class="sd"> [(3L, 3L), (3L, 3L)]</span>
<span class="sd"> >>> out_shapes</span>
<span class="sd"> [(3L, 3L)]</span>
<span class="sd"> >>> aux_shapes</span>
<span class="sd"> []</span>
<span class="sd"> >>> c.infer_shape(a=(0,3)) # 0s in shape means unknown dimensions. So, returns None.</span>
<span class="sd"> (None, None, None)</span>
<span class="sd"> Inconsistencies in the known shapes will cause an error to be raised.</span>
<span class="sd"> See the following example:</span>
<span class="sd"> >>> data = mx.sym.Variable('data')</span>
<span class="sd"> >>> out = mx.sym.FullyConnected(data=data, name='fc1', num_hidden=1000)</span>
<span class="sd"> >>> out = mx.sym.Activation(data=out, act_type='relu')</span>
<span class="sd"> >>> out = mx.sym.FullyConnected(data=out, name='fc2', num_hidden=10)</span>
<span class="sd"> >>> weight_shape= (1, 100)</span>
<span class="sd"> >>> data_shape = (100, 100)</span>
<span class="sd"> >>> out.infer_shape(data=data_shape, fc1_weight=weight_shape)</span>
<span class="sd"> Error in operator fc1: Shape inconsistent, Provided=(1,100), inferred shape=(1000,100)</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> *args :</span>
<span class="sd"> Shape of arguments in a positional way.</span>
<span class="sd"> Unknown shape can be marked as None.</span>
<span class="sd"> **kwargs :</span>
<span class="sd"> Keyword arguments of the known shapes.</span>
<span class="sd"> Returns</span>
<span class="sd"> -------</span>
<span class="sd"> arg_shapes : list of tuple or None</span>
<span class="sd"> List of argument shapes.</span>
<span class="sd"> The order is same as the order of list_arguments().</span>
<span class="sd"> out_shapes : list of tuple or None</span>
<span class="sd"> List of output shapes.</span>
<span class="sd"> The order is same as the order of list_outputs().</span>
<span class="sd"> aux_shapes : list of tuple or None</span>
<span class="sd"> List of auxiliary state shapes.</span>
<span class="sd"> The order is same as the order of list_auxiliary_states().</span>
<span class="sd"> """</span>
<span class="k">try</span><span class="p">:</span>
<span class="n">res</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_infer_shape_impl</span><span class="p">(</span><span class="kc">False</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span>
<span class="k">if</span> <span class="n">res</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">arg_shapes</span><span class="p">,</span> <span class="n">_</span><span class="p">,</span> <span class="n">_</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_infer_shape_impl</span><span class="p">(</span><span class="kc">True</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span>
<span class="n">arg_names</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">list_arguments</span><span class="p">()</span>
<span class="n">unknowns</span> <span class="o">=</span> <span class="p">[]</span>
<span class="k">for</span> <span class="n">name</span><span class="p">,</span> <span class="n">shape</span> <span class="ow">in</span> <span class="nb">zip</span><span class="p">(</span><span class="n">arg_names</span><span class="p">,</span> <span class="n">arg_shapes</span><span class="p">):</span>
<span class="k">if</span> <span class="ow">not</span> <span class="n">shape</span> <span class="ow">or</span> <span class="ow">not</span> <span class="n">_numpy</span><span class="o">.</span><span class="n">prod</span><span class="p">(</span><span class="n">shape</span><span class="p">):</span>
<span class="k">if</span> <span class="nb">len</span><span class="p">(</span><span class="n">unknowns</span><span class="p">)</span> <span class="o">>=</span> <span class="mi">10</span><span class="p">:</span>
<span class="n">unknowns</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="s1">'...'</span><span class="p">)</span>
<span class="k">break</span>
<span class="n">unknowns</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="s1">'</span><span class="si">%s</span><span class="s1">: </span><span class="si">%s</span><span class="s1">'</span> <span class="o">%</span> <span class="p">(</span><span class="n">name</span><span class="p">,</span> <span class="nb">str</span><span class="p">(</span><span class="n">shape</span><span class="p">)))</span>
<span class="n">warnings</span><span class="o">.</span><span class="n">warn</span><span class="p">(</span>
<span class="s2">"Cannot decide shape for the following arguments "</span> <span class="o">+</span>
<span class="s2">"(0s in shape means unknown dimensions). "</span> <span class="o">+</span>
<span class="s2">"Consider providing them as input:</span><span class="se">\n\t</span><span class="s2">"</span> <span class="o">+</span>
<span class="s2">"</span><span class="se">\n\t</span><span class="s2">"</span><span class="o">.</span><span class="n">join</span><span class="p">(</span><span class="n">unknowns</span><span class="p">),</span> <span class="n">stacklevel</span><span class="o">=</span><span class="mi">2</span><span class="p">)</span>
<span class="k">return</span> <span class="n">res</span>
<span class="k">except</span> <span class="n">MXNetError</span><span class="p">:</span>
<span class="nb">print</span><span class="p">(</span><span class="s2">"infer_shape error. Arguments:"</span><span class="p">)</span>
<span class="k">for</span> <span class="n">i</span><span class="p">,</span> <span class="n">arg</span> <span class="ow">in</span> <span class="nb">enumerate</span><span class="p">(</span><span class="n">args</span><span class="p">):</span>
<span class="nb">print</span><span class="p">(</span><span class="s2">" #</span><span class="si">%d</span><span class="s2">: </span><span class="si">%s</span><span class="s2">"</span> <span class="o">%</span> <span class="p">(</span><span class="n">i</span><span class="p">,</span> <span class="n">arg</span><span class="p">))</span>
<span class="k">for</span> <span class="n">k</span><span class="p">,</span> <span class="n">v</span> <span class="ow">in</span> <span class="n">kwargs</span><span class="o">.</span><span class="n">items</span><span class="p">():</span>
<span class="nb">print</span><span class="p">(</span><span class="s2">" </span><span class="si">%s</span><span class="s2">: </span><span class="si">%s</span><span class="s2">"</span> <span class="o">%</span> <span class="p">(</span><span class="n">k</span><span class="p">,</span> <span class="n">v</span><span class="p">))</span>
<span class="k">raise</span></div>
<div class="viewcode-block" id="Symbol.infer_shape_partial"><a class="viewcode-back" href="../../../api/python/symbol/symbol.html#mxnet.symbol.Symbol.infer_shape_partial">[docs]</a> <span class="k">def</span> <span class="nf">infer_shape_partial</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
<span class="sd">"""Infers the shape partially.</span>
<span class="sd"> This functions works the same way as `infer_shape`,</span>
<span class="sd"> except that this function can return partial results.</span>
<span class="sd"> In the following example, information about fc2 is not available. So, `infer_shape`</span>
<span class="sd"> will return a tuple of `None` values but `infer_shape_partial` will return partial values.</span>
<span class="sd"> Example</span>
<span class="sd"> -------</span>
<span class="sd"> >>> data = mx.sym.Variable('data')</span>
<span class="sd"> >>> prev = mx.sym.Variable('prev')</span>
<span class="sd"> >>> fc1 = mx.sym.FullyConnected(data=data, name='fc1', num_hidden=128)</span>
<span class="sd"> >>> fc2 = mx.sym.FullyConnected(data=prev, name='fc2', num_hidden=128)</span>
<span class="sd"> >>> out = mx.sym.Activation(data=mx.sym.elemwise_add(fc1, fc2), act_type='relu')</span>
<span class="sd"> >>> out.list_arguments()</span>
<span class="sd"> ['data', 'fc1_weight', 'fc1_bias', 'prev', 'fc2_weight', 'fc2_bias']</span>
<span class="sd"> >>> out.infer_shape(data=(10,64))</span>
<span class="sd"> (None, None, None)</span>
<span class="sd"> >>> out.infer_shape_partial(data=(10,64))</span>
<span class="sd"> ([(10L, 64L), (128L, 64L), (128L,), (), (), ()], [(10L, 128L)], [])</span>
<span class="sd"> >>> # infers shape if you give information about fc2</span>
<span class="sd"> >>> out.infer_shape(data=(10,64), prev=(10,128))</span>
<span class="sd"> ([(10L, 64L), (128L, 64L), (128L,), (10L, 128L), (128L, 128L), (128L,)], [(10L, 128L)], [])</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> *args :</span>
<span class="sd"> Shape of arguments in a positional way.</span>
<span class="sd"> Unknown shape can be marked as None</span>
<span class="sd"> **kwargs :</span>
<span class="sd"> Keyword arguments of known shapes.</span>
<span class="sd"> Returns</span>
<span class="sd"> -------</span>
<span class="sd"> arg_shapes : list of tuple or None</span>
<span class="sd"> List of argument shapes.</span>
<span class="sd"> The order is same as the order of list_arguments().</span>
<span class="sd"> out_shapes : list of tuple or None</span>
<span class="sd"> List of output shapes.</span>
<span class="sd"> The order is same as the order of list_outputs().</span>
<span class="sd"> aux_shapes : list of tuple or None</span>
<span class="sd"> List of auxiliary state shapes.</span>
<span class="sd"> The order is same as the order of list_auxiliary_states().</span>
<span class="sd"> """</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_infer_shape_impl</span><span class="p">(</span><span class="kc">True</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span></div>
<span class="k">def</span> <span class="nf">_infer_shape_impl</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">partial</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
<span class="sd">"""The actual implementation for calling shape inference API."""</span>
<span class="c1"># pylint: disable=too-many-locals</span>
<span class="k">if</span> <span class="nb">len</span><span class="p">(</span><span class="n">args</span><span class="p">)</span> <span class="o">!=</span> <span class="mi">0</span> <span class="ow">and</span> <span class="nb">len</span><span class="p">(</span><span class="n">kwargs</span><span class="p">)</span> <span class="o">!=</span> <span class="mi">0</span><span class="p">:</span>
<span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span><span class="s1">'Can only specify known argument </span><span class="se">\</span>
<span class="s1"> shapes either by positional or kwargs way.'</span><span class="p">)</span>
<span class="n">sdata</span> <span class="o">=</span> <span class="p">[]</span>
<span class="n">indptr</span> <span class="o">=</span> <span class="p">[</span><span class="mi">0</span><span class="p">]</span>
<span class="k">if</span> <span class="nb">len</span><span class="p">(</span><span class="n">args</span><span class="p">)</span> <span class="o">!=</span> <span class="mi">0</span><span class="p">:</span>
<span class="n">keys</span> <span class="o">=</span> <span class="n">c_array</span><span class="p">(</span><span class="n">ctypes</span><span class="o">.</span><span class="n">c_char_p</span><span class="p">,</span> <span class="p">[])</span>
<span class="k">for</span> <span class="n">i</span><span class="p">,</span> <span class="n">s</span> <span class="ow">in</span> <span class="nb">enumerate</span><span class="p">(</span><span class="n">args</span><span class="p">):</span>
<span class="k">if</span> <span class="n">s</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="k">if</span> <span class="ow">not</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">s</span><span class="p">,</span> <span class="nb">tuple</span><span class="p">):</span>
<span class="k">raise</span> <span class="ne">TypeError</span><span class="p">(</span><span class="s2">"Arguments need to be shapes (tuple), "</span>
<span class="s2">"but argument </span><span class="si">%d</span><span class="s2"> is </span><span class="si">%s</span><span class="s2">."</span> <span class="o">%</span> <span class="p">(</span><span class="n">i</span><span class="p">,</span> <span class="nb">type</span><span class="p">(</span><span class="n">s</span><span class="p">)))</span>
<span class="n">sdata</span><span class="o">.</span><span class="n">extend</span><span class="p">(</span><span class="n">s</span><span class="p">)</span>
<span class="n">indptr</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="n">sdata</span><span class="p">))</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">str_keys</span> <span class="o">=</span> <span class="p">[]</span>
<span class="k">for</span> <span class="n">k</span><span class="p">,</span> <span class="n">v</span> <span class="ow">in</span> <span class="n">kwargs</span><span class="o">.</span><span class="n">items</span><span class="p">():</span>
<span class="k">if</span> <span class="ow">not</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">v</span><span class="p">,</span> <span class="nb">tuple</span><span class="p">):</span>
<span class="k">raise</span> <span class="ne">TypeError</span><span class="p">(</span><span class="s2">"Arguments need to be shapes (tuple), "</span>
<span class="s2">"but '</span><span class="si">%s</span><span class="s2">' is </span><span class="si">%s</span><span class="s2">."</span> <span class="o">%</span> <span class="p">(</span><span class="n">k</span><span class="p">,</span> <span class="nb">type</span><span class="p">(</span><span class="n">v</span><span class="p">)))</span>
<span class="n">str_keys</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">k</span><span class="p">)</span>
<span class="n">sdata</span><span class="o">.</span><span class="n">extend</span><span class="p">(</span><span class="n">v</span><span class="p">)</span>
<span class="n">indptr</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="n">sdata</span><span class="p">))</span>
<span class="n">keys</span> <span class="o">=</span> <span class="n">c_str_array</span><span class="p">(</span><span class="n">str_keys</span><span class="p">)</span>
<span class="n">arg_shape_size</span> <span class="o">=</span> <span class="n">mx_uint</span><span class="p">()</span>
<span class="n">arg_shape_ndim</span> <span class="o">=</span> <span class="n">ctypes</span><span class="o">.</span><span class="n">POINTER</span><span class="p">(</span><span class="n">mx_uint</span><span class="p">)()</span>
<span class="n">arg_shape_data</span> <span class="o">=</span> <span class="n">ctypes</span><span class="o">.</span><span class="n">POINTER</span><span class="p">(</span><span class="n">ctypes</span><span class="o">.</span><span class="n">POINTER</span><span class="p">(</span><span class="n">mx_uint</span><span class="p">))()</span>
<span class="n">out_shape_size</span> <span class="o">=</span> <span class="n">mx_uint</span><span class="p">()</span>
<span class="n">out_shape_ndim</span> <span class="o">=</span> <span class="n">ctypes</span><span class="o">.</span><span class="n">POINTER</span><span class="p">(</span><span class="n">mx_uint</span><span class="p">)()</span>
<span class="n">out_shape_data</span> <span class="o">=</span> <span class="n">ctypes</span><span class="o">.</span><span class="n">POINTER</span><span class="p">(</span><span class="n">ctypes</span><span class="o">.</span><span class="n">POINTER</span><span class="p">(</span><span class="n">mx_uint</span><span class="p">))()</span>
<span class="n">aux_shape_size</span> <span class="o">=</span> <span class="n">mx_uint</span><span class="p">()</span>
<span class="n">aux_shape_ndim</span> <span class="o">=</span> <span class="n">ctypes</span><span class="o">.</span><span class="n">POINTER</span><span class="p">(</span><span class="n">mx_uint</span><span class="p">)()</span>
<span class="n">aux_shape_data</span> <span class="o">=</span> <span class="n">ctypes</span><span class="o">.</span><span class="n">POINTER</span><span class="p">(</span><span class="n">ctypes</span><span class="o">.</span><span class="n">POINTER</span><span class="p">(</span><span class="n">mx_uint</span><span class="p">))()</span>
<span class="n">complete</span> <span class="o">=</span> <span class="n">ctypes</span><span class="o">.</span><span class="n">c_int</span><span class="p">()</span>
<span class="k">if</span> <span class="n">partial</span><span class="p">:</span>
<span class="n">infer_func</span> <span class="o">=</span> <span class="n">_LIB</span><span class="o">.</span><span class="n">MXSymbolInferShapePartial</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">infer_func</span> <span class="o">=</span> <span class="n">_LIB</span><span class="o">.</span><span class="n">MXSymbolInferShape</span>
<span class="n">check_call</span><span class="p">(</span><span class="n">infer_func</span><span class="p">(</span>
<span class="bp">self</span><span class="o">.</span><span class="n">handle</span><span class="p">,</span>
<span class="n">mx_uint</span><span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="n">indptr</span><span class="p">)</span> <span class="o">-</span> <span class="mi">1</span><span class="p">),</span>
<span class="n">keys</span><span class="p">,</span>
<span class="n">c_array_buf</span><span class="p">(</span><span class="n">mx_uint</span><span class="p">,</span> <span class="n">array</span><span class="p">(</span><span class="s1">'I'</span><span class="p">,</span> <span class="n">indptr</span><span class="p">)),</span>
<span class="n">c_array_buf</span><span class="p">(</span><span class="n">mx_uint</span><span class="p">,</span> <span class="n">array</span><span class="p">(</span><span class="s1">'I'</span><span class="p">,</span> <span class="n">sdata</span><span class="p">)),</span>
<span class="n">ctypes</span><span class="o">.</span><span class="n">byref</span><span class="p">(</span><span class="n">arg_shape_size</span><span class="p">),</span>
<span class="n">ctypes</span><span class="o">.</span><span class="n">byref</span><span class="p">(</span><span class="n">arg_shape_ndim</span><span class="p">),</span>
<span class="n">ctypes</span><span class="o">.</span><span class="n">byref</span><span class="p">(</span><span class="n">arg_shape_data</span><span class="p">),</span>
<span class="n">ctypes</span><span class="o">.</span><span class="n">byref</span><span class="p">(</span><span class="n">out_shape_size</span><span class="p">),</span>
<span class="n">ctypes</span><span class="o">.</span><span class="n">byref</span><span class="p">(</span><span class="n">out_shape_ndim</span><span class="p">),</span>
<span class="n">ctypes</span><span class="o">.</span><span class="n">byref</span><span class="p">(</span><span class="n">out_shape_data</span><span class="p">),</span>
<span class="n">ctypes</span><span class="o">.</span><span class="n">byref</span><span class="p">(</span><span class="n">aux_shape_size</span><span class="p">),</span>
<span class="n">ctypes</span><span class="o">.</span><span class="n">byref</span><span class="p">(</span><span class="n">aux_shape_ndim</span><span class="p">),</span>
<span class="n">ctypes</span><span class="o">.</span><span class="n">byref</span><span class="p">(</span><span class="n">aux_shape_data</span><span class="p">),</span>
<span class="n">ctypes</span><span class="o">.</span><span class="n">byref</span><span class="p">(</span><span class="n">complete</span><span class="p">)))</span>
<span class="k">if</span> <span class="n">complete</span><span class="o">.</span><span class="n">value</span> <span class="o">!=</span> <span class="mi">0</span><span class="p">:</span>
<span class="n">arg_shapes</span> <span class="o">=</span> <span class="p">[</span>
<span class="nb">tuple</span><span class="p">(</span><span class="n">arg_shape_data</span><span class="p">[</span><span class="n">i</span><span class="p">][:</span><span class="n">arg_shape_ndim</span><span class="p">[</span><span class="n">i</span><span class="p">]])</span> <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">arg_shape_size</span><span class="o">.</span><span class="n">value</span><span class="p">)]</span>
<span class="n">out_shapes</span> <span class="o">=</span> <span class="p">[</span>
<span class="nb">tuple</span><span class="p">(</span><span class="n">out_shape_data</span><span class="p">[</span><span class="n">i</span><span class="p">][:</span><span class="n">out_shape_ndim</span><span class="p">[</span><span class="n">i</span><span class="p">]])</span> <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">out_shape_size</span><span class="o">.</span><span class="n">value</span><span class="p">)]</span>
<span class="n">aux_shapes</span> <span class="o">=</span> <span class="p">[</span>
<span class="nb">tuple</span><span class="p">(</span><span class="n">aux_shape_data</span><span class="p">[</span><span class="n">i</span><span class="p">][:</span><span class="n">aux_shape_ndim</span><span class="p">[</span><span class="n">i</span><span class="p">]])</span> <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">aux_shape_size</span><span class="o">.</span><span class="n">value</span><span class="p">)]</span>
<span class="k">return</span> <span class="p">(</span><span class="n">arg_shapes</span><span class="p">,</span> <span class="n">out_shapes</span><span class="p">,</span> <span class="n">aux_shapes</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">return</span> <span class="p">(</span><span class="kc">None</span><span class="p">,</span> <span class="kc">None</span><span class="p">,</span> <span class="kc">None</span><span class="p">)</span>
<span class="c1"># pylint: enable=too-many-locals</span>
<div class="viewcode-block" id="Symbol.debug_str"><a class="viewcode-back" href="../../../api/python/symbol/symbol.html#mxnet.symbol.Symbol.debug_str">[docs]</a> <span class="k">def</span> <span class="nf">debug_str</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="sd">"""Gets a debug string of symbol.</span>
<span class="sd"> It contains Symbol output, variables and operators in the computation graph</span>
<span class="sd"> with their inputs, variables and attributes.</span>
<span class="sd"> Returns</span>
<span class="sd"> -------</span>
<span class="sd"> string</span>
<span class="sd"> Debug string of the symbol.</span>
<span class="sd"> Examples</span>
<span class="sd"> --------</span>
<span class="sd"> >>> a = mx.sym.Variable('a')</span>
<span class="sd"> >>> b = mx.sym.sin(a)</span>
<span class="sd"> >>> c = 2 * a + b</span>
<span class="sd"> >>> d = mx.sym.FullyConnected(data=c, num_hidden=10)</span>
<span class="sd"> >>> d.debug_str()</span>
<span class="sd"> >>> print d.debug_str()</span>
<span class="sd"> Symbol Outputs:</span>
<span class="sd"> output[0]=fullyconnected0(0)</span>
<span class="sd"> Variable:a</span>
<span class="sd"> --------------------</span>
<span class="sd"> Op:_mul_scalar, Name=_mulscalar0</span>
<span class="sd"> Inputs:</span>
<span class="sd"> arg[0]=a(0) version=0</span>
<span class="sd"> Attrs:</span>
<span class="sd"> scalar=2</span>
<span class="sd"> --------------------</span>
<span class="sd"> Op:sin, Name=sin0</span>
<span class="sd"> Inputs:</span>
<span class="sd"> arg[0]=a(0) version=0</span>
<span class="sd"> --------------------</span>
<span class="sd"> Op:elemwise_add, Name=_plus0</span>
<span class="sd"> Inputs:</span>
<span class="sd"> arg[0]=_mulscalar0(0)</span>
<span class="sd"> arg[1]=sin0(0)</span>
<span class="sd"> Variable:fullyconnected0_weight</span>
<span class="sd"> Variable:fullyconnected0_bias</span>
<span class="sd"> --------------------</span>
<span class="sd"> Op:FullyConnected, Name=fullyconnected0</span>
<span class="sd"> Inputs:</span>
<span class="sd"> arg[0]=_plus0(0)</span>
<span class="sd"> arg[1]=fullyconnected0_weight(0) version=0</span>
<span class="sd"> arg[2]=fullyconnected0_bias(0) version=0</span>
<span class="sd"> Attrs:</span>
<span class="sd"> num_hidden=10</span>
<span class="sd"> """</span>
<span class="n">debug_str</span> <span class="o">=</span> <span class="n">ctypes</span><span class="o">.</span><span class="n">c_char_p</span><span class="p">()</span>
<span class="n">check_call</span><span class="p">(</span><span class="n">_LIB</span><span class="o">.</span><span class="n">MXSymbolPrint</span><span class="p">(</span>
<span class="bp">self</span><span class="o">.</span><span class="n">handle</span><span class="p">,</span> <span class="n">ctypes</span><span class="o">.</span><span class="n">byref</span><span class="p">(</span><span class="n">debug_str</span><span class="p">)))</span>
<span class="k">return</span> <span class="n">py_str</span><span class="p">(</span><span class="n">debug_str</span><span class="o">.</span><span class="n">value</span><span class="p">)</span></div>
<div class="viewcode-block" id="Symbol.save"><a class="viewcode-back" href="../../../api/python/symbol/symbol.html#mxnet.symbol.Symbol.save">[docs]</a> <span class="k">def</span> <span class="nf">save</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">fname</span><span class="p">):</span>
<span class="sd">"""Saves symbol to a file.</span>
<span class="sd"> You can also use pickle to do the job if you only work on python.</span>
<span class="sd"> The advantage of `load`/`save` functions is that the file contents are language agnostic.</span>
<span class="sd"> This means the model saved by one language binding can be loaded by a different</span>
<span class="sd"> language binding of `MXNet`.</span>
<span class="sd"> You also get the benefit of being able to directly load/save from cloud storage(S3, HDFS).</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> fname : str</span>
<span class="sd"> The name of the file.</span>
<span class="sd"> - "s3://my-bucket/path/my-s3-symbol"</span>
<span class="sd"> - "hdfs://my-bucket/path/my-hdfs-symbol"</span>
<span class="sd"> - "/path-to/my-local-symbol"</span>
<span class="sd"> See Also</span>
<span class="sd"> --------</span>
<span class="sd"> symbol.load : Used to load symbol from file.</span>
<span class="sd"> """</span>
<span class="k">if</span> <span class="ow">not</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">fname</span><span class="p">,</span> <span class="n">string_types</span><span class="p">):</span>
<span class="k">raise</span> <span class="ne">TypeError</span><span class="p">(</span><span class="s1">'fname need to be string'</span><span class="p">)</span>
<span class="n">check_call</span><span class="p">(</span><span class="n">_LIB</span><span class="o">.</span><span class="n">MXSymbolSaveToFile</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">handle</span><span class="p">,</span> <span class="n">c_str</span><span class="p">(</span><span class="n">fname</span><span class="p">)))</span></div>
<div class="viewcode-block" id="Symbol.tojson"><a class="viewcode-back" href="../../../api/python/symbol/symbol.html#mxnet.symbol.Symbol.tojson">[docs]</a> <span class="k">def</span> <span class="nf">tojson</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="sd">"""Saves symbol to a JSON string.</span>
<span class="sd"> See Also</span>
<span class="sd"> --------</span>
<span class="sd"> symbol.load_json : Used to load symbol from JSON string.</span>
<span class="sd"> """</span>
<span class="n">json_str</span> <span class="o">=</span> <span class="n">ctypes</span><span class="o">.</span><span class="n">c_char_p</span><span class="p">()</span>
<span class="n">check_call</span><span class="p">(</span><span class="n">_LIB</span><span class="o">.</span><span class="n">MXSymbolSaveToJSON</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">handle</span><span class="p">,</span> <span class="n">ctypes</span><span class="o">.</span><span class="n">byref</span><span class="p">(</span><span class="n">json_str</span><span class="p">)))</span>
<span class="k">return</span> <span class="n">py_str</span><span class="p">(</span><span class="n">json_str</span><span class="o">.</span><span class="n">value</span><span class="p">)</span></div>
<span class="nd">@staticmethod</span>
<span class="k">def</span> <span class="nf">_get_ndarray_inputs</span><span class="p">(</span><span class="n">arg_key</span><span class="p">,</span> <span class="n">args</span><span class="p">,</span> <span class="n">arg_names</span><span class="p">,</span> <span class="n">allow_missing</span><span class="p">):</span>
<span class="sd">"""Helper function to get NDArray lists handles from various inputs.</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> arg_key : str</span>
<span class="sd"> The name of argument, used for error message.</span>
<span class="sd"> args : list of NDArray or dict of str to NDArray</span>
<span class="sd"> Input arguments to the symbols.</span>
<span class="sd"> If type is list of NDArray, the position is in the same order of arg_names.</span>
<span class="sd"> If type is dict of str to NDArray, then it maps the name of arguments</span>
<span class="sd"> to the corresponding NDArray,</span>
<span class="sd"> args_names : list of string</span>
<span class="sd"> List of argument names.</span>
<span class="sd"> allow_missing : boolean</span>
<span class="sd"> Whether missing argument is allowed.</span>
<span class="sd"> When allowed, the missing handle will be set to None(null)</span>
<span class="sd"> Returns</span>
<span class="sd"> -------</span>
<span class="sd"> handles : list of NDArrayHandle</span>
<span class="sd"> The positional list of NDArrayHandles generated from input.</span>
<span class="sd"> """</span>
<span class="c1"># setup args</span>
<span class="n">arg_handles</span> <span class="o">=</span> <span class="p">[]</span>
<span class="n">arg_arrays</span> <span class="o">=</span> <span class="p">[]</span>
<span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">args</span><span class="p">,</span> <span class="nb">list</span><span class="p">):</span>
<span class="k">if</span> <span class="nb">len</span><span class="p">(</span><span class="n">args</span><span class="p">)</span> <span class="o">!=</span> <span class="nb">len</span><span class="p">(</span><span class="n">arg_names</span><span class="p">):</span>
<span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span><span class="s1">'Length of </span><span class="si">%s</span><span class="s1"> does not match the number of arguments'</span> <span class="o">%</span> <span class="n">arg_key</span><span class="p">)</span>
<span class="k">for</span> <span class="n">narr</span> <span class="ow">in</span> <span class="n">args</span><span class="p">:</span>
<span class="k">if</span> <span class="n">narr</span> <span class="ow">is</span> <span class="kc">None</span> <span class="ow">and</span> <span class="n">allow_missing</span><span class="p">:</span>
<span class="n">arg_handles</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="kc">None</span><span class="p">)</span>
<span class="k">elif</span> <span class="ow">not</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">narr</span><span class="p">,</span> <span class="n">NDArray</span><span class="p">):</span>
<span class="k">raise</span> <span class="ne">TypeError</span><span class="p">(</span><span class="s1">'Only accept list of NDArrays or dict of str to NDArray'</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">arg_handles</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">narr</span><span class="o">.</span><span class="n">handle</span><span class="p">)</span>
<span class="n">arg_arrays</span> <span class="o">=</span> <span class="n">args</span>
<span class="k">elif</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">args</span><span class="p">,</span> <span class="nb">dict</span><span class="p">):</span>
<span class="k">for</span> <span class="n">name</span> <span class="ow">in</span> <span class="n">arg_names</span><span class="p">:</span>
<span class="k">if</span> <span class="n">name</span> <span class="ow">in</span> <span class="n">args</span><span class="p">:</span>
<span class="n">narr</span> <span class="o">=</span> <span class="n">args</span><span class="p">[</span><span class="n">name</span><span class="p">]</span>
<span class="k">if</span> <span class="ow">not</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">narr</span><span class="p">,</span> <span class="n">NDArray</span><span class="p">):</span>
<span class="k">raise</span> <span class="ne">TypeError</span><span class="p">(</span><span class="s1">'Only accept list of NDArrays or dict of str to NDArray'</span><span class="p">)</span>
<span class="n">arg_handles</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">narr</span><span class="o">.</span><span class="n">handle</span><span class="p">)</span>
<span class="n">arg_arrays</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">narr</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">if</span> <span class="n">allow_missing</span><span class="p">:</span>
<span class="n">arg_handles</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="kc">None</span><span class="p">)</span>
<span class="n">arg_arrays</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="kc">None</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span><span class="s1">'key `</span><span class="si">%s</span><span class="s1">` is missing in `</span><span class="si">%s</span><span class="s1">`'</span> <span class="o">%</span> <span class="p">(</span><span class="n">name</span><span class="p">,</span> <span class="n">arg_key</span><span class="p">))</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">raise</span> <span class="ne">TypeError</span><span class="p">(</span><span class="s1">'Only accept list of NDArrays or dict of str to NDArray'</span><span class="p">)</span>
<span class="k">return</span> <span class="n">c_array</span><span class="p">(</span><span class="n">NDArrayHandle</span><span class="p">,</span> <span class="n">arg_handles</span><span class="p">),</span> <span class="n">arg_arrays</span>
<div class="viewcode-block" id="Symbol.simple_bind"><a class="viewcode-back" href="../../../api/python/symbol/symbol.html#mxnet.symbol.Symbol.simple_bind">[docs]</a> <span class="k">def</span> <span class="nf">simple_bind</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">ctx</span><span class="p">,</span> <span class="n">grad_req</span><span class="o">=</span><span class="s1">'write'</span><span class="p">,</span> <span class="n">type_dict</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="n">stype_dict</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">group2ctx</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="n">shared_arg_names</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="n">shared_exec</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">shared_buffer</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
<span class="sd">"""Bind current symbol to get an executor, allocate all the arguments needed.</span>
<span class="sd"> Allows specifying data types.</span>
<span class="sd"> This function simplifies the binding procedure. You need to specify only input data shapes.</span>
<span class="sd"> Before binding the executor, the function allocates arguments and auxiliary states</span>
<span class="sd"> that were not explicitly specified. Allows specifying data types.</span>
<span class="sd"> Example</span>
<span class="sd"> -------</span>
<span class="sd"> >>> x = mx.sym.Variable('x')</span>
<span class="sd"> >>> y = mx.sym.FullyConnected(x, num_hidden=4)</span>
<span class="sd"> >>> exe = y.simple_bind(mx.cpu(), x=(5,4), grad_req='null')</span>
<span class="sd"> >>> exe.forward()</span>
<span class="sd"> [<NDArray 5x4 @cpu(0)>]</span>
<span class="sd"> >>> exe.outputs[0].asnumpy()</span>
<span class="sd"> array([[ 0., 0., 0., 0.],</span>
<span class="sd"> [ 0., 0., 0., 0.],</span>
<span class="sd"> [ 0., 0., 0., 0.],</span>
<span class="sd"> [ 0., 0., 0., 0.],</span>
<span class="sd"> [ 0., 0., 0., 0.]], dtype=float32)</span>
<span class="sd"> >>> exe.arg_arrays</span>
<span class="sd"> [<NDArray 5x4 @cpu(0)>, <NDArray 4x4 @cpu(0)>, <NDArray 4 @cpu(0)>]</span>
<span class="sd"> >>> exe.grad_arrays</span>
<span class="sd"> [<NDArray 5x4 @cpu(0)>, <NDArray 4x4 @cpu(0)>, <NDArray 4 @cpu(0)>]</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> ctx : Context</span>
<span class="sd"> The device context the generated executor to run on.</span>
<span class="sd"> grad_req: string</span>
<span class="sd"> {'write', 'add', 'null'}, or list of str or dict of str to str, optional</span>
<span class="sd"> To specify how we should update the gradient to the `args_grad`.</span>
<span class="sd"> - 'write' means every time gradient is written to specified `args_grad` NDArray.</span>
<span class="sd"> - 'add' means every time gradient is added to the specified NDArray.</span>
<span class="sd"> - 'null' means no action is taken, the gradient may not be calculated.</span>
<span class="sd"> type_dict : Dict of str->numpy.dtype</span>
<span class="sd"> Input type dictionary, name->dtype</span>
<span class="sd"> stype_dict : Dict of str->str</span>
<span class="sd"> Input storage type dictionary, name->storage_type</span>
<span class="sd"> group2ctx : Dict of string to mx.Context</span>
<span class="sd"> The dict mapping the `ctx_group` attribute to the context assignment.</span>
<span class="sd"> shared_arg_names : List of string</span>
<span class="sd"> The argument names whose `NDArray` of shared_exec can be reused for initializing</span>
<span class="sd"> the current executor.</span>
<span class="sd"> shared_exec : Executor</span>
<span class="sd"> The executor whose arg_arrays, arg_arrays, grad_arrays, and aux_arrays can be</span>
<span class="sd"> reused for initializing the current executor.</span>
<span class="sd"> shared_buffer : Dict of string to `NDArray`</span>
<span class="sd"> The dict mapping argument names to the `NDArray` that can be reused for initializing</span>
<span class="sd"> the current executor. This buffer will be checked for reuse if one argument name</span>
<span class="sd"> of the current executor is not found in `shared_arg_names`. The `NDArray`s are</span>
<span class="sd"> expected have default storage type.</span>
<span class="sd"> kwargs : Dict of str->shape</span>
<span class="sd"> Input shape dictionary, name->shape</span>
<span class="sd"> Returns</span>
<span class="sd"> -------</span>
<span class="sd"> executor : mxnet.Executor</span>
<span class="sd"> The generated executor</span>
<span class="sd"> """</span>
<span class="c1"># data types</span>
<span class="n">num_provided_arg_types</span> <span class="o">=</span> <span class="mi">0</span>
<span class="n">provided_arg_type_names</span> <span class="o">=</span> <span class="n">ctypes</span><span class="o">.</span><span class="n">POINTER</span><span class="p">(</span><span class="n">ctypes</span><span class="o">.</span><span class="n">c_char_p</span><span class="p">)()</span> <span class="c1"># provided type argument names</span>
<span class="n">provided_arg_type_data</span> <span class="o">=</span> <span class="n">ctypes</span><span class="o">.</span><span class="n">POINTER</span><span class="p">(</span><span class="n">mx_uint</span><span class="p">)()</span> <span class="c1"># provided types</span>
<span class="k">if</span> <span class="n">type_dict</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">provided_arg_type_names</span> <span class="o">=</span> <span class="p">[]</span>
<span class="n">provided_arg_type_data</span> <span class="o">=</span> <span class="p">[]</span>
<span class="k">for</span> <span class="n">k</span><span class="p">,</span> <span class="n">v</span> <span class="ow">in</span> <span class="n">type_dict</span><span class="o">.</span><span class="n">items</span><span class="p">():</span>
<span class="n">v</span> <span class="o">=</span> <span class="n">_numpy</span><span class="o">.</span><span class="n">dtype</span><span class="p">(</span><span class="n">v</span><span class="p">)</span><span class="o">.</span><span class="n">type</span>
<span class="k">if</span> <span class="n">v</span> <span class="ow">in</span> <span class="n">_DTYPE_NP_TO_MX</span><span class="p">:</span>
<span class="n">provided_arg_type_names</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">k</span><span class="p">)</span>
<span class="n">provided_arg_type_data</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">_DTYPE_NP_TO_MX</span><span class="p">[</span><span class="n">v</span><span class="p">])</span>
<span class="n">num_provided_arg_types</span> <span class="o">=</span> <span class="n">mx_uint</span><span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="n">provided_arg_type_names</span><span class="p">))</span>
<span class="n">provided_arg_type_names</span> <span class="o">=</span> <span class="n">c_str_array</span><span class="p">(</span><span class="n">provided_arg_type_names</span><span class="p">)</span>
<span class="n">provided_arg_type_data</span> <span class="o">=</span> <span class="n">c_array_buf</span><span class="p">(</span><span class="n">ctypes</span><span class="o">.</span><span class="n">c_int</span><span class="p">,</span> <span class="n">array</span><span class="p">(</span><span class="s1">'i'</span><span class="p">,</span> <span class="n">provided_arg_type_data</span><span class="p">))</span>
<span class="c1"># storage types</span>
<span class="n">num_provided_arg_stypes</span> <span class="o">=</span> <span class="mi">0</span>
<span class="c1"># provided storage type argument names</span>
<span class="n">provided_arg_stype_names</span> <span class="o">=</span> <span class="n">ctypes</span><span class="o">.</span><span class="n">POINTER</span><span class="p">(</span><span class="n">ctypes</span><span class="o">.</span><span class="n">c_char_p</span><span class="p">)()</span>
<span class="n">provided_arg_stype_data</span> <span class="o">=</span> <span class="n">ctypes</span><span class="o">.</span><span class="n">POINTER</span><span class="p">(</span><span class="n">mx_uint</span><span class="p">)()</span> <span class="c1"># provided storage types</span>
<span class="k">if</span> <span class="n">stype_dict</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">provided_arg_stype_names</span> <span class="o">=</span> <span class="p">[]</span>
<span class="n">provided_arg_stype_data</span> <span class="o">=</span> <span class="p">[]</span>
<span class="k">for</span> <span class="n">k</span><span class="p">,</span> <span class="n">v</span> <span class="ow">in</span> <span class="n">stype_dict</span><span class="o">.</span><span class="n">items</span><span class="p">():</span>
<span class="k">if</span> <span class="n">v</span> <span class="ow">in</span> <span class="n">_STORAGE_TYPE_STR_TO_ID</span><span class="p">:</span>
<span class="n">provided_arg_stype_names</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">k</span><span class="p">)</span>
<span class="n">provided_arg_stype_data</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">_STORAGE_TYPE_STR_TO_ID</span><span class="p">[</span><span class="n">v</span><span class="p">])</span>
<span class="n">num_provided_arg_stypes</span> <span class="o">=</span> <span class="n">mx_uint</span><span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="n">provided_arg_stype_names</span><span class="p">))</span>
<span class="n">provided_arg_stype_names</span> <span class="o">=</span> <span class="n">c_str_array</span><span class="p">(</span><span class="n">provided_arg_stype_names</span><span class="p">)</span>
<span class="n">provided_arg_stype_data</span> <span class="o">=</span> <span class="n">c_array_buf</span><span class="p">(</span><span class="n">ctypes</span><span class="o">.</span><span class="n">c_int</span><span class="p">,</span> <span class="n">array</span><span class="p">(</span><span class="s1">'i'</span><span class="p">,</span> <span class="n">provided_arg_stype_data</span><span class="p">))</span>
<span class="n">provided_arg_shape_data</span> <span class="o">=</span> <span class="p">[]</span> <span class="c1"># shape data</span>
<span class="c1"># argument shape index in sdata,</span>
<span class="c1"># e.g. [sdata[indptr[0]], sdata[indptr[1]]) is the shape of the first arg</span>
<span class="n">provided_arg_shape_idx</span> <span class="o">=</span> <span class="p">[</span><span class="mi">0</span><span class="p">]</span>
<span class="n">provided_arg_shape_names</span> <span class="o">=</span> <span class="p">[]</span> <span class="c1"># provided argument names</span>
<span class="k">for</span> <span class="n">k</span><span class="p">,</span> <span class="n">v</span> <span class="ow">in</span> <span class="n">kwargs</span><span class="o">.</span><span class="n">items</span><span class="p">():</span>
<span class="c1"># if k not in listed_arguments and k not in listed_aux_states:</span>
<span class="c1"># raise ValueError('arg name %s is not valid', k)</span>
<span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">v</span><span class="p">,</span> <span class="nb">tuple</span><span class="p">):</span>
<span class="n">provided_arg_shape_names</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">k</span><span class="p">)</span>
<span class="n">provided_arg_shape_data</span><span class="o">.</span><span class="n">extend</span><span class="p">(</span><span class="n">v</span><span class="p">)</span>
<span class="n">provided_arg_shape_idx</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="n">provided_arg_shape_data</span><span class="p">))</span>
<span class="n">provided_req_type_list_len</span> <span class="o">=</span> <span class="mi">0</span>
<span class="n">provided_grad_req_types</span> <span class="o">=</span> <span class="n">ctypes</span><span class="o">.</span><span class="n">POINTER</span><span class="p">(</span><span class="n">ctypes</span><span class="o">.</span><span class="n">c_char_p</span><span class="p">)()</span>
<span class="n">provided_grad_req_names</span> <span class="o">=</span> <span class="n">ctypes</span><span class="o">.</span><span class="n">POINTER</span><span class="p">(</span><span class="n">ctypes</span><span class="o">.</span><span class="n">c_char_p</span><span class="p">)()</span>
<span class="k">if</span> <span class="n">grad_req</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">grad_req</span><span class="p">,</span> <span class="n">string_types</span><span class="p">):</span>
<span class="c1"># use provided_req_type_list_len = 0 to indicate this situation</span>
<span class="n">provided_req_type_list_len</span> <span class="o">=</span> <span class="mi">0</span>
<span class="n">provided_grad_req_types</span> <span class="o">=</span> <span class="p">[</span><span class="n">grad_req</span><span class="p">]</span>
<span class="k">elif</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">grad_req</span><span class="p">,</span> <span class="nb">list</span><span class="p">):</span>
<span class="k">if</span> <span class="nb">len</span><span class="p">(</span><span class="n">grad_req</span><span class="p">)</span> <span class="o">==</span> <span class="mi">0</span><span class="p">:</span>
<span class="k">raise</span> <span class="ne">RuntimeError</span><span class="p">(</span><span class="s1">'grad_req in simple_bind cannot be an empty list'</span><span class="p">)</span>
<span class="n">provided_grad_req_types</span> <span class="o">=</span> <span class="n">grad_req</span>
<span class="n">provided_req_type_list_len</span> <span class="o">=</span> <span class="nb">len</span><span class="p">(</span><span class="n">provided_grad_req_types</span><span class="p">)</span>
<span class="k">elif</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">grad_req</span><span class="p">,</span> <span class="nb">dict</span><span class="p">):</span>
<span class="k">if</span> <span class="nb">len</span><span class="p">(</span><span class="n">grad_req</span><span class="p">)</span> <span class="o">==</span> <span class="mi">0</span><span class="p">:</span>
<span class="k">raise</span> <span class="ne">RuntimeError</span><span class="p">(</span><span class="s1">'grad_req in simple_bind cannot be an empty dict'</span><span class="p">)</span>
<span class="n">provided_grad_req_names</span> <span class="o">=</span> <span class="p">[]</span>
<span class="n">provided_grad_req_types</span> <span class="o">=</span> <span class="p">[]</span>
<span class="k">for</span> <span class="n">k</span><span class="p">,</span> <span class="n">v</span> <span class="ow">in</span> <span class="n">grad_req</span><span class="o">.</span><span class="n">items</span><span class="p">():</span>
<span class="n">provided_grad_req_names</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">k</span><span class="p">)</span>
<span class="n">provided_grad_req_types</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">v</span><span class="p">)</span>
<span class="n">provided_grad_req_names</span> <span class="o">=</span> <span class="n">c_str_array</span><span class="p">(</span><span class="n">provided_grad_req_names</span><span class="p">)</span>
<span class="n">provided_req_type_list_len</span> <span class="o">=</span> <span class="nb">len</span><span class="p">(</span><span class="n">provided_grad_req_types</span><span class="p">)</span>
<span class="n">provided_grad_req_types</span> <span class="o">=</span> <span class="n">c_str_array</span><span class="p">(</span><span class="n">provided_grad_req_types</span><span class="p">)</span>
<span class="n">num_ctx_map_keys</span> <span class="o">=</span> <span class="n">mx_uint</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span>
<span class="n">ctx_map_keys</span> <span class="o">=</span> <span class="n">ctypes</span><span class="o">.</span><span class="n">POINTER</span><span class="p">(</span><span class="n">ctypes</span><span class="o">.</span><span class="n">c_char_p</span><span class="p">)()</span>
<span class="n">ctx_map_dev_types</span> <span class="o">=</span> <span class="n">ctypes</span><span class="o">.</span><span class="n">POINTER</span><span class="p">(</span><span class="n">ctypes</span><span class="o">.</span><span class="n">c_int</span><span class="p">)()</span>
<span class="n">ctx_map_dev_ids</span> <span class="o">=</span> <span class="n">ctypes</span><span class="o">.</span><span class="n">POINTER</span><span class="p">(</span><span class="n">ctypes</span><span class="o">.</span><span class="n">c_int</span><span class="p">)()</span>
<span class="k">if</span> <span class="n">group2ctx</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">ctx_map_keys</span> <span class="o">=</span> <span class="p">[]</span>
<span class="n">ctx_map_dev_types</span> <span class="o">=</span> <span class="p">[]</span>
<span class="n">ctx_map_dev_ids</span> <span class="o">=</span> <span class="p">[]</span>
<span class="k">for</span> <span class="n">key</span><span class="p">,</span> <span class="n">val</span> <span class="ow">in</span> <span class="n">group2ctx</span><span class="o">.</span><span class="n">items</span><span class="p">():</span>
<span class="n">ctx_map_keys</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">key</span><span class="p">)</span>
<span class="n">ctx_map_dev_types</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">val</span><span class="o">.</span><span class="n">device_typeid</span><span class="p">)</span>
<span class="n">ctx_map_dev_ids</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">val</span><span class="o">.</span><span class="n">device_id</span><span class="p">)</span>
<span class="n">num_ctx_map_keys</span> <span class="o">=</span> <span class="n">mx_uint</span><span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="n">ctx_map_keys</span><span class="p">))</span>
<span class="n">ctx_map_keys</span> <span class="o">=</span> <span class="n">c_str_array</span><span class="p">(</span><span class="n">ctx_map_keys</span><span class="p">)</span>
<span class="n">ctx_map_dev_types</span> <span class="o">=</span> <span class="n">c_array</span><span class="p">(</span><span class="n">ctypes</span><span class="o">.</span><span class="n">c_int</span><span class="p">,</span> <span class="n">array</span><span class="p">(</span><span class="s1">'i'</span><span class="p">,</span> <span class="n">ctx_map_dev_types</span><span class="p">))</span>
<span class="n">ctx_map_dev_ids</span> <span class="o">=</span> <span class="n">c_array</span><span class="p">(</span><span class="n">ctypes</span><span class="o">.</span><span class="n">c_int</span><span class="p">,</span> <span class="n">array</span><span class="p">(</span><span class="s1">'i'</span><span class="p">,</span> <span class="n">ctx_map_dev_ids</span><span class="p">))</span>
<span class="c1"># prepare param names</span>
<span class="n">shared_arg_name_list</span> <span class="o">=</span> <span class="p">[]</span>
<span class="k">if</span> <span class="n">shared_arg_names</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="k">if</span> <span class="ow">not</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">shared_arg_names</span><span class="p">,</span> <span class="nb">list</span><span class="p">):</span>
<span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span><span class="s1">'shared_arg_names in simple_bind must be a list or None'</span><span class="p">)</span>
<span class="n">shared_arg_name_list</span> <span class="o">=</span> <span class="n">shared_arg_names</span>
<span class="c1"># prepare shared_buffer</span>
<span class="k">if</span> <span class="n">shared_buffer</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">shared_buffer_len</span> <span class="o">=</span> <span class="n">ctypes</span><span class="o">.</span><span class="n">c_int</span><span class="p">(</span><span class="o">-</span><span class="mi">1</span><span class="p">)</span>
<span class="n">shared_buffer_names</span> <span class="o">=</span> <span class="n">ctypes</span><span class="o">.</span><span class="n">POINTER</span><span class="p">(</span><span class="n">ctypes</span><span class="o">.</span><span class="n">c_char_p</span><span class="p">)()</span>
<span class="n">shared_buffer_handles</span> <span class="o">=</span> <span class="n">ctypes</span><span class="o">.</span><span class="n">POINTER</span><span class="p">(</span><span class="n">NDArrayHandle</span><span class="p">)()</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">if</span> <span class="ow">not</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">shared_buffer</span><span class="p">,</span> <span class="nb">dict</span><span class="p">):</span>
<span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span><span class="s1">'shared_buffer in simple_bind must be dict or None'</span><span class="p">)</span>
<span class="n">buffer_names</span> <span class="o">=</span> <span class="n">shared_buffer</span><span class="o">.</span><span class="n">keys</span><span class="p">()</span>
<span class="n">buffer_arrays</span> <span class="o">=</span> <span class="n">shared_buffer</span><span class="o">.</span><span class="n">values</span><span class="p">()</span>
<span class="k">for</span> <span class="n">v</span> <span class="ow">in</span> <span class="n">buffer_arrays</span><span class="p">:</span>
<span class="k">assert</span><span class="p">(</span><span class="n">v</span><span class="o">.</span><span class="n">stype</span> <span class="o">==</span> <span class="s1">'default'</span><span class="p">),</span> \
<span class="s2">"shared_buffer is expected to only contain NDArrays with default storage"</span>
<span class="n">shared_buffer_names</span> <span class="o">=</span> <span class="n">c_str_array</span><span class="p">(</span><span class="n">buffer_names</span><span class="p">)</span>
<span class="n">shared_buffer_len</span> <span class="o">=</span> <span class="n">ctypes</span><span class="o">.</span><span class="n">c_int</span><span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="n">buffer_arrays</span><span class="p">))</span>
<span class="n">shared_buffer_handles</span> <span class="o">=</span> <span class="n">c_handle_array</span><span class="p">(</span><span class="n">buffer_arrays</span><span class="p">)</span>
<span class="n">updated_shared_buffer_names</span> <span class="o">=</span> <span class="n">ctypes</span><span class="o">.</span><span class="n">POINTER</span><span class="p">(</span><span class="n">ctypes</span><span class="o">.</span><span class="n">c_char_p</span><span class="p">)()</span>
<span class="n">updated_shared_buffer_handles</span> <span class="o">=</span> <span class="n">ctypes</span><span class="o">.</span><span class="n">POINTER</span><span class="p">(</span><span class="n">NDArrayHandle</span><span class="p">)()</span>
<span class="c1"># prepare shared_exec_handle</span>
<span class="n">shared_exec_handle</span> <span class="o">=</span> <span class="n">shared_exec</span><span class="o">.</span><span class="n">handle</span> <span class="k">if</span> <span class="n">shared_exec</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span> <span class="k">else</span> <span class="n">ExecutorHandle</span><span class="p">()</span>
<span class="c1"># prepare current executor handle</span>
<span class="n">exe_handle</span> <span class="o">=</span> <span class="n">ExecutorHandle</span><span class="p">()</span>
<span class="c1"># prepare current executor's in_args, arg_grads, and aux_states</span>
<span class="n">num_in_args</span> <span class="o">=</span> <span class="n">ctypes</span><span class="o">.</span><span class="n">c_uint</span><span class="p">()</span>
<span class="n">in_arg_handles</span> <span class="o">=</span> <span class="n">ctypes</span><span class="o">.</span><span class="n">POINTER</span><span class="p">(</span><span class="n">NDArrayHandle</span><span class="p">)()</span>
<span class="n">arg_grad_handles</span> <span class="o">=</span> <span class="n">ctypes</span><span class="o">.</span><span class="n">POINTER</span><span class="p">(</span><span class="n">NDArrayHandle</span><span class="p">)()</span>
<span class="n">num_aux_states</span> <span class="o">=</span> <span class="n">ctypes</span><span class="o">.</span><span class="n">c_uint</span><span class="p">()</span>
<span class="n">aux_state_handles</span> <span class="o">=</span> <span class="n">ctypes</span><span class="o">.</span><span class="n">POINTER</span><span class="p">(</span><span class="n">NDArrayHandle</span><span class="p">)()</span>
<span class="k">try</span><span class="p">:</span>
<span class="n">check_call</span><span class="p">(</span><span class="n">_LIB</span><span class="o">.</span><span class="n">MXExecutorSimpleBind</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">handle</span><span class="p">,</span>
<span class="n">ctypes</span><span class="o">.</span><span class="n">c_int</span><span class="p">(</span><span class="n">ctx</span><span class="o">.</span><span class="n">device_typeid</span><span class="p">),</span>
<span class="n">ctypes</span><span class="o">.</span><span class="n">c_int</span><span class="p">(</span><span class="n">ctx</span><span class="o">.</span><span class="n">device_id</span><span class="p">),</span>
<span class="n">num_ctx_map_keys</span><span class="p">,</span>
<span class="n">ctx_map_keys</span><span class="p">,</span>
<span class="n">ctx_map_dev_types</span><span class="p">,</span>
<span class="n">ctx_map_dev_ids</span><span class="p">,</span>
<span class="n">mx_uint</span><span class="p">(</span><span class="n">provided_req_type_list_len</span><span class="p">),</span>
<span class="n">provided_grad_req_names</span><span class="p">,</span>
<span class="n">provided_grad_req_types</span><span class="p">,</span>
<span class="n">mx_uint</span><span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="n">provided_arg_shape_names</span><span class="p">)),</span>
<span class="n">c_str_array</span><span class="p">(</span><span class="n">provided_arg_shape_names</span><span class="p">),</span>
<span class="n">c_array_buf</span><span class="p">(</span><span class="n">mx_uint</span><span class="p">,</span>
<span class="n">array</span><span class="p">(</span><span class="s1">'I'</span><span class="p">,</span> <span class="n">provided_arg_shape_data</span><span class="p">)),</span>
<span class="n">c_array_buf</span><span class="p">(</span><span class="n">mx_uint</span><span class="p">,</span>
<span class="n">array</span><span class="p">(</span><span class="s1">'I'</span><span class="p">,</span> <span class="n">provided_arg_shape_idx</span><span class="p">)),</span>
<span class="n">num_provided_arg_types</span><span class="p">,</span>
<span class="n">provided_arg_type_names</span><span class="p">,</span>
<span class="n">provided_arg_type_data</span><span class="p">,</span>
<span class="n">num_provided_arg_stypes</span><span class="p">,</span>
<span class="n">provided_arg_stype_names</span><span class="p">,</span>
<span class="n">provided_arg_stype_data</span><span class="p">,</span>
<span class="n">mx_uint</span><span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="n">shared_arg_name_list</span><span class="p">)),</span>
<span class="n">c_str_array</span><span class="p">(</span><span class="n">shared_arg_name_list</span><span class="p">),</span>
<span class="n">ctypes</span><span class="o">.</span><span class="n">byref</span><span class="p">(</span><span class="n">shared_buffer_len</span><span class="p">),</span>
<span class="n">shared_buffer_names</span><span class="p">,</span>
<span class="n">shared_buffer_handles</span><span class="p">,</span>
<span class="n">ctypes</span><span class="o">.</span><span class="n">byref</span><span class="p">(</span><span class="n">updated_shared_buffer_names</span><span class="p">),</span>
<span class="n">ctypes</span><span class="o">.</span><span class="n">byref</span><span class="p">(</span><span class="n">updated_shared_buffer_handles</span><span class="p">),</span>
<span class="n">ctypes</span><span class="o">.</span><span class="n">byref</span><span class="p">(</span><span class="n">num_in_args</span><span class="p">),</span>
<span class="n">ctypes</span><span class="o">.</span><span class="n">byref</span><span class="p">(</span><span class="n">in_arg_handles</span><span class="p">),</span>
<span class="n">ctypes</span><span class="o">.</span><span class="n">byref</span><span class="p">(</span><span class="n">arg_grad_handles</span><span class="p">),</span>
<span class="n">ctypes</span><span class="o">.</span><span class="n">byref</span><span class="p">(</span><span class="n">num_aux_states</span><span class="p">),</span>
<span class="n">ctypes</span><span class="o">.</span><span class="n">byref</span><span class="p">(</span><span class="n">aux_state_handles</span><span class="p">),</span>
<span class="n">shared_exec_handle</span><span class="p">,</span>
<span class="n">ctypes</span><span class="o">.</span><span class="n">byref</span><span class="p">(</span><span class="n">exe_handle</span><span class="p">)))</span>
<span class="k">except</span> <span class="n">MXNetError</span> <span class="k">as</span> <span class="n">e</span><span class="p">:</span>
<span class="n">error_msg</span> <span class="o">=</span> <span class="s2">"simple_bind error. Arguments:</span><span class="se">\n</span><span class="s2">"</span>
<span class="k">for</span> <span class="n">k</span><span class="p">,</span> <span class="n">v</span> <span class="ow">in</span> <span class="n">kwargs</span><span class="o">.</span><span class="n">items</span><span class="p">():</span>
<span class="n">error_msg</span> <span class="o">+=</span> <span class="s2">"</span><span class="si">%s</span><span class="s2">: </span><span class="si">%s</span><span class="se">\n</span><span class="s2">"</span> <span class="o">%</span> <span class="p">(</span><span class="n">k</span><span class="p">,</span> <span class="n">v</span><span class="p">)</span>
<span class="n">error_msg</span> <span class="o">+=</span> <span class="s2">"</span><span class="si">%s</span><span class="s2">"</span> <span class="o">%</span> <span class="n">e</span>
<span class="k">raise</span> <span class="ne">RuntimeError</span><span class="p">(</span><span class="n">error_msg</span><span class="p">)</span>
<span class="c1"># update shared_buffer</span>
<span class="k">if</span> <span class="n">shared_buffer</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">shared_buffer_len</span><span class="o">.</span><span class="n">value</span><span class="p">):</span>
<span class="n">k</span> <span class="o">=</span> <span class="n">py_str</span><span class="p">(</span><span class="n">updated_shared_buffer_names</span><span class="p">[</span><span class="n">i</span><span class="p">])</span>
<span class="n">v</span> <span class="o">=</span> <span class="n">NDArray</span><span class="p">(</span><span class="n">NDArrayHandle</span><span class="p">(</span><span class="n">updated_shared_buffer_handles</span><span class="p">[</span><span class="n">i</span><span class="p">]))</span>
<span class="n">shared_buffer</span><span class="p">[</span><span class="n">k</span><span class="p">]</span> <span class="o">=</span> <span class="n">v</span>
<span class="c1"># create in_args, arg_grads, and aux_states for the current executor</span>
<span class="n">arg_arrays</span> <span class="o">=</span> <span class="p">[</span><span class="n">_ndarray_cls</span><span class="p">(</span><span class="n">NDArrayHandle</span><span class="p">(</span><span class="n">in_arg_handles</span><span class="p">[</span><span class="n">i</span><span class="p">]))</span>
<span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">num_in_args</span><span class="o">.</span><span class="n">value</span><span class="p">)]</span>
<span class="n">grad_arrays</span> <span class="o">=</span> <span class="p">[</span><span class="n">_ndarray_cls</span><span class="p">(</span><span class="n">NDArrayHandle</span><span class="p">(</span><span class="n">arg_grad_handles</span><span class="p">[</span><span class="n">i</span><span class="p">]))</span>
<span class="k">if</span> <span class="n">arg_grad_handles</span><span class="p">[</span><span class="n">i</span><span class="p">]</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span>
<span class="k">else</span> <span class="kc">None</span> <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">num_in_args</span><span class="o">.</span><span class="n">value</span><span class="p">)]</span>
<span class="n">aux_arrays</span> <span class="o">=</span> <span class="p">[</span><span class="n">_ndarray_cls</span><span class="p">(</span><span class="n">NDArrayHandle</span><span class="p">(</span><span class="n">aux_state_handles</span><span class="p">[</span><span class="n">i</span><span class="p">]))</span>
<span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">num_aux_states</span><span class="o">.</span><span class="n">value</span><span class="p">)]</span>
<span class="n">executor</span> <span class="o">=</span> <span class="n">Executor</span><span class="p">(</span><span class="n">exe_handle</span><span class="p">,</span> <span class="bp">self</span><span class="p">,</span> <span class="n">ctx</span><span class="p">,</span> <span class="n">grad_req</span><span class="p">,</span> <span class="n">group2ctx</span><span class="p">)</span>
<span class="n">executor</span><span class="o">.</span><span class="n">arg_arrays</span> <span class="o">=</span> <span class="n">arg_arrays</span>
<span class="n">executor</span><span class="o">.</span><span class="n">grad_arrays</span> <span class="o">=</span> <span class="n">grad_arrays</span>
<span class="n">executor</span><span class="o">.</span><span class="n">aux_arrays</span> <span class="o">=</span> <span class="n">aux_arrays</span>
<span class="k">return</span> <span class="n">executor</span></div>
<div class="viewcode-block" id="Symbol.bind"><a class="viewcode-back" href="../../../api/python/symbol/symbol.html#mxnet.symbol.Symbol.bind">[docs]</a> <span class="k">def</span> <span class="nf">bind</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">ctx</span><span class="p">,</span> <span class="n">args</span><span class="p">,</span> <span class="n">args_grad</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="n">grad_req</span><span class="o">=</span><span class="s1">'write'</span><span class="p">,</span>
<span class="n">aux_states</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="n">group2ctx</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="n">shared_exec</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span>
<span class="sd">"""Binds the current symbol to an executor and returns it.</span>
<span class="sd"> We first declare the computation and then bind to the data to run.</span>
<span class="sd"> This function returns an executor which provides method `forward()` method for evaluation</span>
<span class="sd"> and a `outputs()` method to get all the results.</span>
<span class="sd"> Example</span>
<span class="sd"> -------</span>
<span class="sd"> >>> a = mx.sym.Variable('a')</span>
<span class="sd"> >>> b = mx.sym.Variable('b')</span>
<span class="sd"> >>> c = a + b</span>
<span class="sd"> <Symbol _plus1></span>
<span class="sd"> >>> ex = c.bind(ctx=mx.cpu(), args={'a' : mx.nd.ones([2,3]), 'b' : mx.nd.ones([2,3])})</span>
<span class="sd"> >>> ex.forward()</span>
<span class="sd"> [<NDArray 2x3 @cpu(0)>]</span>
<span class="sd"> >>> ex.outputs[0].asnumpy()</span>
<span class="sd"> [[ 2. 2. 2.]</span>
<span class="sd"> [ 2. 2. 2.]]</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> ctx : Context</span>
<span class="sd"> The device context the generated executor to run on.</span>
<span class="sd"> args : list of NDArray or dict of str to NDArray</span>
<span class="sd"> Input arguments to the symbol.</span>
<span class="sd"> - If the input type is a list of `NDArray`, the order should be same as the order</span>
<span class="sd"> of `list_arguments()`.</span>
<span class="sd"> - If the input type is a dict of str to `NDArray`, then it maps the name of arguments</span>
<span class="sd"> to the corresponding `NDArray`.</span>
<span class="sd"> - In either case, all the arguments must be provided.</span>
<span class="sd"> args_grad : list of NDArray or dict of str to `NDArray`, optional</span>
<span class="sd"> When specified, `args_grad` provides NDArrays to hold</span>
<span class="sd"> the result of gradient value in backward.</span>
<span class="sd"> - If the input type is a list of `NDArray`, the order should be same as the order</span>
<span class="sd"> of `list_arguments()`.</span>
<span class="sd"> - If the input type is a dict of str to `NDArray`, then it maps the name of arguments</span>
<span class="sd"> to the corresponding NDArray.</span>
<span class="sd"> - When the type is a dict of str to `NDArray`, one only need to provide the dict</span>
<span class="sd"> for required argument gradient.</span>
<span class="sd"> Only the specified argument gradient will be calculated.</span>
<span class="sd"> grad_req : {'write', 'add', 'null'}, or list of str or dict of str to str, optional</span>
<span class="sd"> To specify how we should update the gradient to the `args_grad`.</span>
<span class="sd"> - 'write' means everytime gradient is write to specified `args_grad` `NDArray`.</span>
<span class="sd"> - 'add' means everytime gradient is add to the specified NDArray.</span>
<span class="sd"> - 'null' means no action is taken, the gradient may not be calculated.</span>
<span class="sd"> aux_states : list of `NDArray`, or dict of str to `NDArray`, optional</span>
<span class="sd"> Input auxiliary states to the symbol, only needed when the output of</span>
<span class="sd"> `list_auxiliary_states()` is not empty.</span>
<span class="sd"> - If the input type is a list of `NDArray`, the order should be same as the order</span>
<span class="sd"> of `list_auxiliary_states()`.</span>
<span class="sd"> - If the input type is a dict of str to `NDArray`, then it maps the name of</span>
<span class="sd"> `auxiliary_states` to the corresponding `NDArray`,</span>
<span class="sd"> - In either case, all the auxiliary states need to be provided.</span>
<span class="sd"> group2ctx : Dict of string to mx.Context</span>
<span class="sd"> The dict mapping the `ctx_group` attribute to the context assignment.</span>
<span class="sd"> shared_exec : mx.executor.Executor</span>
<span class="sd"> Executor to share memory with. This is intended for runtime reshaping, variable length</span>
<span class="sd"> sequences, etc. The returned executor shares state with `shared_exec`, and should not be</span>
<span class="sd"> used in parallel with it.</span>
<span class="sd"> Returns</span>
<span class="sd"> -------</span>
<span class="sd"> executor : Executor</span>
<span class="sd"> The generated executor</span>
<span class="sd"> Notes</span>
<span class="sd"> -----</span>
<span class="sd"> Auxiliary states are the special states of symbols that do not correspond</span>
<span class="sd"> to an argument, and do not have gradient but are still useful</span>
<span class="sd"> for the specific operations. Common examples of auxiliary states include</span>
<span class="sd"> the `moving_mean` and `moving_variance` states in `BatchNorm`.</span>
<span class="sd"> Most operators do not have auxiliary states and in those cases,</span>
<span class="sd"> this parameter can be safely ignored.</span>
<span class="sd"> One can give up gradient by using a dict in `args_grad` and only specify</span>
<span class="sd"> gradient they interested in.</span>
<span class="sd"> """</span>
<span class="c1"># pylint: disable=too-many-locals, too-many-branches</span>
<span class="k">if</span> <span class="ow">not</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">ctx</span><span class="p">,</span> <span class="n">Context</span><span class="p">):</span>
<span class="k">raise</span> <span class="ne">TypeError</span><span class="p">(</span><span class="s2">"Context type error"</span><span class="p">)</span>
<span class="n">listed_arguments</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">list_arguments</span><span class="p">()</span>
<span class="n">args_handle</span><span class="p">,</span> <span class="n">args</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_get_ndarray_inputs</span><span class="p">(</span><span class="s1">'args'</span><span class="p">,</span> <span class="n">args</span><span class="p">,</span> <span class="n">listed_arguments</span><span class="p">,</span> <span class="kc">False</span><span class="p">)</span>
<span class="c1"># setup args gradient</span>
<span class="k">if</span> <span class="n">args_grad</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">args_grad_handle</span> <span class="o">=</span> <span class="n">c_array</span><span class="p">(</span><span class="n">NDArrayHandle</span><span class="p">,</span> <span class="p">[</span><span class="kc">None</span><span class="p">]</span> <span class="o">*</span> <span class="nb">len</span><span class="p">(</span><span class="n">args</span><span class="p">))</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">args_grad_handle</span><span class="p">,</span> <span class="n">args_grad</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_get_ndarray_inputs</span><span class="p">(</span>
<span class="s1">'args_grad'</span><span class="p">,</span> <span class="n">args_grad</span><span class="p">,</span> <span class="n">listed_arguments</span><span class="p">,</span> <span class="kc">True</span><span class="p">)</span>
<span class="k">if</span> <span class="n">aux_states</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">aux_states</span> <span class="o">=</span> <span class="p">[]</span>
<span class="n">aux_args_handle</span><span class="p">,</span> <span class="n">aux_states</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_get_ndarray_inputs</span><span class="p">(</span>
<span class="s1">'aux_states'</span><span class="p">,</span> <span class="n">aux_states</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">list_auxiliary_states</span><span class="p">(),</span> <span class="kc">False</span><span class="p">)</span>
<span class="c1"># setup requirements</span>
<span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">grad_req</span><span class="p">,</span> <span class="n">string_types</span><span class="p">):</span>
<span class="k">if</span> <span class="n">grad_req</span> <span class="ow">not</span> <span class="ow">in</span> <span class="n">_GRAD_REQ_MAP</span><span class="p">:</span>
<span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span><span class="s1">'grad_req must be in </span><span class="si">%s</span><span class="s1">'</span> <span class="o">%</span> <span class="nb">str</span><span class="p">(</span><span class="n">_GRAD_REQ_MAP</span><span class="p">))</span>
<span class="n">reqs_array</span> <span class="o">=</span> <span class="n">c_array_buf</span><span class="p">(</span><span class="n">mx_uint</span><span class="p">,</span>
<span class="n">array</span><span class="p">(</span><span class="s1">'I'</span><span class="p">,</span> <span class="p">[</span><span class="n">_GRAD_REQ_MAP</span><span class="p">[</span><span class="n">grad_req</span><span class="p">]]</span> <span class="o">*</span> <span class="nb">len</span><span class="p">(</span><span class="n">listed_arguments</span><span class="p">)))</span>
<span class="k">elif</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">grad_req</span><span class="p">,</span> <span class="nb">list</span><span class="p">):</span>
<span class="n">reqs_array</span> <span class="o">=</span> <span class="n">c_array_buf</span><span class="p">(</span><span class="n">mx_uint</span><span class="p">,</span>
<span class="n">array</span><span class="p">(</span><span class="s1">'I'</span><span class="p">,</span> <span class="p">[</span><span class="n">_GRAD_REQ_MAP</span><span class="p">[</span><span class="n">item</span><span class="p">]</span> <span class="k">for</span> <span class="n">item</span> <span class="ow">in</span> <span class="n">grad_req</span><span class="p">]))</span>
<span class="k">elif</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">grad_req</span><span class="p">,</span> <span class="nb">dict</span><span class="p">):</span>
<span class="n">req_array</span> <span class="o">=</span> <span class="p">[]</span>
<span class="k">for</span> <span class="n">name</span> <span class="ow">in</span> <span class="n">listed_arguments</span><span class="p">:</span>
<span class="k">if</span> <span class="n">name</span> <span class="ow">in</span> <span class="n">grad_req</span><span class="p">:</span>
<span class="n">req_array</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">_GRAD_REQ_MAP</span><span class="p">[</span><span class="n">grad_req</span><span class="p">[</span><span class="n">name</span><span class="p">]])</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">req_array</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span>
<span class="n">reqs_array</span> <span class="o">=</span> <span class="n">c_array_buf</span><span class="p">(</span><span class="n">mx_uint</span><span class="p">,</span> <span class="n">array</span><span class="p">(</span><span class="s1">'I'</span><span class="p">,</span> <span class="n">req_array</span><span class="p">))</span>
<span class="n">ctx_map_keys</span> <span class="o">=</span> <span class="p">[]</span>
<span class="n">ctx_map_dev_types</span> <span class="o">=</span> <span class="p">[]</span>
<span class="n">ctx_map_dev_ids</span> <span class="o">=</span> <span class="p">[]</span>
<span class="k">if</span> <span class="n">group2ctx</span><span class="p">:</span>
<span class="k">for</span> <span class="n">key</span><span class="p">,</span> <span class="n">val</span> <span class="ow">in</span> <span class="n">group2ctx</span><span class="o">.</span><span class="n">items</span><span class="p">():</span>
<span class="n">ctx_map_keys</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">key</span><span class="p">)</span>
<span class="n">ctx_map_dev_types</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">val</span><span class="o">.</span><span class="n">device_typeid</span><span class="p">)</span>
<span class="n">ctx_map_dev_ids</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">val</span><span class="o">.</span><span class="n">device_id</span><span class="p">)</span>
<span class="n">handle</span> <span class="o">=</span> <span class="n">ExecutorHandle</span><span class="p">()</span>
<span class="n">shared_handle</span> <span class="o">=</span> <span class="n">shared_exec</span><span class="o">.</span><span class="n">handle</span> <span class="k">if</span> <span class="n">shared_exec</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span> <span class="k">else</span> <span class="n">ExecutorHandle</span><span class="p">()</span>
<span class="n">check_call</span><span class="p">(</span><span class="n">_LIB</span><span class="o">.</span><span class="n">MXExecutorBindEX</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">handle</span><span class="p">,</span>
<span class="n">ctypes</span><span class="o">.</span><span class="n">c_int</span><span class="p">(</span><span class="n">ctx</span><span class="o">.</span><span class="n">device_typeid</span><span class="p">),</span>
<span class="n">ctypes</span><span class="o">.</span><span class="n">c_int</span><span class="p">(</span><span class="n">ctx</span><span class="o">.</span><span class="n">device_id</span><span class="p">),</span>
<span class="n">mx_uint</span><span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="n">ctx_map_keys</span><span class="p">)),</span>
<span class="n">c_str_array</span><span class="p">(</span><span class="n">ctx_map_keys</span><span class="p">),</span>
<span class="n">c_array_buf</span><span class="p">(</span><span class="n">ctypes</span><span class="o">.</span><span class="n">c_int</span><span class="p">,</span> <span class="n">array</span><span class="p">(</span><span class="s1">'i'</span><span class="p">,</span> <span class="n">ctx_map_dev_types</span><span class="p">)),</span>
<span class="n">c_array_buf</span><span class="p">(</span><span class="n">ctypes</span><span class="o">.</span><span class="n">c_int</span><span class="p">,</span> <span class="n">array</span><span class="p">(</span><span class="s1">'i'</span><span class="p">,</span> <span class="n">ctx_map_dev_ids</span><span class="p">)),</span>
<span class="n">mx_uint</span><span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="n">args</span><span class="p">)),</span>
<span class="n">args_handle</span><span class="p">,</span>
<span class="n">args_grad_handle</span><span class="p">,</span>
<span class="n">reqs_array</span><span class="p">,</span>
<span class="n">mx_uint</span><span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="n">aux_states</span><span class="p">)),</span>
<span class="n">aux_args_handle</span><span class="p">,</span>
<span class="n">shared_handle</span><span class="p">,</span>
<span class="n">ctypes</span><span class="o">.</span><span class="n">byref</span><span class="p">(</span><span class="n">handle</span><span class="p">)))</span>
<span class="n">executor</span> <span class="o">=</span> <span class="n">Executor</span><span class="p">(</span><span class="n">handle</span><span class="p">,</span> <span class="bp">self</span><span class="p">,</span> <span class="n">ctx</span><span class="p">,</span> <span class="n">grad_req</span><span class="p">,</span> <span class="n">group2ctx</span><span class="p">)</span>
<span class="n">executor</span><span class="o">.</span><span class="n">arg_arrays</span> <span class="o">=</span> <span class="n">args</span>
<span class="n">executor</span><span class="o">.</span><span class="n">grad_arrays</span> <span class="o">=</span> <span class="n">args_grad</span>
<span class="n">executor</span><span class="o">.</span><span class="n">aux_arrays</span> <span class="o">=</span> <span class="n">aux_states</span>
<span class="k">return</span> <span class="n">executor</span></div>
<div class="viewcode-block" id="Symbol.gradient"><a class="viewcode-back" href="../../../api/python/symbol/symbol.html#mxnet.symbol.Symbol.gradient">[docs]</a> <span class="k">def</span> <span class="nf">gradient</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">wrt</span><span class="p">):</span>
<span class="sd">"""Gets the autodiff of current symbol.</span>
<span class="sd"> This function can only be used if current symbol is a loss function.</span>
<span class="sd"> .. note:: This function is currently not implemented.</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> wrt : Array of String</span>
<span class="sd"> keyword arguments of the symbol that the gradients are taken.</span>
<span class="sd"> Returns</span>
<span class="sd"> -------</span>
<span class="sd"> grad : Symbol</span>
<span class="sd"> A gradient Symbol with returns to be the corresponding gradients.</span>
<span class="sd"> """</span>
<span class="n">handle</span> <span class="o">=</span> <span class="n">SymbolHandle</span><span class="p">()</span>
<span class="n">c_wrt</span> <span class="o">=</span> <span class="n">c_str_array</span><span class="p">(</span><span class="n">wrt</span><span class="p">)</span>
<span class="n">check_call</span><span class="p">(</span><span class="n">_LIB</span><span class="o">.</span><span class="n">MXSymbolGrad</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">handle</span><span class="p">,</span>
<span class="n">mx_uint</span><span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="n">wrt</span><span class="p">)),</span>
<span class="n">c_wrt</span><span class="p">,</span>
<span class="n">ctypes</span><span class="o">.</span><span class="n">byref</span><span class="p">(</span><span class="n">handle</span><span class="p">)))</span>
<span class="k">return</span> <span class="n">Symbol</span><span class="p">(</span><span class="n">handle</span><span class="p">)</span></div>
<span class="c1"># pylint: enable= no-member</span>
<div class="viewcode-block" id="Symbol.eval"><a class="viewcode-back" href="../../../api/python/symbol/symbol.html#mxnet.symbol.Symbol.eval">[docs]</a> <span class="k">def</span> <span class="nf">eval</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">ctx</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
<span class="sd">"""Evaluates a symbol given arguments.</span>
<span class="sd"> The `eval` method combines a call to `bind` (which returns an executor)</span>
<span class="sd"> with a call to `forward` (executor method).</span>
<span class="sd"> For the common use case, where you might repeatedly evaluate with same arguments,</span>
<span class="sd"> eval is slow.</span>
<span class="sd"> In that case, you should call `bind` once and then repeatedly call forward.</span>
<span class="sd"> This function allows simpler syntax for less cumbersome introspection.</span>
<span class="sd"> Example</span>
<span class="sd"> -------</span>
<span class="sd"> >>> a = mx.sym.Variable('a')</span>
<span class="sd"> >>> b = mx.sym.Variable('b')</span>
<span class="sd"> >>> c = a + b</span>
<span class="sd"> >>> ex = c.eval(ctx = mx.cpu(), a = mx.nd.ones([2,3]), b = mx.nd.ones([2,3]))</span>
<span class="sd"> >>> ex</span>
<span class="sd"> [<NDArray 2x3 @cpu(0)>]</span>
<span class="sd"> >>> ex[0].asnumpy()</span>
<span class="sd"> array([[ 2., 2., 2.],</span>
<span class="sd"> [ 2., 2., 2.]], dtype=float32)</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> ctx : Context</span>
<span class="sd"> The device context the generated executor to run on.</span>
<span class="sd"> kwargs : Keyword arguments of type `NDArray`</span>
<span class="sd"> Input arguments to the symbol. All the arguments must be provided.</span>
<span class="sd"> Returns</span>
<span class="sd"> ----------</span>
<span class="sd"> result : a list of NDArrays corresponding to the values taken by each symbol when</span>
<span class="sd"> evaluated on given args. When called on a single symbol (not a group),</span>
<span class="sd"> the result will be a list with one element.</span>
<span class="sd"> """</span>
<span class="k">if</span> <span class="n">ctx</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">ctx</span> <span class="o">=</span> <span class="n">current_context</span><span class="p">()</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">bind</span><span class="p">(</span><span class="n">ctx</span><span class="p">,</span> <span class="n">kwargs</span><span class="p">)</span><span class="o">.</span><span class="n">forward</span><span class="p">()</span></div>
<div class="viewcode-block" id="Symbol.reshape"><a class="viewcode-back" href="../../../api/python/symbol/symbol.html#mxnet.symbol.Symbol.reshape">[docs]</a> <span class="k">def</span> <span class="nf">reshape</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
<span class="sd">"""Convenience fluent method for :py:func:`reshape`.</span>
<span class="sd"> The arguments are the same as for :py:func:`reshape`, with</span>
<span class="sd"> this array as data.</span>
<span class="sd"> """</span>
<span class="k">return</span> <span class="n">op</span><span class="o">.</span><span class="n">reshape</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span></div>
<div class="viewcode-block" id="Symbol.reshape_like"><a class="viewcode-back" href="../../../api/python/symbol/symbol.html#mxnet.symbol.Symbol.reshape_like">[docs]</a> <span class="k">def</span> <span class="nf">reshape_like</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
<span class="sd">"""Convenience fluent method for :py:func:`reshape_like`.</span>
<span class="sd"> The arguments are the same as for :py:func:`reshape_like`, with</span>
<span class="sd"> this array as data.</span>
<span class="sd"> """</span>
<span class="k">return</span> <span class="n">op</span><span class="o">.</span><span class="n">reshape_like</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span></div>
<div class="viewcode-block" id="Symbol.astype"><a class="viewcode-back" href="../../../api/python/symbol/symbol.html#mxnet.symbol.Symbol.astype">[docs]</a> <span class="k">def</span> <span class="nf">astype</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
<span class="sd">"""Convenience fluent method for :py:func:`cast`.</span>
<span class="sd"> The arguments are the same as for :py:func:`cast`, with</span>
<span class="sd"> this array as data.</span>
<span class="sd"> """</span>
<span class="k">return</span> <span class="n">op</span><span class="o">.</span><span class="n">cast</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span></div>
<div class="viewcode-block" id="Symbol.zeros_like"><a class="viewcode-back" href="../../../api/python/symbol/symbol.html#mxnet.symbol.Symbol.zeros_like">[docs]</a> <span class="k">def</span> <span class="nf">zeros_like</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
<span class="sd">"""Convenience fluent method for :py:func:`zeros_like`.</span>
<span class="sd"> The arguments are the same as for :py:func:`zeros_like`, with</span>
<span class="sd"> this array as data.</span>
<span class="sd"> """</span>
<span class="k">return</span> <span class="n">op</span><span class="o">.</span><span class="n">zeros_like</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span></div>
<div class="viewcode-block" id="Symbol.ones_like"><a class="viewcode-back" href="../../../api/python/symbol/symbol.html#mxnet.symbol.Symbol.ones_like">[docs]</a> <span class="k">def</span> <span class="nf">ones_like</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
<span class="sd">"""Convenience fluent method for :py:func:`ones_like`.</span>
<span class="sd"> The arguments are the same as for :py:func:`ones_like`, with</span>
<span class="sd"> this array as data.</span>
<span class="sd"> """</span>
<span class="k">return</span> <span class="n">op</span><span class="o">.</span><span class="n">ones_like</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span></div>
<div class="viewcode-block" id="Symbol.broadcast_axes"><a class="viewcode-back" href="../../../api/python/symbol/symbol.html#mxnet.symbol.Symbol.broadcast_axes">[docs]</a> <span class="k">def</span> <span class="nf">broadcast_axes</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
<span class="sd">"""Convenience fluent method for :py:func:`broadcast_axes`.</span>
<span class="sd"> The arguments are the same as for :py:func:`broadcast_axes`, with</span>
<span class="sd"> this array as data.</span>
<span class="sd"> """</span>
<span class="k">return</span> <span class="n">op</span><span class="o">.</span><span class="n">broadcast_axes</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span></div>
<div class="viewcode-block" id="Symbol.repeat"><a class="viewcode-back" href="../../../api/python/symbol/symbol.html#mxnet.symbol.Symbol.repeat">[docs]</a> <span class="k">def</span> <span class="nf">repeat</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
<span class="sd">"""Convenience fluent method for :py:func:`repeat`.</span>
<span class="sd"> The arguments are the same as for :py:func:`repeat`, with</span>
<span class="sd"> this array as data.</span>
<span class="sd"> """</span>
<span class="k">return</span> <span class="n">op</span><span class="o">.</span><span class="n">repeat</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span></div>
<div class="viewcode-block" id="Symbol.pad"><a class="viewcode-back" href="../../../api/python/symbol/symbol.html#mxnet.symbol.Symbol.pad">[docs]</a> <span class="k">def</span> <span class="nf">pad</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
<span class="sd">"""Convenience fluent method for :py:func:`pad`.</span>
<span class="sd"> The arguments are the same as for :py:func:`pad`, with</span>
<span class="sd"> this array as data.</span>
<span class="sd"> """</span>
<span class="k">return</span> <span class="n">op</span><span class="o">.</span><span class="n">pad</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span></div>
<div class="viewcode-block" id="Symbol.swapaxes"><a class="viewcode-back" href="../../../api/python/symbol/symbol.html#mxnet.symbol.Symbol.swapaxes">[docs]</a> <span class="k">def</span> <span class="nf">swapaxes</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
<span class="sd">"""Convenience fluent method for :py:func:`swapaxes`.</span>
<span class="sd"> The arguments are the same as for :py:func:`swapaxes`, with</span>
<span class="sd"> this array as data.</span>
<span class="sd"> """</span>
<span class="k">return</span> <span class="n">op</span><span class="o">.</span><span class="n">swapaxes</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span></div>
<div class="viewcode-block" id="Symbol.split"><a class="viewcode-back" href="../../../api/python/symbol/symbol.html#mxnet.symbol.Symbol.split">[docs]</a> <span class="k">def</span> <span class="nf">split</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
<span class="sd">"""Convenience fluent method for :py:func:`split`.</span>
<span class="sd"> The arguments are the same as for :py:func:`split`, with</span>
<span class="sd"> this array as data.</span>
<span class="sd"> """</span>
<span class="k">return</span> <span class="n">op</span><span class="o">.</span><span class="n">split</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span></div>
<div class="viewcode-block" id="Symbol.slice"><a class="viewcode-back" href="../../../api/python/symbol/symbol.html#mxnet.symbol.Symbol.slice">[docs]</a> <span class="k">def</span> <span class="nf">slice</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
<span class="sd">"""Convenience fluent method for :py:func:`slice`.</span>
<span class="sd"> The arguments are the same as for :py:func:`slice`, with</span>
<span class="sd"> this array as data.</span>
<span class="sd"> """</span>
<span class="k">return</span> <span class="n">op</span><span class="o">.</span><span class="n">slice</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span></div>
<div class="viewcode-block" id="Symbol.slice_axis"><a class="viewcode-back" href="../../../api/python/symbol/symbol.html#mxnet.symbol.Symbol.slice_axis">[docs]</a> <span class="k">def</span> <span class="nf">slice_axis</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
<span class="sd">"""Convenience fluent method for :py:func:`slice_axis`.</span>
<span class="sd"> The arguments are the same as for :py:func:`slice_axis`, with</span>
<span class="sd"> this array as data.</span>
<span class="sd"> """</span>
<span class="k">return</span> <span class="n">op</span><span class="o">.</span><span class="n">slice_axis</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span></div>
<div class="viewcode-block" id="Symbol.slice_like"><a class="viewcode-back" href="../../../api/python/symbol/symbol.html#mxnet.symbol.Symbol.slice_like">[docs]</a> <span class="k">def</span> <span class="nf">slice_like</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
<span class="sd">"""Convenience fluent method for :py:func:`slice_like`.</span>
<span class="sd"> The arguments are the same as for :py:func:`slice_like`, with</span>
<span class="sd"> this array as data.</span>
<span class="sd"> """</span>
<span class="k">return</span> <span class="n">op</span><span class="o">.</span><span class="n">slice_like</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span></div>
<div class="viewcode-block" id="Symbol.take"><a class="viewcode-back" href="../../../api/python/symbol/symbol.html#mxnet.symbol.Symbol.take">[docs]</a> <span class="k">def</span> <span class="nf">take</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
<span class="sd">"""Convenience fluent method for :py:func:`take`.</span>
<span class="sd"> The arguments are the same as for :py:func:`take`, with</span>
<span class="sd"> this array as data.</span>
<span class="sd"> """</span>
<span class="k">return</span> <span class="n">op</span><span class="o">.</span><span class="n">take</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span></div>
<div class="viewcode-block" id="Symbol.one_hot"><a class="viewcode-back" href="../../../api/python/symbol/symbol.html#mxnet.symbol.Symbol.one_hot">[docs]</a> <span class="k">def</span> <span class="nf">one_hot</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
<span class="sd">"""Convenience fluent method for :py:func:`one_hot`.</span>
<span class="sd"> The arguments are the same as for :py:func:`one_hot`, with</span>
<span class="sd"> this array as data.</span>
<span class="sd"> """</span>
<span class="k">return</span> <span class="n">op</span><span class="o">.</span><span class="n">one_hot</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span></div>
<div class="viewcode-block" id="Symbol.pick"><a class="viewcode-back" href="../../../api/python/symbol/symbol.html#mxnet.symbol.Symbol.pick">[docs]</a> <span class="k">def</span> <span class="nf">pick</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
<span class="sd">"""Convenience fluent method for :py:func:`pick`.</span>
<span class="sd"> The arguments are the same as for :py:func:`pick`, with</span>
<span class="sd"> this array as data.</span>
<span class="sd"> """</span>
<span class="k">return</span> <span class="n">op</span><span class="o">.</span><span class="n">pick</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span></div>
<div class="viewcode-block" id="Symbol.sort"><a class="viewcode-back" href="../../../api/python/symbol/symbol.html#mxnet.symbol.Symbol.sort">[docs]</a> <span class="k">def</span> <span class="nf">sort</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
<span class="sd">"""Convenience fluent method for :py:func:`sort`.</span>
<span class="sd"> The arguments are the same as for :py:func:`sort`, with</span>
<span class="sd"> this array as data.</span>
<span class="sd"> """</span>
<span class="k">return</span> <span class="n">op</span><span class="o">.</span><span class="n">sort</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span></div>
<div class="viewcode-block" id="Symbol.topk"><a class="viewcode-back" href="../../../api/python/symbol/symbol.html#mxnet.symbol.Symbol.topk">[docs]</a> <span class="k">def</span> <span class="nf">topk</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
<span class="sd">"""Convenience fluent method for :py:func:`topk`.</span>
<span class="sd"> The arguments are the same as for :py:func:`topk`, with</span>
<span class="sd"> this array as data.</span>
<span class="sd"> """</span>
<span class="k">return</span> <span class="n">op</span><span class="o">.</span><span class="n">topk</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span></div>
<div class="viewcode-block" id="Symbol.argsort"><a class="viewcode-back" href="../../../api/python/symbol/symbol.html#mxnet.symbol.Symbol.argsort">[docs]</a> <span class="k">def</span> <span class="nf">argsort</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
<span class="sd">"""Convenience fluent method for :py:func:`argsort`.</span>
<span class="sd"> The arguments are the same as for :py:func:`argsort`, with</span>
<span class="sd"> this array as data.</span>
<span class="sd"> """</span>
<span class="k">return</span> <span class="n">op</span><span class="o">.</span><span class="n">argsort</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span></div>
<div class="viewcode-block" id="Symbol.argmax"><a class="viewcode-back" href="../../../api/python/symbol/symbol.html#mxnet.symbol.Symbol.argmax">[docs]</a> <span class="k">def</span> <span class="nf">argmax</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
<span class="sd">"""Convenience fluent method for :py:func:`argmax`.</span>
<span class="sd"> The arguments are the same as for :py:func:`argmax`, with</span>
<span class="sd"> this array as data.</span>
<span class="sd"> """</span>
<span class="k">return</span> <span class="n">op</span><span class="o">.</span><span class="n">argmax</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span></div>
<div class="viewcode-block" id="Symbol.argmax_channel"><a class="viewcode-back" href="../../../api/python/symbol/symbol.html#mxnet.symbol.Symbol.argmax_channel">[docs]</a> <span class="k">def</span> <span class="nf">argmax_channel</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
<span class="sd">"""Convenience fluent method for :py:func:`argmax_channel`.</span>
<span class="sd"> The arguments are the same as for :py:func:`argmax_channel`, with</span>
<span class="sd"> this array as data.</span>
<span class="sd"> """</span>
<span class="k">return</span> <span class="n">op</span><span class="o">.</span><span class="n">argmax_channel</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span></div>
<div class="viewcode-block" id="Symbol.argmin"><a class="viewcode-back" href="../../../api/python/symbol/symbol.html#mxnet.symbol.Symbol.argmin">[docs]</a> <span class="k">def</span> <span class="nf">argmin</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
<span class="sd">"""Convenience fluent method for :py:func:`argmin`.</span>
<span class="sd"> The arguments are the same as for :py:func:`argmin`, with</span>
<span class="sd"> this array as data.</span>
<span class="sd"> """</span>
<span class="k">return</span> <span class="n">op</span><span class="o">.</span><span class="n">argmin</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span></div>
<div class="viewcode-block" id="Symbol.clip"><a class="viewcode-back" href="../../../api/python/symbol/symbol.html#mxnet.symbol.Symbol.clip">[docs]</a> <span class="k">def</span> <span class="nf">clip</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
<span class="sd">"""Convenience fluent method for :py:func:`clip`.</span>
<span class="sd"> The arguments are the same as for :py:func:`clip`, with</span>
<span class="sd"> this array as data.</span>
<span class="sd"> """</span>
<span class="k">return</span> <span class="n">op</span><span class="o">.</span><span class="n">clip</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span></div>
<div class="viewcode-block" id="Symbol.abs"><a class="viewcode-back" href="../../../api/python/symbol/symbol.html#mxnet.symbol.Symbol.abs">[docs]</a> <span class="k">def</span> <span class="nf">abs</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
<span class="sd">"""Convenience fluent method for :py:func:`abs`.</span>
<span class="sd"> The arguments are the same as for :py:func:`abs`, with</span>
<span class="sd"> this array as data.</span>
<span class="sd"> """</span>
<span class="k">return</span> <span class="n">op</span><span class="o">.</span><span class="n">abs</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span></div>
<div class="viewcode-block" id="Symbol.sign"><a class="viewcode-back" href="../../../api/python/symbol/symbol.html#mxnet.symbol.Symbol.sign">[docs]</a> <span class="k">def</span> <span class="nf">sign</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
<span class="sd">"""Convenience fluent method for :py:func:`sign`.</span>
<span class="sd"> The arguments are the same as for :py:func:`sign`, with</span>
<span class="sd"> this array as data.</span>
<span class="sd"> """</span>
<span class="k">return</span> <span class="n">op</span><span class="o">.</span><span class="n">sign</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span></div>
<div class="viewcode-block" id="Symbol.flatten"><a class="viewcode-back" href="../../../api/python/symbol/symbol.html#mxnet.symbol.Symbol.flatten">[docs]</a> <span class="k">def</span> <span class="nf">flatten</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
<span class="sd">"""Convenience fluent method for :py:func:`flatten`.</span>
<span class="sd"> The arguments are the same as for :py:func:`flatten`, with</span>
<span class="sd"> this array as data.</span>
<span class="sd"> """</span>
<span class="k">return</span> <span class="n">op</span><span class="o">.</span><span class="n">flatten</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span></div>
<div class="viewcode-block" id="Symbol.shape_array"><a class="viewcode-back" href="../../../api/python/symbol/symbol.html#mxnet.symbol.Symbol.shape_array">[docs]</a> <span class="k">def</span> <span class="nf">shape_array</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
<span class="sd">"""Convenience fluent method for :py:func:`shape_array`.</span>
<span class="sd"> The arguments are the same as for :py:func:`shape_op`, with</span>
<span class="sd"> this array as data.</span>
<span class="sd"> """</span>
<span class="k">return</span> <span class="n">op</span><span class="o">.</span><span class="n">shape_array</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span></div>
<div class="viewcode-block" id="Symbol.size_array"><a class="viewcode-back" href="../../../api/python/symbol/symbol.html#mxnet.symbol.Symbol.size_array">[docs]</a> <span class="k">def</span> <span class="nf">size_array</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
<span class="sd">"""Convenience fluent method for :py:func:`size_array`.</span>
<span class="sd"> The arguments are the same as for :py:func:`size_array`, with</span>
<span class="sd"> this array as data.</span>
<span class="sd"> """</span>
<span class="k">return</span> <span class="n">op</span><span class="o">.</span><span class="n">size_array</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span></div>
<div class="viewcode-block" id="Symbol.expand_dims"><a class="viewcode-back" href="../../../api/python/symbol/symbol.html#mxnet.symbol.Symbol.expand_dims">[docs]</a> <span class="k">def</span> <span class="nf">expand_dims</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
<span class="sd">"""Convenience fluent method for :py:func:`expand_dims`.</span>
<span class="sd"> The arguments are the same as for :py:func:`expand_dims`, with</span>
<span class="sd"> this array as data.</span>
<span class="sd"> """</span>
<span class="k">return</span> <span class="n">op</span><span class="o">.</span><span class="n">expand_dims</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span></div>
<div class="viewcode-block" id="Symbol.broadcast_to"><a class="viewcode-back" href="../../../api/python/symbol/symbol.html#mxnet.symbol.Symbol.broadcast_to">[docs]</a> <span class="k">def</span> <span class="nf">broadcast_to</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
<span class="sd">"""Convenience fluent method for :py:func:`broadcast_to`.</span>
<span class="sd"> The arguments are the same as for :py:func:`broadcast_to`, with</span>
<span class="sd"> this array as data.</span>
<span class="sd"> """</span>
<span class="k">return</span> <span class="n">op</span><span class="o">.</span><span class="n">broadcast_to</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span></div>
<div class="viewcode-block" id="Symbol.broadcast_like"><a class="viewcode-back" href="../../../api/python/symbol/symbol.html#mxnet.symbol.Symbol.broadcast_like">[docs]</a> <span class="k">def</span> <span class="nf">broadcast_like</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
<span class="sd">"""Convenience fluent method for :py:func:`broadcast_like`.</span>
<span class="sd"> The arguments are the same as for :py:func:`broadcast_like`, with</span>
<span class="sd"> this array as data.</span>
<span class="sd"> """</span>
<span class="k">return</span> <span class="n">op</span><span class="o">.</span><span class="n">broadcast_like</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span></div>
<div class="viewcode-block" id="Symbol.tile"><a class="viewcode-back" href="../../../api/python/symbol/symbol.html#mxnet.symbol.Symbol.tile">[docs]</a> <span class="k">def</span> <span class="nf">tile</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
<span class="sd">"""Convenience fluent method for :py:func:`tile`.</span>
<span class="sd"> The arguments are the same as for :py:func:`tile`, with</span>
<span class="sd"> this array as data.</span>
<span class="sd"> """</span>
<span class="k">return</span> <span class="n">op</span><span class="o">.</span><span class="n">tile</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span></div>
<div class="viewcode-block" id="Symbol.transpose"><a class="viewcode-back" href="../../../api/python/symbol/symbol.html#mxnet.symbol.Symbol.transpose">[docs]</a> <span class="k">def</span> <span class="nf">transpose</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
<span class="sd">"""Convenience fluent method for :py:func:`transpose`.</span>
<span class="sd"> The arguments are the same as for :py:func:`transpose`, with</span>
<span class="sd"> this array as data.</span>
<span class="sd"> """</span>
<span class="k">return</span> <span class="n">op</span><span class="o">.</span><span class="n">transpose</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span></div>
<div class="viewcode-block" id="Symbol.flip"><a class="viewcode-back" href="../../../api/python/symbol/symbol.html#mxnet.symbol.Symbol.flip">[docs]</a> <span class="k">def</span> <span class="nf">flip</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
<span class="sd">"""Convenience fluent method for :py:func:`flip`.</span>
<span class="sd"> The arguments are the same as for :py:func:`flip`, with</span>
<span class="sd"> this array as data.</span>
<span class="sd"> """</span>
<span class="k">return</span> <span class="n">op</span><span class="o">.</span><span class="n">flip</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span></div>
<div class="viewcode-block" id="Symbol.depth_to_space"><a class="viewcode-back" href="../../../api/python/symbol/symbol.html#mxnet.symbol.Symbol.depth_to_space">[docs]</a> <span class="k">def</span> <span class="nf">depth_to_space</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
<span class="sd">"""Convenience fluent method for :py:func:`depth_to_space`.</span>
<span class="sd"> The arguments are the same as for :py:func:`depth_to_space`, with</span>
<span class="sd"> this array as data.</span>
<span class="sd"> """</span>
<span class="k">return</span> <span class="n">op</span><span class="o">.</span><span class="n">depth_to_space</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span></div>
<div class="viewcode-block" id="Symbol.space_to_depth"><a class="viewcode-back" href="../../../api/python/symbol/symbol.html#mxnet.symbol.Symbol.space_to_depth">[docs]</a> <span class="k">def</span> <span class="nf">space_to_depth</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
<span class="sd">"""Convenience fluent method for :py:func:`space_to_depth`.</span>
<span class="sd"> The arguments are the same as for :py:func:`space_to_depth`, with</span>
<span class="sd"> this array as data.</span>
<span class="sd"> """</span>
<span class="k">return</span> <span class="n">op</span><span class="o">.</span><span class="n">space_to_depth</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span></div>
<div class="viewcode-block" id="Symbol.diag"><a class="viewcode-back" href="../../../api/python/symbol/symbol.html#mxnet.symbol.Symbol.diag">[docs]</a> <span class="k">def</span> <span class="nf">diag</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">k</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
<span class="sd">"""Convenience fluent method for :py:func:`diag`.</span>
<span class="sd"> The arguments are the same as for :py:func:`diag`, with</span>
<span class="sd"> this array as data.</span>
<span class="sd"> """</span>
<span class="k">return</span> <span class="n">op</span><span class="o">.</span><span class="n">diag</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">k</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span></div>
<div class="viewcode-block" id="Symbol.sum"><a class="viewcode-back" href="../../../api/python/symbol/symbol.html#mxnet.symbol.Symbol.sum">[docs]</a> <span class="k">def</span> <span class="nf">sum</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
<span class="sd">"""Convenience fluent method for :py:func:`sum`.</span>
<span class="sd"> The arguments are the same as for :py:func:`sum`, with</span>
<span class="sd"> this array as data.</span>
<span class="sd"> """</span>
<span class="k">return</span> <span class="n">op</span><span class="o">.</span><span class="n">sum</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span></div>
<div class="viewcode-block" id="Symbol.nansum"><a class="viewcode-back" href="../../../api/python/symbol/symbol.html#mxnet.symbol.Symbol.nansum">[docs]</a> <span class="k">def</span> <span class="nf">nansum</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
<span class="sd">"""Convenience fluent method for :py:func:`nansum`.</span>
<span class="sd"> The arguments are the same as for :py:func:`nansum`, with</span>
<span class="sd"> this array as data.</span>
<span class="sd"> """</span>
<span class="k">return</span> <span class="n">op</span><span class="o">.</span><span class="n">nansum</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span></div>
<div class="viewcode-block" id="Symbol.prod"><a class="viewcode-back" href="../../../api/python/symbol/symbol.html#mxnet.symbol.Symbol.prod">[docs]</a> <span class="k">def</span> <span class="nf">prod</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
<span class="sd">"""Convenience fluent method for :py:func:`prod`.</span>
<span class="sd"> The arguments are the same as for :py:func:`prod`, with</span>
<span class="sd"> this array as data.</span>
<span class="sd"> """</span>
<span class="k">return</span> <span class="n">op</span><span class="o">.</span><span class="n">prod</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span></div>
<div class="viewcode-block" id="Symbol.nanprod"><a class="viewcode-back" href="../../../api/python/symbol/symbol.html#mxnet.symbol.Symbol.nanprod">[docs]</a> <span class="k">def</span> <span class="nf">nanprod</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
<span class="sd">"""Convenience fluent method for :py:func:`nanprod`.</span>
<span class="sd"> The arguments are the same as for :py:func:`nanprod`, with</span>
<span class="sd"> this array as data.</span>
<span class="sd"> """</span>
<span class="k">return</span> <span class="n">op</span><span class="o">.</span><span class="n">nanprod</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span></div>
<div class="viewcode-block" id="Symbol.mean"><a class="viewcode-back" href="../../../api/python/symbol/symbol.html#mxnet.symbol.Symbol.mean">[docs]</a> <span class="k">def</span> <span class="nf">mean</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
<span class="sd">"""Convenience fluent method for :py:func:`mean`.</span>
<span class="sd"> The arguments are the same as for :py:func:`mean`, with</span>
<span class="sd"> this array as data.</span>
<span class="sd"> """</span>
<span class="k">return</span> <span class="n">op</span><span class="o">.</span><span class="n">mean</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span></div>
<div class="viewcode-block" id="Symbol.max"><a class="viewcode-back" href="../../../api/python/symbol/symbol.html#mxnet.symbol.Symbol.max">[docs]</a> <span class="k">def</span> <span class="nf">max</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
<span class="sd">"""Convenience fluent method for :py:func:`max`.</span>
<span class="sd"> The arguments are the same as for :py:func:`max`, with</span>
<span class="sd"> this array as data.</span>
<span class="sd"> """</span>
<span class="k">return</span> <span class="n">op</span><span class="o">.</span><span class="n">max</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span></div>
<div class="viewcode-block" id="Symbol.min"><a class="viewcode-back" href="../../../api/python/symbol/symbol.html#mxnet.symbol.Symbol.min">[docs]</a> <span class="k">def</span> <span class="nf">min</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
<span class="sd">"""Convenience fluent method for :py:func:`min`.</span>
<span class="sd"> The arguments are the same as for :py:func:`min`, with</span>
<span class="sd"> this array as data.</span>
<span class="sd"> """</span>
<span class="k">return</span> <span class="n">op</span><span class="o">.</span><span class="n">min</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span></div>
<div class="viewcode-block" id="Symbol.norm"><a class="viewcode-back" href="../../../api/python/symbol/symbol.html#mxnet.symbol.Symbol.norm">[docs]</a> <span class="k">def</span> <span class="nf">norm</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
<span class="sd">"""Convenience fluent method for :py:func:`norm`.</span>
<span class="sd"> The arguments are the same as for :py:func:`norm`, with</span>
<span class="sd"> this array as data.</span>
<span class="sd"> """</span>
<span class="k">return</span> <span class="n">op</span><span class="o">.</span><span class="n">norm</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span></div>
<div class="viewcode-block" id="Symbol.round"><a class="viewcode-back" href="../../../api/python/symbol/symbol.html#mxnet.symbol.Symbol.round">[docs]</a> <span class="k">def</span> <span class="nf">round</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
<span class="sd">"""Convenience fluent method for :py:func:`round`.</span>
<span class="sd"> The arguments are the same as for :py:func:`round`, with</span>
<span class="sd"> this array as data.</span>
<span class="sd"> """</span>
<span class="k">return</span> <span class="n">op</span><span class="o">.</span><span class="n">round</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span></div>
<div class="viewcode-block" id="Symbol.rint"><a class="viewcode-back" href="../../../api/python/symbol/symbol.html#mxnet.symbol.Symbol.rint">[docs]</a> <span class="k">def</span> <span class="nf">rint</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
<span class="sd">"""Convenience fluent method for :py:func:`rint`.</span>
<span class="sd"> The arguments are the same as for :py:func:`rint`, with</span>
<span class="sd"> this array as data.</span>
<span class="sd"> """</span>
<span class="k">return</span> <span class="n">op</span><span class="o">.</span><span class="n">rint</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span></div>
<div class="viewcode-block" id="Symbol.fix"><a class="viewcode-back" href="../../../api/python/symbol/symbol.html#mxnet.symbol.Symbol.fix">[docs]</a> <span class="k">def</span> <span class="nf">fix</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
<span class="sd">"""Convenience fluent method for :py:func:`fix`.</span>
<span class="sd"> The arguments are the same as for :py:func:`fix`, with</span>
<span class="sd"> this array as data.</span>
<span class="sd"> """</span>
<span class="k">return</span> <span class="n">op</span><span class="o">.</span><span class="n">fix</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span></div>
<div class="viewcode-block" id="Symbol.floor"><a class="viewcode-back" href="../../../api/python/symbol/symbol.html#mxnet.symbol.Symbol.floor">[docs]</a> <span class="k">def</span> <span class="nf">floor</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
<span class="sd">"""Convenience fluent method for :py:func:`floor`.</span>
<span class="sd"> The arguments are the same as for :py:func:`floor`, with</span>
<span class="sd"> this array as data.</span>
<span class="sd"> """</span>
<span class="k">return</span> <span class="n">op</span><span class="o">.</span><span class="n">floor</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span></div>
<div class="viewcode-block" id="Symbol.ceil"><a class="viewcode-back" href="../../../api/python/symbol/symbol.html#mxnet.symbol.Symbol.ceil">[docs]</a> <span class="k">def</span> <span class="nf">ceil</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
<span class="sd">"""Convenience fluent method for :py:func:`ceil`.</span>
<span class="sd"> The arguments are the same as for :py:func:`ceil`, with</span>
<span class="sd"> this array as data.</span>
<span class="sd"> """</span>
<span class="k">return</span> <span class="n">op</span><span class="o">.</span><span class="n">ceil</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span></div>
<div class="viewcode-block" id="Symbol.trunc"><a class="viewcode-back" href="../../../api/python/symbol/symbol.html#mxnet.symbol.Symbol.trunc">[docs]</a> <span class="k">def</span> <span class="nf">trunc</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
<span class="sd">"""Convenience fluent method for :py:func:`trunc`.</span>
<span class="sd"> The arguments are the same as for :py:func:`trunc`, with</span>
<span class="sd"> this array as data.</span>
<span class="sd"> """</span>
<span class="k">return</span> <span class="n">op</span><span class="o">.</span><span class="n">trunc</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span></div>
<div class="viewcode-block" id="Symbol.sin"><a class="viewcode-back" href="../../../api/python/symbol/symbol.html#mxnet.symbol.Symbol.sin">[docs]</a> <span class="k">def</span> <span class="nf">sin</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
<span class="sd">"""Convenience fluent method for :py:func:`sin`.</span>
<span class="sd"> The arguments are the same as for :py:func:`sin`, with</span>
<span class="sd"> this array as data.</span>
<span class="sd"> """</span>
<span class="k">return</span> <span class="n">op</span><span class="o">.</span><span class="n">sin</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span></div>
<div class="viewcode-block" id="Symbol.cos"><a class="viewcode-back" href="../../../api/python/symbol/symbol.html#mxnet.symbol.Symbol.cos">[docs]</a> <span class="k">def</span> <span class="nf">cos</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
<span class="sd">"""Convenience fluent method for :py:func:`cos`.</span>
<span class="sd"> The arguments are the same as for :py:func:`cos`, with</span>
<span class="sd"> this array as data.</span>
<span class="sd"> """</span>
<span class="k">return</span> <span class="n">op</span><span class="o">.</span><span class="n">cos</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span></div>
<div class="viewcode-block" id="Symbol.tan"><a class="viewcode-back" href="../../../api/python/symbol/symbol.html#mxnet.symbol.Symbol.tan">[docs]</a> <span class="k">def</span> <span class="nf">tan</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
<span class="sd">"""Convenience fluent method for :py:func:`tan`.</span>
<span class="sd"> The arguments are the same as for :py:func:`tan`, with</span>
<span class="sd"> this array as data.</span>
<span class="sd"> """</span>
<span class="k">return</span> <span class="n">op</span><span class="o">.</span><span class="n">tan</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span></div>
<div class="viewcode-block" id="Symbol.arcsin"><a class="viewcode-back" href="../../../api/python/symbol/symbol.html#mxnet.symbol.Symbol.arcsin">[docs]</a> <span class="k">def</span> <span class="nf">arcsin</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
<span class="sd">"""Convenience fluent method for :py:func:`arcsin`.</span>
<span class="sd"> The arguments are the same as for :py:func:`arcsin`, with</span>
<span class="sd"> this array as data.</span>
<span class="sd"> """</span>
<span class="k">return</span> <span class="n">op</span><span class="o">.</span><span class="n">arcsin</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span></div>
<div class="viewcode-block" id="Symbol.arccos"><a class="viewcode-back" href="../../../api/python/symbol/symbol.html#mxnet.symbol.Symbol.arccos">[docs]</a> <span class="k">def</span> <span class="nf">arccos</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
<span class="sd">"""Convenience fluent method for :py:func:`arccos`.</span>
<span class="sd"> The arguments are the same as for :py:func:`arccos`, with</span>
<span class="sd"> this array as data.</span>
<span class="sd"> """</span>
<span class="k">return</span> <span class="n">op</span><span class="o">.</span><span class="n">arccos</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span></div>
<div class="viewcode-block" id="Symbol.arctan"><a class="viewcode-back" href="../../../api/python/symbol/symbol.html#mxnet.symbol.Symbol.arctan">[docs]</a> <span class="k">def</span> <span class="nf">arctan</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
<span class="sd">"""Convenience fluent method for :py:func:`arctan`.</span>
<span class="sd"> The arguments are the same as for :py:func:`arctan`, with</span>
<span class="sd"> this array as data.</span>
<span class="sd"> """</span>
<span class="k">return</span> <span class="n">op</span><span class="o">.</span><span class="n">arctan</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span></div>
<div class="viewcode-block" id="Symbol.degrees"><a class="viewcode-back" href="../../../api/python/symbol/symbol.html#mxnet.symbol.Symbol.degrees">[docs]</a> <span class="k">def</span> <span class="nf">degrees</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
<span class="sd">"""Convenience fluent method for :py:func:`degrees`.</span>
<span class="sd"> The arguments are the same as for :py:func:`degrees`, with</span>
<span class="sd"> this array as data.</span>
<span class="sd"> """</span>
<span class="k">return</span> <span class="n">op</span><span class="o">.</span><span class="n">degrees</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span></div>
<div class="viewcode-block" id="Symbol.radians"><a class="viewcode-back" href="../../../api/python/symbol/symbol.html#mxnet.symbol.Symbol.radians">[docs]</a> <span class="k">def</span> <span class="nf">radians</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
<span class="sd">"""Convenience fluent method for :py:func:`radians`.</span>
<span class="sd"> The arguments are the same as for :py:func:`radians`, with</span>
<span class="sd"> this array as data.</span>
<span class="sd"> """</span>
<span class="k">return</span> <span class="n">op</span><span class="o">.</span><span class="n">radians</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span></div>
<div class="viewcode-block" id="Symbol.sinh"><a class="viewcode-back" href="../../../api/python/symbol/symbol.html#mxnet.symbol.Symbol.sinh">[docs]</a> <span class="k">def</span> <span class="nf">sinh</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
<span class="sd">"""Convenience fluent method for :py:func:`sinh`.</span>
<span class="sd"> The arguments are the same as for :py:func:`sinh`, with</span>
<span class="sd"> this array as data.</span>
<span class="sd"> """</span>
<span class="k">return</span> <span class="n">op</span><span class="o">.</span><span class="n">sinh</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span></div>
<div class="viewcode-block" id="Symbol.cosh"><a class="viewcode-back" href="../../../api/python/symbol/symbol.html#mxnet.symbol.Symbol.cosh">[docs]</a> <span class="k">def</span> <span class="nf">cosh</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
<span class="sd">"""Convenience fluent method for :py:func:`cosh`.</span>
<span class="sd"> The arguments are the same as for :py:func:`cosh`, with</span>
<span class="sd"> this array as data.</span>
<span class="sd"> """</span>
<span class="k">return</span> <span class="n">op</span><span class="o">.</span><span class="n">cosh</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span></div>
<div class="viewcode-block" id="Symbol.tanh"><a class="viewcode-back" href="../../../api/python/symbol/symbol.html#mxnet.symbol.Symbol.tanh">[docs]</a> <span class="k">def</span> <span class="nf">tanh</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
<span class="sd">"""Convenience fluent method for :py:func:`tanh`.</span>
<span class="sd"> The arguments are the same as for :py:func:`tanh`, with</span>
<span class="sd"> this array as data.</span>
<span class="sd"> """</span>
<span class="k">return</span> <span class="n">op</span><span class="o">.</span><span class="n">tanh</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span></div>
<div class="viewcode-block" id="Symbol.arcsinh"><a class="viewcode-back" href="../../../api/python/symbol/symbol.html#mxnet.symbol.Symbol.arcsinh">[docs]</a> <span class="k">def</span> <span class="nf">arcsinh</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
<span class="sd">"""Convenience fluent method for :py:func:`arcsinh`.</span>
<span class="sd"> The arguments are the same as for :py:func:`arcsinh`, with</span>
<span class="sd"> this array as data.</span>
<span class="sd"> """</span>
<span class="k">return</span> <span class="n">op</span><span class="o">.</span><span class="n">arcsinh</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span></div>
<div class="viewcode-block" id="Symbol.arccosh"><a class="viewcode-back" href="../../../api/python/symbol/symbol.html#mxnet.symbol.Symbol.arccosh">[docs]</a> <span class="k">def</span> <span class="nf">arccosh</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
<span class="sd">"""Convenience fluent method for :py:func:`arccosh`.</span>
<span class="sd"> The arguments are the same as for :py:func:`arccosh`, with</span>
<span class="sd"> this array as data.</span>
<span class="sd"> """</span>
<span class="k">return</span> <span class="n">op</span><span class="o">.</span><span class="n">arccosh</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span></div>
<div class="viewcode-block" id="Symbol.arctanh"><a class="viewcode-back" href="../../../api/python/symbol/symbol.html#mxnet.symbol.Symbol.arctanh">[docs]</a> <span class="k">def</span> <span class="nf">arctanh</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
<span class="sd">"""Convenience fluent method for :py:func:`arctanh`.</span>
<span class="sd"> The arguments are the same as for :py:func:`arctanh`, with</span>
<span class="sd"> this array as data.</span>
<span class="sd"> """</span>
<span class="k">return</span> <span class="n">op</span><span class="o">.</span><span class="n">arctanh</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span></div>
<div class="viewcode-block" id="Symbol.exp"><a class="viewcode-back" href="../../../api/python/symbol/symbol.html#mxnet.symbol.Symbol.exp">[docs]</a> <span class="k">def</span> <span class="nf">exp</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
<span class="sd">"""Convenience fluent method for :py:func:`exp`.</span>
<span class="sd"> The arguments are the same as for :py:func:`exp`, with</span>
<span class="sd"> this array as data.</span>
<span class="sd"> """</span>
<span class="k">return</span> <span class="n">op</span><span class="o">.</span><span class="n">exp</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span></div>
<div class="viewcode-block" id="Symbol.expm1"><a class="viewcode-back" href="../../../api/python/symbol/symbol.html#mxnet.symbol.Symbol.expm1">[docs]</a> <span class="k">def</span> <span class="nf">expm1</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
<span class="sd">"""Convenience fluent method for :py:func:`expm1`.</span>
<span class="sd"> The arguments are the same as for :py:func:`expm1`, with</span>
<span class="sd"> this array as data.</span>
<span class="sd"> """</span>
<span class="k">return</span> <span class="n">op</span><span class="o">.</span><span class="n">expm1</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span></div>
<div class="viewcode-block" id="Symbol.log"><a class="viewcode-back" href="../../../api/python/symbol/symbol.html#mxnet.symbol.Symbol.log">[docs]</a> <span class="k">def</span> <span class="nf">log</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
<span class="sd">"""Convenience fluent method for :py:func:`log`.</span>
<span class="sd"> The arguments are the same as for :py:func:`log`, with</span>
<span class="sd"> this array as data.</span>
<span class="sd"> """</span>
<span class="k">return</span> <span class="n">op</span><span class="o">.</span><span class="n">log</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span></div>
<div class="viewcode-block" id="Symbol.log10"><a class="viewcode-back" href="../../../api/python/symbol/symbol.html#mxnet.symbol.Symbol.log10">[docs]</a> <span class="k">def</span> <span class="nf">log10</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
<span class="sd">"""Convenience fluent method for :py:func:`log10`.</span>
<span class="sd"> The arguments are the same as for :py:func:`log10`, with</span>
<span class="sd"> this array as data.</span>
<span class="sd"> """</span>
<span class="k">return</span> <span class="n">op</span><span class="o">.</span><span class="n">log10</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span></div>
<div class="viewcode-block" id="Symbol.log2"><a class="viewcode-back" href="../../../api/python/symbol/symbol.html#mxnet.symbol.Symbol.log2">[docs]</a> <span class="k">def</span> <span class="nf">log2</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
<span class="sd">"""Convenience fluent method for :py:func:`log2`.</span>
<span class="sd"> The arguments are the same as for :py:func:`log2`, with</span>
<span class="sd"> this array as data.</span>
<span class="sd"> """</span>
<span class="k">return</span> <span class="n">op</span><span class="o">.</span><span class="n">log2</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span></div>
<div class="viewcode-block" id="Symbol.log1p"><a class="viewcode-back" href="../../../api/python/symbol/symbol.html#mxnet.symbol.Symbol.log1p">[docs]</a> <span class="k">def</span> <span class="nf">log1p</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
<span class="sd">"""Convenience fluent method for :py:func:`log1p`.</span>
<span class="sd"> The arguments are the same as for :py:func:`log1p`, with</span>
<span class="sd"> this array as data.</span>
<span class="sd"> """</span>
<span class="k">return</span> <span class="n">op</span><span class="o">.</span><span class="n">log1p</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span></div>
<div class="viewcode-block" id="Symbol.sqrt"><a class="viewcode-back" href="../../../api/python/symbol/symbol.html#mxnet.symbol.Symbol.sqrt">[docs]</a> <span class="k">def</span> <span class="nf">sqrt</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
<span class="sd">"""Convenience fluent method for :py:func:`sqrt`.</span>
<span class="sd"> The arguments are the same as for :py:func:`sqrt`, with</span>
<span class="sd"> this array as data.</span>
<span class="sd"> """</span>
<span class="k">return</span> <span class="n">op</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span></div>
<div class="viewcode-block" id="Symbol.rsqrt"><a class="viewcode-back" href="../../../api/python/symbol/symbol.html#mxnet.symbol.Symbol.rsqrt">[docs]</a> <span class="k">def</span> <span class="nf">rsqrt</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
<span class="sd">"""Convenience fluent method for :py:func:`rsqrt`.</span>
<span class="sd"> The arguments are the same as for :py:func:`rsqrt`, with</span>
<span class="sd"> this array as data.</span>
<span class="sd"> """</span>
<span class="k">return</span> <span class="n">op</span><span class="o">.</span><span class="n">rsqrt</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span></div>
<div class="viewcode-block" id="Symbol.cbrt"><a class="viewcode-back" href="../../../api/python/symbol/symbol.html#mxnet.symbol.Symbol.cbrt">[docs]</a> <span class="k">def</span> <span class="nf">cbrt</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
<span class="sd">"""Convenience fluent method for :py:func:`cbrt`.</span>
<span class="sd"> The arguments are the same as for :py:func:`cbrt`, with</span>
<span class="sd"> this array as data.</span>
<span class="sd"> """</span>
<span class="k">return</span> <span class="n">op</span><span class="o">.</span><span class="n">cbrt</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span></div>
<div class="viewcode-block" id="Symbol.rcbrt"><a class="viewcode-back" href="../../../api/python/symbol/symbol.html#mxnet.symbol.Symbol.rcbrt">[docs]</a> <span class="k">def</span> <span class="nf">rcbrt</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
<span class="sd">"""Convenience fluent method for :py:func:`rcbrt`.</span>
<span class="sd"> The arguments are the same as for :py:func:`rcbrt`, with</span>
<span class="sd"> this array as data.</span>
<span class="sd"> """</span>
<span class="k">return</span> <span class="n">op</span><span class="o">.</span><span class="n">rcbrt</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span></div>
<div class="viewcode-block" id="Symbol.square"><a class="viewcode-back" href="../../../api/python/symbol/symbol.html#mxnet.symbol.Symbol.square">[docs]</a> <span class="k">def</span> <span class="nf">square</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
<span class="sd">"""Convenience fluent method for :py:func:`square`.</span>
<span class="sd"> The arguments are the same as for :py:func:`square`, with</span>
<span class="sd"> this array as data.</span>
<span class="sd"> """</span>
<span class="k">return</span> <span class="n">op</span><span class="o">.</span><span class="n">square</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span></div>
<div class="viewcode-block" id="Symbol.reciprocal"><a class="viewcode-back" href="../../../api/python/symbol/symbol.html#mxnet.symbol.Symbol.reciprocal">[docs]</a> <span class="k">def</span> <span class="nf">reciprocal</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
<span class="sd">"""Convenience fluent method for :py:func:`reciprocal`.</span>
<span class="sd"> The arguments are the same as for :py:func:`reciprocal`, with</span>
<span class="sd"> this array as data.</span>
<span class="sd"> """</span>
<span class="k">return</span> <span class="n">op</span><span class="o">.</span><span class="n">reciprocal</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span></div>
<div class="viewcode-block" id="Symbol.relu"><a class="viewcode-back" href="../../../api/python/symbol/symbol.html#mxnet.symbol.Symbol.relu">[docs]</a> <span class="k">def</span> <span class="nf">relu</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
<span class="sd">"""Convenience fluent method for :py:func:`relu`.</span>
<span class="sd"> The arguments are the same as for :py:func:`relu`, with</span>
<span class="sd"> this array as data.</span>
<span class="sd"> """</span>
<span class="k">return</span> <span class="n">op</span><span class="o">.</span><span class="n">relu</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span></div>
<div class="viewcode-block" id="Symbol.sigmoid"><a class="viewcode-back" href="../../../api/python/symbol/symbol.html#mxnet.symbol.Symbol.sigmoid">[docs]</a> <span class="k">def</span> <span class="nf">sigmoid</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
<span class="sd">"""Convenience fluent method for :py:func:`sigmoid`.</span>
<span class="sd"> The arguments are the same as for :py:func:`sigmoid`, with</span>
<span class="sd"> this array as data.</span>
<span class="sd"> """</span>
<span class="k">return</span> <span class="n">op</span><span class="o">.</span><span class="n">sigmoid</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span></div>
<div class="viewcode-block" id="Symbol.softmax"><a class="viewcode-back" href="../../../api/python/symbol/symbol.html#mxnet.symbol.Symbol.softmax">[docs]</a> <span class="k">def</span> <span class="nf">softmax</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
<span class="sd">"""Convenience fluent method for :py:func:`softmax`.</span>
<span class="sd"> The arguments are the same as for :py:func:`softmax`, with</span>
<span class="sd"> this array as data.</span>
<span class="sd"> """</span>
<span class="k">return</span> <span class="n">op</span><span class="o">.</span><span class="n">softmax</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span></div>
<div class="viewcode-block" id="Symbol.log_softmax"><a class="viewcode-back" href="../../../api/python/symbol/symbol.html#mxnet.symbol.Symbol.log_softmax">[docs]</a> <span class="k">def</span> <span class="nf">log_softmax</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
<span class="sd">"""Convenience fluent method for :py:func:`log_softmax`.</span>
<span class="sd"> The arguments are the same as for :py:func:`log_softmax`, with</span>
<span class="sd"> this array as data.</span>
<span class="sd"> """</span>
<span class="k">return</span> <span class="n">op</span><span class="o">.</span><span class="n">log_softmax</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span></div>
<div class="viewcode-block" id="Symbol.squeeze"><a class="viewcode-back" href="../../../api/python/symbol/symbol.html#mxnet.symbol.Symbol.squeeze">[docs]</a> <span class="k">def</span> <span class="nf">squeeze</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
<span class="sd">"""Convenience fluent method for :py:func:`squeeze`.</span>
<span class="sd"> The arguments are the same as for :py:func:`squeeze`, with</span>
<span class="sd"> this array as data.</span>
<span class="sd"> """</span>
<span class="k">return</span> <span class="n">op</span><span class="o">.</span><span class="n">squeeze</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span></div>
<span class="k">def</span> <span class="nf">wait_to_read</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="k">raise</span> <span class="n">NotImplementedForSymbol</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">wait_to_read</span><span class="p">,</span> <span class="kc">None</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">asnumpy</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="k">raise</span> <span class="n">NotImplementedForSymbol</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">asnumpy</span><span class="p">,</span> <span class="kc">None</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">asscalar</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="k">raise</span> <span class="n">NotImplementedForSymbol</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">asscalar</span><span class="p">,</span> <span class="kc">None</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">copy</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="k">raise</span> <span class="n">NotImplementedForSymbol</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">copy</span><span class="p">,</span> <span class="kc">None</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">as_in_context</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="k">raise</span> <span class="n">NotImplementedForSymbol</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">as_in_context</span><span class="p">,</span> <span class="kc">None</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">detach</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="k">raise</span> <span class="n">NotImplementedForSymbol</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">detach</span><span class="p">,</span> <span class="kc">None</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">backward</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="k">raise</span> <span class="n">NotImplementedForSymbol</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">backward</span><span class="p">,</span> <span class="kc">None</span><span class="p">)</span></div>
<div class="viewcode-block" id="var"><a class="viewcode-back" href="../../../api/python/symbol/symbol.html#mxnet.symbol.var">[docs]</a><span class="k">def</span> <span class="nf">var</span><span class="p">(</span><span class="n">name</span><span class="p">,</span> <span class="n">attr</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="n">shape</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="n">lr_mult</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="n">wd_mult</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="n">dtype</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">init</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="n">stype</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
<span class="sd">"""Creates a symbolic variable with specified name.</span>
<span class="sd"> Example</span>
<span class="sd"> -------</span>
<span class="sd"> >>> data = mx.sym.Variable('data', attr={'a': 'b'})</span>
<span class="sd"> >>> data</span>
<span class="sd"> <Symbol data></span>
<span class="sd"> >>> csr_data = mx.sym.Variable('csr_data', stype='csr')</span>
<span class="sd"> >>> csr_data</span>
<span class="sd"> <Symbol csr_data></span>
<span class="sd"> >>> row_sparse_weight = mx.sym.Variable('weight', stype='row_sparse')</span>
<span class="sd"> >>> row_sparse_weight</span>
<span class="sd"> <Symbol weight></span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> name : str</span>
<span class="sd"> Variable name.</span>
<span class="sd"> attr : Dict of strings</span>
<span class="sd"> Additional attributes to set on the variable. Format {string : string}.</span>
<span class="sd"> shape : tuple</span>
<span class="sd"> The shape of a variable. If specified, this will be used during the shape inference.</span>
<span class="sd"> If one has specified a different shape for this variable using</span>
<span class="sd"> a keyword argument when calling shape inference, this shape information will be ignored.</span>
<span class="sd"> lr_mult : float</span>
<span class="sd"> The learning rate multiplier for input variable.</span>
<span class="sd"> wd_mult : float</span>
<span class="sd"> Weight decay multiplier for input variable.</span>
<span class="sd"> dtype : str or numpy.dtype</span>
<span class="sd"> The dtype for input variable. If not specified, this value will be inferred.</span>
<span class="sd"> init : initializer (mxnet.init.*)</span>
<span class="sd"> Initializer for this variable to (optionally) override the default initializer.</span>
<span class="sd"> stype : str</span>
<span class="sd"> The storage type of the variable, such as 'row_sparse', 'csr', 'default', etc</span>
<span class="sd"> kwargs : Additional attribute variables</span>
<span class="sd"> Additional attributes must start and end with double underscores.</span>
<span class="sd"> Returns</span>
<span class="sd"> -------</span>
<span class="sd"> variable : Symbol</span>
<span class="sd"> A symbol corresponding to an input to the computation graph.</span>
<span class="sd"> """</span>
<span class="k">if</span> <span class="ow">not</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">name</span><span class="p">,</span> <span class="n">string_types</span><span class="p">):</span>
<span class="k">raise</span> <span class="ne">TypeError</span><span class="p">(</span><span class="s1">'Expect a string for variable `name`'</span><span class="p">)</span>
<span class="n">handle</span> <span class="o">=</span> <span class="n">SymbolHandle</span><span class="p">()</span>
<span class="n">check_call</span><span class="p">(</span><span class="n">_LIB</span><span class="o">.</span><span class="n">MXSymbolCreateVariable</span><span class="p">(</span><span class="n">c_str</span><span class="p">(</span><span class="n">name</span><span class="p">),</span> <span class="n">ctypes</span><span class="o">.</span><span class="n">byref</span><span class="p">(</span><span class="n">handle</span><span class="p">)))</span>
<span class="n">ret</span> <span class="o">=</span> <span class="n">Symbol</span><span class="p">(</span><span class="n">handle</span><span class="p">)</span>
<span class="k">if</span> <span class="ow">not</span> <span class="nb">hasattr</span><span class="p">(</span><span class="n">AttrScope</span><span class="o">.</span><span class="n">_current</span><span class="p">,</span> <span class="s2">"value"</span><span class="p">):</span>
<span class="n">AttrScope</span><span class="o">.</span><span class="n">_current</span><span class="o">.</span><span class="n">value</span> <span class="o">=</span> <span class="n">AttrScope</span><span class="p">()</span>
<span class="n">attr</span> <span class="o">=</span> <span class="n">AttrScope</span><span class="o">.</span><span class="n">_current</span><span class="o">.</span><span class="n">value</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="n">attr</span><span class="p">)</span>
<span class="n">attr</span> <span class="o">=</span> <span class="p">{}</span> <span class="k">if</span> <span class="n">attr</span> <span class="ow">is</span> <span class="kc">None</span> <span class="k">else</span> <span class="n">attr</span>
<span class="k">if</span> <span class="n">shape</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">attr</span><span class="p">[</span><span class="s1">'__shape__'</span><span class="p">]</span> <span class="o">=</span> <span class="nb">str</span><span class="p">(</span><span class="n">shape</span><span class="p">)</span>
<span class="k">if</span> <span class="n">lr_mult</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">attr</span><span class="p">[</span><span class="s1">'__lr_mult__'</span><span class="p">]</span> <span class="o">=</span> <span class="nb">str</span><span class="p">(</span><span class="n">lr_mult</span><span class="p">)</span>
<span class="k">if</span> <span class="n">wd_mult</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">attr</span><span class="p">[</span><span class="s1">'__wd_mult__'</span><span class="p">]</span> <span class="o">=</span> <span class="nb">str</span><span class="p">(</span><span class="n">wd_mult</span><span class="p">)</span>
<span class="k">if</span> <span class="n">dtype</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">attr</span><span class="p">[</span><span class="s1">'__dtype__'</span><span class="p">]</span> <span class="o">=</span> <span class="nb">str</span><span class="p">(</span><span class="n">_DTYPE_NP_TO_MX</span><span class="p">[</span><span class="n">_numpy</span><span class="o">.</span><span class="n">dtype</span><span class="p">(</span><span class="n">dtype</span><span class="p">)</span><span class="o">.</span><span class="n">type</span><span class="p">])</span>
<span class="k">if</span> <span class="n">init</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="k">if</span> <span class="ow">not</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">init</span><span class="p">,</span> <span class="n">string_types</span><span class="p">):</span>
<span class="n">init</span> <span class="o">=</span> <span class="n">init</span><span class="o">.</span><span class="n">dumps</span><span class="p">()</span>
<span class="n">attr</span><span class="p">[</span><span class="s1">'__init__'</span><span class="p">]</span> <span class="o">=</span> <span class="n">init</span>
<span class="k">if</span> <span class="n">stype</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">attr</span><span class="p">[</span><span class="s1">'__storage_type__'</span><span class="p">]</span> <span class="o">=</span> <span class="nb">str</span><span class="p">(</span><span class="n">_STORAGE_TYPE_STR_TO_ID</span><span class="p">[</span><span class="n">stype</span><span class="p">])</span>
<span class="k">for</span> <span class="n">k</span><span class="p">,</span> <span class="n">v</span> <span class="ow">in</span> <span class="n">kwargs</span><span class="o">.</span><span class="n">items</span><span class="p">():</span>
<span class="k">if</span> <span class="n">k</span><span class="o">.</span><span class="n">startswith</span><span class="p">(</span><span class="s1">'__'</span><span class="p">)</span> <span class="ow">and</span> <span class="n">k</span><span class="o">.</span><span class="n">endswith</span><span class="p">(</span><span class="s1">'__'</span><span class="p">):</span>
<span class="n">attr</span><span class="p">[</span><span class="n">k</span><span class="p">]</span> <span class="o">=</span> <span class="nb">str</span><span class="p">(</span><span class="n">v</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span><span class="s1">'Attribute name=</span><span class="si">%s</span><span class="s1"> is not supported.'</span>
<span class="s1">' Additional attributes must start and end with double underscores,'</span>
<span class="s1">' e.g, __yourattr__'</span> <span class="o">%</span> <span class="n">k</span><span class="p">)</span>
<span class="n">ret</span><span class="o">.</span><span class="n">_set_attr</span><span class="p">(</span><span class="o">**</span><span class="n">attr</span><span class="p">)</span>
<span class="k">return</span> <span class="n">ret</span></div>
<span class="c1"># for back compatibility</span>
<span class="n">Variable</span> <span class="o">=</span> <span class="n">var</span>
<div class="viewcode-block" id="Group"><a class="viewcode-back" href="../../../api/python/symbol/symbol.html#mxnet.symbol.Group">[docs]</a><span class="k">def</span> <span class="nf">Group</span><span class="p">(</span><span class="n">symbols</span><span class="p">):</span>
<span class="sd">"""Creates a symbol that contains a collection of other symbols, grouped together.</span>
<span class="sd"> Example</span>
<span class="sd"> -------</span>
<span class="sd"> >>> a = mx.sym.Variable('a')</span>
<span class="sd"> >>> b = mx.sym.Variable('b')</span>
<span class="sd"> >>> mx.sym.Group([a,b])</span>
<span class="sd"> <Symbol Grouped></span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> symbols : list</span>
<span class="sd"> List of symbols to be grouped.</span>
<span class="sd"> Returns</span>
<span class="sd"> -------</span>
<span class="sd"> sym : Symbol</span>
<span class="sd"> A group symbol.</span>
<span class="sd"> """</span>
<span class="k">if</span> <span class="ow">not</span> <span class="n">symbols</span> <span class="ow">or</span> <span class="nb">any</span><span class="p">(</span><span class="ow">not</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">sym</span><span class="p">,</span> <span class="n">Symbol</span><span class="p">)</span> <span class="k">for</span> <span class="n">sym</span> <span class="ow">in</span> <span class="n">symbols</span><span class="p">):</span>
<span class="k">raise</span> <span class="ne">TypeError</span><span class="p">(</span><span class="s1">'Expected a list of symbols as input'</span><span class="p">)</span>
<span class="n">handle</span> <span class="o">=</span> <span class="n">SymbolHandle</span><span class="p">()</span>
<span class="n">check_call</span><span class="p">(</span><span class="n">_LIB</span><span class="o">.</span><span class="n">MXSymbolCreateGroup</span><span class="p">(</span>
<span class="n">mx_uint</span><span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="n">symbols</span><span class="p">)),</span>
<span class="n">c_handle_array</span><span class="p">(</span><span class="n">symbols</span><span class="p">),</span> <span class="n">ctypes</span><span class="o">.</span><span class="n">byref</span><span class="p">(</span><span class="n">handle</span><span class="p">)))</span>
<span class="k">return</span> <span class="n">Symbol</span><span class="p">(</span><span class="n">handle</span><span class="p">)</span></div>
<div class="viewcode-block" id="load"><a class="viewcode-back" href="../../../api/python/symbol/symbol.html#mxnet.symbol.load">[docs]</a><span class="k">def</span> <span class="nf">load</span><span class="p">(</span><span class="n">fname</span><span class="p">):</span>
<span class="sd">"""Loads symbol from a JSON file.</span>
<span class="sd"> You can also use pickle to do the job if you only work on python.</span>
<span class="sd"> The advantage of load/save is the file is language agnostic.</span>
<span class="sd"> This means the file saved using save can be loaded by other language binding of mxnet.</span>
<span class="sd"> You also get the benefit being able to directly load/save from cloud storage(S3, HDFS).</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> fname : str</span>
<span class="sd"> The name of the file, examples:</span>
<span class="sd"> - `s3://my-bucket/path/my-s3-symbol`</span>
<span class="sd"> - `hdfs://my-bucket/path/my-hdfs-symbol`</span>
<span class="sd"> - `/path-to/my-local-symbol`</span>
<span class="sd"> Returns</span>
<span class="sd"> -------</span>
<span class="sd"> sym : Symbol</span>
<span class="sd"> The loaded symbol.</span>
<span class="sd"> See Also</span>
<span class="sd"> --------</span>
<span class="sd"> Symbol.save : Used to save symbol into file.</span>
<span class="sd"> """</span>
<span class="k">if</span> <span class="ow">not</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">fname</span><span class="p">,</span> <span class="n">string_types</span><span class="p">):</span>
<span class="k">raise</span> <span class="ne">TypeError</span><span class="p">(</span><span class="s1">'fname need to be string'</span><span class="p">)</span>
<span class="n">handle</span> <span class="o">=</span> <span class="n">SymbolHandle</span><span class="p">()</span>
<span class="n">check_call</span><span class="p">(</span><span class="n">_LIB</span><span class="o">.</span><span class="n">MXSymbolCreateFromFile</span><span class="p">(</span><span class="n">c_str</span><span class="p">(</span><span class="n">fname</span><span class="p">),</span> <span class="n">ctypes</span><span class="o">.</span><span class="n">byref</span><span class="p">(</span><span class="n">handle</span><span class="p">)))</span>
<span class="k">return</span> <span class="n">Symbol</span><span class="p">(</span><span class="n">handle</span><span class="p">)</span></div>
<div class="viewcode-block" id="load_json"><a class="viewcode-back" href="../../../api/python/symbol/symbol.html#mxnet.symbol.load_json">[docs]</a><span class="k">def</span> <span class="nf">load_json</span><span class="p">(</span><span class="n">json_str</span><span class="p">):</span>
<span class="sd">"""Loads symbol from json string.</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> json_str : str</span>
<span class="sd"> A JSON string.</span>
<span class="sd"> Returns</span>
<span class="sd"> -------</span>
<span class="sd"> sym : Symbol</span>
<span class="sd"> The loaded symbol.</span>
<span class="sd"> See Also</span>
<span class="sd"> --------</span>
<span class="sd"> Symbol.tojson : Used to save symbol into json string.</span>
<span class="sd"> """</span>
<span class="k">if</span> <span class="ow">not</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">json_str</span><span class="p">,</span> <span class="n">string_types</span><span class="p">):</span>
<span class="k">raise</span> <span class="ne">TypeError</span><span class="p">(</span><span class="s1">'fname required to be string'</span><span class="p">)</span>
<span class="n">handle</span> <span class="o">=</span> <span class="n">SymbolHandle</span><span class="p">()</span>
<span class="n">check_call</span><span class="p">(</span><span class="n">_LIB</span><span class="o">.</span><span class="n">MXSymbolCreateFromJSON</span><span class="p">(</span><span class="n">c_str</span><span class="p">(</span><span class="n">json_str</span><span class="p">),</span> <span class="n">ctypes</span><span class="o">.</span><span class="n">byref</span><span class="p">(</span><span class="n">handle</span><span class="p">)))</span>
<span class="k">return</span> <span class="n">Symbol</span><span class="p">(</span><span class="n">handle</span><span class="p">)</span></div>
<span class="c1"># pylint: disable=no-member</span>
<span class="c1"># pylint: disable=redefined-builtin</span>
<div class="viewcode-block" id="pow"><a class="viewcode-back" href="../../../api/python/symbol/symbol.html#mxnet.symbol.pow">[docs]</a><span class="k">def</span> <span class="nf">pow</span><span class="p">(</span><span class="n">base</span><span class="p">,</span> <span class="n">exp</span><span class="p">):</span>
<span class="sd">"""Returns element-wise result of base element raised to powers from exp element.</span>
<span class="sd"> Both inputs can be Symbol or scalar number.</span>
<span class="sd"> Broadcasting is not supported. Use `broadcast_pow` instead.</span>
<span class="sd"> Parameters</span>
<span class="sd"> ---------</span>
<span class="sd"> base : Symbol or scalar</span>
<span class="sd"> The base symbol</span>
<span class="sd"> exp : Symbol or scalar</span>
<span class="sd"> The exponent symbol</span>
<span class="sd"> Returns</span>
<span class="sd"> -------</span>
<span class="sd"> Symbol or scalar</span>
<span class="sd"> The bases in x raised to the exponents in y.</span>
<span class="sd"> Examples</span>
<span class="sd"> --------</span>
<span class="sd"> >>> mx.sym.pow(2, 3)</span>
<span class="sd"> 8</span>
<span class="sd"> >>> x = mx.sym.Variable('x')</span>
<span class="sd"> >>> y = mx.sym.Variable('y')</span>
<span class="sd"> >>> z = mx.sym.pow(x, 2)</span>
<span class="sd"> >>> z.eval(x=mx.nd.array([1,2]))[0].asnumpy()</span>
<span class="sd"> array([ 1., 4.], dtype=float32)</span>
<span class="sd"> >>> z = mx.sym.pow(3, y)</span>
<span class="sd"> >>> z.eval(y=mx.nd.array([2,3]))[0].asnumpy()</span>
<span class="sd"> array([ 9., 27.], dtype=float32)</span>
<span class="sd"> >>> z = mx.sym.pow(x, y)</span>
<span class="sd"> >>> z.eval(x=mx.nd.array([3,4]), y=mx.nd.array([2,3]))[0].asnumpy()</span>
<span class="sd"> array([ 9., 64.], dtype=float32)</span>
<span class="sd"> """</span>
<span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">base</span><span class="p">,</span> <span class="n">Symbol</span><span class="p">)</span> <span class="ow">and</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">exp</span><span class="p">,</span> <span class="n">Symbol</span><span class="p">):</span>
<span class="k">return</span> <span class="n">_internal</span><span class="o">.</span><span class="n">_Power</span><span class="p">(</span><span class="n">base</span><span class="p">,</span> <span class="n">exp</span><span class="p">)</span>
<span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">base</span><span class="p">,</span> <span class="n">Symbol</span><span class="p">)</span> <span class="ow">and</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">exp</span><span class="p">,</span> <span class="n">Number</span><span class="p">):</span>
<span class="k">return</span> <span class="n">_internal</span><span class="o">.</span><span class="n">_PowerScalar</span><span class="p">(</span><span class="n">base</span><span class="p">,</span> <span class="n">scalar</span><span class="o">=</span><span class="n">exp</span><span class="p">)</span>
<span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">base</span><span class="p">,</span> <span class="n">Number</span><span class="p">)</span> <span class="ow">and</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">exp</span><span class="p">,</span> <span class="n">Symbol</span><span class="p">):</span>
<span class="k">return</span> <span class="n">_internal</span><span class="o">.</span><span class="n">_RPowerScalar</span><span class="p">(</span><span class="n">exp</span><span class="p">,</span> <span class="n">scalar</span><span class="o">=</span><span class="n">base</span><span class="p">)</span>
<span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">base</span><span class="p">,</span> <span class="n">Number</span><span class="p">)</span> <span class="ow">and</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">exp</span><span class="p">,</span> <span class="n">Number</span><span class="p">):</span>
<span class="k">return</span> <span class="n">base</span><span class="o">**</span><span class="n">exp</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">raise</span> <span class="ne">TypeError</span><span class="p">(</span><span class="s1">'types (</span><span class="si">%s</span><span class="s1">, </span><span class="si">%s</span><span class="s1">) not supported'</span> <span class="o">%</span> <span class="p">(</span><span class="nb">str</span><span class="p">(</span><span class="nb">type</span><span class="p">(</span><span class="n">base</span><span class="p">)),</span> <span class="nb">str</span><span class="p">(</span><span class="nb">type</span><span class="p">(</span><span class="n">exp</span><span class="p">))))</span></div>
<span class="c1"># pylint: disable=no-member</span>
<span class="c1"># pylint: disable=redefined-builtin</span>
<div class="viewcode-block" id="maximum"><a class="viewcode-back" href="../../../api/python/symbol/symbol.html#mxnet.symbol.maximum">[docs]</a><span class="k">def</span> <span class="nf">maximum</span><span class="p">(</span><span class="n">left</span><span class="p">,</span> <span class="n">right</span><span class="p">):</span>
<span class="sd">"""Returns element-wise maximum of the input elements.</span>
<span class="sd"> Both inputs can be Symbol or scalar number. Broadcasting is not supported.</span>
<span class="sd"> Parameters</span>
<span class="sd"> ---------</span>
<span class="sd"> left : Symbol or scalar</span>
<span class="sd"> First symbol to be compared.</span>
<span class="sd"> right : Symbol or scalar</span>
<span class="sd"> Second symbol to be compared.</span>
<span class="sd"> Returns</span>
<span class="sd"> -------</span>
<span class="sd"> Symbol or scalar</span>
<span class="sd"> The element-wise maximum of the input symbols.</span>
<span class="sd"> Examples</span>
<span class="sd"> --------</span>
<span class="sd"> >>> mx.sym.maximum(2, 3.5)</span>
<span class="sd"> 3.5</span>
<span class="sd"> >>> x = mx.sym.Variable('x')</span>
<span class="sd"> >>> y = mx.sym.Variable('y')</span>
<span class="sd"> >>> z = mx.sym.maximum(x, 4)</span>
<span class="sd"> >>> z.eval(x=mx.nd.array([3,5,2,10]))[0].asnumpy()</span>
<span class="sd"> array([ 4., 5., 4., 10.], dtype=float32)</span>
<span class="sd"> >>> z = mx.sym.maximum(x, y)</span>
<span class="sd"> >>> z.eval(x=mx.nd.array([3,4]), y=mx.nd.array([10,2]))[0].asnumpy()</span>
<span class="sd"> array([ 10., 4.], dtype=float32)</span>
<span class="sd"> """</span>
<span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">left</span><span class="p">,</span> <span class="n">Symbol</span><span class="p">)</span> <span class="ow">and</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">right</span><span class="p">,</span> <span class="n">Symbol</span><span class="p">):</span>
<span class="k">return</span> <span class="n">_internal</span><span class="o">.</span><span class="n">_Maximum</span><span class="p">(</span><span class="n">left</span><span class="p">,</span> <span class="n">right</span><span class="p">)</span>
<span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">left</span><span class="p">,</span> <span class="n">Symbol</span><span class="p">)</span> <span class="ow">and</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">right</span><span class="p">,</span> <span class="n">Number</span><span class="p">):</span>
<span class="k">return</span> <span class="n">_internal</span><span class="o">.</span><span class="n">_MaximumScalar</span><span class="p">(</span><span class="n">left</span><span class="p">,</span> <span class="n">scalar</span><span class="o">=</span><span class="n">right</span><span class="p">)</span>
<span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">left</span><span class="p">,</span> <span class="n">Number</span><span class="p">)</span> <span class="ow">and</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">right</span><span class="p">,</span> <span class="n">Symbol</span><span class="p">):</span>
<span class="k">return</span> <span class="n">_internal</span><span class="o">.</span><span class="n">_MaximumScalar</span><span class="p">(</span><span class="n">right</span><span class="p">,</span> <span class="n">scalar</span><span class="o">=</span><span class="n">left</span><span class="p">)</span>
<span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">left</span><span class="p">,</span> <span class="n">Number</span><span class="p">)</span> <span class="ow">and</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">right</span><span class="p">,</span> <span class="n">Number</span><span class="p">):</span>
<span class="k">return</span> <span class="n">left</span> <span class="k">if</span> <span class="n">left</span> <span class="o">></span> <span class="n">right</span> <span class="k">else</span> <span class="n">right</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">raise</span> <span class="ne">TypeError</span><span class="p">(</span><span class="s1">'types (</span><span class="si">%s</span><span class="s1">, </span><span class="si">%s</span><span class="s1">) not supported'</span> <span class="o">%</span> <span class="p">(</span><span class="nb">str</span><span class="p">(</span><span class="nb">type</span><span class="p">(</span><span class="n">left</span><span class="p">)),</span> <span class="nb">str</span><span class="p">(</span><span class="nb">type</span><span class="p">(</span><span class="n">right</span><span class="p">))))</span></div>
<span class="c1"># pylint: disable=no-member</span>
<span class="c1"># pylint: disable=redefined-builtin</span>
<div class="viewcode-block" id="minimum"><a class="viewcode-back" href="../../../api/python/symbol/symbol.html#mxnet.symbol.minimum">[docs]</a><span class="k">def</span> <span class="nf">minimum</span><span class="p">(</span><span class="n">left</span><span class="p">,</span> <span class="n">right</span><span class="p">):</span>
<span class="sd">"""Returns element-wise minimum of the input elements.</span>
<span class="sd"> Both inputs can be Symbol or scalar number. Broadcasting is not supported.</span>
<span class="sd"> Parameters</span>
<span class="sd"> ---------</span>
<span class="sd"> left : Symbol or scalar</span>
<span class="sd"> First symbol to be compared.</span>
<span class="sd"> right : Symbol or scalar</span>
<span class="sd"> Second symbol to be compared.</span>
<span class="sd"> Returns</span>
<span class="sd"> -------</span>
<span class="sd"> Symbol or scalar</span>
<span class="sd"> The element-wise minimum of the input symbols.</span>
<span class="sd"> Examples</span>
<span class="sd"> --------</span>
<span class="sd"> >>> mx.sym.minimum(2, 3.5)</span>
<span class="sd"> 2</span>
<span class="sd"> >>> x = mx.sym.Variable('x')</span>
<span class="sd"> >>> y = mx.sym.Variable('y')</span>
<span class="sd"> >>> z = mx.sym.minimum(x, 4)</span>
<span class="sd"> >>> z.eval(x=mx.nd.array([3,5,2,10]))[0].asnumpy()</span>
<span class="sd"> array([ 3., 4., 2., 4.], dtype=float32)</span>
<span class="sd"> >>> z = mx.sym.minimum(x, y)</span>
<span class="sd"> >>> z.eval(x=mx.nd.array([3,4]), y=mx.nd.array([10,2]))[0].asnumpy()</span>
<span class="sd"> array([ 3., 2.], dtype=float32)</span>
<span class="sd"> """</span>
<span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">left</span><span class="p">,</span> <span class="n">Symbol</span><span class="p">)</span> <span class="ow">and</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">right</span><span class="p">,</span> <span class="n">Symbol</span><span class="p">):</span>
<span class="k">return</span> <span class="n">_internal</span><span class="o">.</span><span class="n">_Minimum</span><span class="p">(</span><span class="n">left</span><span class="p">,</span> <span class="n">right</span><span class="p">)</span>
<span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">left</span><span class="p">,</span> <span class="n">Symbol</span><span class="p">)</span> <span class="ow">and</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">right</span><span class="p">,</span> <span class="n">Number</span><span class="p">):</span>
<span class="k">return</span> <span class="n">_internal</span><span class="o">.</span><span class="n">_MinimumScalar</span><span class="p">(</span><span class="n">left</span><span class="p">,</span> <span class="n">scalar</span><span class="o">=</span><span class="n">right</span><span class="p">)</span>
<span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">left</span><span class="p">,</span> <span class="n">Number</span><span class="p">)</span> <span class="ow">and</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">right</span><span class="p">,</span> <span class="n">Symbol</span><span class="p">):</span>
<span class="k">return</span> <span class="n">_internal</span><span class="o">.</span><span class="n">_MinimumScalar</span><span class="p">(</span><span class="n">right</span><span class="p">,</span> <span class="n">scalar</span><span class="o">=</span><span class="n">left</span><span class="p">)</span>
<span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">left</span><span class="p">,</span> <span class="n">Number</span><span class="p">)</span> <span class="ow">and</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">right</span><span class="p">,</span> <span class="n">Number</span><span class="p">):</span>
<span class="k">return</span> <span class="n">left</span> <span class="k">if</span> <span class="n">left</span> <span class="o"><</span> <span class="n">right</span> <span class="k">else</span> <span class="n">right</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">raise</span> <span class="ne">TypeError</span><span class="p">(</span><span class="s1">'types (</span><span class="si">%s</span><span class="s1">, </span><span class="si">%s</span><span class="s1">) not supported'</span> <span class="o">%</span> <span class="p">(</span><span class="nb">str</span><span class="p">(</span><span class="nb">type</span><span class="p">(</span><span class="n">left</span><span class="p">)),</span> <span class="nb">str</span><span class="p">(</span><span class="nb">type</span><span class="p">(</span><span class="n">right</span><span class="p">))))</span></div>
<span class="c1"># pylint: disable=no-member</span>
<span class="c1"># pylint: disable=redefined-builtin</span>
<div class="viewcode-block" id="hypot"><a class="viewcode-back" href="../../../api/python/symbol/symbol.html#mxnet.symbol.hypot">[docs]</a><span class="k">def</span> <span class="nf">hypot</span><span class="p">(</span><span class="n">left</span><span class="p">,</span> <span class="n">right</span><span class="p">):</span>
<span class="sd">"""Given the "legs" of a right triangle, returns its hypotenuse.</span>
<span class="sd"> Equivalent to :math:`\\sqrt(left^2 + right^2)`, element-wise.</span>
<span class="sd"> Both inputs can be Symbol or scalar number. Broadcasting is not supported.</span>
<span class="sd"> Parameters</span>
<span class="sd"> ---------</span>
<span class="sd"> left : Symbol or scalar</span>
<span class="sd"> First leg of the triangle(s).</span>
<span class="sd"> right : Symbol or scalar</span>
<span class="sd"> Second leg of the triangle(s).</span>
<span class="sd"> Returns</span>
<span class="sd"> -------</span>
<span class="sd"> Symbol or scalar</span>
<span class="sd"> The hypotenuse of the triangle(s)</span>
<span class="sd"> Examples</span>
<span class="sd"> --------</span>
<span class="sd"> >>> mx.sym.hypot(3, 4)</span>
<span class="sd"> 5.0</span>
<span class="sd"> >>> x = mx.sym.Variable('x')</span>
<span class="sd"> >>> y = mx.sym.Variable('y')</span>
<span class="sd"> >>> z = mx.sym.hypot(x, 4)</span>
<span class="sd"> >>> z.eval(x=mx.nd.array([3,5,2]))[0].asnumpy()</span>
<span class="sd"> array([ 5., 6.40312433, 4.47213602], dtype=float32)</span>
<span class="sd"> >>> z = mx.sym.hypot(x, y)</span>
<span class="sd"> >>> z.eval(x=mx.nd.array([3,4]), y=mx.nd.array([10,2]))[0].asnumpy()</span>
<span class="sd"> array([ 10.44030666, 4.47213602], dtype=float32)</span>
<span class="sd"> """</span>
<span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">left</span><span class="p">,</span> <span class="n">Symbol</span><span class="p">)</span> <span class="ow">and</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">right</span><span class="p">,</span> <span class="n">Symbol</span><span class="p">):</span>
<span class="k">return</span> <span class="n">_internal</span><span class="o">.</span><span class="n">_Hypot</span><span class="p">(</span><span class="n">left</span><span class="p">,</span> <span class="n">right</span><span class="p">)</span>
<span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">left</span><span class="p">,</span> <span class="n">Symbol</span><span class="p">)</span> <span class="ow">and</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">right</span><span class="p">,</span> <span class="n">Number</span><span class="p">):</span>
<span class="k">return</span> <span class="n">_internal</span><span class="o">.</span><span class="n">_HypotScalar</span><span class="p">(</span><span class="n">left</span><span class="p">,</span> <span class="n">scalar</span><span class="o">=</span><span class="n">right</span><span class="p">)</span>
<span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">left</span><span class="p">,</span> <span class="n">Number</span><span class="p">)</span> <span class="ow">and</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">right</span><span class="p">,</span> <span class="n">Symbol</span><span class="p">):</span>
<span class="k">return</span> <span class="n">_internal</span><span class="o">.</span><span class="n">_HypotScalar</span><span class="p">(</span><span class="n">right</span><span class="p">,</span> <span class="n">scalar</span><span class="o">=</span><span class="n">left</span><span class="p">)</span>
<span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">left</span><span class="p">,</span> <span class="n">Number</span><span class="p">)</span> <span class="ow">and</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">right</span><span class="p">,</span> <span class="n">Number</span><span class="p">):</span>
<span class="k">return</span> <span class="n">_numpy</span><span class="o">.</span><span class="n">hypot</span><span class="p">(</span><span class="n">left</span><span class="p">,</span> <span class="n">right</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">raise</span> <span class="ne">TypeError</span><span class="p">(</span><span class="s1">'types (</span><span class="si">%s</span><span class="s1">, </span><span class="si">%s</span><span class="s1">) not supported'</span> <span class="o">%</span> <span class="p">(</span><span class="nb">str</span><span class="p">(</span><span class="nb">type</span><span class="p">(</span><span class="n">left</span><span class="p">)),</span> <span class="nb">str</span><span class="p">(</span><span class="nb">type</span><span class="p">(</span><span class="n">right</span><span class="p">))))</span></div>
<div class="viewcode-block" id="eye"><a class="viewcode-back" href="../../../api/python/symbol/symbol.html#mxnet.symbol.eye">[docs]</a><span class="k">def</span> <span class="nf">eye</span><span class="p">(</span><span class="n">N</span><span class="p">,</span> <span class="n">M</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span> <span class="n">k</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span> <span class="n">dtype</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
<span class="sd">"""Returns a new symbol of 2-D shpae, filled with ones on the diagonal and zeros elsewhere.</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> N: int</span>
<span class="sd"> Number of rows in the output.</span>
<span class="sd"> M: int, optional</span>
<span class="sd"> Number of columns in the output. If 0, defaults to N.</span>
<span class="sd"> k: int, optional</span>
<span class="sd"> Index of the diagonal: 0 (the default) refers to the main diagonal,</span>
<span class="sd"> a positive value refers to an upper diagonal,</span>
<span class="sd"> and a negative value to a lower diagonal.</span>
<span class="sd"> dtype : str or numpy.dtype, optional</span>
<span class="sd"> The value type of the inner value, default to ``np.float32``.</span>
<span class="sd"> Returns</span>
<span class="sd"> -------</span>
<span class="sd"> out : Symbol</span>
<span class="sd"> The created Symbol.</span>
<span class="sd"> """</span>
<span class="k">if</span> <span class="n">dtype</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">dtype</span> <span class="o">=</span> <span class="n">_numpy</span><span class="o">.</span><span class="n">float32</span>
<span class="k">return</span> <span class="n">_internal</span><span class="o">.</span><span class="n">_eye</span><span class="p">(</span><span class="n">N</span><span class="p">,</span> <span class="n">M</span><span class="p">,</span> <span class="n">k</span><span class="p">,</span> <span class="n">dtype</span><span class="o">=</span><span class="n">dtype</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span></div>
<div class="viewcode-block" id="zeros"><a class="viewcode-back" href="../../../api/python/symbol/symbol.html#mxnet.symbol.zeros">[docs]</a><span class="k">def</span> <span class="nf">zeros</span><span class="p">(</span><span class="n">shape</span><span class="p">,</span> <span class="n">dtype</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
<span class="sd">"""Returns a new symbol of given shape and type, filled with zeros.</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> shape : int or sequence of ints</span>
<span class="sd"> Shape of the new array.</span>
<span class="sd"> dtype : str or numpy.dtype, optional</span>
<span class="sd"> The value type of the inner value, default to ``np.float32``.</span>
<span class="sd"> Returns</span>
<span class="sd"> -------</span>
<span class="sd"> out : Symbol</span>
<span class="sd"> The created Symbol.</span>
<span class="sd"> """</span>
<span class="k">if</span> <span class="n">dtype</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">dtype</span> <span class="o">=</span> <span class="n">_numpy</span><span class="o">.</span><span class="n">float32</span>
<span class="k">return</span> <span class="n">_internal</span><span class="o">.</span><span class="n">_zeros</span><span class="p">(</span><span class="n">shape</span><span class="o">=</span><span class="n">shape</span><span class="p">,</span> <span class="n">dtype</span><span class="o">=</span><span class="n">dtype</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span></div>
<div class="viewcode-block" id="ones"><a class="viewcode-back" href="../../../api/python/symbol/symbol.html#mxnet.symbol.ones">[docs]</a><span class="k">def</span> <span class="nf">ones</span><span class="p">(</span><span class="n">shape</span><span class="p">,</span> <span class="n">dtype</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
<span class="sd">"""Returns a new symbol of given shape and type, filled with ones.</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> shape : int or sequence of ints</span>
<span class="sd"> Shape of the new array.</span>
<span class="sd"> dtype : str or numpy.dtype, optional</span>
<span class="sd"> The value type of the inner value, default to ``np.float32``.</span>
<span class="sd"> Returns</span>
<span class="sd"> -------</span>
<span class="sd"> out : Symbol</span>
<span class="sd"> The created Symbol</span>
<span class="sd"> """</span>
<span class="k">if</span> <span class="n">dtype</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">dtype</span> <span class="o">=</span> <span class="n">_numpy</span><span class="o">.</span><span class="n">float32</span>
<span class="k">return</span> <span class="n">_internal</span><span class="o">.</span><span class="n">_ones</span><span class="p">(</span><span class="n">shape</span><span class="o">=</span><span class="n">shape</span><span class="p">,</span> <span class="n">dtype</span><span class="o">=</span><span class="n">dtype</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span></div>
<div class="viewcode-block" id="full"><a class="viewcode-back" href="../../../api/python/symbol/symbol.html#mxnet.symbol.full">[docs]</a><span class="k">def</span> <span class="nf">full</span><span class="p">(</span><span class="n">shape</span><span class="p">,</span> <span class="n">val</span><span class="p">,</span> <span class="n">dtype</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
<span class="sd">"""Returns a new array of given shape and type, filled with the given value `val`.</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> shape : int or sequence of ints</span>
<span class="sd"> Shape of the new array.</span>
<span class="sd"> val : scalar</span>
<span class="sd"> Fill value.</span>
<span class="sd"> dtype : str or numpy.dtype, optional</span>
<span class="sd"> The value type of the inner value, default to ``np.float32``.</span>
<span class="sd"> Returns</span>
<span class="sd"> -------</span>
<span class="sd"> out : Symbol</span>
<span class="sd"> The created Symbol</span>
<span class="sd"> """</span>
<span class="k">if</span> <span class="n">dtype</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">dtype</span> <span class="o">=</span> <span class="n">_numpy</span><span class="o">.</span><span class="n">float32</span>
<span class="k">return</span> <span class="n">_internal</span><span class="o">.</span><span class="n">_full</span><span class="p">(</span><span class="n">shape</span><span class="o">=</span><span class="n">shape</span><span class="p">,</span> <span class="n">dtype</span><span class="o">=</span><span class="n">dtype</span><span class="p">,</span> <span class="n">value</span><span class="o">=</span><span class="nb">float</span><span class="p">(</span><span class="n">val</span><span class="p">),</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span></div>
<span class="c1"># pylint: disable=redefined-outer-name</span>
<div class="viewcode-block" id="arange"><a class="viewcode-back" href="../../../api/python/symbol/symbol.html#mxnet.symbol.arange">[docs]</a><span class="k">def</span> <span class="nf">arange</span><span class="p">(</span><span class="n">start</span><span class="p">,</span> <span class="n">stop</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="n">step</span><span class="o">=</span><span class="mf">1.0</span><span class="p">,</span> <span class="n">repeat</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">name</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="n">dtype</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span>
<span class="sd">"""Returns evenly spaced values within a given interval.</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> start : number</span>
<span class="sd"> Start of interval. The interval includes this value. The default start value is 0.</span>
<span class="sd"> stop : number, optional</span>
<span class="sd"> End of interval. The interval does not include this value.</span>
<span class="sd"> step : number, optional</span>
<span class="sd"> Spacing between values.</span>
<span class="sd"> repeat : int, optional</span>
<span class="sd"> "The repeating time of all elements.</span>
<span class="sd"> E.g repeat=3, the element a will be repeated three times --> a, a, a.</span>
<span class="sd"> infer_range : boolean, optional</span>
<span class="sd"> When set to True, infer the stop position from the start, step,</span>
<span class="sd"> repeat, and output tensor size.</span>
<span class="sd"> dtype : str or numpy.dtype, optional</span>
<span class="sd"> The value type of the inner value, default to ``np.float32``.</span>
<span class="sd"> Returns</span>
<span class="sd"> -------</span>
<span class="sd"> out : Symbol</span>
<span class="sd"> The created Symbol</span>
<span class="sd"> """</span>
<span class="k">if</span> <span class="n">dtype</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">dtype</span> <span class="o">=</span> <span class="n">_numpy</span><span class="o">.</span><span class="n">float32</span>
<span class="k">return</span> <span class="n">_internal</span><span class="o">.</span><span class="n">_arange</span><span class="p">(</span><span class="n">start</span><span class="o">=</span><span class="n">start</span><span class="p">,</span> <span class="n">stop</span><span class="o">=</span><span class="n">stop</span><span class="p">,</span> <span class="n">step</span><span class="o">=</span><span class="n">step</span><span class="p">,</span> <span class="n">repeat</span><span class="o">=</span><span class="n">repeat</span><span class="p">,</span>
<span class="n">name</span><span class="o">=</span><span class="n">name</span><span class="p">,</span> <span class="n">dtype</span><span class="o">=</span><span class="n">dtype</span><span class="p">)</span></div>
<div class="viewcode-block" id="histogram"><a class="viewcode-back" href="../../../api/python/symbol/symbol.html#mxnet.symbol.histogram">[docs]</a><span class="k">def</span> <span class="nf">histogram</span><span class="p">(</span><span class="n">a</span><span class="p">,</span> <span class="n">bins</span><span class="o">=</span><span class="mi">10</span><span class="p">,</span> <span class="nb">range</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
<span class="sd">"""Compute the histogram of the input data.</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> a : NDArray</span>
<span class="sd"> Input data. The histogram is computed over the flattened array.</span>
<span class="sd"> bins : int or sequence of scalars</span>
<span class="sd"> If bins is an int, it defines the number of equal-width bins in the</span>
<span class="sd"> given range (10, by default). If bins is a sequence, it defines the bin edges,</span>
<span class="sd"> including the rightmost edge, allowing for non-uniform bin widths.</span>
<span class="sd"> range : (float, float), required if bins is an integer</span>
<span class="sd"> The lower and upper range of the bins. If not provided, range is simply (a.min(), a.max()).</span>
<span class="sd"> Values outside the range are ignored. The first element of the range must be less than or</span>
<span class="sd"> equal to the second. range affects the automatic bin computation as well, the range will</span>
<span class="sd"> be equally divided by the number of bins.</span>
<span class="sd"> """</span>
<span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">bins</span><span class="p">,</span> <span class="n">Symbol</span><span class="p">):</span>
<span class="k">return</span> <span class="n">_internal</span><span class="o">.</span><span class="n">_histogram</span><span class="p">(</span><span class="n">data</span><span class="o">=</span><span class="n">a</span><span class="p">,</span> <span class="n">bins</span><span class="o">=</span><span class="n">bins</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span>
<span class="k">elif</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">bins</span><span class="p">,</span> <span class="n">integer_types</span><span class="p">):</span>
<span class="k">if</span> <span class="nb">range</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span><span class="s2">"null range is not supported in symbol mode"</span><span class="p">)</span>
<span class="k">return</span> <span class="n">_internal</span><span class="o">.</span><span class="n">_histogram</span><span class="p">(</span><span class="n">data</span><span class="o">=</span><span class="n">a</span><span class="p">,</span> <span class="n">bin_cnt</span><span class="o">=</span><span class="n">bins</span><span class="p">,</span> <span class="nb">range</span><span class="o">=</span><span class="nb">range</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span>
<span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span><span class="s2">"bins argument should be either an integer or an NDArray"</span><span class="p">)</span></div>
<span class="n">_set_symbol_class</span><span class="p">(</span><span class="n">Symbol</span><span class="p">)</span>
</pre></div>
</div>
</div>
<div aria-label="main navigation" class="sphinxsidebar rightsidebar" role="navigation">
<div class="sphinxsidebarwrapper">
</div>
</div>
</div><div class="footer">
<div class="section-disclaimer">
<div class="container">
<div>
<img height="60" src="https://raw.githubusercontent.com/dmlc/web-data/master/mxnet/image/apache_incubator_logo.png"/>
<p>
Apache MXNet is an effort undergoing incubation at The Apache Software Foundation (ASF), <strong>sponsored by the <i>Apache Incubator</i></strong>. Incubation is required of all newly accepted projects until a further review indicates that the infrastructure, communications, and decision making process have stabilized in a manner consistent with other successful ASF projects. While incubation status is not necessarily a reflection of the completeness or stability of the code, it does indicate that the project has yet to be fully endorsed by the ASF.
</p>
<p>
"Copyright © 2017-2018, The Apache Software Foundation
Apache MXNet, MXNet, Apache, the Apache feather, and the Apache MXNet project logo are either registered trademarks or trademarks of the Apache Software Foundation."
</p>
</div>
</div>
</div>
</div> <!-- pagename != index -->
</div>
<script crossorigin="anonymous" integrity="sha384-0mSbJDEHialfmuBBQP6A4Qrprq5OVfW37PRR3j5ELqxss1yVqOtnepnHVP9aJ7xS" src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/js/bootstrap.min.js"></script>
<script src="../../../_static/js/sidebar.js" type="text/javascript"></script>
<script src="../../../_static/js/search.js" type="text/javascript"></script>
<script src="../../../_static/js/navbar.js" type="text/javascript"></script>
<script src="../../../_static/js/clipboard.min.js" type="text/javascript"></script>
<script src="../../../_static/js/copycode.js" type="text/javascript"></script>
<script src="../../../_static/js/page.js" type="text/javascript"></script>
<script src="../../../_static/js/docversion.js" type="text/javascript"></script>
<script type="text/javascript">
$('body').ready(function () {
$('body').css('visibility', 'visible');
});
</script>
</body>
</html>