| <!DOCTYPE html> |
| |
| <html lang="en"> |
| <head> |
| <meta charset="utf-8"/> |
| <meta content="IE=edge" http-equiv="X-UA-Compatible"/> |
| <meta content="width=device-width, initial-scale=1" name="viewport"/> |
| <meta content="Fine-tune with Pretrained Models" property="og:title"> |
| <meta content="https://raw.githubusercontent.com/dmlc/web-data/master/mxnet/image/og-logo.png" property="og:image"> |
| <meta content="https://raw.githubusercontent.com/dmlc/web-data/master/mxnet/image/og-logo.png" property="og:image:secure_url"> |
| <meta content="Fine-tune with Pretrained Models" property="og:description"/> |
| <title>Fine-tune with Pretrained Models — mxnet documentation</title> |
| <link crossorigin="anonymous" href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/css/bootstrap.min.css" integrity="sha384-1q8mTJOASx8j1Au+a5WDVnPi2lkFfwwEAa8hDDdjZlpLegxhjVME1fgjWPGmkzs7" rel="stylesheet"/> |
| <link href="https://maxcdn.bootstrapcdn.com/font-awesome/4.5.0/css/font-awesome.min.css" rel="stylesheet"/> |
| <link href="../_static/basic.css" rel="stylesheet" type="text/css"> |
| <link href="../_static/pygments.css" rel="stylesheet" type="text/css"> |
| <link href="../_static/mxnet.css" rel="stylesheet" type="text/css"/> |
| <script type="text/javascript"> |
| var DOCUMENTATION_OPTIONS = { |
| URL_ROOT: '../', |
| VERSION: '', |
| COLLAPSE_INDEX: false, |
| FILE_SUFFIX: '.html', |
| HAS_SOURCE: true, |
| SOURCELINK_SUFFIX: '.txt' |
| }; |
| </script> |
| <script src="https://code.jquery.com/jquery-1.11.1.min.js" type="text/javascript"></script> |
| <script src="../_static/underscore.js" type="text/javascript"></script> |
| <script src="../_static/searchtools_custom.js" type="text/javascript"></script> |
| <script src="../_static/doctools.js" type="text/javascript"></script> |
| <script src="../_static/selectlang.js" type="text/javascript"></script> |
| <script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.1/MathJax.js?config=TeX-AMS-MML_HTMLorMML" type="text/javascript"></script> |
| <script type="text/javascript"> jQuery(function() { Search.loadIndex("/versions/1.2.1/searchindex.js"); Search.init();}); </script> |
| <script> |
| (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ |
| (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new |
| Date();a=s.createElement(o), |
| m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) |
| })(window,document,'script','https://www.google-analytics.com/analytics.js','ga'); |
| |
| ga('create', 'UA-96378503-1', 'auto'); |
| ga('send', 'pageview'); |
| |
| </script> |
| <!-- --> |
| <!-- <script type="text/javascript" src="../_static/jquery.js"></script> --> |
| <!-- --> |
| <!-- <script type="text/javascript" src="../_static/underscore.js"></script> --> |
| <!-- --> |
| <!-- <script type="text/javascript" src="../_static/doctools.js"></script> --> |
| <!-- --> |
| <!-- <script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script> --> |
| <!-- --> |
| <link href="../genindex.html" rel="index" title="Index"> |
| <link href="../search.html" rel="search" title="Search"/> |
| <link href="https://raw.githubusercontent.com/dmlc/web-data/master/mxnet/image/mxnet-icon.png" rel="icon" type="image/png"/> |
| </link></link></link></meta></meta></meta></head> |
| <body background="https://raw.githubusercontent.com/dmlc/web-data/master/mxnet/image/mxnet-background-compressed.jpeg" role="document"> |
| <div class="content-block"><div class="navbar navbar-fixed-top"> |
| <div class="container" id="navContainer"> |
| <div class="innder" id="header-inner"> |
| <h1 id="logo-wrap"> |
| <a href="../" id="logo"><img src="https://raw.githubusercontent.com/dmlc/web-data/master/mxnet/image/mxnet_logo.png"/></a> |
| </h1> |
| <nav class="nav-bar" id="main-nav"> |
| <a class="main-nav-link" href="/versions/1.2.1/install/index.html">Install</a> |
| <span id="dropdown-menu-position-anchor"> |
| <a aria-expanded="true" aria-haspopup="true" class="main-nav-link dropdown-toggle" data-toggle="dropdown" href="#" role="button">Gluon <span class="caret"></span></a> |
| <ul class="dropdown-menu navbar-menu" id="package-dropdown-menu"> |
| <li><a class="main-nav-link" href="/versions/1.2.1/tutorials/gluon/gluon.html">About</a></li> |
| <li><a class="main-nav-link" href="https://www.d2l.ai/">Dive into Deep Learning</a></li> |
| <li><a class="main-nav-link" href="https://gluon-cv.mxnet.io">GluonCV Toolkit</a></li> |
| <li><a class="main-nav-link" href="https://gluon-nlp.mxnet.io/">GluonNLP Toolkit</a></li> |
| </ul> |
| </span> |
| <span id="dropdown-menu-position-anchor"> |
| <a aria-expanded="true" aria-haspopup="true" class="main-nav-link dropdown-toggle" data-toggle="dropdown" href="#" role="button">API <span class="caret"></span></a> |
| <ul class="dropdown-menu navbar-menu" id="package-dropdown-menu"> |
| <li><a class="main-nav-link" href="/versions/1.2.1/api/python/index.html">Python</a></li> |
| <li><a class="main-nav-link" href="/versions/1.2.1/api/c++/index.html">C++</a></li> |
| <li><a class="main-nav-link" href="/versions/1.2.1/api/julia/index.html">Julia</a></li> |
| <li><a class="main-nav-link" href="/versions/1.2.1/api/perl/index.html">Perl</a></li> |
| <li><a class="main-nav-link" href="/versions/1.2.1/api/r/index.html">R</a></li> |
| <li><a class="main-nav-link" href="/versions/1.2.1/api/scala/index.html">Scala</a></li> |
| </ul> |
| </span> |
| <span id="dropdown-menu-position-anchor-docs"> |
| <a aria-expanded="true" aria-haspopup="true" class="main-nav-link dropdown-toggle" data-toggle="dropdown" href="#" role="button">Docs <span class="caret"></span></a> |
| <ul class="dropdown-menu navbar-menu" id="package-dropdown-menu-docs"> |
| <li><a class="main-nav-link" href="/versions/1.2.1/faq/index.html">FAQ</a></li> |
| <li><a class="main-nav-link" href="/versions/1.2.1/tutorials/index.html">Tutorials</a> |
| <li><a class="main-nav-link" href="https://github.com/apache/incubator-mxnet/tree/1.2.1/example">Examples</a></li> |
| <li><a class="main-nav-link" href="/versions/1.2.1/architecture/index.html">Architecture</a></li> |
| <li><a class="main-nav-link" href="https://cwiki.apache.org/confluence/display/MXNET/Apache+MXNet+Home">Developer Wiki</a></li> |
| <li><a class="main-nav-link" href="/versions/1.2.1/model_zoo/index.html">Model Zoo</a></li> |
| <li><a class="main-nav-link" href="https://github.com/onnx/onnx-mxnet">ONNX</a></li> |
| </li></ul> |
| </span> |
| <span id="dropdown-menu-position-anchor-community"> |
| <a aria-expanded="true" aria-haspopup="true" class="main-nav-link dropdown-toggle" data-toggle="dropdown" href="#" role="button">Community <span class="caret"></span></a> |
| <ul class="dropdown-menu navbar-menu" id="package-dropdown-menu-community"> |
| <li><a class="main-nav-link" href="http://discuss.mxnet.io">Forum</a></li> |
| <li><a class="main-nav-link" href="https://github.com/apache/incubator-mxnet/tree/1.2.1">Github</a></li> |
| <li><a class="main-nav-link" href="/versions/1.2.1/community/contribute.html">Contribute</a></li> |
| <li><a class="main-nav-link" href="/versions/1.2.1/community/powered_by.html">Powered By</a></li> |
| </ul> |
| </span> |
| <span id="dropdown-menu-position-anchor-version" style="position: relative"><a href="#" class="main-nav-link dropdown-toggle" data-toggle="dropdown" role="button" aria-haspopup="true" aria-expanded="true">1.2.1<span class="caret"></span></a><ul id="package-dropdown-menu" class="dropdown-menu"><li><a href="/">master</a></li><li><a href="/versions/1.7.0/">1.7.0</a></li><li><a href=/versions/1.6.0/>1.6.0</a></li><li><a href=/versions/1.5.0/>1.5.0</a></li><li><a href=/versions/1.4.1/>1.4.1</a></li><li><a href=/versions/1.3.1/>1.3.1</a></li><li><a href=/versions/1.2.1/>1.2.1</a></li><li><a href=/versions/1.1.0/>1.1.0</a></li><li><a href=/versions/1.0.0/>1.0.0</a></li><li><a href=/versions/0.12.1/>0.12.1</a></li><li><a href=/versions/0.11.0/>0.11.0</a></li></ul></span></nav> |
| <script> function getRootPath(){ return "../" } </script> |
| <div class="burgerIcon dropdown"> |
| <a class="dropdown-toggle" data-toggle="dropdown" href="#" role="button">☰</a> |
| <ul class="dropdown-menu" id="burgerMenu"> |
| <li><a href="/versions/1.2.1/install/index.html">Install</a></li> |
| <li><a class="main-nav-link" href="/versions/1.2.1/tutorials/index.html">Tutorials</a></li> |
| <li class="dropdown-submenu dropdown"> |
| <a aria-expanded="true" aria-haspopup="true" class="dropdown-toggle burger-link" data-toggle="dropdown" href="#" tabindex="-1">Gluon</a> |
| <ul class="dropdown-menu navbar-menu" id="package-dropdown-menu"> |
| <li><a class="main-nav-link" href="/versions/1.2.1/tutorials/gluon/gluon.html">About</a></li> |
| <li><a class="main-nav-link" href="http://gluon.mxnet.io">The Straight Dope (Tutorials)</a></li> |
| <li><a class="main-nav-link" href="https://gluon-cv.mxnet.io">GluonCV Toolkit</a></li> |
| <li><a class="main-nav-link" href="https://gluon-nlp.mxnet.io/">GluonNLP Toolkit</a></li> |
| </ul> |
| </li> |
| <li class="dropdown-submenu"> |
| <a aria-expanded="true" aria-haspopup="true" class="dropdown-toggle burger-link" data-toggle="dropdown" href="#" tabindex="-1">API</a> |
| <ul class="dropdown-menu"> |
| <li><a class="main-nav-link" href="/versions/1.2.1/api/python/index.html">Python</a></li> |
| <li><a class="main-nav-link" href="/versions/1.2.1/api/c++/index.html">C++</a></li> |
| <li><a class="main-nav-link" href="/versions/1.2.1/api/julia/index.html">Julia</a></li> |
| <li><a class="main-nav-link" href="/versions/1.2.1/api/perl/index.html">Perl</a></li> |
| <li><a class="main-nav-link" href="/versions/1.2.1/api/r/index.html">R</a></li> |
| <li><a class="main-nav-link" href="/versions/1.2.1/api/scala/index.html">Scala</a></li> |
| </ul> |
| </li> |
| <li class="dropdown-submenu"> |
| <a aria-expanded="true" aria-haspopup="true" class="dropdown-toggle burger-link" data-toggle="dropdown" href="#" tabindex="-1">Docs</a> |
| <ul class="dropdown-menu"> |
| <li><a href="/versions/1.2.1/faq/index.html" tabindex="-1">FAQ</a></li> |
| <li><a href="/versions/1.2.1/tutorials/index.html" tabindex="-1">Tutorials</a></li> |
| <li><a href="https://github.com/apache/incubator-mxnet/tree/1.2.1/example" tabindex="-1">Examples</a></li> |
| <li><a href="/versions/1.2.1/architecture/index.html" tabindex="-1">Architecture</a></li> |
| <li><a href="https://cwiki.apache.org/confluence/display/MXNET/Apache+MXNet+Home" tabindex="-1">Developer Wiki</a></li> |
| <li><a href="/versions/1.2.1/model_zoo/index.html" tabindex="-1">Gluon Model Zoo</a></li> |
| <li><a href="https://github.com/onnx/onnx-mxnet" tabindex="-1">ONNX</a></li> |
| </ul> |
| </li> |
| <li class="dropdown-submenu dropdown"> |
| <a aria-haspopup="true" class="dropdown-toggle burger-link" data-toggle="dropdown" href="#" role="button" tabindex="-1">Community</a> |
| <ul class="dropdown-menu"> |
| <li><a href="http://discuss.mxnet.io" tabindex="-1">Forum</a></li> |
| <li><a href="https://github.com/apache/incubator-mxnet/tree/1.2.1" tabindex="-1">Github</a></li> |
| <li><a href="/versions/1.2.1/community/contribute.html" tabindex="-1">Contribute</a></li> |
| <li><a href="/versions/1.2.1/community/powered_by.html" tabindex="-1">Powered By</a></li> |
| </ul> |
| </li> |
| <li id="dropdown-menu-position-anchor-version-mobile" class="dropdown-submenu" style="position: relative"><a href="#" tabindex="-1">1.2.1</a><ul class="dropdown-menu"><li><a tabindex="-1" href=/>master</a></li><li><a tabindex="-1" href=/versions/1.6.0/>1.6.0</a></li><li><a tabindex="-1" href=/versions/1.5.0/>1.5.0</a></li><li><a tabindex="-1" href=/versions/1.4.1/>1.4.1</a></li><li><a tabindex="-1" href=/versions/1.3.1/>1.3.1</a></li><li><a tabindex="-1" href=/versions/1.2.1/>1.2.1</a></li><li><a tabindex="-1" href=/versions/1.1.0/>1.1.0</a></li><li><a tabindex="-1" href=/versions/1.0.0/>1.0.0</a></li><li><a tabindex="-1" href=/versions/0.12.1/>0.12.1</a></li><li><a tabindex="-1" href=/versions/0.11.0/>0.11.0</a></li></ul></li></ul> |
| </div> |
| <div class="plusIcon dropdown"> |
| <a class="dropdown-toggle" data-toggle="dropdown" href="#" role="button"><span aria-hidden="true" class="glyphicon glyphicon-plus"></span></a> |
| <ul class="dropdown-menu dropdown-menu-right" id="plusMenu"></ul> |
| </div> |
| <div id="search-input-wrap"> |
| <form action="../search.html" autocomplete="off" class="" method="get" role="search"> |
| <div class="form-group inner-addon left-addon"> |
| <i class="glyphicon glyphicon-search"></i> |
| <input class="form-control" name="q" placeholder="Search" type="text"/> |
| </div> |
| <input name="check_keywords" type="hidden" value="yes"> |
| <input name="area" type="hidden" value="default"/> |
| </input></form> |
| <div id="search-preview"></div> |
| </div> |
| <div id="searchIcon"> |
| <span aria-hidden="true" class="glyphicon glyphicon-search"></span> |
| </div> |
| <!-- <div id="lang-select-wrap"> --> |
| <!-- <label id="lang-select-label"> --> |
| <!-- <\!-- <i class="fa fa-globe"></i> -\-> --> |
| <!-- <span></span> --> |
| <!-- </label> --> |
| <!-- <select id="lang-select"> --> |
| <!-- <option value="en">Eng</option> --> |
| <!-- <option value="zh">中文</option> --> |
| <!-- </select> --> |
| <!-- </div> --> |
| <!-- <a id="mobile-nav-toggle"> |
| <span class="mobile-nav-toggle-bar"></span> |
| <span class="mobile-nav-toggle-bar"></span> |
| <span class="mobile-nav-toggle-bar"></span> |
| </a> --> |
| </div> |
| </div> |
| </div> |
| <script type="text/javascript"> |
| $('body').css('background', 'white'); |
| </script> |
| <div class="container"> |
| <div class="row"> |
| <div aria-label="main navigation" class="sphinxsidebar leftsidebar" role="navigation"> |
| <div class="sphinxsidebarwrapper"> |
| <ul> |
| <li class="toctree-l1"><a class="reference internal" href="../api/python/index.html">Python Documents</a></li> |
| <li class="toctree-l1"><a class="reference internal" href="../api/r/index.html">R Documents</a></li> |
| <li class="toctree-l1"><a class="reference internal" href="../api/julia/index.html">Julia Documents</a></li> |
| <li class="toctree-l1"><a class="reference internal" href="../api/c++/index.html">C++ Documents</a></li> |
| <li class="toctree-l1"><a class="reference internal" href="../api/scala/index.html">Scala Documents</a></li> |
| <li class="toctree-l1"><a class="reference internal" href="../api/perl/index.html">Perl Documents</a></li> |
| <li class="toctree-l1"><a class="reference internal" href="index.html">HowTo Documents</a></li> |
| <li class="toctree-l1"><a class="reference internal" href="../architecture/index.html">System Documents</a></li> |
| <li class="toctree-l1"><a class="reference internal" href="../tutorials/index.html">Tutorials</a></li> |
| <li class="toctree-l1"><a class="reference internal" href="../community/index.html">Community</a></li> |
| </ul> |
| </div> |
| </div> |
| <div class="content"> |
| <div class="page-tracker"></div> |
| <div class="section" id="fine-tune-with-pretrained-models"> |
| <span id="fine-tune-with-pretrained-models"></span><h1>Fine-tune with Pretrained Models<a class="headerlink" href="#fine-tune-with-pretrained-models" title="Permalink to this headline">¶</a></h1> |
| <p>Many of the exciting deep learning algorithms for computer vision require |
| massive datasets for training. The most popular benchmark dataset, |
| <a class="reference external" href="http://www.image-net.org/">ImageNet</a>, for example, contains one million images |
| from one thousand categories. But for any practical problem, we typically have |
| access to comparatively small datasets. In these cases, if we were to train a |
| neural network’s weights from scratch, starting from random initialized |
| parameters, we would overfit the training set badly.</p> |
| <p>One approach to get around this problem is to first pretrain a deep net on a |
| large-scale dataset, like ImageNet. Then, given a new dataset, we can start |
| with these pretrained weights when training on our new task. This process is |
| commonly called <em>fine-tuning</em>. There are a number of variations of fine-tuning. |
| Sometimes, the initial neural network is used only as a <em>feature extractor</em>. |
| That means that we freeze every layer prior to the output layer and simply learn |
| a new output layer. In <a class="reference external" href="https://github.com/dmlc/mxnet-notebooks/blob/1.2.1/python/how_to/predict.ipynb">another document</a>, we explained how to |
| do this kind of feature extraction. Another approach is to update all of |
| the network’s weights for the new task, and that’s the approach we demonstrate in |
| this document.</p> |
| <p>To fine-tune a network, we must first replace the last fully-connected layer |
| with a new one that outputs the desired number of classes. We initialize its |
| weights randomly. Then we continue training as normal. Sometimes it’s common to |
| use a smaller learning rate based on the intuition that we may already be close |
| to a good result.</p> |
| <p>In this demonstration, we’ll fine-tune a model pretrained on ImageNet to the |
| smaller caltech-256 dataset. Following this example, you can fine-tune to other |
| datasets, even for strikingly different applications such as face |
| identification.</p> |
| <p>We will show that, even with simple hyper-parameters setting, we can match and |
| even outperform state-of-the-art results on caltech-256.</p> |
| <table border="1" class="docutils"> |
| <colgroup> |
| <col width="50%"/> |
| <col width="50%"/> |
| </colgroup> |
| <thead valign="bottom"> |
| <tr class="row-odd"><th class="head">Network</th> |
| <th class="head">Accuracy</th> |
| </tr> |
| </thead> |
| <tbody valign="top"> |
| <tr class="row-even"><td>Resnet-50</td> |
| <td>77.4%</td> |
| </tr> |
| <tr class="row-odd"><td>Resnet-152</td> |
| <td>86.4%</td> |
| </tr> |
| </tbody> |
| </table> |
| <div class="section" id="prepare-data"> |
| <span id="prepare-data"></span><h2>Prepare data<a class="headerlink" href="#prepare-data" title="Permalink to this headline">¶</a></h2> |
| <p>We follow the standard protocol to sample 60 images from each class as the |
| training set, and the rest for the validation set. We resize images into 256x256 |
| size and pack them into the rec file. The scripts to prepare the data is as |
| following.</p> |
| <blockquote> |
| <div>In order to successfully run the following bash script on Windows please use https://cygwin.com/install.html .</div></blockquote> |
| <div class="highlight-sh"><div class="highlight"><pre><span></span>wget http://www.vision.caltech.edu/Image_Datasets/Caltech256/256_ObjectCategories.tar |
| tar -xf 256_ObjectCategories.tar |
| |
| mkdir -p caltech_256_train_60 |
| <span class="k">for</span> i in 256_ObjectCategories/*<span class="p">;</span> <span class="k">do</span> |
| <span class="nv">c</span><span class="o">=</span><span class="sb">`</span>basename <span class="nv">$i</span><span class="sb">`</span> |
| mkdir -p caltech_256_train_60/<span class="nv">$c</span> |
| <span class="k">for</span> j in <span class="sb">`</span>ls <span class="nv">$i</span>/*.jpg <span class="p">|</span> shuf <span class="p">|</span> head -n <span class="m">60</span><span class="sb">`</span><span class="p">;</span> <span class="k">do</span> |
| mv <span class="nv">$j</span> caltech_256_train_60/<span class="nv">$c</span>/ |
| <span class="k">done</span> |
| <span class="k">done</span> |
| |
| python ~/mxnet/tools/im2rec.py --list --recursive caltech-256-60-train caltech_256_train_60/ |
| python ~/mxnet/tools/im2rec.py --list --recursive caltech-256-60-val 256_ObjectCategories/ |
| python ~/mxnet/tools/im2rec.py --resize <span class="m">256</span> --quality <span class="m">90</span> --num-thread <span class="m">16</span> caltech-256-60-val 256_ObjectCategories/ |
| python ~/mxnet/tools/im2rec.py --resize <span class="m">256</span> --quality <span class="m">90</span> --num-thread <span class="m">16</span> caltech-256-60-train caltech_256_train_60/ |
| </pre></div> |
| </div> |
| <p>The following code downloads the pregenerated rec files. It may take a few minutes.</p> |
| <div class="highlight-python"><div class="highlight"><pre><span></span><span class="kn">import</span> <span class="nn">os</span><span class="o">,</span> <span class="nn">sys</span> |
| |
| <span class="k">if</span> <span class="n">sys</span><span class="o">.</span><span class="n">version_info</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span> <span class="o">>=</span> <span class="mi">3</span><span class="p">:</span> |
| <span class="kn">from</span> <span class="nn">urllib.request</span> <span class="kn">import</span> <span class="n">urlretrieve</span> |
| <span class="k">else</span><span class="p">:</span> |
| <span class="kn">from</span> <span class="nn">urllib</span> <span class="kn">import</span> <span class="n">urlretrieve</span> |
| |
| <span class="k">def</span> <span class="nf">download</span><span class="p">(</span><span class="n">url</span><span class="p">):</span> |
| <span class="n">filename</span> <span class="o">=</span> <span class="n">url</span><span class="o">.</span><span class="n">split</span><span class="p">(</span><span class="s2">"/"</span><span class="p">)[</span><span class="o">-</span><span class="mi">1</span><span class="p">]</span> |
| <span class="k">if</span> <span class="ow">not</span> <span class="n">os</span><span class="o">.</span><span class="n">path</span><span class="o">.</span><span class="n">exists</span><span class="p">(</span><span class="n">filename</span><span class="p">):</span> |
| <span class="n">urlretrieve</span><span class="p">(</span><span class="n">url</span><span class="p">,</span> <span class="n">filename</span><span class="p">)</span> |
| <span class="n">download</span><span class="p">(</span><span class="s1">'http://data.mxnet.io/data/caltech-256/caltech-256-60-train.rec'</span><span class="p">)</span> |
| <span class="n">download</span><span class="p">(</span><span class="s1">'http://data.mxnet.io/data/caltech-256/caltech-256-60-val.rec'</span><span class="p">)</span> |
| </pre></div> |
| </div> |
| <p>Next, we define the function which returns the data iterators:</p> |
| <div class="highlight-python"><div class="highlight"><pre><span></span><span class="kn">import</span> <span class="nn">mxnet</span> <span class="kn">as</span> <span class="nn">mx</span> |
| |
| <span class="k">def</span> <span class="nf">get_iterators</span><span class="p">(</span><span class="n">batch_size</span><span class="p">,</span> <span class="n">data_shape</span><span class="o">=</span><span class="p">(</span><span class="mi">3</span><span class="p">,</span> <span class="mi">224</span><span class="p">,</span> <span class="mi">224</span><span class="p">)):</span> |
| <span class="n">train</span> <span class="o">=</span> <span class="n">mx</span><span class="o">.</span><span class="n">io</span><span class="o">.</span><span class="n">ImageRecordIter</span><span class="p">(</span> |
| <span class="n">path_imgrec</span> <span class="o">=</span> <span class="s1">'./caltech-256-60-train.rec'</span><span class="p">,</span> |
| <span class="n">data_name</span> <span class="o">=</span> <span class="s1">'data'</span><span class="p">,</span> |
| <span class="n">label_name</span> <span class="o">=</span> <span class="s1">'softmax_label'</span><span class="p">,</span> |
| <span class="n">batch_size</span> <span class="o">=</span> <span class="n">batch_size</span><span class="p">,</span> |
| <span class="n">data_shape</span> <span class="o">=</span> <span class="n">data_shape</span><span class="p">,</span> |
| <span class="n">shuffle</span> <span class="o">=</span> <span class="bp">True</span><span class="p">,</span> |
| <span class="n">rand_crop</span> <span class="o">=</span> <span class="bp">True</span><span class="p">,</span> |
| <span class="n">rand_mirror</span> <span class="o">=</span> <span class="bp">True</span><span class="p">)</span> |
| <span class="n">val</span> <span class="o">=</span> <span class="n">mx</span><span class="o">.</span><span class="n">io</span><span class="o">.</span><span class="n">ImageRecordIter</span><span class="p">(</span> |
| <span class="n">path_imgrec</span> <span class="o">=</span> <span class="s1">'./caltech-256-60-val.rec'</span><span class="p">,</span> |
| <span class="n">data_name</span> <span class="o">=</span> <span class="s1">'data'</span><span class="p">,</span> |
| <span class="n">label_name</span> <span class="o">=</span> <span class="s1">'softmax_label'</span><span class="p">,</span> |
| <span class="n">batch_size</span> <span class="o">=</span> <span class="n">batch_size</span><span class="p">,</span> |
| <span class="n">data_shape</span> <span class="o">=</span> <span class="n">data_shape</span><span class="p">,</span> |
| <span class="n">rand_crop</span> <span class="o">=</span> <span class="bp">False</span><span class="p">,</span> |
| <span class="n">rand_mirror</span> <span class="o">=</span> <span class="bp">False</span><span class="p">)</span> |
| <span class="k">return</span> <span class="p">(</span><span class="n">train</span><span class="p">,</span> <span class="n">val</span><span class="p">)</span> |
| </pre></div> |
| </div> |
| <p>We then download a pretrained 50-layer ResNet model and load it into memory. Note |
| that if <code class="docutils literal"><span class="pre">load_checkpoint</span></code> reports an error, we can remove the downloaded files |
| and try <code class="docutils literal"><span class="pre">get_model</span></code> again.</p> |
| <div class="highlight-python"><div class="highlight"><pre><span></span><span class="k">def</span> <span class="nf">get_model</span><span class="p">(</span><span class="n">prefix</span><span class="p">,</span> <span class="n">epoch</span><span class="p">):</span> |
| <span class="n">download</span><span class="p">(</span><span class="n">prefix</span><span class="o">+</span><span class="s1">'-symbol.json'</span><span class="p">)</span> |
| <span class="n">download</span><span class="p">(</span><span class="n">prefix</span><span class="o">+</span><span class="s1">'-</span><span class="si">%04d</span><span class="s1">.params'</span> <span class="o">%</span> <span class="p">(</span><span class="n">epoch</span><span class="p">,))</span> |
| |
| <span class="n">get_model</span><span class="p">(</span><span class="s1">'http://data.mxnet.io/models/imagenet/resnet/50-layers/resnet-50'</span><span class="p">,</span> <span class="mi">0</span><span class="p">)</span> |
| <span class="n">sym</span><span class="p">,</span> <span class="n">arg_params</span><span class="p">,</span> <span class="n">aux_params</span> <span class="o">=</span> <span class="n">mx</span><span class="o">.</span><span class="n">model</span><span class="o">.</span><span class="n">load_checkpoint</span><span class="p">(</span><span class="s1">'resnet-50'</span><span class="p">,</span> <span class="mi">0</span><span class="p">)</span> |
| </pre></div> |
| </div> |
| </div> |
| <div class="section" id="train"> |
| <span id="train"></span><h2>Train<a class="headerlink" href="#train" title="Permalink to this headline">¶</a></h2> |
| <p>We first define a function which replaces the last fully-connected layer for a given network.</p> |
| <div class="highlight-python"><div class="highlight"><pre><span></span><span class="k">def</span> <span class="nf">get_fine_tune_model</span><span class="p">(</span><span class="n">symbol</span><span class="p">,</span> <span class="n">arg_params</span><span class="p">,</span> <span class="n">num_classes</span><span class="p">,</span> <span class="n">layer_name</span><span class="o">=</span><span class="s1">'flatten0'</span><span class="p">):</span> |
| <span class="sd">"""</span> |
| <span class="sd"> symbol: the pretrained network symbol</span> |
| <span class="sd"> arg_params: the argument parameters of the pretrained model</span> |
| <span class="sd"> num_classes: the number of classes for the fine-tune datasets</span> |
| <span class="sd"> layer_name: the layer name before the last fully-connected layer</span> |
| <span class="sd"> """</span> |
| <span class="n">all_layers</span> <span class="o">=</span> <span class="n">symbol</span><span class="o">.</span><span class="n">get_internals</span><span class="p">()</span> |
| <span class="n">net</span> <span class="o">=</span> <span class="n">all_layers</span><span class="p">[</span><span class="n">layer_name</span><span class="o">+</span><span class="s1">'_output'</span><span class="p">]</span> |
| <span class="n">net</span> <span class="o">=</span> <span class="n">mx</span><span class="o">.</span><span class="n">symbol</span><span class="o">.</span><span class="n">FullyConnected</span><span class="p">(</span><span class="n">data</span><span class="o">=</span><span class="n">net</span><span class="p">,</span> <span class="n">num_hidden</span><span class="o">=</span><span class="n">num_classes</span><span class="p">,</span> <span class="n">name</span><span class="o">=</span><span class="s1">'fc1'</span><span class="p">)</span> |
| <span class="n">net</span> <span class="o">=</span> <span class="n">mx</span><span class="o">.</span><span class="n">symbol</span><span class="o">.</span><span class="n">SoftmaxOutput</span><span class="p">(</span><span class="n">data</span><span class="o">=</span><span class="n">net</span><span class="p">,</span> <span class="n">name</span><span class="o">=</span><span class="s1">'softmax'</span><span class="p">)</span> |
| <span class="n">new_args</span> <span class="o">=</span> <span class="nb">dict</span><span class="p">({</span><span class="n">k</span><span class="p">:</span><span class="n">arg_params</span><span class="p">[</span><span class="n">k</span><span class="p">]</span> <span class="k">for</span> <span class="n">k</span> <span class="ow">in</span> <span class="n">arg_params</span> <span class="k">if</span> <span class="s1">'fc1'</span> <span class="ow">not</span> <span class="ow">in</span> <span class="n">k</span><span class="p">})</span> |
| <span class="k">return</span> <span class="p">(</span><span class="n">net</span><span class="p">,</span> <span class="n">new_args</span><span class="p">)</span> |
| </pre></div> |
| </div> |
| <p>Now we create a module. Note we pass the existing parameters from the loaded model via the <code class="docutils literal"><span class="pre">arg_params</span></code> argument. |
| The parameters of the last fully-connected layer will be randomly initialized by the <code class="docutils literal"><span class="pre">initializer</span></code>.</p> |
| <div class="highlight-python"><div class="highlight"><pre><span></span><span class="kn">import</span> <span class="nn">logging</span> |
| <span class="n">head</span> <span class="o">=</span> <span class="s1">'</span><span class="si">%(asctime)-15s</span><span class="s1"> </span><span class="si">%(message)s</span><span class="s1">'</span> |
| <span class="n">logging</span><span class="o">.</span><span class="n">basicConfig</span><span class="p">(</span><span class="n">level</span><span class="o">=</span><span class="n">logging</span><span class="o">.</span><span class="n">DEBUG</span><span class="p">,</span> <span class="n">format</span><span class="o">=</span><span class="n">head</span><span class="p">)</span> |
| |
| <span class="k">def</span> <span class="nf">fit</span><span class="p">(</span><span class="n">symbol</span><span class="p">,</span> <span class="n">arg_params</span><span class="p">,</span> <span class="n">aux_params</span><span class="p">,</span> <span class="n">train</span><span class="p">,</span> <span class="n">val</span><span class="p">,</span> <span class="n">batch_size</span><span class="p">,</span> <span class="n">num_gpus</span><span class="p">):</span> |
| <span class="n">devs</span> <span class="o">=</span> <span class="p">[</span><span class="n">mx</span><span class="o">.</span><span class="n">gpu</span><span class="p">(</span><span class="n">i</span><span class="p">)</span> <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">num_gpus</span><span class="p">)]</span> |
| <span class="n">mod</span> <span class="o">=</span> <span class="n">mx</span><span class="o">.</span><span class="n">mod</span><span class="o">.</span><span class="n">Module</span><span class="p">(</span><span class="n">symbol</span><span class="o">=</span><span class="n">symbol</span><span class="p">,</span> <span class="n">context</span><span class="o">=</span><span class="n">devs</span><span class="p">)</span> |
| <span class="n">mod</span><span class="o">.</span><span class="n">fit</span><span class="p">(</span><span class="n">train</span><span class="p">,</span> <span class="n">val</span><span class="p">,</span> |
| <span class="n">num_epoch</span><span class="o">=</span><span class="mi">8</span><span class="p">,</span> |
| <span class="n">arg_params</span><span class="o">=</span><span class="n">arg_params</span><span class="p">,</span> |
| <span class="n">aux_params</span><span class="o">=</span><span class="n">aux_params</span><span class="p">,</span> |
| <span class="n">allow_missing</span><span class="o">=</span><span class="bp">True</span><span class="p">,</span> |
| <span class="n">batch_end_callback</span> <span class="o">=</span> <span class="n">mx</span><span class="o">.</span><span class="n">callback</span><span class="o">.</span><span class="n">Speedometer</span><span class="p">(</span><span class="n">batch_size</span><span class="p">,</span> <span class="mi">10</span><span class="p">),</span> |
| <span class="n">kvstore</span><span class="o">=</span><span class="s1">'device'</span><span class="p">,</span> |
| <span class="n">optimizer</span><span class="o">=</span><span class="s1">'sgd'</span><span class="p">,</span> |
| <span class="n">optimizer_params</span><span class="o">=</span><span class="p">{</span><span class="s1">'learning_rate'</span><span class="p">:</span><span class="mf">0.01</span><span class="p">},</span> |
| <span class="n">initializer</span><span class="o">=</span><span class="n">mx</span><span class="o">.</span><span class="n">init</span><span class="o">.</span><span class="n">Xavier</span><span class="p">(</span><span class="n">rnd_type</span><span class="o">=</span><span class="s1">'gaussian'</span><span class="p">,</span> <span class="n">factor_type</span><span class="o">=</span><span class="s2">"in"</span><span class="p">,</span> <span class="n">magnitude</span><span class="o">=</span><span class="mi">2</span><span class="p">),</span> |
| <span class="n">eval_metric</span><span class="o">=</span><span class="s1">'acc'</span><span class="p">)</span> |
| <span class="n">metric</span> <span class="o">=</span> <span class="n">mx</span><span class="o">.</span><span class="n">metric</span><span class="o">.</span><span class="n">Accuracy</span><span class="p">()</span> |
| <span class="k">return</span> <span class="n">mod</span><span class="o">.</span><span class="n">score</span><span class="p">(</span><span class="n">val</span><span class="p">,</span> <span class="n">metric</span><span class="p">)</span> |
| </pre></div> |
| </div> |
| <p>Then we can start training. We use AWS EC2 g2.8xlarge, which has 8 GPUs.</p> |
| <div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">num_classes</span> <span class="o">=</span> <span class="mi">256</span> |
| <span class="n">batch_per_gpu</span> <span class="o">=</span> <span class="mi">16</span> |
| <span class="n">num_gpus</span> <span class="o">=</span> <span class="mi">8</span> |
| |
| <span class="p">(</span><span class="n">new_sym</span><span class="p">,</span> <span class="n">new_args</span><span class="p">)</span> <span class="o">=</span> <span class="n">get_fine_tune_model</span><span class="p">(</span><span class="n">sym</span><span class="p">,</span> <span class="n">arg_params</span><span class="p">,</span> <span class="n">num_classes</span><span class="p">)</span> |
| |
| <span class="n">batch_size</span> <span class="o">=</span> <span class="n">batch_per_gpu</span> <span class="o">*</span> <span class="n">num_gpus</span> |
| <span class="p">(</span><span class="n">train</span><span class="p">,</span> <span class="n">val</span><span class="p">)</span> <span class="o">=</span> <span class="n">get_iterators</span><span class="p">(</span><span class="n">batch_size</span><span class="p">)</span> |
| <span class="n">mod_score</span> <span class="o">=</span> <span class="n">fit</span><span class="p">(</span><span class="n">new_sym</span><span class="p">,</span> <span class="n">new_args</span><span class="p">,</span> <span class="n">aux_params</span><span class="p">,</span> <span class="n">train</span><span class="p">,</span> <span class="n">val</span><span class="p">,</span> <span class="n">batch_size</span><span class="p">,</span> <span class="n">num_gpus</span><span class="p">)</span> |
| <span class="k">assert</span> <span class="n">mod_score</span> <span class="o">></span> <span class="mf">0.77</span><span class="p">,</span> <span class="s2">"Low training accuracy."</span> |
| </pre></div> |
| </div> |
| <p>You will see that, after only 8 epochs, we can get 78% validation accuracy. This |
| matches the state-of-the-art results training on caltech-256 alone, |
| e.g. <a class="reference external" href="http://www.robots.ox.ac.uk/~vgg/research/deep_eval/">VGG</a>.</p> |
| <p>Next, we try to use another pretrained model. This model was trained on the |
| complete Imagenet dataset, which is 10x larger than the Imagenet 1K classes |
| version, and uses a 3x deeper Resnet architecture.</p> |
| <div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">get_model</span><span class="p">(</span><span class="s1">'http://data.mxnet.io/models/imagenet-11k/resnet-152/resnet-152'</span><span class="p">,</span> <span class="mi">0</span><span class="p">)</span> |
| <span class="n">sym</span><span class="p">,</span> <span class="n">arg_params</span><span class="p">,</span> <span class="n">aux_params</span> <span class="o">=</span> <span class="n">mx</span><span class="o">.</span><span class="n">model</span><span class="o">.</span><span class="n">load_checkpoint</span><span class="p">(</span><span class="s1">'resnet-152'</span><span class="p">,</span> <span class="mi">0</span><span class="p">)</span> |
| <span class="p">(</span><span class="n">new_sym</span><span class="p">,</span> <span class="n">new_args</span><span class="p">)</span> <span class="o">=</span> <span class="n">get_fine_tune_model</span><span class="p">(</span><span class="n">sym</span><span class="p">,</span> <span class="n">arg_params</span><span class="p">,</span> <span class="n">num_classes</span><span class="p">)</span> |
| <span class="n">mod_score</span> <span class="o">=</span> <span class="n">fit</span><span class="p">(</span><span class="n">new_sym</span><span class="p">,</span> <span class="n">new_args</span><span class="p">,</span> <span class="n">aux_params</span><span class="p">,</span> <span class="n">train</span><span class="p">,</span> <span class="n">val</span><span class="p">,</span> <span class="n">batch_size</span><span class="p">,</span> <span class="n">num_gpus</span><span class="p">)</span> |
| <span class="k">assert</span> <span class="n">mod_score</span> <span class="o">></span> <span class="mf">0.86</span><span class="p">,</span> <span class="s2">"Low training accuracy."</span> |
| </pre></div> |
| </div> |
| <p>As can be seen, even for a single data epoch, it reaches 83% validation |
| accuracy. After 8 epoches, the validation accuracy increases to 86.4%.</p> |
| <div class="btn-group" role="group"> |
| <div class="download-btn"><a download="finetune.ipynb" href="finetune.ipynb"><span class="glyphicon glyphicon-download-alt"></span> finetune.ipynb</a></div></div></div> |
| </div> |
| </div> |
| </div> |
| <div aria-label="main navigation" class="sphinxsidebar rightsidebar" role="navigation"> |
| <div class="sphinxsidebarwrapper"> |
| <h3><a href="../index.html">Table Of Contents</a></h3> |
| <ul> |
| <li><a class="reference internal" href="#">Fine-tune with Pretrained Models</a><ul> |
| <li><a class="reference internal" href="#prepare-data">Prepare data</a></li> |
| <li><a class="reference internal" href="#train">Train</a></li> |
| </ul> |
| </li> |
| </ul> |
| </div> |
| </div> |
| </div><div class="footer"> |
| <div class="section-disclaimer"> |
| <div class="container"> |
| <div> |
| <img height="60" src="https://raw.githubusercontent.com/dmlc/web-data/master/mxnet/image/apache_incubator_logo.png"/> |
| <p> |
| Apache MXNet is an effort undergoing incubation at The Apache Software Foundation (ASF), <strong>sponsored by the <i>Apache Incubator</i></strong>. Incubation is required of all newly accepted projects until a further review indicates that the infrastructure, communications, and decision making process have stabilized in a manner consistent with other successful ASF projects. While incubation status is not necessarily a reflection of the completeness or stability of the code, it does indicate that the project has yet to be fully endorsed by the ASF. |
| </p> |
| <p> |
| "Copyright © 2017-2018, The Apache Software Foundation |
| Apache MXNet, MXNet, Apache, the Apache feather, and the Apache MXNet project logo are either registered trademarks or trademarks of the Apache Software Foundation." |
| </p> |
| </div> |
| </div> |
| </div> |
| </div> <!-- pagename != index --> |
| </div> |
| <script crossorigin="anonymous" integrity="sha384-0mSbJDEHialfmuBBQP6A4Qrprq5OVfW37PRR3j5ELqxss1yVqOtnepnHVP9aJ7xS" src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/js/bootstrap.min.js"></script> |
| <script src="../_static/js/sidebar.js" type="text/javascript"></script> |
| <script src="../_static/js/search.js" type="text/javascript"></script> |
| <script src="../_static/js/navbar.js" type="text/javascript"></script> |
| <script src="../_static/js/clipboard.min.js" type="text/javascript"></script> |
| <script src="../_static/js/copycode.js" type="text/javascript"></script> |
| <script src="../_static/js/page.js" type="text/javascript"></script> |
| <script src="../_static/js/docversion.js" type="text/javascript"></script> |
| <script type="text/javascript"> |
| $('body').ready(function () { |
| $('body').css('visibility', 'visible'); |
| }); |
| </script> |
| </body> |
| </html> |