| <!DOCTYPE html> |
| |
| <html xmlns="http://www.w3.org/1999/xhtml"> |
| <head> |
| <meta charset="utf-8" /> |
| <meta charset="utf-8"> |
| <meta name="viewport" content="width=device-width, initial-scale=1, shrink-to-fit=no"> |
| <meta http-equiv="x-ua-compatible" content="ie=edge"> |
| <style> |
| .dropdown { |
| position: relative; |
| display: inline-block; |
| } |
| |
| .dropdown-content { |
| display: none; |
| position: absolute; |
| background-color: #f9f9f9; |
| min-width: 160px; |
| box-shadow: 0px 8px 16px 0px rgba(0,0,0,0.2); |
| padding: 12px 16px; |
| z-index: 1; |
| text-align: left; |
| } |
| |
| .dropdown:hover .dropdown-content { |
| display: block; |
| } |
| |
| .dropdown-option:hover { |
| color: #FF4500; |
| } |
| |
| .dropdown-option-active { |
| color: #FF4500; |
| font-weight: lighter; |
| } |
| |
| .dropdown-option { |
| color: #000000; |
| font-weight: lighter; |
| } |
| |
| .dropdown-header { |
| color: #FFFFFF; |
| display: inline-flex; |
| } |
| |
| .dropdown-caret { |
| width: 18px; |
| height: 54px; |
| } |
| |
| .dropdown-caret-path { |
| fill: #FFFFFF; |
| } |
| </style> |
| |
| <title>ndarray.random — Apache MXNet documentation</title> |
| |
| <link rel="stylesheet" href="../../../../_static/basic.css" type="text/css" /> |
| <link rel="stylesheet" href="../../../../_static/pygments.css" type="text/css" /> |
| <link rel="stylesheet" type="text/css" href="../../../../_static/mxnet.css" /> |
| <link rel="stylesheet" href="../../../../_static/material-design-lite-1.3.0/material.blue-deep_orange.min.css" type="text/css" /> |
| <link rel="stylesheet" href="../../../../_static/sphinx_materialdesign_theme.css" type="text/css" /> |
| <link rel="stylesheet" href="../../../../_static/fontawesome/all.css" type="text/css" /> |
| <link rel="stylesheet" href="../../../../_static/fonts.css" type="text/css" /> |
| <link rel="stylesheet" href="../../../../_static/feedback.css" type="text/css" /> |
| <script id="documentation_options" data-url_root="../../../../" src="../../../../_static/documentation_options.js"></script> |
| <script src="../../../../_static/jquery.js"></script> |
| <script src="../../../../_static/underscore.js"></script> |
| <script src="../../../../_static/doctools.js"></script> |
| <script src="../../../../_static/language_data.js"></script> |
| <script src="../../../../_static/google_analytics.js"></script> |
| <script src="../../../../_static/autodoc.js"></script> |
| <script crossorigin="anonymous" integrity="sha256-Ae2Vz/4ePdIu6ZyI/5ZGsYnb+m0JlOmKPjt6XZ9JJkA=" src="https://cdnjs.cloudflare.com/ajax/libs/require.js/2.3.4/require.min.js"></script> |
| <script async="async" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/latest.js?config=TeX-AMS-MML_HTMLorMML"></script> |
| <script type="text/x-mathjax-config">MathJax.Hub.Config({"tex2jax": {"inlineMath": [["$", "$"], ["\\(", "\\)"]], "processEscapes": true, "ignoreClass": "document", "processClass": "math|output_area"}})</script> |
| <script src="../../../../_static/sphinx_materialdesign_theme.js"></script> |
| <link rel="shortcut icon" href="../../../../_static/mxnet-icon.png"/> |
| <link rel="index" title="Index" href="../../../../genindex.html" /> |
| <link rel="search" title="Search" href="../../../../search.html" /> |
| <link rel="next" title="ndarray.register" href="../register/index.html" /> |
| <link rel="prev" title="ndarray.op" href="../op/index.html" /> |
| </head> |
| <body><header class="site-header" role="banner"> |
| <div class="wrapper"> |
| <a class="site-title" rel="author" href="/"><img |
| src="../../../../_static/mxnet_logo.png" class="site-header-logo"></a> |
| <nav class="site-nav"> |
| <input type="checkbox" id="nav-trigger" class="nav-trigger"/> |
| <label for="nav-trigger"> |
| <span class="menu-icon"> |
| <svg viewBox="0 0 18 15" width="18px" height="15px"> |
| <path d="M18,1.484c0,0.82-0.665,1.484-1.484,1.484H1.484C0.665,2.969,0,2.304,0,1.484l0,0C0,0.665,0.665,0,1.484,0 h15.032C17.335,0,18,0.665,18,1.484L18,1.484z M18,7.516C18,8.335,17.335,9,16.516,9H1.484C0.665,9,0,8.335,0,7.516l0,0 c0-0.82,0.665-1.484,1.484-1.484h15.032C17.335,6.031,18,6.696,18,7.516L18,7.516z M18,13.516C18,14.335,17.335,15,16.516,15H1.484 C0.665,15,0,14.335,0,13.516l0,0c0-0.82,0.665-1.483,1.484-1.483h15.032C17.335,12.031,18,12.695,18,13.516L18,13.516z"/> |
| </svg> |
| </span> |
| </label> |
| |
| <div class="trigger"> |
| <a class="page-link" href="/get_started">Get Started</a> |
| <a class="page-link" href="/blog">Blog</a> |
| <a class="page-link" href="/features">Features</a> |
| <a class="page-link" href="/ecosystem">Ecosystem</a> |
| <a class="page-link page-current" href="/api">Docs & Tutorials</a> |
| <a class="page-link" href="https://github.com/apache/incubator-mxnet">GitHub</a> |
| <div class="dropdown"> |
| <span class="dropdown-header">master |
| <svg class="dropdown-caret" viewBox="0 0 32 32" class="icon icon-caret-bottom" aria-hidden="true"><path class="dropdown-caret-path" d="M24 11.305l-7.997 11.39L8 11.305z"></path></svg> |
| </span> |
| <div class="dropdown-content"> |
| <a class="dropdown-option-active" href="/versions/master/">master</a><br> |
| <a class="dropdown-option" href="/versions/1.7.0/">1.7.0</a><br> |
| <a class="dropdown-option" href="/versions/1.6.0/">1.6.0</a><br> |
| <a class="dropdown-option" href="/versions/1.5.0/">1.5.0</a><br> |
| <a class="dropdown-option" href="/versions/1.4.1/">1.4.1</a><br> |
| <a class="dropdown-option" href="/versions/1.3.1/">1.3.1</a><br> |
| <a class="dropdown-option" href="/versions/1.2.1/">1.2.1</a><br> |
| <a class="dropdown-option" href="/versions/1.1.0/">1.1.0</a><br> |
| <a class="dropdown-option" href="/versions/1.0.0/">1.0.0</a><br> |
| <a class="dropdown-option" href="/versions/0.12.1/">0.12.1</a><br> |
| <a class="dropdown-option" href="/versions/0.11.0/">0.11.0</a> |
| </div> |
| </div> |
| </div> |
| </nav> |
| </div> |
| </header> |
| <div class="mdl-layout mdl-js-layout mdl-layout--fixed-header mdl-layout--fixed-drawer"><header class="mdl-layout__header mdl-layout__header--waterfall "> |
| <div class="mdl-layout__header-row"> |
| |
| <nav class="mdl-navigation breadcrumb"> |
| <a class="mdl-navigation__link" href="../../../index.html">Python API</a><i class="material-icons">navigate_next</i> |
| <a class="mdl-navigation__link" href="../../index.html">Legacy</a><i class="material-icons">navigate_next</i> |
| <a class="mdl-navigation__link" href="../index.html">mxnet.ndarray</a><i class="material-icons">navigate_next</i> |
| <a class="mdl-navigation__link is-active">ndarray.random</a> |
| </nav> |
| <div class="mdl-layout-spacer"></div> |
| <nav class="mdl-navigation"> |
| |
| <form class="form-inline pull-sm-right" action="../../../../search.html" method="get"> |
| <div class="mdl-textfield mdl-js-textfield mdl-textfield--expandable mdl-textfield--floating-label mdl-textfield--align-right"> |
| <label id="quick-search-icon" class="mdl-button mdl-js-button mdl-button--icon" for="waterfall-exp"> |
| <i class="material-icons">search</i> |
| </label> |
| <div class="mdl-textfield__expandable-holder"> |
| <input class="mdl-textfield__input" type="text" name="q" id="waterfall-exp" placeholder="Search" /> |
| <input type="hidden" name="check_keywords" value="yes" /> |
| <input type="hidden" name="area" value="default" /> |
| </div> |
| </div> |
| <div class="mdl-tooltip" data-mdl-for="quick-search-icon"> |
| Quick search |
| </div> |
| </form> |
| |
| <a id="button-show-github" |
| href="https://github.com/apache/mxnet/edit/master/docs/python_docs/python/api/legacy/ndarray/random/index.rst" class="mdl-button mdl-js-button mdl-button--icon"> |
| <i class="material-icons">edit</i> |
| </a> |
| <div class="mdl-tooltip" data-mdl-for="button-show-github"> |
| Edit on Github |
| </div> |
| </nav> |
| </div> |
| <div class="mdl-layout__header-row header-links"> |
| <div class="mdl-layout-spacer"></div> |
| <nav class="mdl-navigation"> |
| </nav> |
| </div> |
| </header><header class="mdl-layout__drawer"> |
| |
| <div class="globaltoc"> |
| <span class="mdl-layout-title toc">Table Of Contents</span> |
| |
| |
| |
| <nav class="mdl-navigation"> |
| <ul class="current"> |
| <li class="toctree-l1"><a class="reference internal" href="../../../../tutorials/index.html">Python Tutorials</a><ul> |
| <li class="toctree-l2"><a class="reference internal" href="../../../../tutorials/getting-started/index.html">Getting Started</a><ul> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../tutorials/getting-started/crash-course/index.html">Getting started with NP on MXNet</a><ul> |
| <li class="toctree-l4"><a class="reference internal" href="../../../../tutorials/getting-started/crash-course/1-ndarray.html">Step 1: Manipulate data with NP on MXNet</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="../../../../tutorials/getting-started/crash-course/2-nn.html">Step 2: Create a neural network</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="../../../../tutorials/getting-started/crash-course/3-autograd.html">Step 3: Automatic differentiation with autograd</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="../../../../tutorials/getting-started/crash-course/4-train.html">Step 4: Train the neural network</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="../../../../tutorials/getting-started/crash-course/5-predict.html">Step 5: Predict with a pretrained model</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="../../../../tutorials/getting-started/crash-course/6-use_gpus.html">Step 6: Use GPUs to increase efficiency</a></li> |
| </ul> |
| </li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../tutorials/getting-started/to-mxnet/index.html">Moving to MXNet from Other Frameworks</a><ul> |
| <li class="toctree-l4"><a class="reference internal" href="../../../../tutorials/getting-started/to-mxnet/pytorch.html">PyTorch vs Apache MXNet</a></li> |
| </ul> |
| </li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../tutorials/getting-started/gluon_from_experiment_to_deployment.html">Gluon: from experiment to deployment</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../tutorials/getting-started/logistic_regression_explained.html">Logistic regression explained</a></li> |
| <li class="toctree-l3"><a class="reference external" href="https://mxnet.apache.org/api/python/docs/tutorials/packages/gluon/image/mnist.html">MNIST</a></li> |
| </ul> |
| </li> |
| <li class="toctree-l2"><a class="reference internal" href="../../../../tutorials/packages/index.html">Packages</a><ul> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../tutorials/packages/autograd/index.html">Automatic Differentiation</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../tutorials/packages/gluon/index.html">Gluon</a><ul> |
| <li class="toctree-l4"><a class="reference internal" href="../../../../tutorials/packages/gluon/blocks/index.html">Blocks</a><ul> |
| <li class="toctree-l5"><a class="reference internal" href="../../../../tutorials/packages/gluon/blocks/custom-layer.html">Custom Layers</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../../tutorials/packages/gluon/blocks/custom_layer_beginners.html">Customer Layers (Beginners)</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../../tutorials/packages/gluon/blocks/hybridize.html">Hybridize</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../../tutorials/packages/gluon/blocks/init.html">Initialization</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../../tutorials/packages/gluon/blocks/naming.html">Parameter and Block Naming</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../../tutorials/packages/gluon/blocks/nn.html">Layers and Blocks</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../../tutorials/packages/gluon/blocks/parameters.html">Parameter Management</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../../tutorials/packages/gluon/blocks/save_load_params.html">Saving and Loading Gluon Models</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../../tutorials/packages/gluon/blocks/activations/activations.html">Activation Blocks</a></li> |
| </ul> |
| </li> |
| <li class="toctree-l4"><a class="reference internal" href="../../../../tutorials/packages/gluon/data/index.html">Data Tutorials</a><ul> |
| <li class="toctree-l5"><a class="reference internal" href="../../../../tutorials/packages/gluon/data/data_augmentation.html">Image Augmentation</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../../tutorials/packages/gluon/data/data_augmentation.html#Spatial-Augmentation">Spatial Augmentation</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../../tutorials/packages/gluon/data/data_augmentation.html#Color-Augmentation">Color Augmentation</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../../tutorials/packages/gluon/data/data_augmentation.html#Composed-Augmentations">Composed Augmentations</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../../tutorials/packages/gluon/data/datasets.html">Gluon <code class="docutils literal notranslate"><span class="pre">Dataset</span></code>s and <code class="docutils literal notranslate"><span class="pre">DataLoader</span></code></a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../../tutorials/packages/gluon/data/datasets.html#Using-own-data-with-included-Datasets">Using own data with included <code class="docutils literal notranslate"><span class="pre">Dataset</span></code>s</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../../tutorials/packages/gluon/data/datasets.html#Using-own-data-with-custom-Datasets">Using own data with custom <code class="docutils literal notranslate"><span class="pre">Dataset</span></code>s</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../../tutorials/packages/gluon/data/datasets.html#Appendix:-Upgrading-from-Module-DataIter-to-Gluon-DataLoader">Appendix: Upgrading from Module <code class="docutils literal notranslate"><span class="pre">DataIter</span></code> to Gluon <code class="docutils literal notranslate"><span class="pre">DataLoader</span></code></a></li> |
| </ul> |
| </li> |
| <li class="toctree-l4"><a class="reference internal" href="../../../../tutorials/packages/gluon/image/index.html">Image Tutorials</a><ul> |
| <li class="toctree-l5"><a class="reference internal" href="../../../../tutorials/packages/gluon/image/info_gan.html">Image similarity search with InfoGAN</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../../tutorials/packages/gluon/image/mnist.html">Handwritten Digit Recognition</a></li> |
| </ul> |
| </li> |
| <li class="toctree-l4"><a class="reference internal" href="../../../../tutorials/packages/gluon/loss/index.html">Losses</a><ul> |
| <li class="toctree-l5"><a class="reference internal" href="../../../../tutorials/packages/gluon/loss/custom-loss.html">Custom Loss Blocks</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../../tutorials/packages/gluon/loss/kl_divergence.html">Kullback-Leibler (KL) Divergence</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../../tutorials/packages/gluon/loss/loss.html">Loss functions</a></li> |
| </ul> |
| </li> |
| <li class="toctree-l4"><a class="reference internal" href="../../../../tutorials/packages/gluon/text/index.html">Text Tutorials</a><ul> |
| <li class="toctree-l5"><a class="reference internal" href="../../../../tutorials/packages/gluon/text/gnmt.html">Google Neural Machine Translation</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../../tutorials/packages/gluon/text/transformer.html">Machine Translation with Transformer</a></li> |
| </ul> |
| </li> |
| <li class="toctree-l4"><a class="reference internal" href="../../../../tutorials/packages/gluon/training/index.html">Training</a><ul> |
| <li class="toctree-l5"><a class="reference internal" href="../../../../tutorials/packages/gluon/training/fit_api_tutorial.html">MXNet Gluon Fit API</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../../tutorials/packages/gluon/training/trainer.html">Trainer</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../../tutorials/packages/gluon/training/learning_rates/index.html">Learning Rates</a><ul> |
| <li class="toctree-l6"><a class="reference internal" href="../../../../tutorials/packages/gluon/training/learning_rates/learning_rate_finder.html">Learning Rate Finder</a></li> |
| <li class="toctree-l6"><a class="reference internal" href="../../../../tutorials/packages/gluon/training/learning_rates/learning_rate_schedules.html">Learning Rate Schedules</a></li> |
| <li class="toctree-l6"><a class="reference internal" href="../../../../tutorials/packages/gluon/training/learning_rates/learning_rate_schedules_advanced.html">Advanced Learning Rate Schedules</a></li> |
| </ul> |
| </li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../../tutorials/packages/gluon/training/normalization/index.html">Normalization Blocks</a></li> |
| </ul> |
| </li> |
| </ul> |
| </li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../tutorials/packages/kvstore/index.html">KVStore</a><ul> |
| <li class="toctree-l4"><a class="reference internal" href="../../../../tutorials/packages/kvstore/kvstore.html">Distributed Key-Value Store</a></li> |
| </ul> |
| </li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../tutorials/packages/legacy/index.html">Legacy</a><ul> |
| <li class="toctree-l4"><a class="reference internal" href="../../../../tutorials/packages/legacy/ndarray/index.html">NDArray</a><ul> |
| <li class="toctree-l5"><a class="reference internal" href="../../../../tutorials/packages/legacy/ndarray/01-ndarray-intro.html">An Intro: Manipulate Data the MXNet Way with NDArray</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../../tutorials/packages/legacy/ndarray/02-ndarray-operations.html">NDArray Operations</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../../tutorials/packages/legacy/ndarray/03-ndarray-contexts.html">NDArray Contexts</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../../tutorials/packages/legacy/ndarray/gotchas_numpy_in_mxnet.html">Gotchas using NumPy in Apache MXNet</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../../tutorials/packages/legacy/ndarray/sparse/index.html">Tutorials</a><ul> |
| <li class="toctree-l6"><a class="reference internal" href="../../../../tutorials/packages/legacy/ndarray/sparse/csr.html">CSRNDArray - NDArray in Compressed Sparse Row Storage Format</a></li> |
| <li class="toctree-l6"><a class="reference internal" href="../../../../tutorials/packages/legacy/ndarray/sparse/row_sparse.html">RowSparseNDArray - NDArray for Sparse Gradient Updates</a></li> |
| <li class="toctree-l6"><a class="reference internal" href="../../../../tutorials/packages/legacy/ndarray/sparse/train_gluon.html">Sparse NDArrays with Gluon</a></li> |
| </ul> |
| </li> |
| </ul> |
| </li> |
| </ul> |
| </li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../tutorials/packages/np/index.html">What is NP on MXNet</a><ul> |
| <li class="toctree-l4"><a class="reference internal" href="../../../../tutorials/packages/np/cheat-sheet.html">The NP on MXNet cheat sheet</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="../../../../tutorials/packages/np/np-vs-numpy.html">Differences between NP on MXNet and NumPy</a></li> |
| </ul> |
| </li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../tutorials/packages/onnx/index.html">ONNX</a><ul> |
| <li class="toctree-l4"><a class="reference internal" href="../../../../tutorials/packages/onnx/fine_tuning_gluon.html">Fine-tuning an ONNX model</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="../../../../tutorials/packages/onnx/inference_on_onnx_model.html">Running inference on MXNet/Gluon from an ONNX model</a></li> |
| <li class="toctree-l4"><a class="reference external" href="https://mxnet.apache.org/api/python/docs/tutorials/deploy/export/onnx.html">Export ONNX Models</a></li> |
| </ul> |
| </li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../tutorials/packages/optimizer/index.html">Optimizers</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../tutorials/packages/viz/index.html">Visualization</a><ul> |
| <li class="toctree-l4"><a class="reference external" href="https://mxnet.apache.org/api/faq/visualize_graph">Visualize networks</a></li> |
| </ul> |
| </li> |
| </ul> |
| </li> |
| <li class="toctree-l2"><a class="reference internal" href="../../../../tutorials/performance/index.html">Performance</a><ul> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../tutorials/performance/compression/index.html">Compression</a><ul> |
| <li class="toctree-l4"><a class="reference internal" href="../../../../tutorials/performance/compression/int8.html">Deploy with int-8</a></li> |
| <li class="toctree-l4"><a class="reference external" href="https://mxnet.apache.org/api/faq/float16">Float16</a></li> |
| <li class="toctree-l4"><a class="reference external" href="https://mxnet.apache.org/api/faq/gradient_compression">Gradient Compression</a></li> |
| <li class="toctree-l4"><a class="reference external" href="https://gluon-cv.mxnet.io/build/examples_deployment/int8_inference.html">GluonCV with Quantized Models</a></li> |
| </ul> |
| </li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../tutorials/performance/backend/index.html">Accelerated Backend Tools</a><ul> |
| <li class="toctree-l4"><a class="reference internal" href="../../../../tutorials/performance/backend/mkldnn/index.html">Intel MKL-DNN</a><ul> |
| <li class="toctree-l5"><a class="reference internal" href="../../../../tutorials/performance/backend/mkldnn/mkldnn_readme.html">Install MXNet with MKL-DNN</a></li> |
| </ul> |
| </li> |
| <li class="toctree-l4"><a class="reference internal" href="../../../../tutorials/performance/backend/tensorrt/index.html">TensorRT</a><ul class="simple"> |
| </ul> |
| </li> |
| <li class="toctree-l4"><a class="reference internal" href="../../../../tutorials/performance/backend/tvm.html">Use TVM</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="../../../../tutorials/performance/backend/profiler.html">Profiling MXNet Models</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="../../../../tutorials/performance/backend/amp.html">Using AMP: Automatic Mixed Precision</a></li> |
| </ul> |
| </li> |
| </ul> |
| </li> |
| <li class="toctree-l2"><a class="reference internal" href="../../../../tutorials/deploy/index.html">Deployment</a><ul> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../tutorials/deploy/export/index.html">Export</a><ul> |
| <li class="toctree-l4"><a class="reference internal" href="../../../../tutorials/deploy/export/onnx.html">Exporting to ONNX format</a></li> |
| <li class="toctree-l4"><a class="reference external" href="https://gluon-cv.mxnet.io/build/examples_deployment/export_network.html">Export Gluon CV Models</a></li> |
| <li class="toctree-l4"><a class="reference external" href="https://mxnet.apache.org/api/python/docs/tutorials/packages/gluon/blocks/save_load_params.html">Save / Load Parameters</a></li> |
| </ul> |
| </li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../tutorials/deploy/inference/index.html">Inference</a><ul> |
| <li class="toctree-l4"><a class="reference internal" href="../../../../tutorials/deploy/inference/cpp.html">Deploy into C++</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="../../../../tutorials/deploy/inference/image_classification_jetson.html">Image Classication using pretrained ResNet-50 model on Jetson module</a></li> |
| </ul> |
| </li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../tutorials/deploy/run-on-aws/index.html">Run on AWS</a><ul> |
| <li class="toctree-l4"><a class="reference internal" href="../../../../tutorials/deploy/run-on-aws/use_ec2.html">Run on an EC2 Instance</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="../../../../tutorials/deploy/run-on-aws/use_sagemaker.html">Run on Amazon SageMaker</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="../../../../tutorials/deploy/run-on-aws/cloud.html">MXNet on the Cloud</a></li> |
| </ul> |
| </li> |
| </ul> |
| </li> |
| <li class="toctree-l2"><a class="reference internal" href="../../../../tutorials/extend/index.html">Extend</a><ul> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../tutorials/extend/customop.html">Custom Numpy Operators</a></li> |
| <li class="toctree-l3"><a class="reference external" href="https://mxnet.apache.org/api/faq/new_op">New Operator Creation</a></li> |
| <li class="toctree-l3"><a class="reference external" href="https://mxnet.apache.org/api/faq/add_op_in_backend">New Operator in MXNet Backend</a></li> |
| <li class="toctree-l3"><a class="reference external" href="https://mxnet.apache.org/api/faq/using_rtc">Using RTC for CUDA kernels</a></li> |
| </ul> |
| </li> |
| </ul> |
| </li> |
| <li class="toctree-l1 current"><a class="reference internal" href="../../../index.html">Python API</a><ul class="current"> |
| <li class="toctree-l2"><a class="reference internal" href="../../../np/index.html">mxnet.np</a><ul> |
| <li class="toctree-l3"><a class="reference internal" href="../../../np/arrays.html">Array objects</a><ul> |
| <li class="toctree-l4"><a class="reference internal" href="../../../np/arrays.ndarray.html">The N-dimensional array (<code class="xref py py-class docutils literal notranslate"><span class="pre">ndarray</span></code>)</a><ul> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.ndarray.html">mxnet.np.ndarray</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.ndarray.shape.html">mxnet.np.ndarray.shape</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.ndarray.ndim.html">mxnet.np.ndarray.ndim</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.ndarray.size.html">mxnet.np.ndarray.size</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.ndarray.dtype.html">mxnet.np.ndarray.dtype</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.ndarray.T.html">mxnet.np.ndarray.T</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.ndarray.item.html">mxnet.np.ndarray.item</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.ndarray.copy.html">mxnet.np.ndarray.copy</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.ndarray.tolist.html">mxnet.np.ndarray.tolist</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.ndarray.astype.html">mxnet.np.ndarray.astype</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.ndarray.reshape.html">mxnet.np.ndarray.reshape</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.ndarray.transpose.html">mxnet.np.ndarray.transpose</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.ndarray.swapaxes.html">mxnet.np.ndarray.swapaxes</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.ndarray.flatten.html">mxnet.np.ndarray.flatten</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.ndarray.squeeze.html">mxnet.np.ndarray.squeeze</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.ndarray.nonzero.html">mxnet.np.ndarray.nonzero</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.ndarray.take.html">mxnet.np.ndarray.take</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.ndarray.repeat.html">mxnet.np.ndarray.repeat</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.ndarray.max.html">mxnet.np.ndarray.max</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.ndarray.argmax.html">mxnet.np.ndarray.argmax</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.ndarray.min.html">mxnet.np.ndarray.min</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.ndarray.argmin.html">mxnet.np.ndarray.argmin</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.ndarray.clip.html">mxnet.np.ndarray.clip</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.ndarray.sum.html">mxnet.np.ndarray.sum</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.ndarray.mean.html">mxnet.np.ndarray.mean</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.ndarray.prod.html">mxnet.np.ndarray.prod</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.ndarray.cumsum.html">mxnet.np.ndarray.cumsum</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.ndarray.var.html">mxnet.np.ndarray.var</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.ndarray.std.html">mxnet.np.ndarray.std</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.ndarray.__lt__.html">mxnet.np.ndarray.__lt__</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.ndarray.__le__.html">mxnet.np.ndarray.__le__</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.ndarray.__gt__.html">mxnet.np.ndarray.__gt__</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.ndarray.__ge__.html">mxnet.np.ndarray.__ge__</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.ndarray.__eq__.html">mxnet.np.ndarray.__eq__</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.ndarray.__ne__.html">mxnet.np.ndarray.__ne__</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.ndarray.__bool__.html">mxnet.np.ndarray.__bool__</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.ndarray.__neg__.html">mxnet.np.ndarray.__neg__</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.ndarray.__add__.html">mxnet.np.ndarray.__add__</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.ndarray.__sub__.html">mxnet.np.ndarray.__sub__</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.ndarray.__mul__.html">mxnet.np.ndarray.__mul__</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.ndarray.__truediv__.html">mxnet.np.ndarray.__truediv__</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.ndarray.__mod__.html">mxnet.np.ndarray.__mod__</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.ndarray.__pow__.html">mxnet.np.ndarray.__pow__</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.ndarray.__iadd__.html">mxnet.np.ndarray.__iadd__</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.ndarray.__isub__.html">mxnet.np.ndarray.__isub__</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.ndarray.__imul__.html">mxnet.np.ndarray.__imul__</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.ndarray.__itruediv__.html">mxnet.np.ndarray.__itruediv__</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.ndarray.__imod__.html">mxnet.np.ndarray.__imod__</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.ndarray.__reduce__.html">mxnet.np.ndarray.__reduce__</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.ndarray.__setstate__.html">mxnet.np.ndarray.__setstate__</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.ndarray.__len__.html">mxnet.np.ndarray.__len__</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.ndarray.__getitem__.html">mxnet.np.ndarray.__getitem__</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.ndarray.__setitem__.html">mxnet.np.ndarray.__setitem__</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.ndarray.__int__.html">mxnet.np.ndarray.__int__</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.ndarray.__float__.html">mxnet.np.ndarray.__float__</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.ndarray.__str__.html">mxnet.np.ndarray.__str__</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.ndarray.__repr__.html">mxnet.np.ndarray.__repr__</a></li> |
| </ul> |
| </li> |
| <li class="toctree-l4"><a class="reference internal" href="../../../np/arrays.indexing.html">Indexing</a></li> |
| </ul> |
| </li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../np/routines.html">Routines</a><ul> |
| <li class="toctree-l4"><a class="reference internal" href="../../../np/routines.array-creation.html">Array creation routines</a><ul> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.eye.html">mxnet.np.eye</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.empty.html">mxnet.np.empty</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.full.html">mxnet.np.full</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.identity.html">mxnet.np.identity</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.ones.html">mxnet.np.ones</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.ones_like.html">mxnet.np.ones_like</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.zeros.html">mxnet.np.zeros</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.zeros_like.html">mxnet.np.zeros_like</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.array.html">mxnet.np.array</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.copy.html">mxnet.np.copy</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.arange.html">mxnet.np.arange</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.linspace.html">mxnet.np.linspace</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.logspace.html">mxnet.np.logspace</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.meshgrid.html">mxnet.np.meshgrid</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.tril.html">mxnet.np.tril</a></li> |
| </ul> |
| </li> |
| <li class="toctree-l4"><a class="reference internal" href="../../../np/routines.array-manipulation.html">Array manipulation routines</a><ul> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.reshape.html">mxnet.np.reshape</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.ravel.html">mxnet.np.ravel</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.ndarray.flatten.html">mxnet.np.ndarray.flatten</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.swapaxes.html">mxnet.np.swapaxes</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.ndarray.T.html">mxnet.np.ndarray.T</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.transpose.html">mxnet.np.transpose</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.moveaxis.html">mxnet.np.moveaxis</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.expand_dims.html">mxnet.np.expand_dims</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.squeeze.html">mxnet.np.squeeze</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.broadcast_to.html">mxnet.np.broadcast_to</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.broadcast_arrays.html">mxnet.np.broadcast_arrays</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.concatenate.html">mxnet.np.concatenate</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.stack.html">mxnet.np.stack</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.dstack.html">mxnet.np.dstack</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.vstack.html">mxnet.np.vstack</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.split.html">mxnet.np.split</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.hsplit.html">mxnet.np.hsplit</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.vsplit.html">mxnet.np.vsplit</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.tile.html">mxnet.np.tile</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.repeat.html">mxnet.np.repeat</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.unique.html">mxnet.np.unique</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.reshape.html">mxnet.np.reshape</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.flip.html">mxnet.np.flip</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.roll.html">mxnet.np.roll</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.rot90.html">mxnet.np.rot90</a></li> |
| </ul> |
| </li> |
| <li class="toctree-l4"><a class="reference internal" href="../../../np/routines.io.html">Input and output</a><ul> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.genfromtxt.html">mxnet.np.genfromtxt</a></li> |
| </ul> |
| </li> |
| <li class="toctree-l4"><a class="reference internal" href="../../../np/routines.linalg.html">Linear algebra (<code class="xref py py-mod docutils literal notranslate"><span class="pre">numpy.linalg</span></code>)</a><ul> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.dot.html">mxnet.np.dot</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.vdot.html">mxnet.np.vdot</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.inner.html">mxnet.np.inner</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.outer.html">mxnet.np.outer</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.tensordot.html">mxnet.np.tensordot</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.einsum.html">mxnet.np.einsum</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.linalg.svd.html">mxnet.np.linalg.svd</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.linalg.norm.html">mxnet.np.linalg.norm</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.trace.html">mxnet.np.trace</a></li> |
| </ul> |
| </li> |
| <li class="toctree-l4"><a class="reference internal" href="../../../np/routines.math.html">Mathematical functions</a><ul> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.sin.html">mxnet.np.sin</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.cos.html">mxnet.np.cos</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.tan.html">mxnet.np.tan</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.arcsin.html">mxnet.np.arcsin</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.arccos.html">mxnet.np.arccos</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.arctan.html">mxnet.np.arctan</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.degrees.html">mxnet.np.degrees</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.radians.html">mxnet.np.radians</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.hypot.html">mxnet.np.hypot</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.arctan2.html">mxnet.np.arctan2</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.deg2rad.html">mxnet.np.deg2rad</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.rad2deg.html">mxnet.np.rad2deg</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.sinh.html">mxnet.np.sinh</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.cosh.html">mxnet.np.cosh</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.tanh.html">mxnet.np.tanh</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.arcsinh.html">mxnet.np.arcsinh</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.arccosh.html">mxnet.np.arccosh</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.arctanh.html">mxnet.np.arctanh</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.rint.html">mxnet.np.rint</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.fix.html">mxnet.np.fix</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.floor.html">mxnet.np.floor</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.ceil.html">mxnet.np.ceil</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.trunc.html">mxnet.np.trunc</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.around.html">mxnet.np.around</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.sum.html">mxnet.np.sum</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.prod.html">mxnet.np.prod</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.cumsum.html">mxnet.np.cumsum</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.exp.html">mxnet.np.exp</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.expm1.html">mxnet.np.expm1</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.log.html">mxnet.np.log</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.log10.html">mxnet.np.log10</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.log2.html">mxnet.np.log2</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.log1p.html">mxnet.np.log1p</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.ldexp.html">mxnet.np.ldexp</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.lcm.html">mxnet.np.lcm</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.add.html">mxnet.np.add</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.reciprocal.html">mxnet.np.reciprocal</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.negative.html">mxnet.np.negative</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.divide.html">mxnet.np.divide</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.power.html">mxnet.np.power</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.subtract.html">mxnet.np.subtract</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.mod.html">mxnet.np.mod</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.multiply.html">mxnet.np.multiply</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.true_divide.html">mxnet.np.true_divide</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.remainder.html">mxnet.np.remainder</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.clip.html">mxnet.np.clip</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.sqrt.html">mxnet.np.sqrt</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.cbrt.html">mxnet.np.cbrt</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.square.html">mxnet.np.square</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.absolute.html">mxnet.np.absolute</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.sign.html">mxnet.np.sign</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.maximum.html">mxnet.np.maximum</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.minimum.html">mxnet.np.minimum</a></li> |
| </ul> |
| </li> |
| <li class="toctree-l4"><a class="reference internal" href="../../../np/random/index.html">np.random</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="../../../np/routines.sort.html">Sorting, searching, and counting</a><ul> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.argmax.html">mxnet.np.argmax</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.argmin.html">mxnet.np.argmin</a></li> |
| </ul> |
| </li> |
| <li class="toctree-l4"><a class="reference internal" href="../../../np/routines.statistics.html">Statistics</a><ul> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.min.html">mxnet.np.min</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.max.html">mxnet.np.max</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.mean.html">mxnet.np.mean</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.std.html">mxnet.np.std</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.var.html">mxnet.np.var</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.histogram.html">mxnet.np.histogram</a></li> |
| </ul> |
| </li> |
| </ul> |
| </li> |
| </ul> |
| </li> |
| <li class="toctree-l2"><a class="reference internal" href="../../../npx/index.html">NPX: NumPy Neural Network Extension</a><ul> |
| <li class="toctree-l3"><a class="reference internal" href="../../../npx/generated/mxnet.npx.set_np.html">mxnet.npx.set_np</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../npx/generated/mxnet.npx.reset_np.html">mxnet.npx.reset_np</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../npx/generated/mxnet.npx.cpu.html">mxnet.npx.cpu</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../npx/generated/mxnet.npx.cpu_pinned.html">mxnet.npx.cpu_pinned</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../npx/generated/mxnet.npx.gpu.html">mxnet.npx.gpu</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../npx/generated/mxnet.npx.gpu_memory_info.html">mxnet.npx.gpu_memory_info</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../npx/generated/mxnet.npx.current_context.html">mxnet.npx.current_context</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../npx/generated/mxnet.npx.num_gpus.html">mxnet.npx.num_gpus</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../npx/generated/mxnet.npx.activation.html">mxnet.npx.activation</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../npx/generated/mxnet.npx.batch_norm.html">mxnet.npx.batch_norm</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../npx/generated/mxnet.npx.convolution.html">mxnet.npx.convolution</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../npx/generated/mxnet.npx.dropout.html">mxnet.npx.dropout</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../npx/generated/mxnet.npx.embedding.html">mxnet.npx.embedding</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../npx/generated/mxnet.npx.fully_connected.html">mxnet.npx.fully_connected</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../npx/generated/mxnet.npx.layer_norm.html">mxnet.npx.layer_norm</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../npx/generated/mxnet.npx.pooling.html">mxnet.npx.pooling</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../npx/generated/mxnet.npx.rnn.html">mxnet.npx.rnn</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../npx/generated/mxnet.npx.leaky_relu.html">mxnet.npx.leaky_relu</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../npx/generated/mxnet.npx.multibox_detection.html">mxnet.npx.multibox_detection</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../npx/generated/mxnet.npx.multibox_prior.html">mxnet.npx.multibox_prior</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../npx/generated/mxnet.npx.multibox_target.html">mxnet.npx.multibox_target</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../npx/generated/mxnet.npx.roi_pooling.html">mxnet.npx.roi_pooling</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../npx/generated/mxnet.npx.sigmoid.html">mxnet.npx.sigmoid</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../npx/generated/mxnet.npx.smooth_l1.html">mxnet.npx.smooth_l1</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../npx/generated/mxnet.npx.softmax.html">mxnet.npx.softmax</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../npx/generated/mxnet.npx.topk.html">mxnet.npx.topk</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../npx/generated/mxnet.npx.waitall.html">mxnet.npx.waitall</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../npx/generated/mxnet.npx.load.html">mxnet.npx.load</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../npx/generated/mxnet.npx.save.html">mxnet.npx.save</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../npx/generated/mxnet.npx.one_hot.html">mxnet.npx.one_hot</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../npx/generated/mxnet.npx.pick.html">mxnet.npx.pick</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../npx/generated/mxnet.npx.reshape_like.html">mxnet.npx.reshape_like</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../npx/generated/mxnet.npx.batch_flatten.html">mxnet.npx.batch_flatten</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../npx/generated/mxnet.npx.batch_dot.html">mxnet.npx.batch_dot</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../npx/generated/mxnet.npx.gamma.html">mxnet.npx.gamma</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../npx/generated/mxnet.npx.sequence_mask.html">mxnet.npx.sequence_mask</a></li> |
| </ul> |
| </li> |
| <li class="toctree-l2"><a class="reference internal" href="../../../gluon/index.html">mxnet.gluon</a><ul> |
| <li class="toctree-l3"><a class="reference internal" href="../../../gluon/block.html">gluon.Block</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../gluon/hybrid_block.html">gluon.HybridBlock</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../gluon/symbol_block.html">gluon.SymbolBlock</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../gluon/constant.html">gluon.Constant</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../gluon/parameter.html">gluon.Parameter</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../gluon/parameter_dict.html">gluon.ParameterDict</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../gluon/trainer.html">gluon.Trainer</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../gluon/contrib/index.html">gluon.contrib</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../gluon/data/index.html">gluon.data</a><ul> |
| <li class="toctree-l4"><a class="reference internal" href="../../../gluon/data/vision/index.html">data.vision</a><ul> |
| <li class="toctree-l5"><a class="reference internal" href="../../../gluon/data/vision/datasets/index.html">vision.datasets</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../gluon/data/vision/transforms/index.html">vision.transforms</a></li> |
| </ul> |
| </li> |
| </ul> |
| </li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../gluon/loss/index.html">gluon.loss</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../gluon/metric/index.html">gluon.metric</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../gluon/model_zoo/index.html">gluon.model_zoo.vision</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../gluon/nn/index.html">gluon.nn</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../gluon/rnn/index.html">gluon.rnn</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../gluon/utils/index.html">gluon.utils</a></li> |
| </ul> |
| </li> |
| <li class="toctree-l2"><a class="reference internal" href="../../../autograd/index.html">mxnet.autograd</a></li> |
| <li class="toctree-l2"><a class="reference internal" href="../../../initializer/index.html">mxnet.initializer</a></li> |
| <li class="toctree-l2"><a class="reference internal" href="../../../optimizer/index.html">mxnet.optimizer</a></li> |
| <li class="toctree-l2"><a class="reference internal" href="../../../lr_scheduler/index.html">mxnet.lr_scheduler</a></li> |
| <li class="toctree-l2"><a class="reference internal" href="../../../kvstore/index.html">mxnet.kvstore</a></li> |
| <li class="toctree-l2"><a class="reference internal" href="../../../module/index.html">mxnet.module</a></li> |
| <li class="toctree-l2"><a class="reference internal" href="../../../contrib/index.html">mxnet.contrib</a><ul> |
| <li class="toctree-l3"><a class="reference internal" href="../../../contrib/autograd/index.html">contrib.autograd</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../contrib/io/index.html">contrib.io</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../contrib/ndarray/index.html">contrib.ndarray</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../contrib/onnx/index.html">contrib.onnx</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../contrib/quantization/index.html">contrib.quantization</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../contrib/symbol/index.html">contrib.symbol</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../contrib/tensorboard/index.html">contrib.tensorboard</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../contrib/tensorrt/index.html">contrib.tensorrt</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../contrib/text/index.html">contrib.text</a></li> |
| </ul> |
| </li> |
| <li class="toctree-l2 current"><a class="reference internal" href="../../index.html">Legacy</a><ul class="current"> |
| <li class="toctree-l3"><a class="reference internal" href="../../callback/index.html">mxnet.callback</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../image/index.html">mxnet.image</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../io/index.html">mxnet.io</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../monitor/index.html">mxnet.monitor</a></li> |
| <li class="toctree-l3 current"><a class="reference internal" href="../index.html">mxnet.ndarray</a><ul class="current"> |
| <li class="toctree-l4"><a class="reference internal" href="../ndarray.html">ndarray</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="../contrib/index.html">ndarray.contrib</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="../image/index.html">ndarray.image</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="../linalg/index.html">ndarray.linalg</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="../op/index.html">ndarray.op</a></li> |
| <li class="toctree-l4 current"><a class="current reference internal" href="#">ndarray.random</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="../register/index.html">ndarray.register</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="../sparse/index.html">ndarray.sparse</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="../utils/index.html">ndarray.utils</a></li> |
| </ul> |
| </li> |
| <li class="toctree-l3"><a class="reference internal" href="../../recordio/index.html">mxnet.recordio</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../symbol/index.html">mxnet.symbol</a><ul> |
| <li class="toctree-l4"><a class="reference internal" href="../../symbol/symbol.html">symbol</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="../../symbol/contrib/index.html">symbol.contrib</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="../../symbol/image/index.html">symbol.image</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="../../symbol/linalg/index.html">symbol.linalg</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="../../symbol/op/index.html">symbol.op</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="../../symbol/random/index.html">symbol.random</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="../../symbol/register/index.html">symbol.register</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="../../symbol/sparse/index.html">symbol.sparse</a></li> |
| </ul> |
| </li> |
| <li class="toctree-l3"><a class="reference internal" href="../../visualization/index.html">mxnet.visualization</a></li> |
| </ul> |
| </li> |
| <li class="toctree-l2"><a class="reference internal" href="../../../context/index.html">mxnet.context</a></li> |
| <li class="toctree-l2"><a class="reference internal" href="../../../engine/index.html">mxnet.engine</a></li> |
| <li class="toctree-l2"><a class="reference internal" href="../../../executor/index.html">mxnet.executor</a></li> |
| <li class="toctree-l2"><a class="reference internal" href="../../../kvstore_server/index.html">mxnet.kvstore_server</a></li> |
| <li class="toctree-l2"><a class="reference internal" href="../../../profiler/index.html">mxnet.profiler</a></li> |
| <li class="toctree-l2"><a class="reference internal" href="../../../rtc/index.html">mxnet.rtc</a></li> |
| <li class="toctree-l2"><a class="reference internal" href="../../../runtime/index.html">mxnet.runtime</a></li> |
| <li class="toctree-l2"><a class="reference internal" href="../../../test_utils/index.html">mxnet.test_utils</a></li> |
| <li class="toctree-l2"><a class="reference internal" href="../../../util/index.html">mxnet.util</a></li> |
| </ul> |
| </li> |
| </ul> |
| |
| </nav> |
| |
| </div> |
| |
| </header> |
| <main class="mdl-layout__content" tabIndex="0"> |
| <header class="mdl-layout__drawer"> |
| |
| <div class="globaltoc"> |
| <span class="mdl-layout-title toc">Table Of Contents</span> |
| |
| |
| |
| <nav class="mdl-navigation"> |
| <ul class="current"> |
| <li class="toctree-l1"><a class="reference internal" href="../../../../tutorials/index.html">Python Tutorials</a><ul> |
| <li class="toctree-l2"><a class="reference internal" href="../../../../tutorials/getting-started/index.html">Getting Started</a><ul> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../tutorials/getting-started/crash-course/index.html">Getting started with NP on MXNet</a><ul> |
| <li class="toctree-l4"><a class="reference internal" href="../../../../tutorials/getting-started/crash-course/1-ndarray.html">Step 1: Manipulate data with NP on MXNet</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="../../../../tutorials/getting-started/crash-course/2-nn.html">Step 2: Create a neural network</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="../../../../tutorials/getting-started/crash-course/3-autograd.html">Step 3: Automatic differentiation with autograd</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="../../../../tutorials/getting-started/crash-course/4-train.html">Step 4: Train the neural network</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="../../../../tutorials/getting-started/crash-course/5-predict.html">Step 5: Predict with a pretrained model</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="../../../../tutorials/getting-started/crash-course/6-use_gpus.html">Step 6: Use GPUs to increase efficiency</a></li> |
| </ul> |
| </li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../tutorials/getting-started/to-mxnet/index.html">Moving to MXNet from Other Frameworks</a><ul> |
| <li class="toctree-l4"><a class="reference internal" href="../../../../tutorials/getting-started/to-mxnet/pytorch.html">PyTorch vs Apache MXNet</a></li> |
| </ul> |
| </li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../tutorials/getting-started/gluon_from_experiment_to_deployment.html">Gluon: from experiment to deployment</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../tutorials/getting-started/logistic_regression_explained.html">Logistic regression explained</a></li> |
| <li class="toctree-l3"><a class="reference external" href="https://mxnet.apache.org/api/python/docs/tutorials/packages/gluon/image/mnist.html">MNIST</a></li> |
| </ul> |
| </li> |
| <li class="toctree-l2"><a class="reference internal" href="../../../../tutorials/packages/index.html">Packages</a><ul> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../tutorials/packages/autograd/index.html">Automatic Differentiation</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../tutorials/packages/gluon/index.html">Gluon</a><ul> |
| <li class="toctree-l4"><a class="reference internal" href="../../../../tutorials/packages/gluon/blocks/index.html">Blocks</a><ul> |
| <li class="toctree-l5"><a class="reference internal" href="../../../../tutorials/packages/gluon/blocks/custom-layer.html">Custom Layers</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../../tutorials/packages/gluon/blocks/custom_layer_beginners.html">Customer Layers (Beginners)</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../../tutorials/packages/gluon/blocks/hybridize.html">Hybridize</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../../tutorials/packages/gluon/blocks/init.html">Initialization</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../../tutorials/packages/gluon/blocks/naming.html">Parameter and Block Naming</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../../tutorials/packages/gluon/blocks/nn.html">Layers and Blocks</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../../tutorials/packages/gluon/blocks/parameters.html">Parameter Management</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../../tutorials/packages/gluon/blocks/save_load_params.html">Saving and Loading Gluon Models</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../../tutorials/packages/gluon/blocks/activations/activations.html">Activation Blocks</a></li> |
| </ul> |
| </li> |
| <li class="toctree-l4"><a class="reference internal" href="../../../../tutorials/packages/gluon/data/index.html">Data Tutorials</a><ul> |
| <li class="toctree-l5"><a class="reference internal" href="../../../../tutorials/packages/gluon/data/data_augmentation.html">Image Augmentation</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../../tutorials/packages/gluon/data/data_augmentation.html#Spatial-Augmentation">Spatial Augmentation</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../../tutorials/packages/gluon/data/data_augmentation.html#Color-Augmentation">Color Augmentation</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../../tutorials/packages/gluon/data/data_augmentation.html#Composed-Augmentations">Composed Augmentations</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../../tutorials/packages/gluon/data/datasets.html">Gluon <code class="docutils literal notranslate"><span class="pre">Dataset</span></code>s and <code class="docutils literal notranslate"><span class="pre">DataLoader</span></code></a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../../tutorials/packages/gluon/data/datasets.html#Using-own-data-with-included-Datasets">Using own data with included <code class="docutils literal notranslate"><span class="pre">Dataset</span></code>s</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../../tutorials/packages/gluon/data/datasets.html#Using-own-data-with-custom-Datasets">Using own data with custom <code class="docutils literal notranslate"><span class="pre">Dataset</span></code>s</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../../tutorials/packages/gluon/data/datasets.html#Appendix:-Upgrading-from-Module-DataIter-to-Gluon-DataLoader">Appendix: Upgrading from Module <code class="docutils literal notranslate"><span class="pre">DataIter</span></code> to Gluon <code class="docutils literal notranslate"><span class="pre">DataLoader</span></code></a></li> |
| </ul> |
| </li> |
| <li class="toctree-l4"><a class="reference internal" href="../../../../tutorials/packages/gluon/image/index.html">Image Tutorials</a><ul> |
| <li class="toctree-l5"><a class="reference internal" href="../../../../tutorials/packages/gluon/image/info_gan.html">Image similarity search with InfoGAN</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../../tutorials/packages/gluon/image/mnist.html">Handwritten Digit Recognition</a></li> |
| </ul> |
| </li> |
| <li class="toctree-l4"><a class="reference internal" href="../../../../tutorials/packages/gluon/loss/index.html">Losses</a><ul> |
| <li class="toctree-l5"><a class="reference internal" href="../../../../tutorials/packages/gluon/loss/custom-loss.html">Custom Loss Blocks</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../../tutorials/packages/gluon/loss/kl_divergence.html">Kullback-Leibler (KL) Divergence</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../../tutorials/packages/gluon/loss/loss.html">Loss functions</a></li> |
| </ul> |
| </li> |
| <li class="toctree-l4"><a class="reference internal" href="../../../../tutorials/packages/gluon/text/index.html">Text Tutorials</a><ul> |
| <li class="toctree-l5"><a class="reference internal" href="../../../../tutorials/packages/gluon/text/gnmt.html">Google Neural Machine Translation</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../../tutorials/packages/gluon/text/transformer.html">Machine Translation with Transformer</a></li> |
| </ul> |
| </li> |
| <li class="toctree-l4"><a class="reference internal" href="../../../../tutorials/packages/gluon/training/index.html">Training</a><ul> |
| <li class="toctree-l5"><a class="reference internal" href="../../../../tutorials/packages/gluon/training/fit_api_tutorial.html">MXNet Gluon Fit API</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../../tutorials/packages/gluon/training/trainer.html">Trainer</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../../tutorials/packages/gluon/training/learning_rates/index.html">Learning Rates</a><ul> |
| <li class="toctree-l6"><a class="reference internal" href="../../../../tutorials/packages/gluon/training/learning_rates/learning_rate_finder.html">Learning Rate Finder</a></li> |
| <li class="toctree-l6"><a class="reference internal" href="../../../../tutorials/packages/gluon/training/learning_rates/learning_rate_schedules.html">Learning Rate Schedules</a></li> |
| <li class="toctree-l6"><a class="reference internal" href="../../../../tutorials/packages/gluon/training/learning_rates/learning_rate_schedules_advanced.html">Advanced Learning Rate Schedules</a></li> |
| </ul> |
| </li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../../tutorials/packages/gluon/training/normalization/index.html">Normalization Blocks</a></li> |
| </ul> |
| </li> |
| </ul> |
| </li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../tutorials/packages/kvstore/index.html">KVStore</a><ul> |
| <li class="toctree-l4"><a class="reference internal" href="../../../../tutorials/packages/kvstore/kvstore.html">Distributed Key-Value Store</a></li> |
| </ul> |
| </li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../tutorials/packages/legacy/index.html">Legacy</a><ul> |
| <li class="toctree-l4"><a class="reference internal" href="../../../../tutorials/packages/legacy/ndarray/index.html">NDArray</a><ul> |
| <li class="toctree-l5"><a class="reference internal" href="../../../../tutorials/packages/legacy/ndarray/01-ndarray-intro.html">An Intro: Manipulate Data the MXNet Way with NDArray</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../../tutorials/packages/legacy/ndarray/02-ndarray-operations.html">NDArray Operations</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../../tutorials/packages/legacy/ndarray/03-ndarray-contexts.html">NDArray Contexts</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../../tutorials/packages/legacy/ndarray/gotchas_numpy_in_mxnet.html">Gotchas using NumPy in Apache MXNet</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../../tutorials/packages/legacy/ndarray/sparse/index.html">Tutorials</a><ul> |
| <li class="toctree-l6"><a class="reference internal" href="../../../../tutorials/packages/legacy/ndarray/sparse/csr.html">CSRNDArray - NDArray in Compressed Sparse Row Storage Format</a></li> |
| <li class="toctree-l6"><a class="reference internal" href="../../../../tutorials/packages/legacy/ndarray/sparse/row_sparse.html">RowSparseNDArray - NDArray for Sparse Gradient Updates</a></li> |
| <li class="toctree-l6"><a class="reference internal" href="../../../../tutorials/packages/legacy/ndarray/sparse/train_gluon.html">Sparse NDArrays with Gluon</a></li> |
| </ul> |
| </li> |
| </ul> |
| </li> |
| </ul> |
| </li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../tutorials/packages/np/index.html">What is NP on MXNet</a><ul> |
| <li class="toctree-l4"><a class="reference internal" href="../../../../tutorials/packages/np/cheat-sheet.html">The NP on MXNet cheat sheet</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="../../../../tutorials/packages/np/np-vs-numpy.html">Differences between NP on MXNet and NumPy</a></li> |
| </ul> |
| </li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../tutorials/packages/onnx/index.html">ONNX</a><ul> |
| <li class="toctree-l4"><a class="reference internal" href="../../../../tutorials/packages/onnx/fine_tuning_gluon.html">Fine-tuning an ONNX model</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="../../../../tutorials/packages/onnx/inference_on_onnx_model.html">Running inference on MXNet/Gluon from an ONNX model</a></li> |
| <li class="toctree-l4"><a class="reference external" href="https://mxnet.apache.org/api/python/docs/tutorials/deploy/export/onnx.html">Export ONNX Models</a></li> |
| </ul> |
| </li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../tutorials/packages/optimizer/index.html">Optimizers</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../tutorials/packages/viz/index.html">Visualization</a><ul> |
| <li class="toctree-l4"><a class="reference external" href="https://mxnet.apache.org/api/faq/visualize_graph">Visualize networks</a></li> |
| </ul> |
| </li> |
| </ul> |
| </li> |
| <li class="toctree-l2"><a class="reference internal" href="../../../../tutorials/performance/index.html">Performance</a><ul> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../tutorials/performance/compression/index.html">Compression</a><ul> |
| <li class="toctree-l4"><a class="reference internal" href="../../../../tutorials/performance/compression/int8.html">Deploy with int-8</a></li> |
| <li class="toctree-l4"><a class="reference external" href="https://mxnet.apache.org/api/faq/float16">Float16</a></li> |
| <li class="toctree-l4"><a class="reference external" href="https://mxnet.apache.org/api/faq/gradient_compression">Gradient Compression</a></li> |
| <li class="toctree-l4"><a class="reference external" href="https://gluon-cv.mxnet.io/build/examples_deployment/int8_inference.html">GluonCV with Quantized Models</a></li> |
| </ul> |
| </li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../tutorials/performance/backend/index.html">Accelerated Backend Tools</a><ul> |
| <li class="toctree-l4"><a class="reference internal" href="../../../../tutorials/performance/backend/mkldnn/index.html">Intel MKL-DNN</a><ul> |
| <li class="toctree-l5"><a class="reference internal" href="../../../../tutorials/performance/backend/mkldnn/mkldnn_readme.html">Install MXNet with MKL-DNN</a></li> |
| </ul> |
| </li> |
| <li class="toctree-l4"><a class="reference internal" href="../../../../tutorials/performance/backend/tensorrt/index.html">TensorRT</a><ul class="simple"> |
| </ul> |
| </li> |
| <li class="toctree-l4"><a class="reference internal" href="../../../../tutorials/performance/backend/tvm.html">Use TVM</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="../../../../tutorials/performance/backend/profiler.html">Profiling MXNet Models</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="../../../../tutorials/performance/backend/amp.html">Using AMP: Automatic Mixed Precision</a></li> |
| </ul> |
| </li> |
| </ul> |
| </li> |
| <li class="toctree-l2"><a class="reference internal" href="../../../../tutorials/deploy/index.html">Deployment</a><ul> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../tutorials/deploy/export/index.html">Export</a><ul> |
| <li class="toctree-l4"><a class="reference internal" href="../../../../tutorials/deploy/export/onnx.html">Exporting to ONNX format</a></li> |
| <li class="toctree-l4"><a class="reference external" href="https://gluon-cv.mxnet.io/build/examples_deployment/export_network.html">Export Gluon CV Models</a></li> |
| <li class="toctree-l4"><a class="reference external" href="https://mxnet.apache.org/api/python/docs/tutorials/packages/gluon/blocks/save_load_params.html">Save / Load Parameters</a></li> |
| </ul> |
| </li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../tutorials/deploy/inference/index.html">Inference</a><ul> |
| <li class="toctree-l4"><a class="reference internal" href="../../../../tutorials/deploy/inference/cpp.html">Deploy into C++</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="../../../../tutorials/deploy/inference/image_classification_jetson.html">Image Classication using pretrained ResNet-50 model on Jetson module</a></li> |
| </ul> |
| </li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../tutorials/deploy/run-on-aws/index.html">Run on AWS</a><ul> |
| <li class="toctree-l4"><a class="reference internal" href="../../../../tutorials/deploy/run-on-aws/use_ec2.html">Run on an EC2 Instance</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="../../../../tutorials/deploy/run-on-aws/use_sagemaker.html">Run on Amazon SageMaker</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="../../../../tutorials/deploy/run-on-aws/cloud.html">MXNet on the Cloud</a></li> |
| </ul> |
| </li> |
| </ul> |
| </li> |
| <li class="toctree-l2"><a class="reference internal" href="../../../../tutorials/extend/index.html">Extend</a><ul> |
| <li class="toctree-l3"><a class="reference internal" href="../../../../tutorials/extend/customop.html">Custom Numpy Operators</a></li> |
| <li class="toctree-l3"><a class="reference external" href="https://mxnet.apache.org/api/faq/new_op">New Operator Creation</a></li> |
| <li class="toctree-l3"><a class="reference external" href="https://mxnet.apache.org/api/faq/add_op_in_backend">New Operator in MXNet Backend</a></li> |
| <li class="toctree-l3"><a class="reference external" href="https://mxnet.apache.org/api/faq/using_rtc">Using RTC for CUDA kernels</a></li> |
| </ul> |
| </li> |
| </ul> |
| </li> |
| <li class="toctree-l1 current"><a class="reference internal" href="../../../index.html">Python API</a><ul class="current"> |
| <li class="toctree-l2"><a class="reference internal" href="../../../np/index.html">mxnet.np</a><ul> |
| <li class="toctree-l3"><a class="reference internal" href="../../../np/arrays.html">Array objects</a><ul> |
| <li class="toctree-l4"><a class="reference internal" href="../../../np/arrays.ndarray.html">The N-dimensional array (<code class="xref py py-class docutils literal notranslate"><span class="pre">ndarray</span></code>)</a><ul> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.ndarray.html">mxnet.np.ndarray</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.ndarray.shape.html">mxnet.np.ndarray.shape</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.ndarray.ndim.html">mxnet.np.ndarray.ndim</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.ndarray.size.html">mxnet.np.ndarray.size</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.ndarray.dtype.html">mxnet.np.ndarray.dtype</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.ndarray.T.html">mxnet.np.ndarray.T</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.ndarray.item.html">mxnet.np.ndarray.item</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.ndarray.copy.html">mxnet.np.ndarray.copy</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.ndarray.tolist.html">mxnet.np.ndarray.tolist</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.ndarray.astype.html">mxnet.np.ndarray.astype</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.ndarray.reshape.html">mxnet.np.ndarray.reshape</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.ndarray.transpose.html">mxnet.np.ndarray.transpose</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.ndarray.swapaxes.html">mxnet.np.ndarray.swapaxes</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.ndarray.flatten.html">mxnet.np.ndarray.flatten</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.ndarray.squeeze.html">mxnet.np.ndarray.squeeze</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.ndarray.nonzero.html">mxnet.np.ndarray.nonzero</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.ndarray.take.html">mxnet.np.ndarray.take</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.ndarray.repeat.html">mxnet.np.ndarray.repeat</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.ndarray.max.html">mxnet.np.ndarray.max</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.ndarray.argmax.html">mxnet.np.ndarray.argmax</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.ndarray.min.html">mxnet.np.ndarray.min</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.ndarray.argmin.html">mxnet.np.ndarray.argmin</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.ndarray.clip.html">mxnet.np.ndarray.clip</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.ndarray.sum.html">mxnet.np.ndarray.sum</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.ndarray.mean.html">mxnet.np.ndarray.mean</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.ndarray.prod.html">mxnet.np.ndarray.prod</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.ndarray.cumsum.html">mxnet.np.ndarray.cumsum</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.ndarray.var.html">mxnet.np.ndarray.var</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.ndarray.std.html">mxnet.np.ndarray.std</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.ndarray.__lt__.html">mxnet.np.ndarray.__lt__</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.ndarray.__le__.html">mxnet.np.ndarray.__le__</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.ndarray.__gt__.html">mxnet.np.ndarray.__gt__</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.ndarray.__ge__.html">mxnet.np.ndarray.__ge__</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.ndarray.__eq__.html">mxnet.np.ndarray.__eq__</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.ndarray.__ne__.html">mxnet.np.ndarray.__ne__</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.ndarray.__bool__.html">mxnet.np.ndarray.__bool__</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.ndarray.__neg__.html">mxnet.np.ndarray.__neg__</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.ndarray.__add__.html">mxnet.np.ndarray.__add__</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.ndarray.__sub__.html">mxnet.np.ndarray.__sub__</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.ndarray.__mul__.html">mxnet.np.ndarray.__mul__</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.ndarray.__truediv__.html">mxnet.np.ndarray.__truediv__</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.ndarray.__mod__.html">mxnet.np.ndarray.__mod__</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.ndarray.__pow__.html">mxnet.np.ndarray.__pow__</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.ndarray.__iadd__.html">mxnet.np.ndarray.__iadd__</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.ndarray.__isub__.html">mxnet.np.ndarray.__isub__</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.ndarray.__imul__.html">mxnet.np.ndarray.__imul__</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.ndarray.__itruediv__.html">mxnet.np.ndarray.__itruediv__</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.ndarray.__imod__.html">mxnet.np.ndarray.__imod__</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.ndarray.__reduce__.html">mxnet.np.ndarray.__reduce__</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.ndarray.__setstate__.html">mxnet.np.ndarray.__setstate__</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.ndarray.__len__.html">mxnet.np.ndarray.__len__</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.ndarray.__getitem__.html">mxnet.np.ndarray.__getitem__</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.ndarray.__setitem__.html">mxnet.np.ndarray.__setitem__</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.ndarray.__int__.html">mxnet.np.ndarray.__int__</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.ndarray.__float__.html">mxnet.np.ndarray.__float__</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.ndarray.__str__.html">mxnet.np.ndarray.__str__</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.ndarray.__repr__.html">mxnet.np.ndarray.__repr__</a></li> |
| </ul> |
| </li> |
| <li class="toctree-l4"><a class="reference internal" href="../../../np/arrays.indexing.html">Indexing</a></li> |
| </ul> |
| </li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../np/routines.html">Routines</a><ul> |
| <li class="toctree-l4"><a class="reference internal" href="../../../np/routines.array-creation.html">Array creation routines</a><ul> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.eye.html">mxnet.np.eye</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.empty.html">mxnet.np.empty</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.full.html">mxnet.np.full</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.identity.html">mxnet.np.identity</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.ones.html">mxnet.np.ones</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.ones_like.html">mxnet.np.ones_like</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.zeros.html">mxnet.np.zeros</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.zeros_like.html">mxnet.np.zeros_like</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.array.html">mxnet.np.array</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.copy.html">mxnet.np.copy</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.arange.html">mxnet.np.arange</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.linspace.html">mxnet.np.linspace</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.logspace.html">mxnet.np.logspace</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.meshgrid.html">mxnet.np.meshgrid</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.tril.html">mxnet.np.tril</a></li> |
| </ul> |
| </li> |
| <li class="toctree-l4"><a class="reference internal" href="../../../np/routines.array-manipulation.html">Array manipulation routines</a><ul> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.reshape.html">mxnet.np.reshape</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.ravel.html">mxnet.np.ravel</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.ndarray.flatten.html">mxnet.np.ndarray.flatten</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.swapaxes.html">mxnet.np.swapaxes</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.ndarray.T.html">mxnet.np.ndarray.T</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.transpose.html">mxnet.np.transpose</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.moveaxis.html">mxnet.np.moveaxis</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.expand_dims.html">mxnet.np.expand_dims</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.squeeze.html">mxnet.np.squeeze</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.broadcast_to.html">mxnet.np.broadcast_to</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.broadcast_arrays.html">mxnet.np.broadcast_arrays</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.concatenate.html">mxnet.np.concatenate</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.stack.html">mxnet.np.stack</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.dstack.html">mxnet.np.dstack</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.vstack.html">mxnet.np.vstack</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.split.html">mxnet.np.split</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.hsplit.html">mxnet.np.hsplit</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.vsplit.html">mxnet.np.vsplit</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.tile.html">mxnet.np.tile</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.repeat.html">mxnet.np.repeat</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.unique.html">mxnet.np.unique</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.reshape.html">mxnet.np.reshape</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.flip.html">mxnet.np.flip</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.roll.html">mxnet.np.roll</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.rot90.html">mxnet.np.rot90</a></li> |
| </ul> |
| </li> |
| <li class="toctree-l4"><a class="reference internal" href="../../../np/routines.io.html">Input and output</a><ul> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.genfromtxt.html">mxnet.np.genfromtxt</a></li> |
| </ul> |
| </li> |
| <li class="toctree-l4"><a class="reference internal" href="../../../np/routines.linalg.html">Linear algebra (<code class="xref py py-mod docutils literal notranslate"><span class="pre">numpy.linalg</span></code>)</a><ul> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.dot.html">mxnet.np.dot</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.vdot.html">mxnet.np.vdot</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.inner.html">mxnet.np.inner</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.outer.html">mxnet.np.outer</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.tensordot.html">mxnet.np.tensordot</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.einsum.html">mxnet.np.einsum</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.linalg.svd.html">mxnet.np.linalg.svd</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.linalg.norm.html">mxnet.np.linalg.norm</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.trace.html">mxnet.np.trace</a></li> |
| </ul> |
| </li> |
| <li class="toctree-l4"><a class="reference internal" href="../../../np/routines.math.html">Mathematical functions</a><ul> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.sin.html">mxnet.np.sin</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.cos.html">mxnet.np.cos</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.tan.html">mxnet.np.tan</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.arcsin.html">mxnet.np.arcsin</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.arccos.html">mxnet.np.arccos</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.arctan.html">mxnet.np.arctan</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.degrees.html">mxnet.np.degrees</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.radians.html">mxnet.np.radians</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.hypot.html">mxnet.np.hypot</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.arctan2.html">mxnet.np.arctan2</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.deg2rad.html">mxnet.np.deg2rad</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.rad2deg.html">mxnet.np.rad2deg</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.sinh.html">mxnet.np.sinh</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.cosh.html">mxnet.np.cosh</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.tanh.html">mxnet.np.tanh</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.arcsinh.html">mxnet.np.arcsinh</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.arccosh.html">mxnet.np.arccosh</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.arctanh.html">mxnet.np.arctanh</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.rint.html">mxnet.np.rint</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.fix.html">mxnet.np.fix</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.floor.html">mxnet.np.floor</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.ceil.html">mxnet.np.ceil</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.trunc.html">mxnet.np.trunc</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.around.html">mxnet.np.around</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.sum.html">mxnet.np.sum</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.prod.html">mxnet.np.prod</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.cumsum.html">mxnet.np.cumsum</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.exp.html">mxnet.np.exp</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.expm1.html">mxnet.np.expm1</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.log.html">mxnet.np.log</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.log10.html">mxnet.np.log10</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.log2.html">mxnet.np.log2</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.log1p.html">mxnet.np.log1p</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.ldexp.html">mxnet.np.ldexp</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.lcm.html">mxnet.np.lcm</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.add.html">mxnet.np.add</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.reciprocal.html">mxnet.np.reciprocal</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.negative.html">mxnet.np.negative</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.divide.html">mxnet.np.divide</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.power.html">mxnet.np.power</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.subtract.html">mxnet.np.subtract</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.mod.html">mxnet.np.mod</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.multiply.html">mxnet.np.multiply</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.true_divide.html">mxnet.np.true_divide</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.remainder.html">mxnet.np.remainder</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.clip.html">mxnet.np.clip</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.sqrt.html">mxnet.np.sqrt</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.cbrt.html">mxnet.np.cbrt</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.square.html">mxnet.np.square</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.absolute.html">mxnet.np.absolute</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.sign.html">mxnet.np.sign</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.maximum.html">mxnet.np.maximum</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.minimum.html">mxnet.np.minimum</a></li> |
| </ul> |
| </li> |
| <li class="toctree-l4"><a class="reference internal" href="../../../np/random/index.html">np.random</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="../../../np/routines.sort.html">Sorting, searching, and counting</a><ul> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.argmax.html">mxnet.np.argmax</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.argmin.html">mxnet.np.argmin</a></li> |
| </ul> |
| </li> |
| <li class="toctree-l4"><a class="reference internal" href="../../../np/routines.statistics.html">Statistics</a><ul> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.min.html">mxnet.np.min</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.max.html">mxnet.np.max</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.mean.html">mxnet.np.mean</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.std.html">mxnet.np.std</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.var.html">mxnet.np.var</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../np/generated/mxnet.np.histogram.html">mxnet.np.histogram</a></li> |
| </ul> |
| </li> |
| </ul> |
| </li> |
| </ul> |
| </li> |
| <li class="toctree-l2"><a class="reference internal" href="../../../npx/index.html">NPX: NumPy Neural Network Extension</a><ul> |
| <li class="toctree-l3"><a class="reference internal" href="../../../npx/generated/mxnet.npx.set_np.html">mxnet.npx.set_np</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../npx/generated/mxnet.npx.reset_np.html">mxnet.npx.reset_np</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../npx/generated/mxnet.npx.cpu.html">mxnet.npx.cpu</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../npx/generated/mxnet.npx.cpu_pinned.html">mxnet.npx.cpu_pinned</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../npx/generated/mxnet.npx.gpu.html">mxnet.npx.gpu</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../npx/generated/mxnet.npx.gpu_memory_info.html">mxnet.npx.gpu_memory_info</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../npx/generated/mxnet.npx.current_context.html">mxnet.npx.current_context</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../npx/generated/mxnet.npx.num_gpus.html">mxnet.npx.num_gpus</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../npx/generated/mxnet.npx.activation.html">mxnet.npx.activation</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../npx/generated/mxnet.npx.batch_norm.html">mxnet.npx.batch_norm</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../npx/generated/mxnet.npx.convolution.html">mxnet.npx.convolution</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../npx/generated/mxnet.npx.dropout.html">mxnet.npx.dropout</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../npx/generated/mxnet.npx.embedding.html">mxnet.npx.embedding</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../npx/generated/mxnet.npx.fully_connected.html">mxnet.npx.fully_connected</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../npx/generated/mxnet.npx.layer_norm.html">mxnet.npx.layer_norm</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../npx/generated/mxnet.npx.pooling.html">mxnet.npx.pooling</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../npx/generated/mxnet.npx.rnn.html">mxnet.npx.rnn</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../npx/generated/mxnet.npx.leaky_relu.html">mxnet.npx.leaky_relu</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../npx/generated/mxnet.npx.multibox_detection.html">mxnet.npx.multibox_detection</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../npx/generated/mxnet.npx.multibox_prior.html">mxnet.npx.multibox_prior</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../npx/generated/mxnet.npx.multibox_target.html">mxnet.npx.multibox_target</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../npx/generated/mxnet.npx.roi_pooling.html">mxnet.npx.roi_pooling</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../npx/generated/mxnet.npx.sigmoid.html">mxnet.npx.sigmoid</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../npx/generated/mxnet.npx.smooth_l1.html">mxnet.npx.smooth_l1</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../npx/generated/mxnet.npx.softmax.html">mxnet.npx.softmax</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../npx/generated/mxnet.npx.topk.html">mxnet.npx.topk</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../npx/generated/mxnet.npx.waitall.html">mxnet.npx.waitall</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../npx/generated/mxnet.npx.load.html">mxnet.npx.load</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../npx/generated/mxnet.npx.save.html">mxnet.npx.save</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../npx/generated/mxnet.npx.one_hot.html">mxnet.npx.one_hot</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../npx/generated/mxnet.npx.pick.html">mxnet.npx.pick</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../npx/generated/mxnet.npx.reshape_like.html">mxnet.npx.reshape_like</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../npx/generated/mxnet.npx.batch_flatten.html">mxnet.npx.batch_flatten</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../npx/generated/mxnet.npx.batch_dot.html">mxnet.npx.batch_dot</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../npx/generated/mxnet.npx.gamma.html">mxnet.npx.gamma</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../npx/generated/mxnet.npx.sequence_mask.html">mxnet.npx.sequence_mask</a></li> |
| </ul> |
| </li> |
| <li class="toctree-l2"><a class="reference internal" href="../../../gluon/index.html">mxnet.gluon</a><ul> |
| <li class="toctree-l3"><a class="reference internal" href="../../../gluon/block.html">gluon.Block</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../gluon/hybrid_block.html">gluon.HybridBlock</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../gluon/symbol_block.html">gluon.SymbolBlock</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../gluon/constant.html">gluon.Constant</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../gluon/parameter.html">gluon.Parameter</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../gluon/parameter_dict.html">gluon.ParameterDict</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../gluon/trainer.html">gluon.Trainer</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../gluon/contrib/index.html">gluon.contrib</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../gluon/data/index.html">gluon.data</a><ul> |
| <li class="toctree-l4"><a class="reference internal" href="../../../gluon/data/vision/index.html">data.vision</a><ul> |
| <li class="toctree-l5"><a class="reference internal" href="../../../gluon/data/vision/datasets/index.html">vision.datasets</a></li> |
| <li class="toctree-l5"><a class="reference internal" href="../../../gluon/data/vision/transforms/index.html">vision.transforms</a></li> |
| </ul> |
| </li> |
| </ul> |
| </li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../gluon/loss/index.html">gluon.loss</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../gluon/metric/index.html">gluon.metric</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../gluon/model_zoo/index.html">gluon.model_zoo.vision</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../gluon/nn/index.html">gluon.nn</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../gluon/rnn/index.html">gluon.rnn</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../gluon/utils/index.html">gluon.utils</a></li> |
| </ul> |
| </li> |
| <li class="toctree-l2"><a class="reference internal" href="../../../autograd/index.html">mxnet.autograd</a></li> |
| <li class="toctree-l2"><a class="reference internal" href="../../../initializer/index.html">mxnet.initializer</a></li> |
| <li class="toctree-l2"><a class="reference internal" href="../../../optimizer/index.html">mxnet.optimizer</a></li> |
| <li class="toctree-l2"><a class="reference internal" href="../../../lr_scheduler/index.html">mxnet.lr_scheduler</a></li> |
| <li class="toctree-l2"><a class="reference internal" href="../../../kvstore/index.html">mxnet.kvstore</a></li> |
| <li class="toctree-l2"><a class="reference internal" href="../../../module/index.html">mxnet.module</a></li> |
| <li class="toctree-l2"><a class="reference internal" href="../../../contrib/index.html">mxnet.contrib</a><ul> |
| <li class="toctree-l3"><a class="reference internal" href="../../../contrib/autograd/index.html">contrib.autograd</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../contrib/io/index.html">contrib.io</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../contrib/ndarray/index.html">contrib.ndarray</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../contrib/onnx/index.html">contrib.onnx</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../contrib/quantization/index.html">contrib.quantization</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../contrib/symbol/index.html">contrib.symbol</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../contrib/tensorboard/index.html">contrib.tensorboard</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../contrib/tensorrt/index.html">contrib.tensorrt</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../../contrib/text/index.html">contrib.text</a></li> |
| </ul> |
| </li> |
| <li class="toctree-l2 current"><a class="reference internal" href="../../index.html">Legacy</a><ul class="current"> |
| <li class="toctree-l3"><a class="reference internal" href="../../callback/index.html">mxnet.callback</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../image/index.html">mxnet.image</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../io/index.html">mxnet.io</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../monitor/index.html">mxnet.monitor</a></li> |
| <li class="toctree-l3 current"><a class="reference internal" href="../index.html">mxnet.ndarray</a><ul class="current"> |
| <li class="toctree-l4"><a class="reference internal" href="../ndarray.html">ndarray</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="../contrib/index.html">ndarray.contrib</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="../image/index.html">ndarray.image</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="../linalg/index.html">ndarray.linalg</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="../op/index.html">ndarray.op</a></li> |
| <li class="toctree-l4 current"><a class="current reference internal" href="#">ndarray.random</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="../register/index.html">ndarray.register</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="../sparse/index.html">ndarray.sparse</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="../utils/index.html">ndarray.utils</a></li> |
| </ul> |
| </li> |
| <li class="toctree-l3"><a class="reference internal" href="../../recordio/index.html">mxnet.recordio</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="../../symbol/index.html">mxnet.symbol</a><ul> |
| <li class="toctree-l4"><a class="reference internal" href="../../symbol/symbol.html">symbol</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="../../symbol/contrib/index.html">symbol.contrib</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="../../symbol/image/index.html">symbol.image</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="../../symbol/linalg/index.html">symbol.linalg</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="../../symbol/op/index.html">symbol.op</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="../../symbol/random/index.html">symbol.random</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="../../symbol/register/index.html">symbol.register</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="../../symbol/sparse/index.html">symbol.sparse</a></li> |
| </ul> |
| </li> |
| <li class="toctree-l3"><a class="reference internal" href="../../visualization/index.html">mxnet.visualization</a></li> |
| </ul> |
| </li> |
| <li class="toctree-l2"><a class="reference internal" href="../../../context/index.html">mxnet.context</a></li> |
| <li class="toctree-l2"><a class="reference internal" href="../../../engine/index.html">mxnet.engine</a></li> |
| <li class="toctree-l2"><a class="reference internal" href="../../../executor/index.html">mxnet.executor</a></li> |
| <li class="toctree-l2"><a class="reference internal" href="../../../kvstore_server/index.html">mxnet.kvstore_server</a></li> |
| <li class="toctree-l2"><a class="reference internal" href="../../../profiler/index.html">mxnet.profiler</a></li> |
| <li class="toctree-l2"><a class="reference internal" href="../../../rtc/index.html">mxnet.rtc</a></li> |
| <li class="toctree-l2"><a class="reference internal" href="../../../runtime/index.html">mxnet.runtime</a></li> |
| <li class="toctree-l2"><a class="reference internal" href="../../../test_utils/index.html">mxnet.test_utils</a></li> |
| <li class="toctree-l2"><a class="reference internal" href="../../../util/index.html">mxnet.util</a></li> |
| </ul> |
| </li> |
| </ul> |
| |
| </nav> |
| |
| </div> |
| |
| </header> |
| |
| <div class="document"> |
| <div class="page-content" role="main"> |
| |
| <div class="section" id="module-mxnet.ndarray.random"> |
| <span id="ndarray-random"></span><h1>ndarray.random<a class="headerlink" href="#module-mxnet.ndarray.random" title="Permalink to this headline">¶</a></h1> |
| <p>Random distribution generator NDArray API of MXNet.</p> |
| <p><strong>Functions</strong></p> |
| <table class="longtable docutils align-default"> |
| <colgroup> |
| <col style="width: 10%" /> |
| <col style="width: 90%" /> |
| </colgroup> |
| <tbody> |
| <tr class="row-odd"><td><p><a class="reference internal" href="#mxnet.ndarray.random.uniform" title="mxnet.ndarray.random.uniform"><code class="xref py py-obj docutils literal notranslate"><span class="pre">uniform</span></code></a>([low, high, shape, dtype, ctx, out])</p></td> |
| <td><p>Draw random samples from a uniform distribution.</p></td> |
| </tr> |
| <tr class="row-even"><td><p><a class="reference internal" href="#mxnet.ndarray.random.normal" title="mxnet.ndarray.random.normal"><code class="xref py py-obj docutils literal notranslate"><span class="pre">normal</span></code></a>([loc, scale, shape, dtype, ctx, out])</p></td> |
| <td><p>Draw random samples from a normal (Gaussian) distribution.</p></td> |
| </tr> |
| <tr class="row-odd"><td><p><a class="reference internal" href="#mxnet.ndarray.random.randn" title="mxnet.ndarray.random.randn"><code class="xref py py-obj docutils literal notranslate"><span class="pre">randn</span></code></a>(*shape, **kwargs)</p></td> |
| <td><p>Draw random samples from a normal (Gaussian) distribution.</p></td> |
| </tr> |
| <tr class="row-even"><td><p><a class="reference internal" href="#mxnet.ndarray.random.poisson" title="mxnet.ndarray.random.poisson"><code class="xref py py-obj docutils literal notranslate"><span class="pre">poisson</span></code></a>([lam, shape, dtype, ctx, out])</p></td> |
| <td><p>Draw random samples from a Poisson distribution.</p></td> |
| </tr> |
| <tr class="row-odd"><td><p><a class="reference internal" href="#mxnet.ndarray.random.exponential" title="mxnet.ndarray.random.exponential"><code class="xref py py-obj docutils literal notranslate"><span class="pre">exponential</span></code></a>([scale, shape, dtype, ctx, out])</p></td> |
| <td><p>Draw samples from an exponential distribution.</p></td> |
| </tr> |
| <tr class="row-even"><td><p><a class="reference internal" href="#mxnet.ndarray.random.gamma" title="mxnet.ndarray.random.gamma"><code class="xref py py-obj docutils literal notranslate"><span class="pre">gamma</span></code></a>([alpha, beta, shape, dtype, ctx, out])</p></td> |
| <td><p>Draw random samples from a gamma distribution.</p></td> |
| </tr> |
| <tr class="row-odd"><td><p><a class="reference internal" href="#mxnet.ndarray.random.multinomial" title="mxnet.ndarray.random.multinomial"><code class="xref py py-obj docutils literal notranslate"><span class="pre">multinomial</span></code></a>(data[, shape, get_prob, out, dtype])</p></td> |
| <td><p>Concurrent sampling from multiple multinomial distributions.</p></td> |
| </tr> |
| <tr class="row-even"><td><p><a class="reference internal" href="#mxnet.ndarray.random.negative_binomial" title="mxnet.ndarray.random.negative_binomial"><code class="xref py py-obj docutils literal notranslate"><span class="pre">negative_binomial</span></code></a>([k, p, shape, dtype, ctx, out])</p></td> |
| <td><p>Draw random samples from a negative binomial distribution.</p></td> |
| </tr> |
| <tr class="row-odd"><td><p><a class="reference internal" href="#mxnet.ndarray.random.generalized_negative_binomial" title="mxnet.ndarray.random.generalized_negative_binomial"><code class="xref py py-obj docutils literal notranslate"><span class="pre">generalized_negative_binomial</span></code></a>([mu, alpha, …])</p></td> |
| <td><p>Draw random samples from a generalized negative binomial distribution.</p></td> |
| </tr> |
| <tr class="row-even"><td><p><a class="reference internal" href="#mxnet.ndarray.random.shuffle" title="mxnet.ndarray.random.shuffle"><code class="xref py py-obj docutils literal notranslate"><span class="pre">shuffle</span></code></a>(data, **kwargs)</p></td> |
| <td><p>Shuffle the elements randomly.</p></td> |
| </tr> |
| <tr class="row-odd"><td><p><a class="reference internal" href="#mxnet.ndarray.random.randint" title="mxnet.ndarray.random.randint"><code class="xref py py-obj docutils literal notranslate"><span class="pre">randint</span></code></a>(low, high[, shape, dtype, ctx, out])</p></td> |
| <td><p>Draw random samples from a discrete uniform distribution.</p></td> |
| </tr> |
| <tr class="row-even"><td><p><a class="reference internal" href="#mxnet.ndarray.random.exponential_like" title="mxnet.ndarray.random.exponential_like"><code class="xref py py-obj docutils literal notranslate"><span class="pre">exponential_like</span></code></a>([data, lam, out, name])</p></td> |
| <td><p>Draw random samples from an exponential distribution according to the input array shape.</p></td> |
| </tr> |
| <tr class="row-odd"><td><p><a class="reference internal" href="#mxnet.ndarray.random.gamma_like" title="mxnet.ndarray.random.gamma_like"><code class="xref py py-obj docutils literal notranslate"><span class="pre">gamma_like</span></code></a>([data, alpha, beta, out, name])</p></td> |
| <td><p>Draw random samples from a gamma distribution according to the input array shape.</p></td> |
| </tr> |
| <tr class="row-even"><td><p><a class="reference internal" href="#mxnet.ndarray.random.generalized_negative_binomial_like" title="mxnet.ndarray.random.generalized_negative_binomial_like"><code class="xref py py-obj docutils literal notranslate"><span class="pre">generalized_negative_binomial_like</span></code></a>([data, …])</p></td> |
| <td><p>Draw random samples from a generalized negative binomial distribution according to the input array shape.</p></td> |
| </tr> |
| <tr class="row-odd"><td><p><a class="reference internal" href="#mxnet.ndarray.random.negative_binomial_like" title="mxnet.ndarray.random.negative_binomial_like"><code class="xref py py-obj docutils literal notranslate"><span class="pre">negative_binomial_like</span></code></a>([data, k, p, out, name])</p></td> |
| <td><p>Draw random samples from a negative binomial distribution according to the input array shape.</p></td> |
| </tr> |
| <tr class="row-even"><td><p><a class="reference internal" href="#mxnet.ndarray.random.normal_like" title="mxnet.ndarray.random.normal_like"><code class="xref py py-obj docutils literal notranslate"><span class="pre">normal_like</span></code></a>([data, loc, scale, out, name])</p></td> |
| <td><p>Draw random samples from a normal (Gaussian) distribution according to the input array shape.</p></td> |
| </tr> |
| <tr class="row-odd"><td><p><a class="reference internal" href="#mxnet.ndarray.random.poisson_like" title="mxnet.ndarray.random.poisson_like"><code class="xref py py-obj docutils literal notranslate"><span class="pre">poisson_like</span></code></a>([data, lam, out, name])</p></td> |
| <td><p>Draw random samples from a Poisson distribution according to the input array shape.</p></td> |
| </tr> |
| <tr class="row-even"><td><p><a class="reference internal" href="#mxnet.ndarray.random.uniform_like" title="mxnet.ndarray.random.uniform_like"><code class="xref py py-obj docutils literal notranslate"><span class="pre">uniform_like</span></code></a>([data, low, high, out, name])</p></td> |
| <td><p>Draw random samples from a uniform distribution according to the input array shape.</p></td> |
| </tr> |
| </tbody> |
| </table> |
| <dl class="function"> |
| <dt id="mxnet.ndarray.random.uniform"> |
| <code class="sig-prename descclassname">mxnet.ndarray.random.</code><code class="sig-name descname">uniform</code><span class="sig-paren">(</span><em class="sig-param">low=0</em>, <em class="sig-param">high=1</em>, <em class="sig-param">shape=_Null</em>, <em class="sig-param">dtype=_Null</em>, <em class="sig-param">ctx=None</em>, <em class="sig-param">out=None</em>, <em class="sig-param">**kwargs</em><span class="sig-paren">)</span><a class="reference internal" href="../../../../_modules/mxnet/ndarray/random.html#uniform"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#mxnet.ndarray.random.uniform" title="Permalink to this definition">¶</a></dt> |
| <dd><p>Draw random samples from a uniform distribution.</p> |
| <p>Samples are uniformly distributed over the half-open interval <em>[low, high)</em> |
| (includes <em>low</em>, but excludes <em>high</em>).</p> |
| <dl class="field-list simple"> |
| <dt class="field-odd">Parameters</dt> |
| <dd class="field-odd"><ul class="simple"> |
| <li><p><strong>low</strong> (<em>float</em><em> or </em><a class="reference internal" href="../ndarray.html#mxnet.ndarray.NDArray" title="mxnet.ndarray.NDArray"><em>NDArray</em></a><em>, </em><em>optional</em>) – Lower boundary of the output interval. All values generated will be |
| greater than or equal to low. The default value is 0.</p></li> |
| <li><p><strong>high</strong> (<em>float</em><em> or </em><a class="reference internal" href="../ndarray.html#mxnet.ndarray.NDArray" title="mxnet.ndarray.NDArray"><em>NDArray</em></a><em>, </em><em>optional</em>) – Upper boundary of the output interval. All values generated will be |
| less than high. The default value is 1.0.</p></li> |
| <li><p><strong>shape</strong> (<em>int</em><em> or </em><em>tuple of ints</em><em>, </em><em>optional</em>) – The number of samples to draw. If shape is, e.g., <cite>(m, n)</cite> and <cite>low</cite> and |
| <cite>high</cite> are scalars, output shape will be <cite>(m, n)</cite>. If <cite>low</cite> and <cite>high</cite> |
| are NDArrays with shape, e.g., <cite>(x, y)</cite>, then output will have shape |
| <cite>(x, y, m, n)</cite>, where <cite>m*n</cite> samples are drawn for each <cite>[low, high)</cite> pair.</p></li> |
| <li><p><strong>dtype</strong> (<em>{'float16'</em><em>, </em><em>'float32'</em><em>, </em><em>'float64'}</em><em>, </em><em>optional</em>) – Data type of output samples. Default is ‘float32’</p></li> |
| <li><p><strong>ctx</strong> (<a class="reference internal" href="../../../context/index.html#mxnet.context.Context" title="mxnet.context.Context"><em>Context</em></a><em>, </em><em>optional</em>) – Device context of output. Default is current context. Overridden by |
| <cite>low.context</cite> when <cite>low</cite> is an NDArray.</p></li> |
| <li><p><strong>out</strong> (<a class="reference internal" href="../ndarray.html#mxnet.ndarray.NDArray" title="mxnet.ndarray.NDArray"><em>NDArray</em></a><em>, </em><em>optional</em>) – Store output to an existing NDArray.</p></li> |
| </ul> |
| </dd> |
| <dt class="field-even">Returns</dt> |
| <dd class="field-even"><p>An NDArray of type <cite>dtype</cite>. If input <cite>shape</cite> has shape, e.g., |
| <cite>(m, n)</cite> and <cite>low</cite> and <cite>high</cite> are scalars, output shape will be <cite>(m, n)</cite>. |
| If <cite>low</cite> and <cite>high</cite> are NDArrays with shape, e.g., <cite>(x, y)</cite>, then the |
| return NDArray will have shape <cite>(x, y, m, n)</cite>, where <cite>m*n</cite> uniformly distributed |
| samples are drawn for each <cite>[low, high)</cite> pair.</p> |
| </dd> |
| <dt class="field-odd">Return type</dt> |
| <dd class="field-odd"><p><a class="reference internal" href="../ndarray.html#mxnet.ndarray.NDArray" title="mxnet.ndarray.NDArray">NDArray</a></p> |
| </dd> |
| </dl> |
| <p class="rubric">Examples</p> |
| <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">mx</span><span class="o">.</span><span class="n">nd</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">uniform</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span> |
| <span class="go">[ 0.54881352]</span> |
| <span class="go"><NDArray 1 @cpu(0)</span> |
| <span class="gp">>>> </span><span class="n">mx</span><span class="o">.</span><span class="n">nd</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">uniform</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="n">ctx</span><span class="o">=</span><span class="n">mx</span><span class="o">.</span><span class="n">gpu</span><span class="p">(</span><span class="mi">0</span><span class="p">))</span> |
| <span class="go">[ 0.92514056]</span> |
| <span class="go"><NDArray 1 @gpu(0)></span> |
| <span class="gp">>>> </span><span class="n">mx</span><span class="o">.</span><span class="n">nd</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">uniform</span><span class="p">(</span><span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="n">shape</span><span class="o">=</span><span class="p">(</span><span class="mi">2</span><span class="p">,))</span> |
| <span class="go">[ 0.71589124 0.08976638]</span> |
| <span class="go"><NDArray 2 @cpu(0)></span> |
| <span class="gp">>>> </span><span class="n">low</span> <span class="o">=</span> <span class="n">mx</span><span class="o">.</span><span class="n">nd</span><span class="o">.</span><span class="n">array</span><span class="p">([</span><span class="mi">1</span><span class="p">,</span><span class="mi">2</span><span class="p">,</span><span class="mi">3</span><span class="p">])</span> |
| <span class="gp">>>> </span><span class="n">high</span> <span class="o">=</span> <span class="n">mx</span><span class="o">.</span><span class="n">nd</span><span class="o">.</span><span class="n">array</span><span class="p">([</span><span class="mi">2</span><span class="p">,</span><span class="mi">3</span><span class="p">,</span><span class="mi">4</span><span class="p">])</span> |
| <span class="gp">>>> </span><span class="n">mx</span><span class="o">.</span><span class="n">nd</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">uniform</span><span class="p">(</span><span class="n">low</span><span class="p">,</span> <span class="n">high</span><span class="p">,</span> <span class="n">shape</span><span class="o">=</span><span class="mi">2</span><span class="p">)</span> |
| <span class="go">[[ 1.78653979 1.93707538]</span> |
| <span class="go"> [ 2.01311183 2.37081361]</span> |
| <span class="go"> [ 3.30491424 3.69977832]]</span> |
| <span class="go"><NDArray 3x2 @cpu(0)></span> |
| </pre></div> |
| </div> |
| </dd></dl> |
| |
| <dl class="function"> |
| <dt id="mxnet.ndarray.random.normal"> |
| <code class="sig-prename descclassname">mxnet.ndarray.random.</code><code class="sig-name descname">normal</code><span class="sig-paren">(</span><em class="sig-param">loc=0</em>, <em class="sig-param">scale=1</em>, <em class="sig-param">shape=_Null</em>, <em class="sig-param">dtype=_Null</em>, <em class="sig-param">ctx=None</em>, <em class="sig-param">out=None</em>, <em class="sig-param">**kwargs</em><span class="sig-paren">)</span><a class="reference internal" href="../../../../_modules/mxnet/ndarray/random.html#normal"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#mxnet.ndarray.random.normal" title="Permalink to this definition">¶</a></dt> |
| <dd><p>Draw random samples from a normal (Gaussian) distribution.</p> |
| <p>Samples are distributed according to a normal distribution parametrized |
| by <em>loc</em> (mean) and <em>scale</em> (standard deviation).</p> |
| <dl class="field-list simple"> |
| <dt class="field-odd">Parameters</dt> |
| <dd class="field-odd"><ul class="simple"> |
| <li><p><strong>loc</strong> (<em>float</em><em> or </em><a class="reference internal" href="../ndarray.html#mxnet.ndarray.NDArray" title="mxnet.ndarray.NDArray"><em>NDArray</em></a><em>, </em><em>optional</em>) – Mean (centre) of the distribution.</p></li> |
| <li><p><strong>scale</strong> (<em>float</em><em> or </em><a class="reference internal" href="../ndarray.html#mxnet.ndarray.NDArray" title="mxnet.ndarray.NDArray"><em>NDArray</em></a><em>, </em><em>optional</em>) – Standard deviation (spread or width) of the distribution.</p></li> |
| <li><p><strong>shape</strong> (<em>int</em><em> or </em><em>tuple of ints</em><em>, </em><em>optional</em>) – The number of samples to draw. If shape is, e.g., <cite>(m, n)</cite> and <cite>loc</cite> and |
| <cite>scale</cite> are scalars, output shape will be <cite>(m, n)</cite>. If <cite>loc</cite> and <cite>scale</cite> |
| are NDArrays with shape, e.g., <cite>(x, y)</cite>, then output will have shape |
| <cite>(x, y, m, n)</cite>, where <cite>m*n</cite> samples are drawn for each <cite>[loc, scale)</cite> pair.</p></li> |
| <li><p><strong>dtype</strong> (<em>{'float16'</em><em>, </em><em>'float32'</em><em>, </em><em>'float64'}</em><em>, </em><em>optional</em>) – Data type of output samples. Default is ‘float32’</p></li> |
| <li><p><strong>ctx</strong> (<a class="reference internal" href="../../../context/index.html#mxnet.context.Context" title="mxnet.context.Context"><em>Context</em></a><em>, </em><em>optional</em>) – Device context of output. Default is current context. Overridden by |
| <cite>loc.context</cite> when <cite>loc</cite> is an NDArray.</p></li> |
| <li><p><strong>out</strong> (<a class="reference internal" href="../ndarray.html#mxnet.ndarray.NDArray" title="mxnet.ndarray.NDArray"><em>NDArray</em></a><em>, </em><em>optional</em>) – Store output to an existing NDArray.</p></li> |
| </ul> |
| </dd> |
| <dt class="field-even">Returns</dt> |
| <dd class="field-even"><p>An NDArray of type <cite>dtype</cite>. If input <cite>shape</cite> has shape, e.g., <cite>(m, n)</cite> and |
| <cite>loc</cite> and <cite>scale</cite> are scalars, output shape will be <cite>(m, n)</cite>. If <cite>loc</cite> and |
| <cite>scale</cite> are NDArrays with shape, e.g., <cite>(x, y)</cite>, then output will have shape |
| <cite>(x, y, m, n)</cite>, where <cite>m*n</cite> samples are drawn for each <cite>[loc, scale)</cite> pair.</p> |
| </dd> |
| <dt class="field-odd">Return type</dt> |
| <dd class="field-odd"><p><a class="reference internal" href="../ndarray.html#mxnet.ndarray.NDArray" title="mxnet.ndarray.NDArray">NDArray</a></p> |
| </dd> |
| </dl> |
| <p class="rubric">Examples</p> |
| <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">mx</span><span class="o">.</span><span class="n">nd</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">normal</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span> |
| <span class="go">[ 2.21220636]</span> |
| <span class="go"><NDArray 1 @cpu(0)></span> |
| <span class="gp">>>> </span><span class="n">mx</span><span class="o">.</span><span class="n">nd</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">normal</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="n">ctx</span><span class="o">=</span><span class="n">mx</span><span class="o">.</span><span class="n">gpu</span><span class="p">(</span><span class="mi">0</span><span class="p">))</span> |
| <span class="go">[ 0.29253659]</span> |
| <span class="go"><NDArray 1 @gpu(0)></span> |
| <span class="gp">>>> </span><span class="n">mx</span><span class="o">.</span><span class="n">nd</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">normal</span><span class="p">(</span><span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="n">shape</span><span class="o">=</span><span class="p">(</span><span class="mi">2</span><span class="p">,))</span> |
| <span class="go">[-0.2259962 -0.51619542]</span> |
| <span class="go"><NDArray 2 @cpu(0)></span> |
| <span class="gp">>>> </span><span class="n">loc</span> <span class="o">=</span> <span class="n">mx</span><span class="o">.</span><span class="n">nd</span><span class="o">.</span><span class="n">array</span><span class="p">([</span><span class="mi">1</span><span class="p">,</span><span class="mi">2</span><span class="p">,</span><span class="mi">3</span><span class="p">])</span> |
| <span class="gp">>>> </span><span class="n">scale</span> <span class="o">=</span> <span class="n">mx</span><span class="o">.</span><span class="n">nd</span><span class="o">.</span><span class="n">array</span><span class="p">([</span><span class="mi">2</span><span class="p">,</span><span class="mi">3</span><span class="p">,</span><span class="mi">4</span><span class="p">])</span> |
| <span class="gp">>>> </span><span class="n">mx</span><span class="o">.</span><span class="n">nd</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">normal</span><span class="p">(</span><span class="n">loc</span><span class="p">,</span> <span class="n">scale</span><span class="p">,</span> <span class="n">shape</span><span class="o">=</span><span class="mi">2</span><span class="p">)</span> |
| <span class="go">[[ 0.55912292 3.19566321]</span> |
| <span class="go"> [ 1.91728961 2.47706747]</span> |
| <span class="go"> [ 2.79666662 5.44254589]]</span> |
| <span class="go"><NDArray 3x2 @cpu(0)></span> |
| </pre></div> |
| </div> |
| </dd></dl> |
| |
| <dl class="function"> |
| <dt id="mxnet.ndarray.random.randn"> |
| <code class="sig-prename descclassname">mxnet.ndarray.random.</code><code class="sig-name descname">randn</code><span class="sig-paren">(</span><em class="sig-param">*shape</em>, <em class="sig-param">**kwargs</em><span class="sig-paren">)</span><a class="reference internal" href="../../../../_modules/mxnet/ndarray/random.html#randn"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#mxnet.ndarray.random.randn" title="Permalink to this definition">¶</a></dt> |
| <dd><p>Draw random samples from a normal (Gaussian) distribution.</p> |
| <p>Samples are distributed according to a normal distribution parametrized |
| by <em>loc</em> (mean) and <em>scale</em> (standard deviation).</p> |
| <dl class="field-list simple"> |
| <dt class="field-odd">Parameters</dt> |
| <dd class="field-odd"><ul class="simple"> |
| <li><p><strong>loc</strong> (<em>float</em><em> or </em><a class="reference internal" href="../ndarray.html#mxnet.ndarray.NDArray" title="mxnet.ndarray.NDArray"><em>NDArray</em></a>) – Mean (centre) of the distribution.</p></li> |
| <li><p><strong>scale</strong> (<em>float</em><em> or </em><a class="reference internal" href="../ndarray.html#mxnet.ndarray.NDArray" title="mxnet.ndarray.NDArray"><em>NDArray</em></a>) – Standard deviation (spread or width) of the distribution.</p></li> |
| <li><p><strong>shape</strong> (<em>int</em><em> or </em><em>tuple of ints</em>) – The number of samples to draw. If shape is, e.g., <cite>(m, n)</cite> and <cite>loc</cite> and |
| <cite>scale</cite> are scalars, output shape will be <cite>(m, n)</cite>. If <cite>loc</cite> and <cite>scale</cite> |
| are NDArrays with shape, e.g., <cite>(x, y)</cite>, then output will have shape |
| <cite>(x, y, m, n)</cite>, where <cite>m*n</cite> samples are drawn for each <cite>[loc, scale)</cite> pair.</p></li> |
| <li><p><strong>dtype</strong> (<em>{'float16'</em><em>, </em><em>'float32'</em><em>, </em><em>'float64'}</em>) – Data type of output samples. Default is ‘float32’</p></li> |
| <li><p><strong>ctx</strong> (<a class="reference internal" href="../../../context/index.html#mxnet.context.Context" title="mxnet.context.Context"><em>Context</em></a>) – Device context of output. Default is current context. Overridden by |
| <cite>loc.context</cite> when <cite>loc</cite> is an NDArray.</p></li> |
| <li><p><strong>out</strong> (<a class="reference internal" href="../ndarray.html#mxnet.ndarray.NDArray" title="mxnet.ndarray.NDArray"><em>NDArray</em></a>) – Store output to an existing NDArray.</p></li> |
| </ul> |
| </dd> |
| <dt class="field-even">Returns</dt> |
| <dd class="field-even"><p>If input <cite>shape</cite> has shape, e.g., <cite>(m, n)</cite> and <cite>loc</cite> and <cite>scale</cite> are scalars, output |
| shape will be <cite>(m, n)</cite>. If <cite>loc</cite> and <cite>scale</cite> are NDArrays with shape, e.g., <cite>(x, y)</cite>, |
| then output will have shape <cite>(x, y, m, n)</cite>, where <cite>m*n</cite> samples are drawn for |
| each <cite>[loc, scale)</cite> pair.</p> |
| </dd> |
| <dt class="field-odd">Return type</dt> |
| <dd class="field-odd"><p><a class="reference internal" href="../ndarray.html#mxnet.ndarray.NDArray" title="mxnet.ndarray.NDArray">NDArray</a></p> |
| </dd> |
| </dl> |
| <p class="rubric">Examples</p> |
| <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">mx</span><span class="o">.</span><span class="n">nd</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">randn</span><span class="p">()</span> |
| <span class="go">2.21220636</span> |
| <span class="go"><NDArray 1 @cpu(0)></span> |
| <span class="gp">>>> </span><span class="n">mx</span><span class="o">.</span><span class="n">nd</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">randn</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="mi">2</span><span class="p">)</span> |
| <span class="go">[[-1.856082 -1.9768796 ]</span> |
| <span class="go">[-0.20801921 0.2444218 ]]</span> |
| <span class="go"><NDArray 2x2 @cpu(0)></span> |
| <span class="gp">>>> </span><span class="n">mx</span><span class="o">.</span><span class="n">nd</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">randn</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="n">loc</span><span class="o">=</span><span class="mi">5</span><span class="p">,</span> <span class="n">scale</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span> |
| <span class="go">[[4.19962 4.8311777 5.936328 ]</span> |
| <span class="go">[5.357444 5.7793283 3.9896927]]</span> |
| <span class="go"><NDArray 2x3 @cpu(0)></span> |
| </pre></div> |
| </div> |
| </dd></dl> |
| |
| <dl class="function"> |
| <dt id="mxnet.ndarray.random.poisson"> |
| <code class="sig-prename descclassname">mxnet.ndarray.random.</code><code class="sig-name descname">poisson</code><span class="sig-paren">(</span><em class="sig-param">lam=1</em>, <em class="sig-param">shape=_Null</em>, <em class="sig-param">dtype=_Null</em>, <em class="sig-param">ctx=None</em>, <em class="sig-param">out=None</em>, <em class="sig-param">**kwargs</em><span class="sig-paren">)</span><a class="reference internal" href="../../../../_modules/mxnet/ndarray/random.html#poisson"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#mxnet.ndarray.random.poisson" title="Permalink to this definition">¶</a></dt> |
| <dd><p>Draw random samples from a Poisson distribution.</p> |
| <p>Samples are distributed according to a Poisson distribution parametrized |
| by <em>lambda</em> (rate). Samples will always be returned as a floating point data type.</p> |
| <dl class="field-list simple"> |
| <dt class="field-odd">Parameters</dt> |
| <dd class="field-odd"><ul class="simple"> |
| <li><p><strong>lam</strong> (<em>float</em><em> or </em><a class="reference internal" href="../ndarray.html#mxnet.ndarray.NDArray" title="mxnet.ndarray.NDArray"><em>NDArray</em></a><em>, </em><em>optional</em>) – Expectation of interval, should be >= 0.</p></li> |
| <li><p><strong>shape</strong> (<em>int</em><em> or </em><em>tuple of ints</em><em>, </em><em>optional</em>) – The number of samples to draw. If shape is, e.g., <cite>(m, n)</cite> and <cite>lam</cite> is |
| a scalar, output shape will be <cite>(m, n)</cite>. If <cite>lam</cite> |
| is an NDArray with shape, e.g., <cite>(x, y)</cite>, then output will have shape |
| <cite>(x, y, m, n)</cite>, where <cite>m*n</cite> samples are drawn for each entry in <cite>lam</cite>.</p></li> |
| <li><p><strong>dtype</strong> (<em>{'float16'</em><em>, </em><em>'float32'</em><em>, </em><em>'float64'}</em><em>, </em><em>optional</em>) – Data type of output samples. Default is ‘float32’</p></li> |
| <li><p><strong>ctx</strong> (<a class="reference internal" href="../../../context/index.html#mxnet.context.Context" title="mxnet.context.Context"><em>Context</em></a><em>, </em><em>optional</em>) – Device context of output. Default is current context. Overridden by |
| <cite>lam.context</cite> when <cite>lam</cite> is an NDArray.</p></li> |
| <li><p><strong>out</strong> (<a class="reference internal" href="../ndarray.html#mxnet.ndarray.NDArray" title="mxnet.ndarray.NDArray"><em>NDArray</em></a><em>, </em><em>optional</em>) – Store output to an existing NDArray.</p></li> |
| </ul> |
| </dd> |
| <dt class="field-even">Returns</dt> |
| <dd class="field-even"><p>If input <cite>shape</cite> has shape, e.g., <cite>(m, n)</cite> and <cite>lam</cite> is |
| a scalar, output shape will be <cite>(m, n)</cite>. If <cite>lam</cite> |
| is an NDArray with shape, e.g., <cite>(x, y)</cite>, then output will have shape |
| <cite>(x, y, m, n)</cite>, where <cite>m*n</cite> samples are drawn for each entry in <cite>lam</cite>.</p> |
| </dd> |
| <dt class="field-odd">Return type</dt> |
| <dd class="field-odd"><p><a class="reference internal" href="../ndarray.html#mxnet.ndarray.NDArray" title="mxnet.ndarray.NDArray">NDArray</a></p> |
| </dd> |
| </dl> |
| <p class="rubric">Examples</p> |
| <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">mx</span><span class="o">.</span><span class="n">nd</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">poisson</span><span class="p">(</span><span class="mi">1</span><span class="p">)</span> |
| <span class="go">[ 1.]</span> |
| <span class="go"><NDArray 1 @cpu(0)></span> |
| <span class="gp">>>> </span><span class="n">mx</span><span class="o">.</span><span class="n">nd</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">poisson</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="n">shape</span><span class="o">=</span><span class="p">(</span><span class="mi">2</span><span class="p">,))</span> |
| <span class="go">[ 0. 2.]</span> |
| <span class="go"><NDArray 2 @cpu(0)></span> |
| <span class="gp">>>> </span><span class="n">lam</span> <span class="o">=</span> <span class="n">mx</span><span class="o">.</span><span class="n">nd</span><span class="o">.</span><span class="n">array</span><span class="p">([</span><span class="mi">1</span><span class="p">,</span><span class="mi">2</span><span class="p">,</span><span class="mi">3</span><span class="p">])</span> |
| <span class="gp">>>> </span><span class="n">mx</span><span class="o">.</span><span class="n">nd</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">poisson</span><span class="p">(</span><span class="n">lam</span><span class="p">,</span> <span class="n">shape</span><span class="o">=</span><span class="mi">2</span><span class="p">)</span> |
| <span class="go">[[ 1. 3.]</span> |
| <span class="go"> [ 3. 2.]</span> |
| <span class="go"> [ 2. 3.]]</span> |
| <span class="go"><NDArray 3x2 @cpu(0)></span> |
| </pre></div> |
| </div> |
| </dd></dl> |
| |
| <dl class="function"> |
| <dt id="mxnet.ndarray.random.exponential"> |
| <code class="sig-prename descclassname">mxnet.ndarray.random.</code><code class="sig-name descname">exponential</code><span class="sig-paren">(</span><em class="sig-param">scale=1</em>, <em class="sig-param">shape=_Null</em>, <em class="sig-param">dtype=_Null</em>, <em class="sig-param">ctx=None</em>, <em class="sig-param">out=None</em>, <em class="sig-param">**kwargs</em><span class="sig-paren">)</span><a class="reference internal" href="../../../../_modules/mxnet/ndarray/random.html#exponential"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#mxnet.ndarray.random.exponential" title="Permalink to this definition">¶</a></dt> |
| <dd><p>Draw samples from an exponential distribution.</p> |
| <p>Its probability density function is</p> |
| <div class="math notranslate nohighlight"> |
| \[f(x; \frac{1}{\beta}) = \frac{1}{\beta} \exp(-\frac{x}{\beta}),\]</div> |
| <p>for x > 0 and 0 elsewhere. beta is the scale parameter, which is the |
| inverse of the rate parameter lambda = 1/beta.</p> |
| <dl class="field-list simple"> |
| <dt class="field-odd">Parameters</dt> |
| <dd class="field-odd"><ul class="simple"> |
| <li><p><strong>scale</strong> (<em>float</em><em> or </em><a class="reference internal" href="../ndarray.html#mxnet.ndarray.NDArray" title="mxnet.ndarray.NDArray"><em>NDArray</em></a><em>, </em><em>optional</em>) – The scale parameter, beta = 1/lambda.</p></li> |
| <li><p><strong>shape</strong> (<em>int</em><em> or </em><em>tuple of ints</em><em>, </em><em>optional</em>) – The number of samples to draw. If shape is, e.g., <cite>(m, n)</cite> and <cite>scale</cite> is |
| a scalar, output shape will be <cite>(m, n)</cite>. If <cite>scale</cite> |
| is an NDArray with shape, e.g., <cite>(x, y)</cite>, then output will have shape |
| <cite>(x, y, m, n)</cite>, where <cite>m*n</cite> samples are drawn for each entry in <cite>scale</cite>.</p></li> |
| <li><p><strong>dtype</strong> (<em>{'float16'</em><em>, </em><em>'float32'</em><em>, </em><em>'float64'}</em><em>, </em><em>optional</em>) – Data type of output samples. Default is ‘float32’</p></li> |
| <li><p><strong>ctx</strong> (<a class="reference internal" href="../../../context/index.html#mxnet.context.Context" title="mxnet.context.Context"><em>Context</em></a><em>, </em><em>optional</em>) – Device context of output. Default is current context. Overridden by |
| <cite>scale.context</cite> when <cite>scale</cite> is an NDArray.</p></li> |
| <li><p><strong>out</strong> (<a class="reference internal" href="../ndarray.html#mxnet.ndarray.NDArray" title="mxnet.ndarray.NDArray"><em>NDArray</em></a><em>, </em><em>optional</em>) – Store output to an existing NDArray.</p></li> |
| </ul> |
| </dd> |
| <dt class="field-even">Returns</dt> |
| <dd class="field-even"><p>If input <cite>shape</cite> has shape, e.g., <cite>(m, n)</cite> and <cite>scale</cite> is a scalar, output shape will |
| be <cite>(m, n)</cite>. If <cite>scale</cite> is an NDArray with shape, e.g., <cite>(x, y)</cite>, then <cite>output</cite> |
| will have shape <cite>(x, y, m, n)</cite>, where <cite>m*n</cite> samples are drawn for each entry in scale.</p> |
| </dd> |
| <dt class="field-odd">Return type</dt> |
| <dd class="field-odd"><p><a class="reference internal" href="../ndarray.html#mxnet.ndarray.NDArray" title="mxnet.ndarray.NDArray">NDArray</a></p> |
| </dd> |
| </dl> |
| <p class="rubric">Examples</p> |
| <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">mx</span><span class="o">.</span><span class="n">nd</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">exponential</span><span class="p">(</span><span class="mi">1</span><span class="p">)</span> |
| <span class="go">[ 0.79587454]</span> |
| <span class="go"><NDArray 1 @cpu(0)></span> |
| <span class="gp">>>> </span><span class="n">mx</span><span class="o">.</span><span class="n">nd</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">exponential</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="n">shape</span><span class="o">=</span><span class="p">(</span><span class="mi">2</span><span class="p">,))</span> |
| <span class="go">[ 0.89856035 1.25593066]</span> |
| <span class="go"><NDArray 2 @cpu(0)></span> |
| <span class="gp">>>> </span><span class="n">scale</span> <span class="o">=</span> <span class="n">mx</span><span class="o">.</span><span class="n">nd</span><span class="o">.</span><span class="n">array</span><span class="p">([</span><span class="mi">1</span><span class="p">,</span><span class="mi">2</span><span class="p">,</span><span class="mi">3</span><span class="p">])</span> |
| <span class="gp">>>> </span><span class="n">mx</span><span class="o">.</span><span class="n">nd</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">exponential</span><span class="p">(</span><span class="n">scale</span><span class="p">,</span> <span class="n">shape</span><span class="o">=</span><span class="mi">2</span><span class="p">)</span> |
| <span class="go">[[ 0.41063145 0.42140478]</span> |
| <span class="go"> [ 2.59407091 10.12439728]</span> |
| <span class="go"> [ 2.42544937 1.14260709]]</span> |
| <span class="go"><NDArray 3x2 @cpu(0)></span> |
| </pre></div> |
| </div> |
| </dd></dl> |
| |
| <dl class="function"> |
| <dt id="mxnet.ndarray.random.gamma"> |
| <code class="sig-prename descclassname">mxnet.ndarray.random.</code><code class="sig-name descname">gamma</code><span class="sig-paren">(</span><em class="sig-param">alpha=1</em>, <em class="sig-param">beta=1</em>, <em class="sig-param">shape=_Null</em>, <em class="sig-param">dtype=_Null</em>, <em class="sig-param">ctx=None</em>, <em class="sig-param">out=None</em>, <em class="sig-param">**kwargs</em><span class="sig-paren">)</span><a class="reference internal" href="../../../../_modules/mxnet/ndarray/random.html#gamma"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#mxnet.ndarray.random.gamma" title="Permalink to this definition">¶</a></dt> |
| <dd><p>Draw random samples from a gamma distribution.</p> |
| <p>Samples are distributed according to a gamma distribution parametrized |
| by <em>alpha</em> (shape) and <em>beta</em> (scale).</p> |
| <dl class="field-list simple"> |
| <dt class="field-odd">Parameters</dt> |
| <dd class="field-odd"><ul class="simple"> |
| <li><p><strong>alpha</strong> (<em>float</em><em> or </em><a class="reference internal" href="../ndarray.html#mxnet.ndarray.NDArray" title="mxnet.ndarray.NDArray"><em>NDArray</em></a><em>, </em><em>optional</em>) – The shape of the gamma distribution. Should be greater than zero.</p></li> |
| <li><p><strong>beta</strong> (<em>float</em><em> or </em><a class="reference internal" href="../ndarray.html#mxnet.ndarray.NDArray" title="mxnet.ndarray.NDArray"><em>NDArray</em></a><em>, </em><em>optional</em>) – The scale of the gamma distribution. Should be greater than zero. |
| Default is equal to 1.</p></li> |
| <li><p><strong>shape</strong> (<em>int</em><em> or </em><em>tuple of ints</em><em>, </em><em>optional</em>) – The number of samples to draw. If shape is, e.g., <cite>(m, n)</cite> and <cite>alpha</cite> and |
| <cite>beta</cite> are scalars, output shape will be <cite>(m, n)</cite>. If <cite>alpha</cite> and <cite>beta</cite> |
| are NDArrays with shape, e.g., <cite>(x, y)</cite>, then output will have shape |
| <cite>(x, y, m, n)</cite>, where <cite>m*n</cite> samples are drawn for each <cite>[alpha, beta)</cite> pair.</p></li> |
| <li><p><strong>dtype</strong> (<em>{'float16'</em><em>, </em><em>'float32'</em><em>, </em><em>'float64'}</em><em>, </em><em>optional</em>) – Data type of output samples. Default is ‘float32’</p></li> |
| <li><p><strong>ctx</strong> (<a class="reference internal" href="../../../context/index.html#mxnet.context.Context" title="mxnet.context.Context"><em>Context</em></a><em>, </em><em>optional</em>) – Device context of output. Default is current context. Overridden by |
| <cite>alpha.context</cite> when <cite>alpha</cite> is an NDArray.</p></li> |
| <li><p><strong>out</strong> (<a class="reference internal" href="../ndarray.html#mxnet.ndarray.NDArray" title="mxnet.ndarray.NDArray"><em>NDArray</em></a><em>, </em><em>optional</em>) – Store output to an existing NDArray.</p></li> |
| </ul> |
| </dd> |
| <dt class="field-even">Returns</dt> |
| <dd class="field-even"><p>If input <cite>shape</cite> has shape, e.g., <cite>(m, n)</cite> and <cite>alpha</cite> and <cite>beta</cite> are scalars, output |
| shape will be <cite>(m, n)</cite>. If <cite>alpha</cite> and <cite>beta</cite> are NDArrays with shape, e.g., |
| <cite>(x, y)</cite>, then output will have shape <cite>(x, y, m, n)</cite>, where <cite>m*n</cite> samples are |
| drawn for each <cite>[alpha, beta)</cite> pair.</p> |
| </dd> |
| <dt class="field-odd">Return type</dt> |
| <dd class="field-odd"><p><a class="reference internal" href="../ndarray.html#mxnet.ndarray.NDArray" title="mxnet.ndarray.NDArray">NDArray</a></p> |
| </dd> |
| </dl> |
| <p class="rubric">Examples</p> |
| <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">mx</span><span class="o">.</span><span class="n">nd</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">gamma</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span> |
| <span class="go">[ 1.93308783]</span> |
| <span class="go"><NDArray 1 @cpu(0)></span> |
| <span class="gp">>>> </span><span class="n">mx</span><span class="o">.</span><span class="n">nd</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">gamma</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="n">shape</span><span class="o">=</span><span class="p">(</span><span class="mi">2</span><span class="p">,))</span> |
| <span class="go">[ 0.48216391 2.09890771]</span> |
| <span class="go"><NDArray 2 @cpu(0)></span> |
| <span class="gp">>>> </span><span class="n">alpha</span> <span class="o">=</span> <span class="n">mx</span><span class="o">.</span><span class="n">nd</span><span class="o">.</span><span class="n">array</span><span class="p">([</span><span class="mi">1</span><span class="p">,</span><span class="mi">2</span><span class="p">,</span><span class="mi">3</span><span class="p">])</span> |
| <span class="gp">>>> </span><span class="n">beta</span> <span class="o">=</span> <span class="n">mx</span><span class="o">.</span><span class="n">nd</span><span class="o">.</span><span class="n">array</span><span class="p">([</span><span class="mi">2</span><span class="p">,</span><span class="mi">3</span><span class="p">,</span><span class="mi">4</span><span class="p">])</span> |
| <span class="gp">>>> </span><span class="n">mx</span><span class="o">.</span><span class="n">nd</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">gamma</span><span class="p">(</span><span class="n">alpha</span><span class="p">,</span> <span class="n">beta</span><span class="p">,</span> <span class="n">shape</span><span class="o">=</span><span class="mi">2</span><span class="p">)</span> |
| <span class="go">[[ 3.24343276 0.94137681]</span> |
| <span class="go"> [ 3.52734375 0.45568955]</span> |
| <span class="go"> [ 14.26264095 14.0170126 ]]</span> |
| <span class="go"><NDArray 3x2 @cpu(0)></span> |
| </pre></div> |
| </div> |
| </dd></dl> |
| |
| <dl class="function"> |
| <dt id="mxnet.ndarray.random.multinomial"> |
| <code class="sig-prename descclassname">mxnet.ndarray.random.</code><code class="sig-name descname">multinomial</code><span class="sig-paren">(</span><em class="sig-param">data</em>, <em class="sig-param">shape=_Null</em>, <em class="sig-param">get_prob=False</em>, <em class="sig-param">out=None</em>, <em class="sig-param">dtype='int32'</em>, <em class="sig-param">**kwargs</em><span class="sig-paren">)</span><a class="reference internal" href="../../../../_modules/mxnet/ndarray/random.html#multinomial"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#mxnet.ndarray.random.multinomial" title="Permalink to this definition">¶</a></dt> |
| <dd><p>Concurrent sampling from multiple multinomial distributions.</p> |
| <div class="admonition note"> |
| <p class="admonition-title">Note</p> |
| <p>The input distribution must be normalized, i.e. <cite>data</cite> must sum to |
| 1 along its last dimension.</p> |
| </div> |
| <dl class="field-list simple"> |
| <dt class="field-odd">Parameters</dt> |
| <dd class="field-odd"><ul class="simple"> |
| <li><p><strong>data</strong> (<a class="reference internal" href="../ndarray.html#mxnet.ndarray.NDArray" title="mxnet.ndarray.NDArray"><em>NDArray</em></a>) – An <em>n</em> dimensional array whose last dimension has length <cite>k</cite>, where |
| <cite>k</cite> is the number of possible outcomes of each multinomial distribution. |
| For example, data with shape <cite>(m, n, k)</cite> specifies <cite>m*n</cite> multinomial |
| distributions each with <cite>k</cite> possible outcomes.</p></li> |
| <li><p><strong>shape</strong> (<em>int</em><em> or </em><em>tuple of ints</em><em>, </em><em>optional</em>) – The number of samples to draw from each distribution. If shape is empty |
| one sample will be drawn from each distribution.</p></li> |
| <li><p><strong>get_prob</strong> (<em>bool</em><em>, </em><em>optional</em>) – If true, a second array containing log likelihood of the drawn |
| samples will also be returned. |
| This is usually used for reinforcement learning, where you can provide |
| reward as head gradient w.r.t. this array to estimate gradient.</p></li> |
| <li><p><strong>out</strong> (<a class="reference internal" href="../ndarray.html#mxnet.ndarray.NDArray" title="mxnet.ndarray.NDArray"><em>NDArray</em></a><em>, </em><em>optional</em>) – Store output to an existing NDArray.</p></li> |
| <li><p><strong>dtype</strong> (<em>str</em><em> or </em><em>numpy.dtype</em><em>, </em><em>optional</em>) – Data type of the sample output array. The default is int32. |
| Note that the data type of the log likelihood array is the same with that of <cite>data</cite>.</p></li> |
| </ul> |
| </dd> |
| <dt class="field-even">Returns</dt> |
| <dd class="field-even"><p><p>For input <cite>data</cite> with <cite>n</cite> dimensions and shape <cite>(d1, d2, …, dn-1, k)</cite>, and input |
| <cite>shape</cite> with shape <cite>(s1, s2, …, sx)</cite>, returns an NDArray with shape |
| <cite>(d1, d2, … dn-1, s1, s2, …, sx)</cite>. The <cite>s1, s2, … sx</cite> dimensions of the |
| returned NDArray consist of 0-indexed values sampled from each respective multinomial |
| distribution provided in the <cite>k</cite> dimension of <cite>data</cite>.</p> |
| <p>For the case <cite>n`=1, and `x`=1 (one shape dimension), returned NDArray has shape `(s1,)</cite>.</p> |
| <p>If <cite>get_prob</cite> is set to True, this function returns a list of format: |
| <cite>[ndarray_output, log_likelihood_output]</cite>, where <cite>log_likelihood_output</cite> is an NDArray of the |
| same shape as the sampled outputs.</p> |
| </p> |
| </dd> |
| <dt class="field-odd">Return type</dt> |
| <dd class="field-odd"><p>List, or <a class="reference internal" href="../ndarray.html#mxnet.ndarray.NDArray" title="mxnet.ndarray.NDArray">NDArray</a></p> |
| </dd> |
| </dl> |
| <p class="rubric">Examples</p> |
| <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">probs</span> <span class="o">=</span> <span class="n">mx</span><span class="o">.</span><span class="n">nd</span><span class="o">.</span><span class="n">array</span><span class="p">([</span><span class="mi">0</span><span class="p">,</span> <span class="mf">0.1</span><span class="p">,</span> <span class="mf">0.2</span><span class="p">,</span> <span class="mf">0.3</span><span class="p">,</span> <span class="mf">0.4</span><span class="p">])</span> |
| <span class="gp">>>> </span><span class="n">mx</span><span class="o">.</span><span class="n">nd</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">multinomial</span><span class="p">(</span><span class="n">probs</span><span class="p">)</span> |
| <span class="go">[3]</span> |
| <span class="go"><NDArray 1 @cpu(0)></span> |
| <span class="gp">>>> </span><span class="n">probs</span> <span class="o">=</span> <span class="n">mx</span><span class="o">.</span><span class="n">nd</span><span class="o">.</span><span class="n">array</span><span class="p">([[</span><span class="mi">0</span><span class="p">,</span> <span class="mf">0.1</span><span class="p">,</span> <span class="mf">0.2</span><span class="p">,</span> <span class="mf">0.3</span><span class="p">,</span> <span class="mf">0.4</span><span class="p">],</span> <span class="p">[</span><span class="mf">0.4</span><span class="p">,</span> <span class="mf">0.3</span><span class="p">,</span> <span class="mf">0.2</span><span class="p">,</span> <span class="mf">0.1</span><span class="p">,</span> <span class="mi">0</span><span class="p">]])</span> |
| <span class="gp">>>> </span><span class="n">mx</span><span class="o">.</span><span class="n">nd</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">multinomial</span><span class="p">(</span><span class="n">probs</span><span class="p">)</span> |
| <span class="go">[3 1]</span> |
| <span class="go"><NDArray 2 @cpu(0)></span> |
| <span class="gp">>>> </span><span class="n">mx</span><span class="o">.</span><span class="n">nd</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">multinomial</span><span class="p">(</span><span class="n">probs</span><span class="p">,</span> <span class="n">shape</span><span class="o">=</span><span class="mi">2</span><span class="p">)</span> |
| <span class="go">[[4 4]</span> |
| <span class="go"> [1 2]]</span> |
| <span class="go"><NDArray 2x2 @cpu(0)></span> |
| <span class="gp">>>> </span><span class="n">mx</span><span class="o">.</span><span class="n">nd</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">multinomial</span><span class="p">(</span><span class="n">probs</span><span class="p">,</span> <span class="n">get_prob</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span> |
| <span class="go">[3 2]</span> |
| <span class="go"><NDArray 2 @cpu(0)></span> |
| <span class="go">[-1.20397282 -1.60943794]</span> |
| <span class="go"><NDArray 2 @cpu(0)></span> |
| </pre></div> |
| </div> |
| </dd></dl> |
| |
| <dl class="function"> |
| <dt id="mxnet.ndarray.random.negative_binomial"> |
| <code class="sig-prename descclassname">mxnet.ndarray.random.</code><code class="sig-name descname">negative_binomial</code><span class="sig-paren">(</span><em class="sig-param">k=1</em>, <em class="sig-param">p=1</em>, <em class="sig-param">shape=_Null</em>, <em class="sig-param">dtype=_Null</em>, <em class="sig-param">ctx=None</em>, <em class="sig-param">out=None</em>, <em class="sig-param">**kwargs</em><span class="sig-paren">)</span><a class="reference internal" href="../../../../_modules/mxnet/ndarray/random.html#negative_binomial"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#mxnet.ndarray.random.negative_binomial" title="Permalink to this definition">¶</a></dt> |
| <dd><p>Draw random samples from a negative binomial distribution.</p> |
| <p>Samples are distributed according to a negative binomial distribution |
| parametrized by <em>k</em> (limit of unsuccessful experiments) and <em>p</em> (failure |
| probability in each experiment). Samples will always be returned as a |
| floating point data type.</p> |
| <dl class="field-list simple"> |
| <dt class="field-odd">Parameters</dt> |
| <dd class="field-odd"><ul class="simple"> |
| <li><p><strong>k</strong> (<em>float</em><em> or </em><a class="reference internal" href="../ndarray.html#mxnet.ndarray.NDArray" title="mxnet.ndarray.NDArray"><em>NDArray</em></a><em>, </em><em>optional</em>) – Limit of unsuccessful experiments, > 0.</p></li> |
| <li><p><strong>p</strong> (<em>float</em><em> or </em><a class="reference internal" href="../ndarray.html#mxnet.ndarray.NDArray" title="mxnet.ndarray.NDArray"><em>NDArray</em></a><em>, </em><em>optional</em>) – Failure probability in each experiment, >= 0 and <=1.</p></li> |
| <li><p><strong>shape</strong> (<em>int</em><em> or </em><em>tuple of ints</em><em>, </em><em>optional</em>) – The number of samples to draw. If shape is, e.g., <cite>(m, n)</cite> and <cite>k</cite> and |
| <cite>p</cite> are scalars, output shape will be <cite>(m, n)</cite>. If <cite>k</cite> and <cite>p</cite> |
| are NDArrays with shape, e.g., <cite>(x, y)</cite>, then output will have shape |
| <cite>(x, y, m, n)</cite>, where <cite>m*n</cite> samples are drawn for each <cite>[k, p)</cite> pair.</p></li> |
| <li><p><strong>dtype</strong> (<em>{'float16'</em><em>, </em><em>'float32'</em><em>, </em><em>'float64'}</em><em>, </em><em>optional</em>) – Data type of output samples. Default is ‘float32’</p></li> |
| <li><p><strong>ctx</strong> (<a class="reference internal" href="../../../context/index.html#mxnet.context.Context" title="mxnet.context.Context"><em>Context</em></a><em>, </em><em>optional</em>) – Device context of output. Default is current context. Overridden by |
| <cite>k.context</cite> when <cite>k</cite> is an NDArray.</p></li> |
| <li><p><strong>out</strong> (<a class="reference internal" href="../ndarray.html#mxnet.ndarray.NDArray" title="mxnet.ndarray.NDArray"><em>NDArray</em></a><em>, </em><em>optional</em>) – Store output to an existing NDArray.</p></li> |
| </ul> |
| </dd> |
| <dt class="field-even">Returns</dt> |
| <dd class="field-even"><p>If input <cite>shape</cite> has shape, e.g., <cite>(m, n)</cite> and <cite>k</cite> and <cite>p</cite> are scalars, output shape |
| will be <cite>(m, n)</cite>. If <cite>k</cite> and <cite>p</cite> are NDArrays with shape, e.g., <cite>(x, y)</cite>, then |
| output will have shape <cite>(x, y, m, n)</cite>, where <cite>m*n</cite> samples are drawn for each <cite>[k, p)</cite> pair.</p> |
| </dd> |
| <dt class="field-odd">Return type</dt> |
| <dd class="field-odd"><p><a class="reference internal" href="../ndarray.html#mxnet.ndarray.NDArray" title="mxnet.ndarray.NDArray">NDArray</a></p> |
| </dd> |
| </dl> |
| <p class="rubric">Examples</p> |
| <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">mx</span><span class="o">.</span><span class="n">nd</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">negative_binomial</span><span class="p">(</span><span class="mi">10</span><span class="p">,</span> <span class="mf">0.5</span><span class="p">)</span> |
| <span class="go">[ 4.]</span> |
| <span class="go"><NDArray 1 @cpu(0)></span> |
| <span class="gp">>>> </span><span class="n">mx</span><span class="o">.</span><span class="n">nd</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">negative_binomial</span><span class="p">(</span><span class="mi">10</span><span class="p">,</span> <span class="mf">0.5</span><span class="p">,</span> <span class="n">shape</span><span class="o">=</span><span class="p">(</span><span class="mi">2</span><span class="p">,))</span> |
| <span class="go">[ 3. 4.]</span> |
| <span class="go"><NDArray 2 @cpu(0)></span> |
| <span class="gp">>>> </span><span class="n">k</span> <span class="o">=</span> <span class="n">mx</span><span class="o">.</span><span class="n">nd</span><span class="o">.</span><span class="n">array</span><span class="p">([</span><span class="mi">1</span><span class="p">,</span><span class="mi">2</span><span class="p">,</span><span class="mi">3</span><span class="p">])</span> |
| <span class="gp">>>> </span><span class="n">p</span> <span class="o">=</span> <span class="n">mx</span><span class="o">.</span><span class="n">nd</span><span class="o">.</span><span class="n">array</span><span class="p">([</span><span class="mf">0.2</span><span class="p">,</span><span class="mf">0.4</span><span class="p">,</span><span class="mf">0.6</span><span class="p">])</span> |
| <span class="gp">>>> </span><span class="n">mx</span><span class="o">.</span><span class="n">nd</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">negative_binomial</span><span class="p">(</span><span class="n">k</span><span class="p">,</span> <span class="n">p</span><span class="p">,</span> <span class="n">shape</span><span class="o">=</span><span class="mi">2</span><span class="p">)</span> |
| <span class="go">[[ 3. 2.]</span> |
| <span class="go"> [ 4. 4.]</span> |
| <span class="go"> [ 0. 5.]]</span> |
| <span class="go"><NDArray 3x2 @cpu(0)></span> |
| </pre></div> |
| </div> |
| </dd></dl> |
| |
| <dl class="function"> |
| <dt id="mxnet.ndarray.random.generalized_negative_binomial"> |
| <code class="sig-prename descclassname">mxnet.ndarray.random.</code><code class="sig-name descname">generalized_negative_binomial</code><span class="sig-paren">(</span><em class="sig-param">mu=1</em>, <em class="sig-param">alpha=1</em>, <em class="sig-param">shape=_Null</em>, <em class="sig-param">dtype=_Null</em>, <em class="sig-param">ctx=None</em>, <em class="sig-param">out=None</em>, <em class="sig-param">**kwargs</em><span class="sig-paren">)</span><a class="reference internal" href="../../../../_modules/mxnet/ndarray/random.html#generalized_negative_binomial"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#mxnet.ndarray.random.generalized_negative_binomial" title="Permalink to this definition">¶</a></dt> |
| <dd><p>Draw random samples from a generalized negative binomial distribution.</p> |
| <p>Samples are distributed according to a generalized negative binomial |
| distribution parametrized by <em>mu</em> (mean) and <em>alpha</em> (dispersion). |
| <em>alpha</em> is defined as <em>1/k</em> where <em>k</em> is the failure limit of the |
| number of unsuccessful experiments (generalized to real numbers). |
| Samples will always be returned as a floating point data type.</p> |
| <dl class="field-list simple"> |
| <dt class="field-odd">Parameters</dt> |
| <dd class="field-odd"><ul class="simple"> |
| <li><p><strong>mu</strong> (<em>float</em><em> or </em><a class="reference internal" href="../ndarray.html#mxnet.ndarray.NDArray" title="mxnet.ndarray.NDArray"><em>NDArray</em></a><em>, </em><em>optional</em>) – Mean of the negative binomial distribution.</p></li> |
| <li><p><strong>alpha</strong> (<em>float</em><em> or </em><a class="reference internal" href="../ndarray.html#mxnet.ndarray.NDArray" title="mxnet.ndarray.NDArray"><em>NDArray</em></a><em>, </em><em>optional</em>) – Alpha (dispersion) parameter of the negative binomial distribution.</p></li> |
| <li><p><strong>shape</strong> (<em>int</em><em> or </em><em>tuple of ints</em><em>, </em><em>optional</em>) – The number of samples to draw. If shape is, e.g., <cite>(m, n)</cite> and <cite>mu</cite> and |
| <cite>alpha</cite> are scalars, output shape will be <cite>(m, n)</cite>. If <cite>mu</cite> and <cite>alpha</cite> |
| are NDArrays with shape, e.g., <cite>(x, y)</cite>, then output will have shape |
| <cite>(x, y, m, n)</cite>, where <cite>m*n</cite> samples are drawn for each <cite>[mu, alpha)</cite> pair.</p></li> |
| <li><p><strong>dtype</strong> (<em>{'float16'</em><em>, </em><em>'float32'</em><em>, </em><em>'float64'}</em><em>, </em><em>optional</em>) – Data type of output samples. Default is ‘float32’</p></li> |
| <li><p><strong>ctx</strong> (<a class="reference internal" href="../../../context/index.html#mxnet.context.Context" title="mxnet.context.Context"><em>Context</em></a><em>, </em><em>optional</em>) – Device context of output. Default is current context. Overridden by |
| <cite>mu.context</cite> when <cite>mu</cite> is an NDArray.</p></li> |
| <li><p><strong>out</strong> (<a class="reference internal" href="../ndarray.html#mxnet.ndarray.NDArray" title="mxnet.ndarray.NDArray"><em>NDArray</em></a><em>, </em><em>optional</em>) – Store output to an existing NDArray.</p></li> |
| </ul> |
| </dd> |
| <dt class="field-even">Returns</dt> |
| <dd class="field-even"><p>If input <cite>shape</cite> has shape, e.g., <cite>(m, n)</cite> and <cite>mu</cite> and <cite>alpha</cite> are scalars, output |
| shape will be <cite>(m, n)</cite>. If <cite>mu</cite> and <cite>alpha</cite> are NDArrays with shape, e.g., <cite>(x, y)</cite>, |
| then output will have shape <cite>(x, y, m, n)</cite>, where <cite>m*n</cite> samples are drawn for |
| each <cite>[mu, alpha)</cite> pair.</p> |
| </dd> |
| <dt class="field-odd">Return type</dt> |
| <dd class="field-odd"><p><a class="reference internal" href="../ndarray.html#mxnet.ndarray.NDArray" title="mxnet.ndarray.NDArray">NDArray</a></p> |
| </dd> |
| </dl> |
| <p class="rubric">Examples</p> |
| <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">mx</span><span class="o">.</span><span class="n">nd</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">generalized_negative_binomial</span><span class="p">(</span><span class="mi">10</span><span class="p">,</span> <span class="mf">0.5</span><span class="p">)</span> |
| <span class="go">[ 19.]</span> |
| <span class="go"><NDArray 1 @cpu(0)></span> |
| <span class="gp">>>> </span><span class="n">mx</span><span class="o">.</span><span class="n">nd</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">generalized_negative_binomial</span><span class="p">(</span><span class="mi">10</span><span class="p">,</span> <span class="mf">0.5</span><span class="p">,</span> <span class="n">shape</span><span class="o">=</span><span class="p">(</span><span class="mi">2</span><span class="p">,))</span> |
| <span class="go">[ 30. 21.]</span> |
| <span class="go"><NDArray 2 @cpu(0)></span> |
| <span class="gp">>>> </span><span class="n">mu</span> <span class="o">=</span> <span class="n">mx</span><span class="o">.</span><span class="n">nd</span><span class="o">.</span><span class="n">array</span><span class="p">([</span><span class="mi">1</span><span class="p">,</span><span class="mi">2</span><span class="p">,</span><span class="mi">3</span><span class="p">])</span> |
| <span class="gp">>>> </span><span class="n">alpha</span> <span class="o">=</span> <span class="n">mx</span><span class="o">.</span><span class="n">nd</span><span class="o">.</span><span class="n">array</span><span class="p">([</span><span class="mf">0.2</span><span class="p">,</span><span class="mf">0.4</span><span class="p">,</span><span class="mf">0.6</span><span class="p">])</span> |
| <span class="gp">>>> </span><span class="n">mx</span><span class="o">.</span><span class="n">nd</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">generalized_negative_binomial</span><span class="p">(</span><span class="n">mu</span><span class="p">,</span> <span class="n">alpha</span><span class="p">,</span> <span class="n">shape</span><span class="o">=</span><span class="mi">2</span><span class="p">)</span> |
| <span class="go">[[ 4. 0.]</span> |
| <span class="go"> [ 3. 2.]</span> |
| <span class="go"> [ 6. 2.]]</span> |
| <span class="go"><NDArray 3x2 @cpu(0)></span> |
| </pre></div> |
| </div> |
| </dd></dl> |
| |
| <dl class="function"> |
| <dt id="mxnet.ndarray.random.shuffle"> |
| <code class="sig-prename descclassname">mxnet.ndarray.random.</code><code class="sig-name descname">shuffle</code><span class="sig-paren">(</span><em class="sig-param">data</em>, <em class="sig-param">**kwargs</em><span class="sig-paren">)</span><a class="reference internal" href="../../../../_modules/mxnet/ndarray/random.html#shuffle"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#mxnet.ndarray.random.shuffle" title="Permalink to this definition">¶</a></dt> |
| <dd><p>Shuffle the elements randomly.</p> |
| <p>This shuffles the array along the first axis. |
| The order of the elements in each subarray does not change. |
| For example, if a 2D array is given, the order of the rows randomly changes, |
| but the order of the elements in each row does not change.</p> |
| <dl class="field-list simple"> |
| <dt class="field-odd">Parameters</dt> |
| <dd class="field-odd"><ul class="simple"> |
| <li><p><strong>data</strong> (<a class="reference internal" href="../ndarray.html#mxnet.ndarray.NDArray" title="mxnet.ndarray.NDArray"><em>NDArray</em></a>) – Input data array.</p></li> |
| <li><p><strong>out</strong> (<a class="reference internal" href="../ndarray.html#mxnet.ndarray.NDArray" title="mxnet.ndarray.NDArray"><em>NDArray</em></a><em>, </em><em>optional</em>) – Array to store the result.</p></li> |
| </ul> |
| </dd> |
| <dt class="field-even">Returns</dt> |
| <dd class="field-even"><p>A new NDArray with the same shape and type as input <cite>data</cite>, but |
| with items in the first axis of the returned NDArray shuffled randomly. |
| The original input <cite>data</cite> is not modified.</p> |
| </dd> |
| <dt class="field-odd">Return type</dt> |
| <dd class="field-odd"><p><a class="reference internal" href="../ndarray.html#mxnet.ndarray.NDArray" title="mxnet.ndarray.NDArray">NDArray</a></p> |
| </dd> |
| </dl> |
| <p class="rubric">Examples</p> |
| <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">data</span> <span class="o">=</span> <span class="n">mx</span><span class="o">.</span><span class="n">nd</span><span class="o">.</span><span class="n">array</span><span class="p">([[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">],</span> <span class="p">[</span><span class="mi">3</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">5</span><span class="p">],</span> <span class="p">[</span><span class="mi">6</span><span class="p">,</span> <span class="mi">7</span><span class="p">,</span> <span class="mi">8</span><span class="p">]])</span> |
| <span class="gp">>>> </span><span class="n">mx</span><span class="o">.</span><span class="n">nd</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">shuffle</span><span class="p">(</span><span class="n">data</span><span class="p">)</span> |
| <span class="go">[[ 0. 1. 2.]</span> |
| <span class="go"> [ 6. 7. 8.]</span> |
| <span class="go"> [ 3. 4. 5.]]</span> |
| <span class="go"><NDArray 2x3 @cpu(0)></span> |
| <span class="gp">>>> </span><span class="n">mx</span><span class="o">.</span><span class="n">nd</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">shuffle</span><span class="p">(</span><span class="n">data</span><span class="p">)</span> |
| <span class="go">[[ 3. 4. 5.]</span> |
| <span class="go"> [ 0. 1. 2.]</span> |
| <span class="go"> [ 6. 7. 8.]]</span> |
| <span class="go"><NDArray 2x3 @cpu(0)></span> |
| </pre></div> |
| </div> |
| </dd></dl> |
| |
| <dl class="function"> |
| <dt id="mxnet.ndarray.random.randint"> |
| <code class="sig-prename descclassname">mxnet.ndarray.random.</code><code class="sig-name descname">randint</code><span class="sig-paren">(</span><em class="sig-param">low</em>, <em class="sig-param">high</em>, <em class="sig-param">shape=_Null</em>, <em class="sig-param">dtype=_Null</em>, <em class="sig-param">ctx=None</em>, <em class="sig-param">out=None</em>, <em class="sig-param">**kwargs</em><span class="sig-paren">)</span><a class="reference internal" href="../../../../_modules/mxnet/ndarray/random.html#randint"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#mxnet.ndarray.random.randint" title="Permalink to this definition">¶</a></dt> |
| <dd><p>Draw random samples from a discrete uniform distribution.</p> |
| <p>Samples are uniformly distributed over the half-open interval <em>[low, high)</em> |
| (includes <em>low</em>, but excludes <em>high</em>).</p> |
| <dl class="field-list simple"> |
| <dt class="field-odd">Parameters</dt> |
| <dd class="field-odd"><ul class="simple"> |
| <li><p><strong>low</strong> (<em>int</em><em>, </em><em>required</em>) – Lower boundary of the output interval. All values generated will be |
| greater than or equal to low.</p></li> |
| <li><p><strong>high</strong> (<em>int</em><em>, </em><em>required</em>) – Upper boundary of the output interval. All values generated will be |
| less than high.</p></li> |
| <li><p><strong>shape</strong> (<em>int</em><em> or </em><em>tuple of ints</em><em>, </em><em>optional</em>) – The number of samples to draw. If shape is, e.g., <cite>(m, n)</cite> and <cite>low</cite> and |
| <cite>high</cite> are scalars, output shape will be <cite>(m, n)</cite>.</p></li> |
| <li><p><strong>dtype</strong> (<em>{'int32'</em><em>, </em><em>'int64'}</em><em>, </em><em>optional</em>) – Data type of output samples. Default is ‘int32’</p></li> |
| <li><p><strong>ctx</strong> (<a class="reference internal" href="../../../context/index.html#mxnet.context.Context" title="mxnet.context.Context"><em>Context</em></a><em>, </em><em>optional</em>) – Device context of output. Default is current context. Overridden by |
| <cite>low.context</cite> when <cite>low</cite> is an NDArray.</p></li> |
| <li><p><strong>out</strong> (<a class="reference internal" href="../ndarray.html#mxnet.ndarray.NDArray" title="mxnet.ndarray.NDArray"><em>NDArray</em></a><em>, </em><em>optional</em>) – Store output to an existing NDArray.</p></li> |
| </ul> |
| </dd> |
| <dt class="field-even">Returns</dt> |
| <dd class="field-even"><p>An NDArray of type <cite>dtype</cite>. If input <cite>shape</cite> has shape, e.g., |
| <cite>(m, n)</cite>, the returned NDArray will shape will be <cite>(m, n)</cite>. Contents |
| of the returned NDArray will be samples from the interval <cite>[low, high)</cite>.</p> |
| </dd> |
| <dt class="field-odd">Return type</dt> |
| <dd class="field-odd"><p><a class="reference internal" href="../ndarray.html#mxnet.ndarray.NDArray" title="mxnet.ndarray.NDArray">NDArray</a></p> |
| </dd> |
| </dl> |
| <p class="rubric">Examples</p> |
| <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">mx</span><span class="o">.</span><span class="n">nd</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">randint</span><span class="p">(</span><span class="mi">5</span><span class="p">,</span> <span class="mi">100</span><span class="p">)</span> |
| <span class="go">[ 90]</span> |
| <span class="go"><NDArray 1 @cpu(0)</span> |
| <span class="gp">>>> </span><span class="n">mx</span><span class="o">.</span><span class="n">nd</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">randint</span><span class="p">(</span><span class="o">-</span><span class="mi">10</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="n">ctx</span><span class="o">=</span><span class="n">mx</span><span class="o">.</span><span class="n">gpu</span><span class="p">(</span><span class="mi">0</span><span class="p">))</span> |
| <span class="go">[ -8]</span> |
| <span class="go"><NDArray 1 @gpu(0)></span> |
| <span class="gp">>>> </span><span class="n">mx</span><span class="o">.</span><span class="n">nd</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">randint</span><span class="p">(</span><span class="o">-</span><span class="mi">10</span><span class="p">,</span> <span class="mi">10</span><span class="p">,</span> <span class="n">shape</span><span class="o">=</span><span class="p">(</span><span class="mi">2</span><span class="p">,))</span> |
| <span class="go">[ -5 4]</span> |
| <span class="go"><NDArray 2 @cpu(0)></span> |
| </pre></div> |
| </div> |
| </dd></dl> |
| |
| <dl class="function"> |
| <dt id="mxnet.ndarray.random.exponential_like"> |
| <code class="sig-prename descclassname">mxnet.ndarray.random.</code><code class="sig-name descname">exponential_like</code><span class="sig-paren">(</span><em class="sig-param">data=None</em>, <em class="sig-param">lam=_Null</em>, <em class="sig-param">out=None</em>, <em class="sig-param">name=None</em>, <em class="sig-param">**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#mxnet.ndarray.random.exponential_like" title="Permalink to this definition">¶</a></dt> |
| <dd><p>Draw random samples from an exponential distribution according to the input array shape.</p> |
| <p>Samples are distributed according to an exponential distribution parametrized by <em>lambda</em> (rate).</p> |
| <p>Example:</p> |
| <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">exponential</span><span class="p">(</span><span class="n">lam</span><span class="o">=</span><span class="mi">4</span><span class="p">,</span> <span class="n">data</span><span class="o">=</span><span class="n">ones</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span><span class="mi">2</span><span class="p">))</span> <span class="o">=</span> <span class="p">[[</span> <span class="mf">0.0097189</span> <span class="p">,</span> <span class="mf">0.08999364</span><span class="p">],</span> |
| <span class="p">[</span> <span class="mf">0.04146638</span><span class="p">,</span> <span class="mf">0.31715935</span><span class="p">]]</span> |
| </pre></div> |
| </div> |
| <p>Defined in /work/mxnet/src/operator/random/sample_op.cc:L244</p> |
| <dl class="field-list simple"> |
| <dt class="field-odd">Parameters</dt> |
| <dd class="field-odd"><ul class="simple"> |
| <li><p><strong>lam</strong> (<em>float</em><em>, </em><em>optional</em><em>, </em><em>default=1</em>) – Lambda parameter (rate) of the exponential distribution.</p></li> |
| <li><p><strong>data</strong> (<a class="reference internal" href="../ndarray.html#mxnet.ndarray.NDArray" title="mxnet.ndarray.NDArray"><em>NDArray</em></a>) – The input</p></li> |
| <li><p><strong>out</strong> (<a class="reference internal" href="../ndarray.html#mxnet.ndarray.NDArray" title="mxnet.ndarray.NDArray"><em>NDArray</em></a><em>, </em><em>optional</em>) – The output NDArray to hold the result.</p></li> |
| </ul> |
| </dd> |
| <dt class="field-even">Returns</dt> |
| <dd class="field-even"><p><strong>out</strong> – The output of this function.</p> |
| </dd> |
| <dt class="field-odd">Return type</dt> |
| <dd class="field-odd"><p><a class="reference internal" href="../ndarray.html#mxnet.ndarray.NDArray" title="mxnet.ndarray.NDArray">NDArray</a> or list of NDArrays</p> |
| </dd> |
| </dl> |
| </dd></dl> |
| |
| <dl class="function"> |
| <dt id="mxnet.ndarray.random.gamma_like"> |
| <code class="sig-prename descclassname">mxnet.ndarray.random.</code><code class="sig-name descname">gamma_like</code><span class="sig-paren">(</span><em class="sig-param">data=None</em>, <em class="sig-param">alpha=_Null</em>, <em class="sig-param">beta=_Null</em>, <em class="sig-param">out=None</em>, <em class="sig-param">name=None</em>, <em class="sig-param">**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#mxnet.ndarray.random.gamma_like" title="Permalink to this definition">¶</a></dt> |
| <dd><p>Draw random samples from a gamma distribution according to the input array shape.</p> |
| <p>Samples are distributed according to a gamma distribution parametrized by <em>alpha</em> (shape) and <em>beta</em> (scale).</p> |
| <p>Example:</p> |
| <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">gamma</span><span class="p">(</span><span class="n">alpha</span><span class="o">=</span><span class="mi">9</span><span class="p">,</span> <span class="n">beta</span><span class="o">=</span><span class="mf">0.5</span><span class="p">,</span> <span class="n">data</span><span class="o">=</span><span class="n">ones</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span><span class="mi">2</span><span class="p">))</span> <span class="o">=</span> <span class="p">[[</span> <span class="mf">7.10486984</span><span class="p">,</span> <span class="mf">3.37695289</span><span class="p">],</span> |
| <span class="p">[</span> <span class="mf">3.91697288</span><span class="p">,</span> <span class="mf">3.65933681</span><span class="p">]]</span> |
| </pre></div> |
| </div> |
| <p>Defined in /work/mxnet/src/operator/random/sample_op.cc:L233</p> |
| <dl class="field-list simple"> |
| <dt class="field-odd">Parameters</dt> |
| <dd class="field-odd"><ul class="simple"> |
| <li><p><strong>alpha</strong> (<em>float</em><em>, </em><em>optional</em><em>, </em><em>default=1</em>) – Alpha parameter (shape) of the gamma distribution.</p></li> |
| <li><p><strong>beta</strong> (<em>float</em><em>, </em><em>optional</em><em>, </em><em>default=1</em>) – Beta parameter (scale) of the gamma distribution.</p></li> |
| <li><p><strong>data</strong> (<a class="reference internal" href="../ndarray.html#mxnet.ndarray.NDArray" title="mxnet.ndarray.NDArray"><em>NDArray</em></a>) – The input</p></li> |
| <li><p><strong>out</strong> (<a class="reference internal" href="../ndarray.html#mxnet.ndarray.NDArray" title="mxnet.ndarray.NDArray"><em>NDArray</em></a><em>, </em><em>optional</em>) – The output NDArray to hold the result.</p></li> |
| </ul> |
| </dd> |
| <dt class="field-even">Returns</dt> |
| <dd class="field-even"><p><strong>out</strong> – The output of this function.</p> |
| </dd> |
| <dt class="field-odd">Return type</dt> |
| <dd class="field-odd"><p><a class="reference internal" href="../ndarray.html#mxnet.ndarray.NDArray" title="mxnet.ndarray.NDArray">NDArray</a> or list of NDArrays</p> |
| </dd> |
| </dl> |
| </dd></dl> |
| |
| <dl class="function"> |
| <dt id="mxnet.ndarray.random.generalized_negative_binomial_like"> |
| <code class="sig-prename descclassname">mxnet.ndarray.random.</code><code class="sig-name descname">generalized_negative_binomial_like</code><span class="sig-paren">(</span><em class="sig-param">data=None</em>, <em class="sig-param">mu=_Null</em>, <em class="sig-param">alpha=_Null</em>, <em class="sig-param">out=None</em>, <em class="sig-param">name=None</em>, <em class="sig-param">**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#mxnet.ndarray.random.generalized_negative_binomial_like" title="Permalink to this definition">¶</a></dt> |
| <dd><p>Draw random samples from a generalized negative binomial distribution according to the |
| input array shape.</p> |
| <p>Samples are distributed according to a generalized negative binomial distribution parametrized by |
| <em>mu</em> (mean) and <em>alpha</em> (dispersion). <em>alpha</em> is defined as <em>1/k</em> where <em>k</em> is the failure limit of the |
| number of unsuccessful experiments (generalized to real numbers). |
| Samples will always be returned as a floating point data type.</p> |
| <p>Example:</p> |
| <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">generalized_negative_binomial</span><span class="p">(</span><span class="n">mu</span><span class="o">=</span><span class="mf">2.0</span><span class="p">,</span> <span class="n">alpha</span><span class="o">=</span><span class="mf">0.3</span><span class="p">,</span> <span class="n">data</span><span class="o">=</span><span class="n">ones</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span><span class="mi">2</span><span class="p">))</span> <span class="o">=</span> <span class="p">[[</span> <span class="mf">2.</span><span class="p">,</span> <span class="mf">1.</span><span class="p">],</span> |
| <span class="p">[</span> <span class="mf">6.</span><span class="p">,</span> <span class="mf">4.</span><span class="p">]]</span> |
| </pre></div> |
| </div> |
| <p>Defined in /work/mxnet/src/operator/random/sample_op.cc:L285</p> |
| <dl class="field-list simple"> |
| <dt class="field-odd">Parameters</dt> |
| <dd class="field-odd"><ul class="simple"> |
| <li><p><strong>mu</strong> (<em>float</em><em>, </em><em>optional</em><em>, </em><em>default=1</em>) – Mean of the negative binomial distribution.</p></li> |
| <li><p><strong>alpha</strong> (<em>float</em><em>, </em><em>optional</em><em>, </em><em>default=1</em>) – Alpha (dispersion) parameter of the negative binomial distribution.</p></li> |
| <li><p><strong>data</strong> (<a class="reference internal" href="../ndarray.html#mxnet.ndarray.NDArray" title="mxnet.ndarray.NDArray"><em>NDArray</em></a>) – The input</p></li> |
| <li><p><strong>out</strong> (<a class="reference internal" href="../ndarray.html#mxnet.ndarray.NDArray" title="mxnet.ndarray.NDArray"><em>NDArray</em></a><em>, </em><em>optional</em>) – The output NDArray to hold the result.</p></li> |
| </ul> |
| </dd> |
| <dt class="field-even">Returns</dt> |
| <dd class="field-even"><p><strong>out</strong> – The output of this function.</p> |
| </dd> |
| <dt class="field-odd">Return type</dt> |
| <dd class="field-odd"><p><a class="reference internal" href="../ndarray.html#mxnet.ndarray.NDArray" title="mxnet.ndarray.NDArray">NDArray</a> or list of NDArrays</p> |
| </dd> |
| </dl> |
| </dd></dl> |
| |
| <dl class="function"> |
| <dt id="mxnet.ndarray.random.negative_binomial_like"> |
| <code class="sig-prename descclassname">mxnet.ndarray.random.</code><code class="sig-name descname">negative_binomial_like</code><span class="sig-paren">(</span><em class="sig-param">data=None</em>, <em class="sig-param">k=_Null</em>, <em class="sig-param">p=_Null</em>, <em class="sig-param">out=None</em>, <em class="sig-param">name=None</em>, <em class="sig-param">**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#mxnet.ndarray.random.negative_binomial_like" title="Permalink to this definition">¶</a></dt> |
| <dd><p>Draw random samples from a negative binomial distribution according to the input array shape.</p> |
| <p>Samples are distributed according to a negative binomial distribution parametrized by |
| <em>k</em> (limit of unsuccessful experiments) and <em>p</em> (failure probability in each experiment). |
| Samples will always be returned as a floating point data type.</p> |
| <p>Example:</p> |
| <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">negative_binomial</span><span class="p">(</span><span class="n">k</span><span class="o">=</span><span class="mi">3</span><span class="p">,</span> <span class="n">p</span><span class="o">=</span><span class="mf">0.4</span><span class="p">,</span> <span class="n">data</span><span class="o">=</span><span class="n">ones</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span><span class="mi">2</span><span class="p">))</span> <span class="o">=</span> <span class="p">[[</span> <span class="mf">4.</span><span class="p">,</span> <span class="mf">7.</span><span class="p">],</span> |
| <span class="p">[</span> <span class="mf">2.</span><span class="p">,</span> <span class="mf">5.</span><span class="p">]]</span> |
| </pre></div> |
| </div> |
| <p>Defined in /work/mxnet/src/operator/random/sample_op.cc:L269</p> |
| <dl class="field-list simple"> |
| <dt class="field-odd">Parameters</dt> |
| <dd class="field-odd"><ul class="simple"> |
| <li><p><strong>k</strong> (<em>int</em><em>, </em><em>optional</em><em>, </em><em>default='1'</em>) – Limit of unsuccessful experiments.</p></li> |
| <li><p><strong>p</strong> (<em>float</em><em>, </em><em>optional</em><em>, </em><em>default=1</em>) – Failure probability in each experiment.</p></li> |
| <li><p><strong>data</strong> (<a class="reference internal" href="../ndarray.html#mxnet.ndarray.NDArray" title="mxnet.ndarray.NDArray"><em>NDArray</em></a>) – The input</p></li> |
| <li><p><strong>out</strong> (<a class="reference internal" href="../ndarray.html#mxnet.ndarray.NDArray" title="mxnet.ndarray.NDArray"><em>NDArray</em></a><em>, </em><em>optional</em>) – The output NDArray to hold the result.</p></li> |
| </ul> |
| </dd> |
| <dt class="field-even">Returns</dt> |
| <dd class="field-even"><p><strong>out</strong> – The output of this function.</p> |
| </dd> |
| <dt class="field-odd">Return type</dt> |
| <dd class="field-odd"><p><a class="reference internal" href="../ndarray.html#mxnet.ndarray.NDArray" title="mxnet.ndarray.NDArray">NDArray</a> or list of NDArrays</p> |
| </dd> |
| </dl> |
| </dd></dl> |
| |
| <dl class="function"> |
| <dt id="mxnet.ndarray.random.normal_like"> |
| <code class="sig-prename descclassname">mxnet.ndarray.random.</code><code class="sig-name descname">normal_like</code><span class="sig-paren">(</span><em class="sig-param">data=None</em>, <em class="sig-param">loc=_Null</em>, <em class="sig-param">scale=_Null</em>, <em class="sig-param">out=None</em>, <em class="sig-param">name=None</em>, <em class="sig-param">**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#mxnet.ndarray.random.normal_like" title="Permalink to this definition">¶</a></dt> |
| <dd><p>Draw random samples from a normal (Gaussian) distribution according to the input array shape.</p> |
| <p>Samples are distributed according to a normal distribution parametrized by <em>loc</em> (mean) and <em>scale</em> |
| (standard deviation).</p> |
| <p>Example:</p> |
| <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">normal</span><span class="p">(</span><span class="n">loc</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span> <span class="n">scale</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">data</span><span class="o">=</span><span class="n">ones</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span><span class="mi">2</span><span class="p">))</span> <span class="o">=</span> <span class="p">[[</span> <span class="mf">1.89171135</span><span class="p">,</span> <span class="o">-</span><span class="mf">1.16881478</span><span class="p">],</span> |
| <span class="p">[</span><span class="o">-</span><span class="mf">1.23474145</span><span class="p">,</span> <span class="mf">1.55807114</span><span class="p">]]</span> |
| </pre></div> |
| </div> |
| <p>Defined in /work/mxnet/src/operator/random/sample_op.cc:L222</p> |
| <dl class="field-list simple"> |
| <dt class="field-odd">Parameters</dt> |
| <dd class="field-odd"><ul class="simple"> |
| <li><p><strong>loc</strong> (<em>float</em><em>, </em><em>optional</em><em>, </em><em>default=0</em>) – Mean of the distribution.</p></li> |
| <li><p><strong>scale</strong> (<em>float</em><em>, </em><em>optional</em><em>, </em><em>default=1</em>) – Standard deviation of the distribution.</p></li> |
| <li><p><strong>data</strong> (<a class="reference internal" href="../ndarray.html#mxnet.ndarray.NDArray" title="mxnet.ndarray.NDArray"><em>NDArray</em></a>) – The input</p></li> |
| <li><p><strong>out</strong> (<a class="reference internal" href="../ndarray.html#mxnet.ndarray.NDArray" title="mxnet.ndarray.NDArray"><em>NDArray</em></a><em>, </em><em>optional</em>) – The output NDArray to hold the result.</p></li> |
| </ul> |
| </dd> |
| <dt class="field-even">Returns</dt> |
| <dd class="field-even"><p><strong>out</strong> – The output of this function.</p> |
| </dd> |
| <dt class="field-odd">Return type</dt> |
| <dd class="field-odd"><p><a class="reference internal" href="../ndarray.html#mxnet.ndarray.NDArray" title="mxnet.ndarray.NDArray">NDArray</a> or list of NDArrays</p> |
| </dd> |
| </dl> |
| </dd></dl> |
| |
| <dl class="function"> |
| <dt id="mxnet.ndarray.random.poisson_like"> |
| <code class="sig-prename descclassname">mxnet.ndarray.random.</code><code class="sig-name descname">poisson_like</code><span class="sig-paren">(</span><em class="sig-param">data=None</em>, <em class="sig-param">lam=_Null</em>, <em class="sig-param">out=None</em>, <em class="sig-param">name=None</em>, <em class="sig-param">**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#mxnet.ndarray.random.poisson_like" title="Permalink to this definition">¶</a></dt> |
| <dd><p>Draw random samples from a Poisson distribution according to the input array shape.</p> |
| <p>Samples are distributed according to a Poisson distribution parametrized by <em>lambda</em> (rate). |
| Samples will always be returned as a floating point data type.</p> |
| <p>Example:</p> |
| <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">poisson</span><span class="p">(</span><span class="n">lam</span><span class="o">=</span><span class="mi">4</span><span class="p">,</span> <span class="n">data</span><span class="o">=</span><span class="n">ones</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span><span class="mi">2</span><span class="p">))</span> <span class="o">=</span> <span class="p">[[</span> <span class="mf">5.</span><span class="p">,</span> <span class="mf">2.</span><span class="p">],</span> |
| <span class="p">[</span> <span class="mf">4.</span><span class="p">,</span> <span class="mf">6.</span><span class="p">]]</span> |
| </pre></div> |
| </div> |
| <p>Defined in /work/mxnet/src/operator/random/sample_op.cc:L256</p> |
| <dl class="field-list simple"> |
| <dt class="field-odd">Parameters</dt> |
| <dd class="field-odd"><ul class="simple"> |
| <li><p><strong>lam</strong> (<em>float</em><em>, </em><em>optional</em><em>, </em><em>default=1</em>) – Lambda parameter (rate) of the Poisson distribution.</p></li> |
| <li><p><strong>data</strong> (<a class="reference internal" href="../ndarray.html#mxnet.ndarray.NDArray" title="mxnet.ndarray.NDArray"><em>NDArray</em></a>) – The input</p></li> |
| <li><p><strong>out</strong> (<a class="reference internal" href="../ndarray.html#mxnet.ndarray.NDArray" title="mxnet.ndarray.NDArray"><em>NDArray</em></a><em>, </em><em>optional</em>) – The output NDArray to hold the result.</p></li> |
| </ul> |
| </dd> |
| <dt class="field-even">Returns</dt> |
| <dd class="field-even"><p><strong>out</strong> – The output of this function.</p> |
| </dd> |
| <dt class="field-odd">Return type</dt> |
| <dd class="field-odd"><p><a class="reference internal" href="../ndarray.html#mxnet.ndarray.NDArray" title="mxnet.ndarray.NDArray">NDArray</a> or list of NDArrays</p> |
| </dd> |
| </dl> |
| </dd></dl> |
| |
| <dl class="function"> |
| <dt id="mxnet.ndarray.random.uniform_like"> |
| <code class="sig-prename descclassname">mxnet.ndarray.random.</code><code class="sig-name descname">uniform_like</code><span class="sig-paren">(</span><em class="sig-param">data=None</em>, <em class="sig-param">low=_Null</em>, <em class="sig-param">high=_Null</em>, <em class="sig-param">out=None</em>, <em class="sig-param">name=None</em>, <em class="sig-param">**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#mxnet.ndarray.random.uniform_like" title="Permalink to this definition">¶</a></dt> |
| <dd><p>Draw random samples from a uniform distribution according to the input array shape.</p> |
| <p>Samples are uniformly distributed over the half-open interval <em>[low, high)</em> |
| (includes <em>low</em>, but excludes <em>high</em>).</p> |
| <p>Example:</p> |
| <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">uniform</span><span class="p">(</span><span class="n">low</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span> <span class="n">high</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">data</span><span class="o">=</span><span class="n">ones</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span><span class="mi">2</span><span class="p">))</span> <span class="o">=</span> <span class="p">[[</span> <span class="mf">0.60276335</span><span class="p">,</span> <span class="mf">0.85794562</span><span class="p">],</span> |
| <span class="p">[</span> <span class="mf">0.54488319</span><span class="p">,</span> <span class="mf">0.84725171</span><span class="p">]]</span> |
| </pre></div> |
| </div> |
| <p>Defined in /work/mxnet/src/operator/random/sample_op.cc:L210</p> |
| <dl class="field-list simple"> |
| <dt class="field-odd">Parameters</dt> |
| <dd class="field-odd"><ul class="simple"> |
| <li><p><strong>low</strong> (<em>float</em><em>, </em><em>optional</em><em>, </em><em>default=0</em>) – Lower bound of the distribution.</p></li> |
| <li><p><strong>high</strong> (<em>float</em><em>, </em><em>optional</em><em>, </em><em>default=1</em>) – Upper bound of the distribution.</p></li> |
| <li><p><strong>data</strong> (<a class="reference internal" href="../ndarray.html#mxnet.ndarray.NDArray" title="mxnet.ndarray.NDArray"><em>NDArray</em></a>) – The input</p></li> |
| <li><p><strong>out</strong> (<a class="reference internal" href="../ndarray.html#mxnet.ndarray.NDArray" title="mxnet.ndarray.NDArray"><em>NDArray</em></a><em>, </em><em>optional</em>) – The output NDArray to hold the result.</p></li> |
| </ul> |
| </dd> |
| <dt class="field-even">Returns</dt> |
| <dd class="field-even"><p><strong>out</strong> – The output of this function.</p> |
| </dd> |
| <dt class="field-odd">Return type</dt> |
| <dd class="field-odd"><p><a class="reference internal" href="../ndarray.html#mxnet.ndarray.NDArray" title="mxnet.ndarray.NDArray">NDArray</a> or list of NDArrays</p> |
| </dd> |
| </dl> |
| </dd></dl> |
| |
| </div> |
| |
| |
| <hr class="feedback-hr-top" /> |
| <div class="feedback-container"> |
| <div class="feedback-question">Did this page help you?</div> |
| <div class="feedback-answer-container"> |
| <div class="feedback-answer yes-link" data-response="yes">Yes</div> |
| <div class="feedback-answer no-link" data-response="no">No</div> |
| </div> |
| <div class="feedback-thank-you">Thanks for your feedback!</div> |
| </div> |
| <hr class="feedback-hr-bottom" /> |
| </div> |
| <div class="side-doc-outline"> |
| <div class="side-doc-outline--content"> |
| </div> |
| </div> |
| |
| <div class="clearer"></div> |
| </div><div class="pagenation"> |
| <a id="button-prev" href="../op/index.html" class="mdl-button mdl-js-button mdl-js-ripple-effect mdl-button--colored" role="botton" accesskey="P"> |
| <i class="pagenation-arrow-L fas fa-arrow-left fa-lg"></i> |
| <div class="pagenation-text"> |
| <span class="pagenation-direction">Previous</span> |
| <div>ndarray.op</div> |
| </div> |
| </a> |
| <a id="button-next" href="../register/index.html" class="mdl-button mdl-js-button mdl-js-ripple-effect mdl-button--colored" role="botton" accesskey="N"> |
| <i class="pagenation-arrow-R fas fa-arrow-right fa-lg"></i> |
| <div class="pagenation-text"> |
| <span class="pagenation-direction">Next</span> |
| <div>ndarray.register</div> |
| </div> |
| </a> |
| </div> |
| <footer class="site-footer h-card"> |
| <div class="wrapper"> |
| <div class="row"> |
| <div class="col-4"> |
| <h4 class="footer-category-title">Resources</h4> |
| <ul class="contact-list"> |
| <li><a |
| href="https://lists.apache.org/list.html?dev@mxnet.apache.org">Mailing list</a> <a class="u-email" href="mailto:dev-subscribe@mxnet.apache.org">(subscribe)</a></li> |
| <li><a href="https://discuss.mxnet.io">MXNet Discuss forum</a></li> |
| <li><a href="https://github.com/apache/incubator-mxnet/issues">Github Issues</a></li> |
| <li><a href="https://github.com/apache/incubator-mxnet/projects">Projects</a></li> |
| <li><a href="https://cwiki.apache.org/confluence/display/MXNET/Apache+MXNet+Home">Developer Wiki</a></li> |
| <li><a href="/community">Contribute To MXNet</a></li> |
| |
| </ul> |
| </div> |
| |
| <div class="col-4"><ul class="social-media-list"><li><a href="https://github.com/apache/incubator-mxnet"><svg class="svg-icon"><use xlink:href="../../../../_static/minima-social-icons.svg#github"></use></svg> <span class="username">apache/incubator-mxnet</span></a></li><li><a href="https://www.twitter.com/apachemxnet"><svg class="svg-icon"><use xlink:href="../../../../_static/minima-social-icons.svg#twitter"></use></svg> <span class="username">apachemxnet</span></a></li><li><a href="https://youtube.com/apachemxnet"><svg class="svg-icon"><use xlink:href="../../../../_static/minima-social-icons.svg#youtube"></use></svg> <span class="username">apachemxnet</span></a></li></ul> |
| </div> |
| |
| <div class="col-4 footer-text"> |
| <p>A flexible and efficient library for deep learning.</p> |
| </div> |
| </div> |
| </div> |
| </footer> |
| |
| <footer class="site-footer2"> |
| <div class="wrapper"> |
| <div class="row"> |
| <div class="col-3"> |
| <img src="../../../../_static/apache_incubator_logo.png" class="footer-logo col-2"> |
| </div> |
| <div class="footer-bottom-warning col-9"> |
| <p>Apache MXNet is an effort undergoing incubation at The Apache Software Foundation (ASF), <span style="font-weight:bold">sponsored by the <i>Apache Incubator</i></span>. Incubation is required |
| of all newly accepted projects until a further review indicates that the infrastructure, |
| communications, and decision making process have stabilized in a manner consistent with other |
| successful ASF projects. While incubation status is not necessarily a reflection of the completeness |
| or stability of the code, it does indicate that the project has yet to be fully endorsed by the ASF. |
| </p><p>"Copyright © 2017-2018, The Apache Software Foundation Apache MXNet, MXNet, Apache, the Apache |
| feather, and the Apache MXNet project logo are either registered trademarks or trademarks of the |
| Apache Software Foundation."</p> |
| </div> |
| </div> |
| </div> |
| </footer> |
| |
| </body> |
| </html> |