| <!DOCTYPE html> |
| |
| <html lang="en"> |
| <head> |
| <meta charset="utf-8"/> |
| <meta content="IE=edge" http-equiv="X-UA-Compatible"/> |
| <meta content="width=device-width, initial-scale=1" name="viewport"/> |
| <meta content="Linear Algebra NDArray API" property="og:title"> |
| <meta content="https://raw.githubusercontent.com/dmlc/web-data/master/mxnet/image/og-logo.png" property="og:image"> |
| <meta content="https://raw.githubusercontent.com/dmlc/web-data/master/mxnet/image/og-logo.png" property="og:image:secure_url"> |
| <meta content="Linear Algebra NDArray API" property="og:description"/> |
| <title>Linear Algebra NDArray API — mxnet documentation</title> |
| <link crossorigin="anonymous" href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/css/bootstrap.min.css" integrity="sha384-1q8mTJOASx8j1Au+a5WDVnPi2lkFfwwEAa8hDDdjZlpLegxhjVME1fgjWPGmkzs7" rel="stylesheet"/> |
| <link href="https://maxcdn.bootstrapcdn.com/font-awesome/4.5.0/css/font-awesome.min.css" rel="stylesheet"/> |
| <link href="../../../_static/basic.css" rel="stylesheet" type="text/css"> |
| <link href="../../../_static/pygments.css" rel="stylesheet" type="text/css"> |
| <link href="../../../_static/mxnet.css" rel="stylesheet" type="text/css"/> |
| <script type="text/javascript"> |
| var DOCUMENTATION_OPTIONS = { |
| URL_ROOT: '../../../', |
| VERSION: '', |
| COLLAPSE_INDEX: false, |
| FILE_SUFFIX: '.html', |
| HAS_SOURCE: true, |
| SOURCELINK_SUFFIX: '.txt' |
| }; |
| </script> |
| <script src="https://code.jquery.com/jquery-1.11.1.min.js" type="text/javascript"></script> |
| <script src="../../../_static/underscore.js" type="text/javascript"></script> |
| <script src="../../../_static/searchtools_custom.js" type="text/javascript"></script> |
| <script src="../../../_static/doctools.js" type="text/javascript"></script> |
| <script src="../../../_static/selectlang.js" type="text/javascript"></script> |
| <script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.1/MathJax.js?config=TeX-AMS-MML_HTMLorMML" type="text/javascript"></script> |
| <script type="text/javascript"> jQuery(function() { Search.loadIndex("/searchindex.js"); Search.init();}); </script> |
| <script> |
| (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ |
| (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new |
| Date();a=s.createElement(o), |
| m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) |
| })(window,document,'script','https://www.google-analytics.com/analytics.js','ga'); |
| |
| ga('create', 'UA-96378503-1', 'auto'); |
| ga('send', 'pageview'); |
| |
| </script> |
| <!-- --> |
| <!-- <script type="text/javascript" src="../../../_static/jquery.js"></script> --> |
| <!-- --> |
| <!-- <script type="text/javascript" src="../../../_static/underscore.js"></script> --> |
| <!-- --> |
| <!-- <script type="text/javascript" src="../../../_static/doctools.js"></script> --> |
| <!-- --> |
| <!-- <script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script> --> |
| <!-- --> |
| <link href="../../../genindex.html" rel="index" title="Index"> |
| <link href="../../../search.html" rel="search" title="Search"/> |
| <link href="../index.html" rel="up" title="MXNet - Python API"/> |
| <link href="sparse.html" rel="next" title="Sparse NDArray API"/> |
| <link href="random.html" rel="prev" title="Random Distribution Generator NDArray API"/> |
| <link href="https://raw.githubusercontent.com/dmlc/web-data/master/mxnet/image/mxnet-icon.png" rel="icon" type="image/png"/> |
| </link></link></link></meta></meta></meta></head> |
| <body background="https://raw.githubusercontent.com/dmlc/web-data/master/mxnet/image/mxnet-background-compressed.jpeg" role="document"> |
| <div class="content-block"><div class="navbar navbar-fixed-top"> |
| <div class="container" id="navContainer"> |
| <div class="innder" id="header-inner"> |
| <h1 id="logo-wrap"> |
| <a href="../../../" id="logo"><img src="https://raw.githubusercontent.com/dmlc/web-data/master/mxnet/image/mxnet_logo.png"/></a> |
| </h1> |
| <nav class="nav-bar" id="main-nav"> |
| <a class="main-nav-link" href="../../../install/index.html">Install</a> |
| <span id="dropdown-menu-position-anchor"> |
| <a aria-expanded="true" aria-haspopup="true" class="main-nav-link dropdown-toggle" data-toggle="dropdown" href="#" role="button">Gluon <span class="caret"></span></a> |
| <ul class="dropdown-menu navbar-menu" id="package-dropdown-menu"> |
| <li><a class="main-nav-link" href="../../../gluon/index.html">About</a></li> |
| <li><a class="main-nav-link" href="http://gluon.mxnet.io">Tutorials</a></li> |
| </ul> |
| </span> |
| <span id="dropdown-menu-position-anchor"> |
| <a aria-expanded="true" aria-haspopup="true" class="main-nav-link dropdown-toggle" data-toggle="dropdown" href="#" role="button">API <span class="caret"></span></a> |
| <ul class="dropdown-menu navbar-menu" id="package-dropdown-menu"> |
| <li><a class="main-nav-link" href="../../../api/python/index.html">Python</a></li> |
| <li><a class="main-nav-link" href="../../../api/c++/index.html">C++</a></li> |
| <li><a class="main-nav-link" href="../../../api/clojure/index.html">Clojure</a></li> |
| <li><a class="main-nav-link" href="../../../api/julia/index.html">Julia</a></li> |
| <li><a class="main-nav-link" href="../../../api/perl/index.html">Perl</a></li> |
| <li><a class="main-nav-link" href="../../../api/r/index.html">R</a></li> |
| <li><a class="main-nav-link" href="../../../api/scala/index.html">Scala</a></li> |
| </ul> |
| </span> |
| <span id="dropdown-menu-position-anchor-docs"> |
| <a aria-expanded="true" aria-haspopup="true" class="main-nav-link dropdown-toggle" data-toggle="dropdown" href="#" role="button">Docs <span class="caret"></span></a> |
| <ul class="dropdown-menu navbar-menu" id="package-dropdown-menu-docs"> |
| <li><a class="main-nav-link" href="../../../faq/index.html">FAQ</a></li> |
| <li><a class="main-nav-link" href="../../../tutorials/index.html">Tutorials</a> |
| <li><a class="main-nav-link" href="https://github.com/apache/incubator-mxnet/tree/1.0.0/example">Examples</a></li> |
| <li><a class="main-nav-link" href="../../../architecture/index.html">Architecture</a></li> |
| <li><a class="main-nav-link" href="../../../api/python/gluon/model_zoo.html">Model Zoo</a></li> |
| <li><a class="main-nav-link" href="../../../api/python/contrib/onnx.html">ONNX</a></li> |
| </li></ul> |
| </span> |
| <span id="dropdown-menu-position-anchor-community"> |
| <a aria-expanded="true" aria-haspopup="true" class="main-nav-link dropdown-toggle" data-toggle="dropdown" href="#" role="button">Community <span class="caret"></span></a> |
| <ul class="dropdown-menu navbar-menu" id="package-dropdown-menu-community"> |
| <li><a class="main-nav-link" href="http://discuss.mxnet.io">Forum</a></li> |
| <li><a class="main-nav-link" href="https://github.com/apache/incubator-mxnet">Github</a></li> |
| <li><a class="main-nav-link" href="../../../community/contribute.html">Contribute</a></li> |
| <li><a class="main-nav-link" href="../../../community/ecosystem.html">Ecosystem</a></li> |
| <li><a class="main-nav-link" href="../../../community/powered_by.html">Powered By</a></li> |
| </ul> |
| </span> |
| <span id="dropdown-menu-position-anchor-version" style="position: relative"><a href="#" class="main-nav-link dropdown-toggle" data-toggle="dropdown" role="button" aria-haspopup="true" aria-expanded="true">Versions(1.0.0)<span class="caret"></span></a><ul id="package-dropdown-menu" class="dropdown-menu"><li><a class="main-nav-link" href=http://mxnet.incubator.apache.org/>master</a></li><li><a class="main-nav-link" href=http://mxnet.incubator.apache.org/versions/1.2.1/index.html>1.2.1</a></li><li><a class="main-nav-link" href=http://mxnet.incubator.apache.org/versions/1.1.0/index.html>1.1.0</a></li><li><a class="main-nav-link" href=http://mxnet.incubator.apache.org/versions/1.0.0/index.html>1.0.0</a></li><li><a class="main-nav-link" href=http://mxnet.incubator.apache.org/versions/0.12.1/index.html>0.12.1</a></li><li><a class="main-nav-link" href=http://mxnet.incubator.apache.org/versions/0.11.0/index.html>0.11.0</a></li></ul></span></nav> |
| <script> function getRootPath(){ return "../../../" } </script> |
| <div class="burgerIcon dropdown"> |
| <a class="dropdown-toggle" data-toggle="dropdown" href="#" role="button">☰</a> |
| <ul class="dropdown-menu" id="burgerMenu"> |
| <li><a href="../../../install/index.html">Install</a></li> |
| <li><a class="main-nav-link" href="../../../tutorials/index.html">Tutorials</a></li> |
| <li class="dropdown-submenu dropdown"> |
| <a aria-haspopup="true" class="dropdown-toggle burger-link" data-toggle="dropdown" href="#" role="button" tabindex="-1">Community</a> |
| <ul class="dropdown-menu"> |
| <li><a href="http://discuss.mxnet.io" tabindex="-1">Forum</a></li> |
| <li><a href="https://github.com/apache/incubator-mxnet" tabindex="-1">Github</a></li> |
| <li><a href="../../../community/contribute.html" tabindex="-1">Contribute</a></li> |
| <li><a href="../../../community/ecosystem.html" tabindex="-1">Ecosystem</a></li> |
| <li><a href="../../../community/powered_by.html" tabindex="-1">Powered By</a></li> |
| </ul> |
| </li> |
| <li class="dropdown-submenu"> |
| <a aria-haspopup="true" class="dropdown-toggle burger-link" data-toggle="dropdown" href="#" role="button" tabindex="-1">API</a> |
| <ul class="dropdown-menu"> |
| <li><a href="../../../api/python/index.html" tabindex="-1">Python</a> |
| </li> |
| <li><a href="../../../api/c++/index.html" tabindex="-1">C++</a> |
| </li> |
| <li><a href="../../../api/clojure/index.html" tabindex="-1">Clojure</a> |
| </li> |
| <li><a href="../../../api/julia/index.html" tabindex="-1">Julia</a> |
| </li> |
| <li><a href="../../../api/perl/index.html" tabindex="-1">Perl</a> |
| </li> |
| <li><a href="../../../api/r/index.html" tabindex="-1">R</a> |
| </li> |
| <li><a href="../../../api/scala/index.html" tabindex="-1">Scala</a> |
| </li> |
| </ul> |
| </li> |
| <li class="dropdown-submenu"> |
| <a aria-expanded="true" aria-haspopup="true" class="dropdown-toggle burger-link" data-toggle="dropdown" href="#" tabindex="-1">Docs</a> |
| <ul class="dropdown-menu"> |
| <li><a href="../../../tutorials/index.html" tabindex="-1">Tutorials</a></li> |
| <li><a href="../../../faq/index.html" tabindex="-1">FAQ</a></li> |
| <li><a href="../../../architecture/index.html" tabindex="-1">Architecture</a></li> |
| <li><a href="https://github.com/apache/incubator-mxnet/tree/1.0.0/example" tabindex="-1">Examples</a></li> |
| <li><a href="../../../api/python/gluon/model_zoo.html" tabindex="-1">Gluon Model Zoo</a></li> |
| </ul> |
| </li> |
| <li><a class="main-nav-link" href="https://github.com/dmlc/mxnet">Github</a></li> |
| <li id="dropdown-menu-position-anchor-version-mobile" class="dropdown-submenu" style="position: relative"><a href="#" tabindex="-1">Versions(1.0.0)</a><ul class="dropdown-menu"><li><a tabindex="-1" href=http://mxnet.incubator.apache.org/>master</a></li><li><a tabindex="-1" href=http://mxnet.incubator.apache.org/versions/1.2.1/index.html>1.2.1</a></li><li><a tabindex="-1" href=http://mxnet.incubator.apache.org/versions/1.1.0/index.html>1.1.0</a></li><li><a tabindex="-1" href=http://mxnet.incubator.apache.org/versions/1.0.0/index.html>1.0.0</a></li><li><a tabindex="-1" href=http://mxnet.incubator.apache.org/versions/0.12.1/index.html>0.12.1</a></li><li><a tabindex="-1" href=http://mxnet.incubator.apache.org/versions/0.11.0/index.html>0.11.0</a></li></ul></li></ul> |
| </div> |
| <div class="plusIcon dropdown"> |
| <a class="dropdown-toggle" data-toggle="dropdown" href="#" role="button"><span aria-hidden="true" class="glyphicon glyphicon-plus"></span></a> |
| <ul class="dropdown-menu dropdown-menu-right" id="plusMenu"></ul> |
| </div> |
| <div id="search-input-wrap"> |
| <form action="../../../search.html" autocomplete="off" class="" method="get" role="search"> |
| <div class="form-group inner-addon left-addon"> |
| <i class="glyphicon glyphicon-search"></i> |
| <input class="form-control" name="q" placeholder="Search" type="text"/> |
| </div> |
| <input name="check_keywords" type="hidden" value="yes"> |
| <input name="area" type="hidden" value="default"/> |
| </input></form> |
| <div id="search-preview"></div> |
| </div> |
| <div id="searchIcon"> |
| <span aria-hidden="true" class="glyphicon glyphicon-search"></span> |
| </div> |
| <!-- <div id="lang-select-wrap"> --> |
| <!-- <label id="lang-select-label"> --> |
| <!-- <\!-- <i class="fa fa-globe"></i> -\-> --> |
| <!-- <span></span> --> |
| <!-- </label> --> |
| <!-- <select id="lang-select"> --> |
| <!-- <option value="en">Eng</option> --> |
| <!-- <option value="zh">中文</option> --> |
| <!-- </select> --> |
| <!-- </div> --> |
| <!-- <a id="mobile-nav-toggle"> |
| <span class="mobile-nav-toggle-bar"></span> |
| <span class="mobile-nav-toggle-bar"></span> |
| <span class="mobile-nav-toggle-bar"></span> |
| </a> --> |
| </div> |
| </div> |
| </div> |
| <script type="text/javascript"> |
| $('body').css('background', 'white'); |
| </script> |
| <div class="container"> |
| <div class="row"> |
| <div aria-label="main navigation" class="sphinxsidebar leftsidebar" role="navigation"> |
| <div class="sphinxsidebarwrapper"> |
| <ul class="current"> |
| <li class="toctree-l1 current"><a class="reference internal" href="../index.html">Python Documents</a><ul class="current"> |
| <li class="toctree-l2 current"><a class="reference internal" href="../index.html#ndarray-api">NDArray API</a><ul class="current"> |
| <li class="toctree-l3"><a class="reference internal" href="ndarray.html">NDArray API</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="random.html">Random Distribution Generator NDArray API</a></li> |
| <li class="toctree-l3 current"><a class="current reference internal" href="#">Linear Algebra NDArray API</a><ul> |
| <li class="toctree-l4"><a class="reference internal" href="#overview">Overview</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="#linear-algebra">Linear Algebra</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="#api-reference">API Reference</a></li> |
| </ul> |
| </li> |
| <li class="toctree-l3"><a class="reference internal" href="sparse.html">Sparse NDArray API</a></li> |
| <li class="toctree-l3"><a class="reference internal" href="contrib.html">Contrib NDArray API</a></li> |
| </ul> |
| </li> |
| <li class="toctree-l2"><a class="reference internal" href="../index.html#symbol-api">Symbol API</a></li> |
| <li class="toctree-l2"><a class="reference internal" href="../index.html#module-api">Module API</a></li> |
| <li class="toctree-l2"><a class="reference internal" href="../index.html#autograd-api">Autograd API</a></li> |
| <li class="toctree-l2"><a class="reference internal" href="../index.html#gluon-api">Gluon API</a></li> |
| <li class="toctree-l2"><a class="reference internal" href="../index.html#io-api">IO API</a></li> |
| <li class="toctree-l2"><a class="reference internal" href="../index.html#image-api">Image API</a></li> |
| <li class="toctree-l2"><a class="reference internal" href="../index.html#optimization-api">Optimization API</a></li> |
| <li class="toctree-l2"><a class="reference internal" href="../index.html#callback-api">Callback API</a></li> |
| <li class="toctree-l2"><a class="reference internal" href="../index.html#metric-api">Metric API</a></li> |
| <li class="toctree-l2"><a class="reference internal" href="../index.html#profiler-api">Profiler API</a></li> |
| <li class="toctree-l2"><a class="reference internal" href="../index.html#run-time-compilation-api">Run-Time Compilation API</a></li> |
| <li class="toctree-l2"><a class="reference internal" href="../index.html#contrib-package">Contrib Package</a></li> |
| </ul> |
| </li> |
| <li class="toctree-l1"><a class="reference internal" href="../../r/index.html">R Documents</a></li> |
| <li class="toctree-l1"><a class="reference internal" href="../../julia/index.html">Julia Documents</a></li> |
| <li class="toctree-l1"><a class="reference internal" href="../../c++/index.html">C++ Documents</a></li> |
| <li class="toctree-l1"><a class="reference internal" href="../../scala/index.html">Scala Documents</a></li> |
| <li class="toctree-l1"><a class="reference internal" href="../../perl/index.html">Perl Documents</a></li> |
| <li class="toctree-l1"><a class="reference internal" href="../../../faq/index.html">HowTo Documents</a></li> |
| <li class="toctree-l1"><a class="reference internal" href="../../../architecture/index.html">System Documents</a></li> |
| <li class="toctree-l1"><a class="reference internal" href="../../../tutorials/index.html">Tutorials</a></li> |
| <li class="toctree-l1"><a class="reference internal" href="../../../community/contribute.html">Community</a></li> |
| </ul> |
| </div> |
| </div> |
| <div class="content"> |
| <div class="page-tracker"></div> |
| <div class="section" id="linear-algebra-ndarray-api"> |
| <span id="linear-algebra-ndarray-api"></span><h1>Linear Algebra NDArray API<a class="headerlink" href="#linear-algebra-ndarray-api" title="Permalink to this headline">¶</a></h1> |
| <div class="section" id="overview"> |
| <span id="overview"></span><h2>Overview<a class="headerlink" href="#overview" title="Permalink to this headline">¶</a></h2> |
| <p>This document lists the linear algebra routines of the <em>n</em>-dimensional array package:</p> |
| <table border="1" class="longtable docutils"> |
| <colgroup> |
| <col width="10%"/> |
| <col width="90%"/> |
| </colgroup> |
| <tbody valign="top"> |
| <tr class="row-odd"><td><a class="reference internal" href="#module-mxnet.ndarray.linalg" title="mxnet.ndarray.linalg"><code class="xref py py-obj docutils literal"><span class="pre">mxnet.ndarray.linalg</span></code></a></td> |
| <td>Linear Algebra NDArray API of MXNet.</td> |
| </tr> |
| </tbody> |
| </table> |
| <p>The <code class="docutils literal"><span class="pre">Linear</span> <span class="pre">Algebra</span> <span class="pre">NDArray</span></code> API, defined in the <code class="docutils literal"><span class="pre">ndarray.linalg</span></code> package, provides |
| imperative linear algebra tensor operations on CPU/GPU.</p> |
| <p>In the rest of this document, we list routines provided by the <code class="docutils literal"><span class="pre">ndarray.linalg</span></code> package.</p> |
| </div> |
| <div class="section" id="linear-algebra"> |
| <span id="linear-algebra"></span><h2>Linear Algebra<a class="headerlink" href="#linear-algebra" title="Permalink to this headline">¶</a></h2> |
| <table border="1" class="longtable docutils"> |
| <colgroup> |
| <col width="10%"/> |
| <col width="90%"/> |
| </colgroup> |
| <tbody valign="top"> |
| <tr class="row-odd"><td><a class="reference internal" href="#mxnet.ndarray.linalg.gemm" title="mxnet.ndarray.linalg.gemm"><code class="xref py py-obj docutils literal"><span class="pre">gemm</span></code></a></td> |
| <td>Performs general matrix multiplication and accumulation.</td> |
| </tr> |
| <tr class="row-even"><td><a class="reference internal" href="#mxnet.ndarray.linalg.gemm2" title="mxnet.ndarray.linalg.gemm2"><code class="xref py py-obj docutils literal"><span class="pre">gemm2</span></code></a></td> |
| <td>Performs general matrix multiplication.</td> |
| </tr> |
| <tr class="row-odd"><td><a class="reference internal" href="#mxnet.ndarray.linalg.potrf" title="mxnet.ndarray.linalg.potrf"><code class="xref py py-obj docutils literal"><span class="pre">potrf</span></code></a></td> |
| <td>Performs Cholesky factorization of a symmetric positive-definite matrix.</td> |
| </tr> |
| <tr class="row-even"><td><a class="reference internal" href="#mxnet.ndarray.linalg.potri" title="mxnet.ndarray.linalg.potri"><code class="xref py py-obj docutils literal"><span class="pre">potri</span></code></a></td> |
| <td>Performs matrix inversion from a Cholesky factorization.</td> |
| </tr> |
| <tr class="row-odd"><td><a class="reference internal" href="#mxnet.ndarray.linalg.trmm" title="mxnet.ndarray.linalg.trmm"><code class="xref py py-obj docutils literal"><span class="pre">trmm</span></code></a></td> |
| <td>Performs multiplication with a lower triangular matrix.</td> |
| </tr> |
| <tr class="row-even"><td><a class="reference internal" href="#mxnet.ndarray.linalg.trsm" title="mxnet.ndarray.linalg.trsm"><code class="xref py py-obj docutils literal"><span class="pre">trsm</span></code></a></td> |
| <td>Solves matrix equation involving a lower triangular matrix.</td> |
| </tr> |
| <tr class="row-odd"><td><a class="reference internal" href="#mxnet.ndarray.linalg.sumlogdiag" title="mxnet.ndarray.linalg.sumlogdiag"><code class="xref py py-obj docutils literal"><span class="pre">sumlogdiag</span></code></a></td> |
| <td>Computes the sum of the logarithms of the diagonal elements of a square matrix.</td> |
| </tr> |
| <tr class="row-even"><td><a class="reference internal" href="#mxnet.ndarray.linalg.syrk" title="mxnet.ndarray.linalg.syrk"><code class="xref py py-obj docutils literal"><span class="pre">syrk</span></code></a></td> |
| <td>Multiplication of matrix with its transpose.</td> |
| </tr> |
| <tr class="row-odd"><td><a class="reference internal" href="#mxnet.ndarray.linalg.gelqf" title="mxnet.ndarray.linalg.gelqf"><code class="xref py py-obj docutils literal"><span class="pre">gelqf</span></code></a></td> |
| <td>LQ factorization for general matrix.</td> |
| </tr> |
| <tr class="row-even"><td><a class="reference internal" href="#mxnet.ndarray.linalg.syevd" title="mxnet.ndarray.linalg.syevd"><code class="xref py py-obj docutils literal"><span class="pre">syevd</span></code></a></td> |
| <td>Eigendecomposition for symmetric matrix.</td> |
| </tr> |
| </tbody> |
| </table> |
| </div> |
| <div class="section" id="api-reference"> |
| <span id="api-reference"></span><h2>API Reference<a class="headerlink" href="#api-reference" title="Permalink to this headline">¶</a></h2> |
| <script src="../../../_static/js/auto_module_index.js" type="text/javascript"></script><span class="target" id="module-mxnet.ndarray.linalg"></span><p>Linear Algebra NDArray API of MXNet.</p> |
| <dl class="function"> |
| <dt id="mxnet.ndarray.linalg.gelqf"> |
| <code class="descclassname">mxnet.ndarray.linalg.</code><code class="descname">gelqf</code><span class="sig-paren">(</span><em>A=None</em>, <em>out=None</em>, <em>name=None</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#mxnet.ndarray.linalg.gelqf" title="Permalink to this definition">¶</a></dt> |
| <dd><p>LQ factorization for general matrix. |
| Input is a tensor <em>A</em> of dimension <em>n >= 2</em>.</p> |
| <p>If <em>n=2</em>, we compute the LQ factorization (LAPACK <em>gelqf</em>, followed by <em>orglq</em>). <em>A</em> |
| must have shape <em>(x, y)</em> with <em>x <= y</em>, and must have full rank <em>=x</em>. The LQ |
| factorization consists of <em>L</em> with shape <em>(x, x)</em> and <em>Q</em> with shape <em>(x, y)</em>, so |
| that:</p> |
| <blockquote> |
| <div><em>A</em> = <em>L</em> * <em>Q</em></div></blockquote> |
| <p>Here, <em>L</em> is lower triangular (upper triangle equal to zero) with nonzero diagonal, |
| and <em>Q</em> is row-orthonormal, meaning that</p> |
| <blockquote> |
| <div><em>Q</em> * <em>Q</em><sup>T</sup></div></blockquote> |
| <p>is equal to the identity matrix of shape <em>(x, x)</em>.</p> |
| <p>If <em>n>2</em>, <em>gelqf</em> is performed separately on the trailing two dimensions for all |
| inputs (batch mode).</p> |
| <div class="admonition note"> |
| <p class="first admonition-title">Note</p> |
| <p class="last">The operator supports float32 and float64 data types only.</p> |
| </div> |
| <p>Examples:</p> |
| <div class="highlight-default"><div class="highlight"><pre><span></span><span class="o">//</span> <span class="n">Single</span> <span class="n">LQ</span> <span class="n">factorization</span> |
| <span class="n">A</span> <span class="o">=</span> <span class="p">[[</span><span class="mf">1.</span><span class="p">,</span> <span class="mf">2.</span><span class="p">,</span> <span class="mf">3.</span><span class="p">],</span> <span class="p">[</span><span class="mf">4.</span><span class="p">,</span> <span class="mf">5.</span><span class="p">,</span> <span class="mf">6.</span><span class="p">]]</span> |
| <span class="n">Q</span><span class="p">,</span> <span class="n">L</span> <span class="o">=</span> <span class="n">gelqf</span><span class="p">(</span><span class="n">A</span><span class="p">)</span> |
| <span class="n">Q</span> <span class="o">=</span> <span class="p">[[</span><span class="o">-</span><span class="mf">0.26726124</span><span class="p">,</span> <span class="o">-</span><span class="mf">0.53452248</span><span class="p">,</span> <span class="o">-</span><span class="mf">0.80178373</span><span class="p">],</span> |
| <span class="p">[</span><span class="mf">0.87287156</span><span class="p">,</span> <span class="mf">0.21821789</span><span class="p">,</span> <span class="o">-</span><span class="mf">0.43643578</span><span class="p">]]</span> |
| <span class="n">L</span> <span class="o">=</span> <span class="p">[[</span><span class="o">-</span><span class="mf">3.74165739</span><span class="p">,</span> <span class="mf">0.</span><span class="p">],</span> |
| <span class="p">[</span><span class="o">-</span><span class="mf">8.55235974</span><span class="p">,</span> <span class="mf">1.96396101</span><span class="p">]]</span> |
| |
| <span class="o">//</span> <span class="n">Batch</span> <span class="n">LQ</span> <span class="n">factorization</span> |
| <span class="n">A</span> <span class="o">=</span> <span class="p">[[[</span><span class="mf">1.</span><span class="p">,</span> <span class="mf">2.</span><span class="p">,</span> <span class="mf">3.</span><span class="p">],</span> <span class="p">[</span><span class="mf">4.</span><span class="p">,</span> <span class="mf">5.</span><span class="p">,</span> <span class="mf">6.</span><span class="p">]],</span> |
| <span class="p">[[</span><span class="mf">7.</span><span class="p">,</span> <span class="mf">8.</span><span class="p">,</span> <span class="mf">9.</span><span class="p">],</span> <span class="p">[</span><span class="mf">10.</span><span class="p">,</span> <span class="mf">11.</span><span class="p">,</span> <span class="mf">12.</span><span class="p">]]]</span> |
| <span class="n">Q</span><span class="p">,</span> <span class="n">L</span> <span class="o">=</span> <span class="n">gelqf</span><span class="p">(</span><span class="n">A</span><span class="p">)</span> |
| <span class="n">Q</span> <span class="o">=</span> <span class="p">[[[</span><span class="o">-</span><span class="mf">0.26726124</span><span class="p">,</span> <span class="o">-</span><span class="mf">0.53452248</span><span class="p">,</span> <span class="o">-</span><span class="mf">0.80178373</span><span class="p">],</span> |
| <span class="p">[</span><span class="mf">0.87287156</span><span class="p">,</span> <span class="mf">0.21821789</span><span class="p">,</span> <span class="o">-</span><span class="mf">0.43643578</span><span class="p">]],</span> |
| <span class="p">[[</span><span class="o">-</span><span class="mf">0.50257071</span><span class="p">,</span> <span class="o">-</span><span class="mf">0.57436653</span><span class="p">,</span> <span class="o">-</span><span class="mf">0.64616234</span><span class="p">],</span> |
| <span class="p">[</span><span class="mf">0.7620735</span><span class="p">,</span> <span class="mf">0.05862104</span><span class="p">,</span> <span class="o">-</span><span class="mf">0.64483142</span><span class="p">]]]</span> |
| <span class="n">L</span> <span class="o">=</span> <span class="p">[[[</span><span class="o">-</span><span class="mf">3.74165739</span><span class="p">,</span> <span class="mf">0.</span><span class="p">],</span> |
| <span class="p">[</span><span class="o">-</span><span class="mf">8.55235974</span><span class="p">,</span> <span class="mf">1.96396101</span><span class="p">]],</span> |
| <span class="p">[[</span><span class="o">-</span><span class="mf">13.92838828</span><span class="p">,</span> <span class="mf">0.</span><span class="p">],</span> |
| <span class="p">[</span><span class="o">-</span><span class="mf">19.09768702</span><span class="p">,</span> <span class="mf">0.52758934</span><span class="p">]]]</span> |
| </pre></div> |
| </div> |
| <p>Defined in src/operator/tensor/la_op.cc:L552</p> |
| <table class="docutils field-list" frame="void" rules="none"> |
| <col class="field-name"/> |
| <col class="field-body"/> |
| <tbody valign="top"> |
| <tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple"> |
| <li><strong>A</strong> (<a class="reference internal" href="ndarray.html#mxnet.ndarray.NDArray" title="mxnet.ndarray.NDArray"><em>NDArray</em></a>) – Tensor of input matrices to be factorized</li> |
| <li><strong>out</strong> (<a class="reference internal" href="ndarray.html#mxnet.ndarray.NDArray" title="mxnet.ndarray.NDArray"><em>NDArray</em></a><em>, </em><em>optional</em>) – The output NDArray to hold the result.</li> |
| </ul> |
| </td> |
| </tr> |
| <tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first"><strong>out</strong> – The output of this function.</p> |
| </td> |
| </tr> |
| <tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last"><a class="reference internal" href="ndarray.html#mxnet.ndarray.NDArray" title="mxnet.ndarray.NDArray">NDArray</a> or list of NDArrays</p> |
| </td> |
| </tr> |
| </tbody> |
| </table> |
| </dd></dl> |
| <dl class="function"> |
| <dt id="mxnet.ndarray.linalg.gemm"> |
| <code class="descclassname">mxnet.ndarray.linalg.</code><code class="descname">gemm</code><span class="sig-paren">(</span><em>A=None</em>, <em>B=None</em>, <em>C=None</em>, <em>transpose_a=_Null</em>, <em>transpose_b=_Null</em>, <em>alpha=_Null</em>, <em>beta=_Null</em>, <em>axis=_Null</em>, <em>out=None</em>, <em>name=None</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#mxnet.ndarray.linalg.gemm" title="Permalink to this definition">¶</a></dt> |
| <dd><p>Performs general matrix multiplication and accumulation. |
| Input are tensors <em>A</em>, <em>B</em>, <em>C</em>, each of dimension <em>n >= 2</em> and having the same shape |
| on the leading <em>n-2</em> dimensions.</p> |
| <p>If <em>n=2</em>, the BLAS3 function <em>gemm</em> is performed:</p> |
| <blockquote> |
| <div><em>out</em> = <em>alpha</em> * <em>op</em>(<em>A</em>) * <em>op</em>(<em>B</em>) + <em>beta</em> * <em>C</em></div></blockquote> |
| <p>Here, <em>alpha</em> and <em>beta</em> are scalar parameters, and <em>op()</em> is either the identity or |
| matrix transposition (depending on <em>transpose_a</em>, <em>transpose_b</em>).</p> |
| <p>If <em>n>2</em>, <em>gemm</em> is performed separately for a batch of matrices. The column indices of the matrices |
| are given by the last dimensions of the tensors, the row indices by the axis specified with the <em>axis</em> |
| parameter. By default, the trailing two dimensions will be used for matrix encoding.</p> |
| <p>For a non-default axis parameter, the operation performed is equivalent to a series of swapaxes/gemm/swapaxes |
| calls. For example let <em>A</em>, <em>B</em>, <em>C</em> be 5 dimensional tensors. Then gemm(<em>A</em>, <em>B</em>, <em>C</em>, axis=1) is equivalent to</p> |
| <blockquote> |
| <div>A1 = swapaxes(A, dim1=1, dim2=3) |
| B1 = swapaxes(B, dim1=1, dim2=3) |
| C = swapaxes(C, dim1=1, dim2=3) |
| C = gemm(A1, B1, C) |
| C = swapaxis(C, dim1=1, dim2=3)</div></blockquote> |
| <p>without the overhead of the additional swapaxis operations.</p> |
| <div class="admonition note"> |
| <p class="first admonition-title">Note</p> |
| <p class="last">The operator supports float32 and float64 data types only.</p> |
| </div> |
| <p>Examples:</p> |
| <div class="highlight-default"><div class="highlight"><pre><span></span><span class="o">//</span> <span class="n">Single</span> <span class="n">matrix</span> <span class="n">multiply</span><span class="o">-</span><span class="n">add</span> |
| <span class="n">A</span> <span class="o">=</span> <span class="p">[[</span><span class="mf">1.0</span><span class="p">,</span> <span class="mf">1.0</span><span class="p">],</span> <span class="p">[</span><span class="mf">1.0</span><span class="p">,</span> <span class="mf">1.0</span><span class="p">]]</span> |
| <span class="n">B</span> <span class="o">=</span> <span class="p">[[</span><span class="mf">1.0</span><span class="p">,</span> <span class="mf">1.0</span><span class="p">],</span> <span class="p">[</span><span class="mf">1.0</span><span class="p">,</span> <span class="mf">1.0</span><span class="p">],</span> <span class="p">[</span><span class="mf">1.0</span><span class="p">,</span> <span class="mf">1.0</span><span class="p">]]</span> |
| <span class="n">C</span> <span class="o">=</span> <span class="p">[[</span><span class="mf">1.0</span><span class="p">,</span> <span class="mf">1.0</span><span class="p">,</span> <span class="mf">1.0</span><span class="p">],</span> <span class="p">[</span><span class="mf">1.0</span><span class="p">,</span> <span class="mf">1.0</span><span class="p">,</span> <span class="mf">1.0</span><span class="p">]]</span> |
| <span class="n">gemm</span><span class="p">(</span><span class="n">A</span><span class="p">,</span> <span class="n">B</span><span class="p">,</span> <span class="n">C</span><span class="p">,</span> <span class="n">transpose_b</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span> <span class="n">alpha</span><span class="o">=</span><span class="mf">2.0</span><span class="p">,</span> <span class="n">beta</span><span class="o">=</span><span class="mf">10.0</span><span class="p">)</span> |
| <span class="o">=</span> <span class="p">[[</span><span class="mf">14.0</span><span class="p">,</span> <span class="mf">14.0</span><span class="p">,</span> <span class="mf">14.0</span><span class="p">],</span> <span class="p">[</span><span class="mf">14.0</span><span class="p">,</span> <span class="mf">14.0</span><span class="p">,</span> <span class="mf">14.0</span><span class="p">]]</span> |
| |
| <span class="o">//</span> <span class="n">Batch</span> <span class="n">matrix</span> <span class="n">multiply</span><span class="o">-</span><span class="n">add</span> |
| <span class="n">A</span> <span class="o">=</span> <span class="p">[[[</span><span class="mf">1.0</span><span class="p">,</span> <span class="mf">1.0</span><span class="p">]],</span> <span class="p">[[</span><span class="mf">0.1</span><span class="p">,</span> <span class="mf">0.1</span><span class="p">]]]</span> |
| <span class="n">B</span> <span class="o">=</span> <span class="p">[[[</span><span class="mf">1.0</span><span class="p">,</span> <span class="mf">1.0</span><span class="p">]],</span> <span class="p">[[</span><span class="mf">0.1</span><span class="p">,</span> <span class="mf">0.1</span><span class="p">]]]</span> |
| <span class="n">C</span> <span class="o">=</span> <span class="p">[[[</span><span class="mf">10.0</span><span class="p">]],</span> <span class="p">[[</span><span class="mf">0.01</span><span class="p">]]]</span> |
| <span class="n">gemm</span><span class="p">(</span><span class="n">A</span><span class="p">,</span> <span class="n">B</span><span class="p">,</span> <span class="n">C</span><span class="p">,</span> <span class="n">transpose_b</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span> <span class="n">alpha</span><span class="o">=</span><span class="mf">2.0</span> <span class="p">,</span> <span class="n">beta</span><span class="o">=</span><span class="mf">10.0</span><span class="p">)</span> |
| <span class="o">=</span> <span class="p">[[[</span><span class="mf">104.0</span><span class="p">]],</span> <span class="p">[[</span><span class="mf">0.14</span><span class="p">]]]</span> |
| </pre></div> |
| </div> |
| <p>Defined in src/operator/tensor/la_op.cc:L81</p> |
| <table class="docutils field-list" frame="void" rules="none"> |
| <col class="field-name"/> |
| <col class="field-body"/> |
| <tbody valign="top"> |
| <tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple"> |
| <li><strong>A</strong> (<a class="reference internal" href="ndarray.html#mxnet.ndarray.NDArray" title="mxnet.ndarray.NDArray"><em>NDArray</em></a>) – Tensor of input matrices</li> |
| <li><strong>B</strong> (<a class="reference internal" href="ndarray.html#mxnet.ndarray.NDArray" title="mxnet.ndarray.NDArray"><em>NDArray</em></a>) – Tensor of input matrices</li> |
| <li><strong>C</strong> (<a class="reference internal" href="ndarray.html#mxnet.ndarray.NDArray" title="mxnet.ndarray.NDArray"><em>NDArray</em></a>) – Tensor of input matrices</li> |
| <li><strong>transpose_a</strong> (<em>boolean</em><em>, </em><em>optional</em><em>, </em><em>default=0</em>) – Multiply with transposed of first input (A).</li> |
| <li><strong>transpose_b</strong> (<em>boolean</em><em>, </em><em>optional</em><em>, </em><em>default=0</em>) – Multiply with transposed of second input (B).</li> |
| <li><strong>alpha</strong> (<em>double</em><em>, </em><em>optional</em><em>, </em><em>default=1</em>) – Scalar factor multiplied with A*B.</li> |
| <li><strong>beta</strong> (<em>double</em><em>, </em><em>optional</em><em>, </em><em>default=1</em>) – Scalar factor multiplied with C.</li> |
| <li><strong>axis</strong> (<em>int</em><em>, </em><em>optional</em><em>, </em><em>default='-2'</em>) – Axis corresponding to the matrix rows.</li> |
| <li><strong>out</strong> (<a class="reference internal" href="ndarray.html#mxnet.ndarray.NDArray" title="mxnet.ndarray.NDArray"><em>NDArray</em></a><em>, </em><em>optional</em>) – The output NDArray to hold the result.</li> |
| </ul> |
| </td> |
| </tr> |
| <tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first"><strong>out</strong> – The output of this function.</p> |
| </td> |
| </tr> |
| <tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last"><a class="reference internal" href="ndarray.html#mxnet.ndarray.NDArray" title="mxnet.ndarray.NDArray">NDArray</a> or list of NDArrays</p> |
| </td> |
| </tr> |
| </tbody> |
| </table> |
| </dd></dl> |
| <dl class="function"> |
| <dt id="mxnet.ndarray.linalg.gemm2"> |
| <code class="descclassname">mxnet.ndarray.linalg.</code><code class="descname">gemm2</code><span class="sig-paren">(</span><em>A=None</em>, <em>B=None</em>, <em>transpose_a=_Null</em>, <em>transpose_b=_Null</em>, <em>alpha=_Null</em>, <em>axis=_Null</em>, <em>out=None</em>, <em>name=None</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#mxnet.ndarray.linalg.gemm2" title="Permalink to this definition">¶</a></dt> |
| <dd><p>Performs general matrix multiplication. |
| Input are tensors <em>A</em>, <em>B</em>, each of dimension <em>n >= 2</em> and having the same shape |
| on the leading <em>n-2</em> dimensions.</p> |
| <p>If <em>n=2</em>, the BLAS3 function <em>gemm</em> is performed:</p> |
| <blockquote> |
| <div><em>out</em> = <em>alpha</em> * <em>op</em>(<em>A</em>) * <em>op</em>(<em>B</em>)</div></blockquote> |
| <p>Here <em>alpha</em> is a scalar parameter and <em>op()</em> is either the identity or the matrix |
| transposition (depending on <em>transpose_a</em>, <em>transpose_b</em>).</p> |
| <p>If <em>n>2</em>, <em>gemm</em> is performed separately for a batch of matrices. The column indices of the matrices |
| are given by the last dimensions of the tensors, the row indices by the axis specified with the <em>axis</em> |
| parameter. By default, the trailing two dimensions will be used for matrix encoding.</p> |
| <p>For a non-default axis parameter, the operation performed is equivalent to a series of swapaxes/gemm/swapaxes |
| calls. For example let <em>A</em>, <em>B</em> be 5 dimensional tensors. Then gemm(<em>A</em>, <em>B</em>, axis=1) is equivalent to</p> |
| <blockquote> |
| <div>A1 = swapaxes(A, dim1=1, dim2=3) |
| B1 = swapaxes(B, dim1=1, dim2=3) |
| C = gemm2(A1, B1) |
| C = swapaxis(C, dim1=1, dim2=3)</div></blockquote> |
| <p>without the overhead of the additional swapaxis operations.</p> |
| <div class="admonition note"> |
| <p class="first admonition-title">Note</p> |
| <p class="last">The operator supports float32 and float64 data types only.</p> |
| </div> |
| <p>Examples:</p> |
| <div class="highlight-default"><div class="highlight"><pre><span></span><span class="o">//</span> <span class="n">Single</span> <span class="n">matrix</span> <span class="n">multiply</span> |
| <span class="n">A</span> <span class="o">=</span> <span class="p">[[</span><span class="mf">1.0</span><span class="p">,</span> <span class="mf">1.0</span><span class="p">],</span> <span class="p">[</span><span class="mf">1.0</span><span class="p">,</span> <span class="mf">1.0</span><span class="p">]]</span> |
| <span class="n">B</span> <span class="o">=</span> <span class="p">[[</span><span class="mf">1.0</span><span class="p">,</span> <span class="mf">1.0</span><span class="p">],</span> <span class="p">[</span><span class="mf">1.0</span><span class="p">,</span> <span class="mf">1.0</span><span class="p">],</span> <span class="p">[</span><span class="mf">1.0</span><span class="p">,</span> <span class="mf">1.0</span><span class="p">]]</span> |
| <span class="n">gemm2</span><span class="p">(</span><span class="n">A</span><span class="p">,</span> <span class="n">B</span><span class="p">,</span> <span class="n">transpose_b</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span> <span class="n">alpha</span><span class="o">=</span><span class="mf">2.0</span><span class="p">)</span> |
| <span class="o">=</span> <span class="p">[[</span><span class="mf">4.0</span><span class="p">,</span> <span class="mf">4.0</span><span class="p">,</span> <span class="mf">4.0</span><span class="p">],</span> <span class="p">[</span><span class="mf">4.0</span><span class="p">,</span> <span class="mf">4.0</span><span class="p">,</span> <span class="mf">4.0</span><span class="p">]]</span> |
| |
| <span class="o">//</span> <span class="n">Batch</span> <span class="n">matrix</span> <span class="n">multiply</span> |
| <span class="n">A</span> <span class="o">=</span> <span class="p">[[[</span><span class="mf">1.0</span><span class="p">,</span> <span class="mf">1.0</span><span class="p">]],</span> <span class="p">[[</span><span class="mf">0.1</span><span class="p">,</span> <span class="mf">0.1</span><span class="p">]]]</span> |
| <span class="n">B</span> <span class="o">=</span> <span class="p">[[[</span><span class="mf">1.0</span><span class="p">,</span> <span class="mf">1.0</span><span class="p">]],</span> <span class="p">[[</span><span class="mf">0.1</span><span class="p">,</span> <span class="mf">0.1</span><span class="p">]]]</span> |
| <span class="n">gemm2</span><span class="p">(</span><span class="n">A</span><span class="p">,</span> <span class="n">B</span><span class="p">,</span> <span class="n">transpose_b</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span> <span class="n">alpha</span><span class="o">=</span><span class="mf">2.0</span><span class="p">)</span> |
| <span class="o">=</span> <span class="p">[[[</span><span class="mf">4.0</span><span class="p">]],</span> <span class="p">[[</span><span class="mf">0.04</span> <span class="p">]]]</span> |
| </pre></div> |
| </div> |
| <p>Defined in src/operator/tensor/la_op.cc:L151</p> |
| <table class="docutils field-list" frame="void" rules="none"> |
| <col class="field-name"/> |
| <col class="field-body"/> |
| <tbody valign="top"> |
| <tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple"> |
| <li><strong>A</strong> (<a class="reference internal" href="ndarray.html#mxnet.ndarray.NDArray" title="mxnet.ndarray.NDArray"><em>NDArray</em></a>) – Tensor of input matrices</li> |
| <li><strong>B</strong> (<a class="reference internal" href="ndarray.html#mxnet.ndarray.NDArray" title="mxnet.ndarray.NDArray"><em>NDArray</em></a>) – Tensor of input matrices</li> |
| <li><strong>transpose_a</strong> (<em>boolean</em><em>, </em><em>optional</em><em>, </em><em>default=0</em>) – Multiply with transposed of first input (A).</li> |
| <li><strong>transpose_b</strong> (<em>boolean</em><em>, </em><em>optional</em><em>, </em><em>default=0</em>) – Multiply with transposed of second input (B).</li> |
| <li><strong>alpha</strong> (<em>double</em><em>, </em><em>optional</em><em>, </em><em>default=1</em>) – Scalar factor multiplied with A*B.</li> |
| <li><strong>axis</strong> (<em>int</em><em>, </em><em>optional</em><em>, </em><em>default='-2'</em>) – Axis corresponding to the matrix row indices.</li> |
| <li><strong>out</strong> (<a class="reference internal" href="ndarray.html#mxnet.ndarray.NDArray" title="mxnet.ndarray.NDArray"><em>NDArray</em></a><em>, </em><em>optional</em>) – The output NDArray to hold the result.</li> |
| </ul> |
| </td> |
| </tr> |
| <tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first"><strong>out</strong> – The output of this function.</p> |
| </td> |
| </tr> |
| <tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last"><a class="reference internal" href="ndarray.html#mxnet.ndarray.NDArray" title="mxnet.ndarray.NDArray">NDArray</a> or list of NDArrays</p> |
| </td> |
| </tr> |
| </tbody> |
| </table> |
| </dd></dl> |
| <dl class="function"> |
| <dt id="mxnet.ndarray.linalg.potrf"> |
| <code class="descclassname">mxnet.ndarray.linalg.</code><code class="descname">potrf</code><span class="sig-paren">(</span><em>A=None</em>, <em>out=None</em>, <em>name=None</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#mxnet.ndarray.linalg.potrf" title="Permalink to this definition">¶</a></dt> |
| <dd><p>Performs Cholesky factorization of a symmetric positive-definite matrix. |
| Input is a tensor <em>A</em> of dimension <em>n >= 2</em>.</p> |
| <p>If <em>n=2</em>, the Cholesky factor <em>L</em> of the symmetric, positive definite matrix <em>A</em> is |
| computed. <em>L</em> is lower triangular (entries of upper triangle are all zero), has |
| positive diagonal entries, and:</p> |
| <blockquote> |
| <div><em>A</em> = <em>L</em> * <em>L</em><sup>T</sup></div></blockquote> |
| <p>If <em>n>2</em>, <em>potrf</em> is performed separately on the trailing two dimensions for all inputs |
| (batch mode).</p> |
| <div class="admonition note"> |
| <p class="first admonition-title">Note</p> |
| <p class="last">The operator supports float32 and float64 data types only.</p> |
| </div> |
| <p>Examples:</p> |
| <div class="highlight-default"><div class="highlight"><pre><span></span><span class="o">//</span> <span class="n">Single</span> <span class="n">matrix</span> <span class="n">factorization</span> |
| <span class="n">A</span> <span class="o">=</span> <span class="p">[[</span><span class="mf">4.0</span><span class="p">,</span> <span class="mf">1.0</span><span class="p">],</span> <span class="p">[</span><span class="mf">1.0</span><span class="p">,</span> <span class="mf">4.25</span><span class="p">]]</span> |
| <span class="n">potrf</span><span class="p">(</span><span class="n">A</span><span class="p">)</span> <span class="o">=</span> <span class="p">[[</span><span class="mf">2.0</span><span class="p">,</span> <span class="mi">0</span><span class="p">],</span> <span class="p">[</span><span class="mf">0.5</span><span class="p">,</span> <span class="mf">2.0</span><span class="p">]]</span> |
| |
| <span class="o">//</span> <span class="n">Batch</span> <span class="n">matrix</span> <span class="n">factorization</span> |
| <span class="n">A</span> <span class="o">=</span> <span class="p">[[[</span><span class="mf">4.0</span><span class="p">,</span> <span class="mf">1.0</span><span class="p">],</span> <span class="p">[</span><span class="mf">1.0</span><span class="p">,</span> <span class="mf">4.25</span><span class="p">]],</span> <span class="p">[[</span><span class="mf">16.0</span><span class="p">,</span> <span class="mf">4.0</span><span class="p">],</span> <span class="p">[</span><span class="mf">4.0</span><span class="p">,</span> <span class="mf">17.0</span><span class="p">]]]</span> |
| <span class="n">potrf</span><span class="p">(</span><span class="n">A</span><span class="p">)</span> <span class="o">=</span> <span class="p">[[[</span><span class="mf">2.0</span><span class="p">,</span> <span class="mi">0</span><span class="p">],</span> <span class="p">[</span><span class="mf">0.5</span><span class="p">,</span> <span class="mf">2.0</span><span class="p">]],</span> <span class="p">[[</span><span class="mf">4.0</span><span class="p">,</span> <span class="mi">0</span><span class="p">],</span> <span class="p">[</span><span class="mf">1.0</span><span class="p">,</span> <span class="mf">4.0</span><span class="p">]]]</span> |
| </pre></div> |
| </div> |
| <p>Defined in src/operator/tensor/la_op.cc:L201</p> |
| <table class="docutils field-list" frame="void" rules="none"> |
| <col class="field-name"/> |
| <col class="field-body"/> |
| <tbody valign="top"> |
| <tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple"> |
| <li><strong>A</strong> (<a class="reference internal" href="ndarray.html#mxnet.ndarray.NDArray" title="mxnet.ndarray.NDArray"><em>NDArray</em></a>) – Tensor of input matrices to be decomposed</li> |
| <li><strong>out</strong> (<a class="reference internal" href="ndarray.html#mxnet.ndarray.NDArray" title="mxnet.ndarray.NDArray"><em>NDArray</em></a><em>, </em><em>optional</em>) – The output NDArray to hold the result.</li> |
| </ul> |
| </td> |
| </tr> |
| <tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first"><strong>out</strong> – The output of this function.</p> |
| </td> |
| </tr> |
| <tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last"><a class="reference internal" href="ndarray.html#mxnet.ndarray.NDArray" title="mxnet.ndarray.NDArray">NDArray</a> or list of NDArrays</p> |
| </td> |
| </tr> |
| </tbody> |
| </table> |
| </dd></dl> |
| <dl class="function"> |
| <dt id="mxnet.ndarray.linalg.potri"> |
| <code class="descclassname">mxnet.ndarray.linalg.</code><code class="descname">potri</code><span class="sig-paren">(</span><em>A=None</em>, <em>out=None</em>, <em>name=None</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#mxnet.ndarray.linalg.potri" title="Permalink to this definition">¶</a></dt> |
| <dd><p>Performs matrix inversion from a Cholesky factorization. |
| Input is a tensor <em>A</em> of dimension <em>n >= 2</em>.</p> |
| <p>If <em>n=2</em>, <em>A</em> is a lower triangular matrix (entries of upper triangle are all zero) |
| with positive diagonal. We compute:</p> |
| <blockquote> |
| <div><em>out</em> = <em>A</em><sup>-T</sup> * <em>A</em><sup>-1</sup></div></blockquote> |
| <p>In other words, if <em>A</em> is the Cholesky factor of a symmetric positive definite matrix |
| <em>B</em> (obtained by <em>potrf</em>), then</p> |
| <blockquote> |
| <div><em>out</em> = <em>B</em><sup>-1</sup></div></blockquote> |
| <p>If <em>n>2</em>, <em>potri</em> is performed separately on the trailing two dimensions for all inputs |
| (batch mode).</p> |
| <div class="admonition note"> |
| <p class="first admonition-title">Note</p> |
| <p class="last">The operator supports float32 and float64 data types only.</p> |
| </div> |
| <div class="admonition note"> |
| <p class="first admonition-title">Note</p> |
| <p class="last">Use this operator only if you are certain you need the inverse of <em>B</em>, and |
| cannot use the Cholesky factor <em>A</em> (<em>potrf</em>), together with backsubstitution |
| (<em>trsm</em>). The latter is numerically much safer, and also cheaper.</p> |
| </div> |
| <p>Examples:</p> |
| <div class="highlight-default"><div class="highlight"><pre><span></span><span class="o">//</span> <span class="n">Single</span> <span class="n">matrix</span> <span class="n">inverse</span> |
| <span class="n">A</span> <span class="o">=</span> <span class="p">[[</span><span class="mf">2.0</span><span class="p">,</span> <span class="mi">0</span><span class="p">],</span> <span class="p">[</span><span class="mf">0.5</span><span class="p">,</span> <span class="mf">2.0</span><span class="p">]]</span> |
| <span class="n">potri</span><span class="p">(</span><span class="n">A</span><span class="p">)</span> <span class="o">=</span> <span class="p">[[</span><span class="mf">0.26563</span><span class="p">,</span> <span class="o">-</span><span class="mf">0.0625</span><span class="p">],</span> <span class="p">[</span><span class="o">-</span><span class="mf">0.0625</span><span class="p">,</span> <span class="mf">0.25</span><span class="p">]]</span> |
| |
| <span class="o">//</span> <span class="n">Batch</span> <span class="n">matrix</span> <span class="n">inverse</span> |
| <span class="n">A</span> <span class="o">=</span> <span class="p">[[[</span><span class="mf">2.0</span><span class="p">,</span> <span class="mi">0</span><span class="p">],</span> <span class="p">[</span><span class="mf">0.5</span><span class="p">,</span> <span class="mf">2.0</span><span class="p">]],</span> <span class="p">[[</span><span class="mf">4.0</span><span class="p">,</span> <span class="mi">0</span><span class="p">],</span> <span class="p">[</span><span class="mf">1.0</span><span class="p">,</span> <span class="mf">4.0</span><span class="p">]]]</span> |
| <span class="n">potri</span><span class="p">(</span><span class="n">A</span><span class="p">)</span> <span class="o">=</span> <span class="p">[[[</span><span class="mf">0.26563</span><span class="p">,</span> <span class="o">-</span><span class="mf">0.0625</span><span class="p">],</span> <span class="p">[</span><span class="o">-</span><span class="mf">0.0625</span><span class="p">,</span> <span class="mf">0.25</span><span class="p">]],</span> |
| <span class="p">[[</span><span class="mf">0.06641</span><span class="p">,</span> <span class="o">-</span><span class="mf">0.01562</span><span class="p">],</span> <span class="p">[</span><span class="o">-</span><span class="mf">0.01562</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span><span class="mi">0625</span><span class="p">]]]</span> |
| </pre></div> |
| </div> |
| <p>Defined in src/operator/tensor/la_op.cc:L259</p> |
| <table class="docutils field-list" frame="void" rules="none"> |
| <col class="field-name"/> |
| <col class="field-body"/> |
| <tbody valign="top"> |
| <tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple"> |
| <li><strong>A</strong> (<a class="reference internal" href="ndarray.html#mxnet.ndarray.NDArray" title="mxnet.ndarray.NDArray"><em>NDArray</em></a>) – Tensor of lower triangular matrices</li> |
| <li><strong>out</strong> (<a class="reference internal" href="ndarray.html#mxnet.ndarray.NDArray" title="mxnet.ndarray.NDArray"><em>NDArray</em></a><em>, </em><em>optional</em>) – The output NDArray to hold the result.</li> |
| </ul> |
| </td> |
| </tr> |
| <tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first"><strong>out</strong> – The output of this function.</p> |
| </td> |
| </tr> |
| <tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last"><a class="reference internal" href="ndarray.html#mxnet.ndarray.NDArray" title="mxnet.ndarray.NDArray">NDArray</a> or list of NDArrays</p> |
| </td> |
| </tr> |
| </tbody> |
| </table> |
| </dd></dl> |
| <dl class="function"> |
| <dt id="mxnet.ndarray.linalg.sumlogdiag"> |
| <code class="descclassname">mxnet.ndarray.linalg.</code><code class="descname">sumlogdiag</code><span class="sig-paren">(</span><em>A=None</em>, <em>out=None</em>, <em>name=None</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#mxnet.ndarray.linalg.sumlogdiag" title="Permalink to this definition">¶</a></dt> |
| <dd><p>Computes the sum of the logarithms of the diagonal elements of a square matrix. |
| Input is a tensor <em>A</em> of dimension <em>n >= 2</em>.</p> |
| <p>If <em>n=2</em>, <em>A</em> must be square with positive diagonal entries. We sum the natural |
| logarithms of the diagonal elements, the result has shape (1,).</p> |
| <p>If <em>n>2</em>, <em>sumlogdiag</em> is performed separately on the trailing two dimensions for all |
| inputs (batch mode).</p> |
| <div class="admonition note"> |
| <p class="first admonition-title">Note</p> |
| <p class="last">The operator supports float32 and float64 data types only.</p> |
| </div> |
| <p>Examples:</p> |
| <div class="highlight-default"><div class="highlight"><pre><span></span><span class="o">//</span> <span class="n">Single</span> <span class="n">matrix</span> <span class="n">reduction</span> |
| <span class="n">A</span> <span class="o">=</span> <span class="p">[[</span><span class="mf">1.0</span><span class="p">,</span> <span class="mf">1.0</span><span class="p">],</span> <span class="p">[</span><span class="mf">1.0</span><span class="p">,</span> <span class="mf">7.0</span><span class="p">]]</span> |
| <span class="n">sumlogdiag</span><span class="p">(</span><span class="n">A</span><span class="p">)</span> <span class="o">=</span> <span class="p">[</span><span class="mf">1.9459</span><span class="p">]</span> |
| |
| <span class="o">//</span> <span class="n">Batch</span> <span class="n">matrix</span> <span class="n">reduction</span> |
| <span class="n">A</span> <span class="o">=</span> <span class="p">[[[</span><span class="mf">1.0</span><span class="p">,</span> <span class="mf">1.0</span><span class="p">],</span> <span class="p">[</span><span class="mf">1.0</span><span class="p">,</span> <span class="mf">7.0</span><span class="p">]],</span> <span class="p">[[</span><span class="mf">3.0</span><span class="p">,</span> <span class="mi">0</span><span class="p">],</span> <span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="mf">17.0</span><span class="p">]]]</span> |
| <span class="n">sumlogdiag</span><span class="p">(</span><span class="n">A</span><span class="p">)</span> <span class="o">=</span> <span class="p">[</span><span class="mf">1.9459</span><span class="p">,</span> <span class="mf">3.9318</span><span class="p">]</span> |
| </pre></div> |
| </div> |
| <p>Defined in src/operator/tensor/la_op.cc:L428</p> |
| <table class="docutils field-list" frame="void" rules="none"> |
| <col class="field-name"/> |
| <col class="field-body"/> |
| <tbody valign="top"> |
| <tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple"> |
| <li><strong>A</strong> (<a class="reference internal" href="ndarray.html#mxnet.ndarray.NDArray" title="mxnet.ndarray.NDArray"><em>NDArray</em></a>) – Tensor of square matrices</li> |
| <li><strong>out</strong> (<a class="reference internal" href="ndarray.html#mxnet.ndarray.NDArray" title="mxnet.ndarray.NDArray"><em>NDArray</em></a><em>, </em><em>optional</em>) – The output NDArray to hold the result.</li> |
| </ul> |
| </td> |
| </tr> |
| <tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first"><strong>out</strong> – The output of this function.</p> |
| </td> |
| </tr> |
| <tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last"><a class="reference internal" href="ndarray.html#mxnet.ndarray.NDArray" title="mxnet.ndarray.NDArray">NDArray</a> or list of NDArrays</p> |
| </td> |
| </tr> |
| </tbody> |
| </table> |
| </dd></dl> |
| <dl class="function"> |
| <dt id="mxnet.ndarray.linalg.syevd"> |
| <code class="descclassname">mxnet.ndarray.linalg.</code><code class="descname">syevd</code><span class="sig-paren">(</span><em>A=None</em>, <em>out=None</em>, <em>name=None</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#mxnet.ndarray.linalg.syevd" title="Permalink to this definition">¶</a></dt> |
| <dd><p>Eigendecomposition for symmetric matrix. |
| Input is a tensor <em>A</em> of dimension <em>n >= 2</em>.</p> |
| <p>If <em>n=2</em>, <em>A</em> must be symmetric, of shape <em>(x, x)</em>. We compute the eigendecomposition, |
| resulting in the orthonormal matrix <em>U</em> of eigenvectors, shape <em>(x, x)</em>, and the |
| vector <em>L</em> of eigenvalues, shape <em>(x,)</em>, so that:</p> |
| <blockquote> |
| <div><em>U</em> * <em>A</em> = <em>diag(L)</em> * <em>U</em></div></blockquote> |
| <p>Here:</p> |
| <blockquote> |
| <div><em>U</em> * <em>U</em><sup>T</sup> = <em>U</em><sup>T</sup> * <em>U</em> = <em>I</em></div></blockquote> |
| <p>where <em>I</em> is the identity matrix. Also, <em>L(0) <= L(1) <= L(2) <= ...</em> (ascending order).</p> |
| <p>If <em>n>2</em>, <em>syevd</em> is performed separately on the trailing two dimensions of <em>A</em> (batch |
| mode). In this case, <em>U</em> has <em>n</em> dimensions like <em>A</em>, and <em>L</em> has <em>n-1</em> dimensions.</p> |
| <div class="admonition note"> |
| <p class="first admonition-title">Note</p> |
| <p class="last">The operator supports float32 and float64 data types only.</p> |
| </div> |
| <div class="admonition note"> |
| <p class="first admonition-title">Note</p> |
| <p class="last">Derivatives for this operator are defined only if <em>A</em> is such that all its |
| eigenvalues are distinct, and the eigengaps are not too small. If you need |
| gradients, do not apply this operator to matrices with multiple eigenvalues.</p> |
| </div> |
| <p>Examples:</p> |
| <div class="highlight-default"><div class="highlight"><pre><span></span><span class="o">//</span> <span class="n">Single</span> <span class="n">symmetric</span> <span class="n">eigendecomposition</span> |
| <span class="n">A</span> <span class="o">=</span> <span class="p">[[</span><span class="mf">1.</span><span class="p">,</span> <span class="mf">2.</span><span class="p">],</span> <span class="p">[</span><span class="mf">2.</span><span class="p">,</span> <span class="mf">4.</span><span class="p">]]</span> |
| <span class="n">U</span><span class="p">,</span> <span class="n">L</span> <span class="o">=</span> <span class="n">syevd</span><span class="p">(</span><span class="n">A</span><span class="p">)</span> |
| <span class="n">U</span> <span class="o">=</span> <span class="p">[[</span><span class="mf">0.89442719</span><span class="p">,</span> <span class="o">-</span><span class="mf">0.4472136</span><span class="p">],</span> |
| <span class="p">[</span><span class="mf">0.4472136</span><span class="p">,</span> <span class="mf">0.89442719</span><span class="p">]]</span> |
| <span class="n">L</span> <span class="o">=</span> <span class="p">[</span><span class="mf">0.</span><span class="p">,</span> <span class="mf">5.</span><span class="p">]</span> |
| |
| <span class="o">//</span> <span class="n">Batch</span> <span class="n">symmetric</span> <span class="n">eigendecomposition</span> |
| <span class="n">A</span> <span class="o">=</span> <span class="p">[[[</span><span class="mf">1.</span><span class="p">,</span> <span class="mf">2.</span><span class="p">],</span> <span class="p">[</span><span class="mf">2.</span><span class="p">,</span> <span class="mf">4.</span><span class="p">]],</span> |
| <span class="p">[[</span><span class="mf">1.</span><span class="p">,</span> <span class="mf">2.</span><span class="p">],</span> <span class="p">[</span><span class="mf">2.</span><span class="p">,</span> <span class="mf">5.</span><span class="p">]]]</span> |
| <span class="n">U</span><span class="p">,</span> <span class="n">L</span> <span class="o">=</span> <span class="n">syevd</span><span class="p">(</span><span class="n">A</span><span class="p">)</span> |
| <span class="n">U</span> <span class="o">=</span> <span class="p">[[[</span><span class="mf">0.89442719</span><span class="p">,</span> <span class="o">-</span><span class="mf">0.4472136</span><span class="p">],</span> |
| <span class="p">[</span><span class="mf">0.4472136</span><span class="p">,</span> <span class="mf">0.89442719</span><span class="p">]],</span> |
| <span class="p">[[</span><span class="mf">0.92387953</span><span class="p">,</span> <span class="o">-</span><span class="mf">0.38268343</span><span class="p">],</span> |
| <span class="p">[</span><span class="mf">0.38268343</span><span class="p">,</span> <span class="mf">0.92387953</span><span class="p">]]]</span> |
| <span class="n">L</span> <span class="o">=</span> <span class="p">[[</span><span class="mf">0.</span><span class="p">,</span> <span class="mf">5.</span><span class="p">],</span> |
| <span class="p">[</span><span class="mf">0.17157288</span><span class="p">,</span> <span class="mf">5.82842712</span><span class="p">]]</span> |
| </pre></div> |
| </div> |
| <p>Defined in src/operator/tensor/la_op.cc:L621</p> |
| <table class="docutils field-list" frame="void" rules="none"> |
| <col class="field-name"/> |
| <col class="field-body"/> |
| <tbody valign="top"> |
| <tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple"> |
| <li><strong>A</strong> (<a class="reference internal" href="ndarray.html#mxnet.ndarray.NDArray" title="mxnet.ndarray.NDArray"><em>NDArray</em></a>) – Tensor of input matrices to be factorized</li> |
| <li><strong>out</strong> (<a class="reference internal" href="ndarray.html#mxnet.ndarray.NDArray" title="mxnet.ndarray.NDArray"><em>NDArray</em></a><em>, </em><em>optional</em>) – The output NDArray to hold the result.</li> |
| </ul> |
| </td> |
| </tr> |
| <tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first"><strong>out</strong> – The output of this function.</p> |
| </td> |
| </tr> |
| <tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last"><a class="reference internal" href="ndarray.html#mxnet.ndarray.NDArray" title="mxnet.ndarray.NDArray">NDArray</a> or list of NDArrays</p> |
| </td> |
| </tr> |
| </tbody> |
| </table> |
| </dd></dl> |
| <dl class="function"> |
| <dt id="mxnet.ndarray.linalg.syrk"> |
| <code class="descclassname">mxnet.ndarray.linalg.</code><code class="descname">syrk</code><span class="sig-paren">(</span><em>A=None</em>, <em>transpose=_Null</em>, <em>alpha=_Null</em>, <em>out=None</em>, <em>name=None</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#mxnet.ndarray.linalg.syrk" title="Permalink to this definition">¶</a></dt> |
| <dd><p>Multiplication of matrix with its transpose. |
| Input is a tensor <em>A</em> of dimension <em>n >= 2</em>.</p> |
| <p>If <em>n=2</em>, the operator performs the BLAS3 function <em>syrk</em>:</p> |
| <blockquote> |
| <div><em>out</em> = <em>alpha</em> * <em>A</em> * <em>A</em><sup>T</sup></div></blockquote> |
| <p>if <em>transpose=False</em>, or</p> |
| <blockquote> |
| <div><em>out</em> = <em>alpha</em> * <em>A</em><sup>T</sup> * <em>A</em></div></blockquote> |
| <p>if <em>transpose=True</em>.</p> |
| <p>If <em>n>2</em>, <em>syrk</em> is performed separately on the trailing two dimensions for all |
| inputs (batch mode).</p> |
| <div class="admonition note"> |
| <p class="first admonition-title">Note</p> |
| <p class="last">The operator supports float32 and float64 data types only.</p> |
| </div> |
| <p>Examples:</p> |
| <div class="highlight-default"><div class="highlight"><pre><span></span><span class="o">//</span> <span class="n">Single</span> <span class="n">matrix</span> <span class="n">multiply</span> |
| <span class="n">A</span> <span class="o">=</span> <span class="p">[[</span><span class="mf">1.</span><span class="p">,</span> <span class="mf">2.</span><span class="p">,</span> <span class="mf">3.</span><span class="p">],</span> <span class="p">[</span><span class="mf">4.</span><span class="p">,</span> <span class="mf">5.</span><span class="p">,</span> <span class="mf">6.</span><span class="p">]]</span> |
| <span class="n">syrk</span><span class="p">(</span><span class="n">A</span><span class="p">,</span> <span class="n">alpha</span><span class="o">=</span><span class="mf">1.</span><span class="p">,</span> <span class="n">transpose</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span> |
| <span class="o">=</span> <span class="p">[[</span><span class="mf">14.</span><span class="p">,</span> <span class="mf">32.</span><span class="p">],</span> |
| <span class="p">[</span><span class="mf">32.</span><span class="p">,</span> <span class="mf">77.</span><span class="p">]]</span> |
| <span class="n">syrk</span><span class="p">(</span><span class="n">A</span><span class="p">,</span> <span class="n">alpha</span><span class="o">=</span><span class="mf">1.</span><span class="p">,</span> <span class="n">transpose</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span> |
| <span class="o">=</span> <span class="p">[[</span><span class="mf">17.</span><span class="p">,</span> <span class="mf">22.</span><span class="p">,</span> <span class="mf">27.</span><span class="p">],</span> |
| <span class="p">[</span><span class="mf">22.</span><span class="p">,</span> <span class="mf">29.</span><span class="p">,</span> <span class="mf">36.</span><span class="p">],</span> |
| <span class="p">[</span><span class="mf">27.</span><span class="p">,</span> <span class="mf">36.</span><span class="p">,</span> <span class="mf">45.</span><span class="p">]]</span> |
| |
| <span class="o">//</span> <span class="n">Batch</span> <span class="n">matrix</span> <span class="n">multiply</span> |
| <span class="n">A</span> <span class="o">=</span> <span class="p">[[[</span><span class="mf">1.</span><span class="p">,</span> <span class="mf">1.</span><span class="p">]],</span> <span class="p">[[</span><span class="mf">0.1</span><span class="p">,</span> <span class="mf">0.1</span><span class="p">]]]</span> |
| <span class="n">syrk</span><span class="p">(</span><span class="n">A</span><span class="p">,</span> <span class="n">alpha</span><span class="o">=</span><span class="mf">2.</span><span class="p">,</span> <span class="n">transpose</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span> <span class="o">=</span> <span class="p">[[[</span><span class="mf">4.</span><span class="p">]],</span> <span class="p">[[</span><span class="mf">0.04</span><span class="p">]]]</span> |
| </pre></div> |
| </div> |
| <p>Defined in src/operator/tensor/la_op.cc:L484</p> |
| <table class="docutils field-list" frame="void" rules="none"> |
| <col class="field-name"/> |
| <col class="field-body"/> |
| <tbody valign="top"> |
| <tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple"> |
| <li><strong>A</strong> (<a class="reference internal" href="ndarray.html#mxnet.ndarray.NDArray" title="mxnet.ndarray.NDArray"><em>NDArray</em></a>) – Tensor of input matrices</li> |
| <li><strong>transpose</strong> (<em>boolean</em><em>, </em><em>optional</em><em>, </em><em>default=0</em>) – Use transpose of input matrix.</li> |
| <li><strong>alpha</strong> (<em>double</em><em>, </em><em>optional</em><em>, </em><em>default=1</em>) – Scalar factor to be applied to the result.</li> |
| <li><strong>out</strong> (<a class="reference internal" href="ndarray.html#mxnet.ndarray.NDArray" title="mxnet.ndarray.NDArray"><em>NDArray</em></a><em>, </em><em>optional</em>) – The output NDArray to hold the result.</li> |
| </ul> |
| </td> |
| </tr> |
| <tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first"><strong>out</strong> – The output of this function.</p> |
| </td> |
| </tr> |
| <tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last"><a class="reference internal" href="ndarray.html#mxnet.ndarray.NDArray" title="mxnet.ndarray.NDArray">NDArray</a> or list of NDArrays</p> |
| </td> |
| </tr> |
| </tbody> |
| </table> |
| </dd></dl> |
| <dl class="function"> |
| <dt id="mxnet.ndarray.linalg.trmm"> |
| <code class="descclassname">mxnet.ndarray.linalg.</code><code class="descname">trmm</code><span class="sig-paren">(</span><em>A=None</em>, <em>B=None</em>, <em>transpose=_Null</em>, <em>rightside=_Null</em>, <em>alpha=_Null</em>, <em>out=None</em>, <em>name=None</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#mxnet.ndarray.linalg.trmm" title="Permalink to this definition">¶</a></dt> |
| <dd><p>Performs multiplication with a lower triangular matrix. |
| Input are tensors <em>A</em>, <em>B</em>, each of dimension <em>n >= 2</em> and having the same shape |
| on the leading <em>n-2</em> dimensions.</p> |
| <p>If <em>n=2</em>, <em>A</em> must be lower triangular. The operator performs the BLAS3 function |
| <em>trmm</em>:</p> |
| <blockquote> |
| <div><em>out</em> = <em>alpha</em> * <em>op</em>(<em>A</em>) * <em>B</em></div></blockquote> |
| <p>if <em>rightside=False</em>, or</p> |
| <blockquote> |
| <div><em>out</em> = <em>alpha</em> * <em>B</em> * <em>op</em>(<em>A</em>)</div></blockquote> |
| <p>if <em>rightside=True</em>. Here, <em>alpha</em> is a scalar parameter, and <em>op()</em> is either the |
| identity or the matrix transposition (depending on <em>transpose</em>).</p> |
| <p>If <em>n>2</em>, <em>trmm</em> is performed separately on the trailing two dimensions for all inputs |
| (batch mode).</p> |
| <div class="admonition note"> |
| <p class="first admonition-title">Note</p> |
| <p class="last">The operator supports float32 and float64 data types only.</p> |
| </div> |
| <p>Examples:</p> |
| <div class="highlight-default"><div class="highlight"><pre><span></span><span class="o">//</span> <span class="n">Single</span> <span class="n">triangular</span> <span class="n">matrix</span> <span class="n">multiply</span> |
| <span class="n">A</span> <span class="o">=</span> <span class="p">[[</span><span class="mf">1.0</span><span class="p">,</span> <span class="mi">0</span><span class="p">],</span> <span class="p">[</span><span class="mf">1.0</span><span class="p">,</span> <span class="mf">1.0</span><span class="p">]]</span> |
| <span class="n">B</span> <span class="o">=</span> <span class="p">[[</span><span class="mf">1.0</span><span class="p">,</span> <span class="mf">1.0</span><span class="p">,</span> <span class="mf">1.0</span><span class="p">],</span> <span class="p">[</span><span class="mf">1.0</span><span class="p">,</span> <span class="mf">1.0</span><span class="p">,</span> <span class="mf">1.0</span><span class="p">]]</span> |
| <span class="n">trmm</span><span class="p">(</span><span class="n">A</span><span class="p">,</span> <span class="n">B</span><span class="p">,</span> <span class="n">alpha</span><span class="o">=</span><span class="mf">2.0</span><span class="p">)</span> <span class="o">=</span> <span class="p">[[</span><span class="mf">2.0</span><span class="p">,</span> <span class="mf">2.0</span><span class="p">,</span> <span class="mf">2.0</span><span class="p">],</span> <span class="p">[</span><span class="mf">4.0</span><span class="p">,</span> <span class="mf">4.0</span><span class="p">,</span> <span class="mf">4.0</span><span class="p">]]</span> |
| |
| <span class="o">//</span> <span class="n">Batch</span> <span class="n">triangular</span> <span class="n">matrix</span> <span class="n">multiply</span> |
| <span class="n">A</span> <span class="o">=</span> <span class="p">[[[</span><span class="mf">1.0</span><span class="p">,</span> <span class="mi">0</span><span class="p">],</span> <span class="p">[</span><span class="mf">1.0</span><span class="p">,</span> <span class="mf">1.0</span><span class="p">]],</span> <span class="p">[[</span><span class="mf">1.0</span><span class="p">,</span> <span class="mi">0</span><span class="p">],</span> <span class="p">[</span><span class="mf">1.0</span><span class="p">,</span> <span class="mf">1.0</span><span class="p">]]]</span> |
| <span class="n">B</span> <span class="o">=</span> <span class="p">[[[</span><span class="mf">1.0</span><span class="p">,</span> <span class="mf">1.0</span><span class="p">,</span> <span class="mf">1.0</span><span class="p">],</span> <span class="p">[</span><span class="mf">1.0</span><span class="p">,</span> <span class="mf">1.0</span><span class="p">,</span> <span class="mf">1.0</span><span class="p">]],</span> <span class="p">[[</span><span class="mf">0.5</span><span class="p">,</span> <span class="mf">0.5</span><span class="p">,</span> <span class="mf">0.5</span><span class="p">],</span> <span class="p">[</span><span class="mf">0.5</span><span class="p">,</span> <span class="mf">0.5</span><span class="p">,</span> <span class="mf">0.5</span><span class="p">]]]</span> |
| <span class="n">trmm</span><span class="p">(</span><span class="n">A</span><span class="p">,</span> <span class="n">B</span><span class="p">,</span> <span class="n">alpha</span><span class="o">=</span><span class="mf">2.0</span><span class="p">)</span> <span class="o">=</span> <span class="p">[[[</span><span class="mf">2.0</span><span class="p">,</span> <span class="mf">2.0</span><span class="p">,</span> <span class="mf">2.0</span><span class="p">],</span> <span class="p">[</span><span class="mf">4.0</span><span class="p">,</span> <span class="mf">4.0</span><span class="p">,</span> <span class="mf">4.0</span><span class="p">]],</span> |
| <span class="p">[[</span><span class="mf">1.0</span><span class="p">,</span> <span class="mf">1.0</span><span class="p">,</span> <span class="mf">1.0</span><span class="p">],</span> <span class="p">[</span><span class="mf">2.0</span><span class="p">,</span> <span class="mf">2.0</span><span class="p">,</span> <span class="mf">2.0</span><span class="p">]]]</span> |
| </pre></div> |
| </div> |
| <p>Defined in src/operator/tensor/la_op.cc:L316</p> |
| <table class="docutils field-list" frame="void" rules="none"> |
| <col class="field-name"/> |
| <col class="field-body"/> |
| <tbody valign="top"> |
| <tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple"> |
| <li><strong>A</strong> (<a class="reference internal" href="ndarray.html#mxnet.ndarray.NDArray" title="mxnet.ndarray.NDArray"><em>NDArray</em></a>) – Tensor of lower triangular matrices</li> |
| <li><strong>B</strong> (<a class="reference internal" href="ndarray.html#mxnet.ndarray.NDArray" title="mxnet.ndarray.NDArray"><em>NDArray</em></a>) – Tensor of matrices</li> |
| <li><strong>transpose</strong> (<em>boolean</em><em>, </em><em>optional</em><em>, </em><em>default=0</em>) – Use transposed of the triangular matrix</li> |
| <li><strong>rightside</strong> (<em>boolean</em><em>, </em><em>optional</em><em>, </em><em>default=0</em>) – Multiply triangular matrix from the right to non-triangular one.</li> |
| <li><strong>alpha</strong> (<em>double</em><em>, </em><em>optional</em><em>, </em><em>default=1</em>) – Scalar factor to be applied to the result.</li> |
| <li><strong>out</strong> (<a class="reference internal" href="ndarray.html#mxnet.ndarray.NDArray" title="mxnet.ndarray.NDArray"><em>NDArray</em></a><em>, </em><em>optional</em>) – The output NDArray to hold the result.</li> |
| </ul> |
| </td> |
| </tr> |
| <tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first"><strong>out</strong> – The output of this function.</p> |
| </td> |
| </tr> |
| <tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last"><a class="reference internal" href="ndarray.html#mxnet.ndarray.NDArray" title="mxnet.ndarray.NDArray">NDArray</a> or list of NDArrays</p> |
| </td> |
| </tr> |
| </tbody> |
| </table> |
| </dd></dl> |
| <dl class="function"> |
| <dt id="mxnet.ndarray.linalg.trsm"> |
| <code class="descclassname">mxnet.ndarray.linalg.</code><code class="descname">trsm</code><span class="sig-paren">(</span><em>A=None</em>, <em>B=None</em>, <em>transpose=_Null</em>, <em>rightside=_Null</em>, <em>alpha=_Null</em>, <em>out=None</em>, <em>name=None</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#mxnet.ndarray.linalg.trsm" title="Permalink to this definition">¶</a></dt> |
| <dd><p>Solves matrix equation involving a lower triangular matrix. |
| Input are tensors <em>A</em>, <em>B</em>, each of dimension <em>n >= 2</em> and having the same shape |
| on the leading <em>n-2</em> dimensions.</p> |
| <p>If <em>n=2</em>, <em>A</em> must be lower triangular. The operator performs the BLAS3 function |
| <em>trsm</em>, solving for <em>out</em> in:</p> |
| <blockquote> |
| <div><em>op</em>(<em>A</em>) * <em>out</em> = <em>alpha</em> * <em>B</em></div></blockquote> |
| <p>if <em>rightside=False</em>, or</p> |
| <blockquote> |
| <div><em>out</em> * <em>op</em>(<em>A</em>) = <em>alpha</em> * <em>B</em></div></blockquote> |
| <p>if <em>rightside=True</em>. Here, <em>alpha</em> is a scalar parameter, and <em>op()</em> is either the |
| identity or the matrix transposition (depending on <em>transpose</em>).</p> |
| <p>If <em>n>2</em>, <em>trsm</em> is performed separately on the trailing two dimensions for all inputs |
| (batch mode).</p> |
| <div class="admonition note"> |
| <p class="first admonition-title">Note</p> |
| <p class="last">The operator supports float32 and float64 data types only.</p> |
| </div> |
| <p>Examples:</p> |
| <div class="highlight-default"><div class="highlight"><pre><span></span><span class="o">//</span> <span class="n">Single</span> <span class="n">matrix</span> <span class="n">solve</span> |
| <span class="n">A</span> <span class="o">=</span> <span class="p">[[</span><span class="mf">1.0</span><span class="p">,</span> <span class="mi">0</span><span class="p">],</span> <span class="p">[</span><span class="mf">1.0</span><span class="p">,</span> <span class="mf">1.0</span><span class="p">]]</span> |
| <span class="n">B</span> <span class="o">=</span> <span class="p">[[</span><span class="mf">2.0</span><span class="p">,</span> <span class="mf">2.0</span><span class="p">,</span> <span class="mf">2.0</span><span class="p">],</span> <span class="p">[</span><span class="mf">4.0</span><span class="p">,</span> <span class="mf">4.0</span><span class="p">,</span> <span class="mf">4.0</span><span class="p">]]</span> |
| <span class="n">trsm</span><span class="p">(</span><span class="n">A</span><span class="p">,</span> <span class="n">B</span><span class="p">,</span> <span class="n">alpha</span><span class="o">=</span><span class="mf">0.5</span><span class="p">)</span> <span class="o">=</span> <span class="p">[[</span><span class="mf">1.0</span><span class="p">,</span> <span class="mf">1.0</span><span class="p">,</span> <span class="mf">1.0</span><span class="p">],</span> <span class="p">[</span><span class="mf">1.0</span><span class="p">,</span> <span class="mf">1.0</span><span class="p">,</span> <span class="mf">1.0</span><span class="p">]]</span> |
| |
| <span class="o">//</span> <span class="n">Batch</span> <span class="n">matrix</span> <span class="n">solve</span> |
| <span class="n">A</span> <span class="o">=</span> <span class="p">[[[</span><span class="mf">1.0</span><span class="p">,</span> <span class="mi">0</span><span class="p">],</span> <span class="p">[</span><span class="mf">1.0</span><span class="p">,</span> <span class="mf">1.0</span><span class="p">]],</span> <span class="p">[[</span><span class="mf">1.0</span><span class="p">,</span> <span class="mi">0</span><span class="p">],</span> <span class="p">[</span><span class="mf">1.0</span><span class="p">,</span> <span class="mf">1.0</span><span class="p">]]]</span> |
| <span class="n">B</span> <span class="o">=</span> <span class="p">[[[</span><span class="mf">2.0</span><span class="p">,</span> <span class="mf">2.0</span><span class="p">,</span> <span class="mf">2.0</span><span class="p">],</span> <span class="p">[</span><span class="mf">4.0</span><span class="p">,</span> <span class="mf">4.0</span><span class="p">,</span> <span class="mf">4.0</span><span class="p">]],</span> |
| <span class="p">[[</span><span class="mf">4.0</span><span class="p">,</span> <span class="mf">4.0</span><span class="p">,</span> <span class="mf">4.0</span><span class="p">],</span> <span class="p">[</span><span class="mf">8.0</span><span class="p">,</span> <span class="mf">8.0</span><span class="p">,</span> <span class="mf">8.0</span><span class="p">]]]</span> |
| <span class="n">trsm</span><span class="p">(</span><span class="n">A</span><span class="p">,</span> <span class="n">B</span><span class="p">,</span> <span class="n">alpha</span><span class="o">=</span><span class="mf">0.5</span><span class="p">)</span> <span class="o">=</span> <span class="p">[[[</span><span class="mf">1.0</span><span class="p">,</span> <span class="mf">1.0</span><span class="p">,</span> <span class="mf">1.0</span><span class="p">],</span> <span class="p">[</span><span class="mf">1.0</span><span class="p">,</span> <span class="mf">1.0</span><span class="p">,</span> <span class="mf">1.0</span><span class="p">]],</span> |
| <span class="p">[[</span><span class="mf">2.0</span><span class="p">,</span> <span class="mf">2.0</span><span class="p">,</span> <span class="mf">2.0</span><span class="p">],</span> <span class="p">[</span><span class="mf">2.0</span><span class="p">,</span> <span class="mf">2.0</span><span class="p">,</span> <span class="mf">2.0</span><span class="p">]]]</span> |
| </pre></div> |
| </div> |
| <p>Defined in src/operator/tensor/la_op.cc:L379</p> |
| <table class="docutils field-list" frame="void" rules="none"> |
| <col class="field-name"/> |
| <col class="field-body"/> |
| <tbody valign="top"> |
| <tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple"> |
| <li><strong>A</strong> (<a class="reference internal" href="ndarray.html#mxnet.ndarray.NDArray" title="mxnet.ndarray.NDArray"><em>NDArray</em></a>) – Tensor of lower triangular matrices</li> |
| <li><strong>B</strong> (<a class="reference internal" href="ndarray.html#mxnet.ndarray.NDArray" title="mxnet.ndarray.NDArray"><em>NDArray</em></a>) – Tensor of matrices</li> |
| <li><strong>transpose</strong> (<em>boolean</em><em>, </em><em>optional</em><em>, </em><em>default=0</em>) – Use transposed of the triangular matrix</li> |
| <li><strong>rightside</strong> (<em>boolean</em><em>, </em><em>optional</em><em>, </em><em>default=0</em>) – Multiply triangular matrix from the right to non-triangular one.</li> |
| <li><strong>alpha</strong> (<em>double</em><em>, </em><em>optional</em><em>, </em><em>default=1</em>) – Scalar factor to be applied to the result.</li> |
| <li><strong>out</strong> (<a class="reference internal" href="ndarray.html#mxnet.ndarray.NDArray" title="mxnet.ndarray.NDArray"><em>NDArray</em></a><em>, </em><em>optional</em>) – The output NDArray to hold the result.</li> |
| </ul> |
| </td> |
| </tr> |
| <tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first"><strong>out</strong> – The output of this function.</p> |
| </td> |
| </tr> |
| <tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last"><a class="reference internal" href="ndarray.html#mxnet.ndarray.NDArray" title="mxnet.ndarray.NDArray">NDArray</a> or list of NDArrays</p> |
| </td> |
| </tr> |
| </tbody> |
| </table> |
| </dd></dl> |
| <script>auto_index("api-reference");</script></div> |
| </div> |
| </div> |
| </div> |
| <div aria-label="main navigation" class="sphinxsidebar rightsidebar" role="navigation"> |
| <div class="sphinxsidebarwrapper"> |
| <h3><a href="../../../index.html">Table Of Contents</a></h3> |
| <ul> |
| <li><a class="reference internal" href="#">Linear Algebra NDArray API</a><ul> |
| <li><a class="reference internal" href="#overview">Overview</a></li> |
| <li><a class="reference internal" href="#linear-algebra">Linear Algebra</a></li> |
| <li><a class="reference internal" href="#api-reference">API Reference</a></li> |
| </ul> |
| </li> |
| </ul> |
| </div> |
| </div> |
| </div><div class="footer"> |
| <div class="section-disclaimer"> |
| <div class="container"> |
| <div> |
| <img height="60" src="https://raw.githubusercontent.com/dmlc/web-data/master/mxnet/image/apache_incubator_logo.png"/> |
| <p> |
| Apache MXNet is an effort undergoing incubation at The Apache Software Foundation (ASF), <strong>sponsored by the <i>Apache Incubator</i></strong>. Incubation is required of all newly accepted projects until a further review indicates that the infrastructure, communications, and decision making process have stabilized in a manner consistent with other successful ASF projects. While incubation status is not necessarily a reflection of the completeness or stability of the code, it does indicate that the project has yet to be fully endorsed by the ASF. |
| </p> |
| <p> |
| "Copyright © 2017-2018, The Apache Software Foundation |
| Apache MXNet, MXNet, Apache, the Apache feather, and the Apache MXNet project logo are either registered trademarks or trademarks of the Apache Software Foundation." |
| </p> |
| </div> |
| </div> |
| </div> |
| </div> <!-- pagename != index --> |
| </div> |
| <script crossorigin="anonymous" integrity="sha384-0mSbJDEHialfmuBBQP6A4Qrprq5OVfW37PRR3j5ELqxss1yVqOtnepnHVP9aJ7xS" src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/js/bootstrap.min.js"></script> |
| <script src="../../../_static/js/sidebar.js" type="text/javascript"></script> |
| <script src="../../../_static/js/search.js" type="text/javascript"></script> |
| <script src="../../../_static/js/navbar.js" type="text/javascript"></script> |
| <script src="../../../_static/js/clipboard.min.js" type="text/javascript"></script> |
| <script src="../../../_static/js/copycode.js" type="text/javascript"></script> |
| <script src="../../../_static/js/page.js" type="text/javascript"></script> |
| <script type="text/javascript"> |
| $('body').ready(function () { |
| $('body').css('visibility', 'visible'); |
| }); |
| </script> |
| </body> |
| </html> |