blob: 0ebd652cad925ccfa2eece3e7f257ab7e2c129ab [file] [log] [blame]
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8"/>
<meta content="IE=edge" http-equiv="X-UA-Compatible"/>
<meta content="width=device-width, initial-scale=1" name="viewport"/>
<meta content="mxnet.gluon.rnn.rnn_cell" property="og:title">
<meta content="https://raw.githubusercontent.com/dmlc/web-data/master/mxnet/image/og-logo.png" property="og:image">
<meta content="https://raw.githubusercontent.com/dmlc/web-data/master/mxnet/image/og-logo.png" property="og:image:secure_url">
<meta content="mxnet.gluon.rnn.rnn_cell" property="og:description"/>
<title>mxnet.gluon.rnn.rnn_cell — mxnet documentation</title>
<link crossorigin="anonymous" href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/css/bootstrap.min.css" integrity="sha384-1q8mTJOASx8j1Au+a5WDVnPi2lkFfwwEAa8hDDdjZlpLegxhjVME1fgjWPGmkzs7" rel="stylesheet"/>
<link href="https://maxcdn.bootstrapcdn.com/font-awesome/4.5.0/css/font-awesome.min.css" rel="stylesheet"/>
<link href="../../../../_static/basic.css" rel="stylesheet" type="text/css">
<link href="../../../../_static/pygments.css" rel="stylesheet" type="text/css">
<link href="../../../../_static/mxnet.css" rel="stylesheet" type="text/css"/>
<script type="text/javascript">
var DOCUMENTATION_OPTIONS = {
URL_ROOT: '../../../../',
VERSION: '',
COLLAPSE_INDEX: false,
FILE_SUFFIX: '.html',
HAS_SOURCE: true,
SOURCELINK_SUFFIX: '.txt'
};
</script>
<script src="https://code.jquery.com/jquery-1.11.1.min.js" type="text/javascript"></script>
<script src="../../../../_static/underscore.js" type="text/javascript"></script>
<script src="../../../../_static/searchtools_custom.js" type="text/javascript"></script>
<script src="../../../../_static/doctools.js" type="text/javascript"></script>
<script src="../../../../_static/selectlang.js" type="text/javascript"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.1/MathJax.js?config=TeX-AMS-MML_HTMLorMML" type="text/javascript"></script>
<script type="text/javascript"> jQuery(function() { Search.loadIndex("/versions/1.3.1/searchindex.js"); Search.init();}); </script>
<script>
(function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){
(i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new
Date();a=s.createElement(o),
m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m)
})(window,document,'script','https://www.google-analytics.com/analytics.js','ga');
ga('create', 'UA-96378503-1', 'auto');
ga('send', 'pageview');
</script>
<!-- -->
<!-- <script type="text/javascript" src="../../../../_static/jquery.js"></script> -->
<!-- -->
<!-- <script type="text/javascript" src="../../../../_static/underscore.js"></script> -->
<!-- -->
<!-- <script type="text/javascript" src="../../../../_static/doctools.js"></script> -->
<!-- -->
<!-- <script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script> -->
<!-- -->
<link href="../../../../genindex.html" rel="index" title="Index">
<link href="../../../../search.html" rel="search" title="Search"/>
<link href="../../../index.html" rel="up" title="Module code"/>
<link href="https://raw.githubusercontent.com/dmlc/web-data/master/mxnet/image/mxnet-icon.png" rel="icon" type="image/png"/>
</link></link></link></meta></meta></meta></head>
<body background="https://raw.githubusercontent.com/dmlc/web-data/master/mxnet/image/mxnet-background-compressed.jpeg" role="document">
<div class="content-block"><div class="navbar navbar-fixed-top">
<div class="container" id="navContainer">
<div class="innder" id="header-inner">
<h1 id="logo-wrap">
<a href="../../../../" id="logo"><img src="https://raw.githubusercontent.com/dmlc/web-data/master/mxnet/image/mxnet_logo.png"/></a>
</h1>
<nav class="nav-bar" id="main-nav">
<a class="main-nav-link" href="/versions/1.3.1/install/index.html">Install</a>
<span id="dropdown-menu-position-anchor">
<a aria-expanded="true" aria-haspopup="true" class="main-nav-link dropdown-toggle" data-toggle="dropdown" href="#" role="button">Gluon <span class="caret"></span></a>
<ul class="dropdown-menu navbar-menu" id="package-dropdown-menu">
<li><a class="main-nav-link" href="/versions/1.3.1/tutorials/gluon/gluon.html">About</a></li>
<li><a class="main-nav-link" href="https://www.d2l.ai/">Dive into Deep Learning</a></li>
<li><a class="main-nav-link" href="https://gluon-cv.mxnet.io">GluonCV Toolkit</a></li>
<li><a class="main-nav-link" href="https://gluon-nlp.mxnet.io/">GluonNLP Toolkit</a></li>
</ul>
</span>
<span id="dropdown-menu-position-anchor">
<a aria-expanded="true" aria-haspopup="true" class="main-nav-link dropdown-toggle" data-toggle="dropdown" href="#" role="button">API <span class="caret"></span></a>
<ul class="dropdown-menu navbar-menu" id="package-dropdown-menu">
<li><a class="main-nav-link" href="/versions/1.3.1/api/python/index.html">Python</a></li>
<li><a class="main-nav-link" href="/versions/1.3.1/api/c++/index.html">C++</a></li>
<li><a class="main-nav-link" href="/versions/1.3.1/api/clojure/index.html">Clojure</a></li>
<li><a class="main-nav-link" href="/versions/1.3.1/api/julia/index.html">Julia</a></li>
<li><a class="main-nav-link" href="/versions/1.3.1/api/perl/index.html">Perl</a></li>
<li><a class="main-nav-link" href="/versions/1.3.1/api/r/index.html">R</a></li>
<li><a class="main-nav-link" href="/versions/1.3.1/api/scala/index.html">Scala</a></li>
</ul>
</span>
<span id="dropdown-menu-position-anchor-docs">
<a aria-expanded="true" aria-haspopup="true" class="main-nav-link dropdown-toggle" data-toggle="dropdown" href="#" role="button">Docs <span class="caret"></span></a>
<ul class="dropdown-menu navbar-menu" id="package-dropdown-menu-docs">
<li><a class="main-nav-link" href="/versions/1.3.1/faq/index.html">FAQ</a></li>
<li><a class="main-nav-link" href="/versions/1.3.1/tutorials/index.html">Tutorials</a>
<li><a class="main-nav-link" href="https://github.com/apache/incubator-mxnet/tree/1.3.1/example">Examples</a></li>
<li><a class="main-nav-link" href="/versions/1.3.1/architecture/index.html">Architecture</a></li>
<li><a class="main-nav-link" href="https://cwiki.apache.org/confluence/display/MXNET/Apache+MXNet+Home">Developer Wiki</a></li>
<li><a class="main-nav-link" href="/versions/1.3.1/model_zoo/index.html">Model Zoo</a></li>
<li><a class="main-nav-link" href="https://github.com/onnx/onnx-mxnet">ONNX</a></li>
</li></ul>
</span>
<span id="dropdown-menu-position-anchor-community">
<a aria-expanded="true" aria-haspopup="true" class="main-nav-link dropdown-toggle" data-toggle="dropdown" href="#" role="button">Community <span class="caret"></span></a>
<ul class="dropdown-menu navbar-menu" id="package-dropdown-menu-community">
<li><a class="main-nav-link" href="http://discuss.mxnet.io">Forum</a></li>
<li><a class="main-nav-link" href="https://github.com/apache/incubator-mxnet/tree/1.3.1">Github</a></li>
<li><a class="main-nav-link" href="/versions/1.3.1/community/contribute.html">Contribute</a></li>
<li><a class="main-nav-link" href="/versions/1.3.1/community/ecosystem.html">Ecosystem</a></li>
<li><a class="main-nav-link" href="/versions/1.3.1/community/powered_by.html">Powered By</a></li>
</ul>
</span>
<span id="dropdown-menu-position-anchor-version" style="position: relative"><a href="#" class="main-nav-link dropdown-toggle" data-toggle="dropdown" role="button" aria-haspopup="true" aria-expanded="true">1.3.1<span class="caret"></span></a><ul id="package-dropdown-menu" class="dropdown-menu"><li><a href="/">master</a></li><li><a href="/versions/1.7/">1.7</a></li><li><a href=/versions/1.6/>1.6</a></li><li><a href=/versions/1.5.0/>1.5.0</a></li><li><a href=/versions/1.4.1/>1.4.1</a></li><li><a href=/versions/1.3.1/>1.3.1</a></li><li><a href=/versions/1.2.1/>1.2.1</a></li><li><a href=/versions/1.1.0/>1.1.0</a></li><li><a href=/versions/1.0.0/>1.0.0</a></li><li><a href=/versions/0.12.1/>0.12.1</a></li><li><a href=/versions/0.11.0/>0.11.0</a></li></ul></span></nav>
<script> function getRootPath(){ return "../../../../" } </script>
<div class="burgerIcon dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#" role="button"></a>
<ul class="dropdown-menu" id="burgerMenu">
<li><a href="/versions/1.3.1/install/index.html">Install</a></li>
<li><a class="main-nav-link" href="/versions/1.3.1/tutorials/index.html">Tutorials</a></li>
<li class="dropdown-submenu dropdown">
<a aria-expanded="true" aria-haspopup="true" class="dropdown-toggle burger-link" data-toggle="dropdown" href="#" tabindex="-1">Gluon</a>
<ul class="dropdown-menu navbar-menu" id="package-dropdown-menu">
<li><a class="main-nav-link" href="/versions/1.3.1/tutorials/gluon/gluon.html">About</a></li>
<li><a class="main-nav-link" href="http://gluon.mxnet.io">The Straight Dope (Tutorials)</a></li>
<li><a class="main-nav-link" href="https://gluon-cv.mxnet.io">GluonCV Toolkit</a></li>
<li><a class="main-nav-link" href="https://gluon-nlp.mxnet.io/">GluonNLP Toolkit</a></li>
</ul>
</li>
<li class="dropdown-submenu">
<a aria-expanded="true" aria-haspopup="true" class="dropdown-toggle burger-link" data-toggle="dropdown" href="#" tabindex="-1">API</a>
<ul class="dropdown-menu">
<li><a class="main-nav-link" href="/versions/1.3.1/api/python/index.html">Python</a></li>
<li><a class="main-nav-link" href="/versions/1.3.1/api/c++/index.html">C++</a></li>
<li><a class="main-nav-link" href="/versions/1.3.1/api/clojure/index.html">Clojure</a></li>
<li><a class="main-nav-link" href="/versions/1.3.1/api/julia/index.html">Julia</a></li>
<li><a class="main-nav-link" href="/versions/1.3.1/api/perl/index.html">Perl</a></li>
<li><a class="main-nav-link" href="/versions/1.3.1/api/r/index.html">R</a></li>
<li><a class="main-nav-link" href="/versions/1.3.1/api/scala/index.html">Scala</a></li>
</ul>
</li>
<li class="dropdown-submenu">
<a aria-expanded="true" aria-haspopup="true" class="dropdown-toggle burger-link" data-toggle="dropdown" href="#" tabindex="-1">Docs</a>
<ul class="dropdown-menu">
<li><a href="/versions/1.3.1/faq/index.html" tabindex="-1">FAQ</a></li>
<li><a href="/versions/1.3.1/tutorials/index.html" tabindex="-1">Tutorials</a></li>
<li><a href="https://github.com/apache/incubator-mxnet/tree/1.3.1/example" tabindex="-1">Examples</a></li>
<li><a href="/versions/1.3.1/architecture/index.html" tabindex="-1">Architecture</a></li>
<li><a href="https://cwiki.apache.org/confluence/display/MXNET/Apache+MXNet+Home" tabindex="-1">Developer Wiki</a></li>
<li><a href="/versions/1.3.1/model_zoo/index.html" tabindex="-1">Gluon Model Zoo</a></li>
<li><a href="https://github.com/onnx/onnx-mxnet" tabindex="-1">ONNX</a></li>
</ul>
</li>
<li class="dropdown-submenu dropdown">
<a aria-haspopup="true" class="dropdown-toggle burger-link" data-toggle="dropdown" href="#" role="button" tabindex="-1">Community</a>
<ul class="dropdown-menu">
<li><a href="http://discuss.mxnet.io" tabindex="-1">Forum</a></li>
<li><a href="https://github.com/apache/incubator-mxnet/tree/1.3.1" tabindex="-1">Github</a></li>
<li><a href="/versions/1.3.1/community/contribute.html" tabindex="-1">Contribute</a></li>
<li><a href="/versions/1.3.1/community/ecosystem.html" tabindex="-1">Ecosystem</a></li>
<li><a href="/versions/1.3.1/community/powered_by.html" tabindex="-1">Powered By</a></li>
</ul>
</li>
<li id="dropdown-menu-position-anchor-version-mobile" class="dropdown-submenu" style="position: relative"><a href="#" tabindex="-1">1.3.1</a><ul class="dropdown-menu"><li><a tabindex="-1" href=/>master</a></li><li><a tabindex="-1" href=/versions/1.6/>1.6</a></li><li><a tabindex="-1" href=/versions/1.5.0/>1.5.0</a></li><li><a tabindex="-1" href=/versions/1.4.1/>1.4.1</a></li><li><a tabindex="-1" href=/versions/1.3.1/>1.3.1</a></li><li><a tabindex="-1" href=/versions/1.2.1/>1.2.1</a></li><li><a tabindex="-1" href=/versions/1.1.0/>1.1.0</a></li><li><a tabindex="-1" href=/versions/1.0.0/>1.0.0</a></li><li><a tabindex="-1" href=/versions/0.12.1/>0.12.1</a></li><li><a tabindex="-1" href=/versions/0.11.0/>0.11.0</a></li></ul></li></ul>
</div>
<div class="plusIcon dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#" role="button"><span aria-hidden="true" class="glyphicon glyphicon-plus"></span></a>
<ul class="dropdown-menu dropdown-menu-right" id="plusMenu"></ul>
</div>
<div id="search-input-wrap">
<form action="../../../../search.html" autocomplete="off" class="" method="get" role="search">
<div class="form-group inner-addon left-addon">
<i class="glyphicon glyphicon-search"></i>
<input class="form-control" name="q" placeholder="Search" type="text"/>
</div>
<input name="check_keywords" type="hidden" value="yes">
<input name="area" type="hidden" value="default"/>
</input></form>
<div id="search-preview"></div>
</div>
<div id="searchIcon">
<span aria-hidden="true" class="glyphicon glyphicon-search"></span>
</div>
<!-- <div id="lang-select-wrap"> -->
<!-- <label id="lang-select-label"> -->
<!-- <\!-- <i class="fa fa-globe"></i> -\-> -->
<!-- <span></span> -->
<!-- </label> -->
<!-- <select id="lang-select"> -->
<!-- <option value="en">Eng</option> -->
<!-- <option value="zh">中文</option> -->
<!-- </select> -->
<!-- </div> -->
<!-- <a id="mobile-nav-toggle">
<span class="mobile-nav-toggle-bar"></span>
<span class="mobile-nav-toggle-bar"></span>
<span class="mobile-nav-toggle-bar"></span>
</a> -->
</div>
</div>
</div>
<script type="text/javascript">
$('body').css('background', 'white');
</script>
<div class="container">
<div class="row">
<div aria-label="main navigation" class="sphinxsidebar leftsidebar" role="navigation">
<div class="sphinxsidebarwrapper">
<ul>
<li class="toctree-l1"><a class="reference internal" href="../../../../api/python/index.html">Python Documents</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../../api/r/index.html">R Documents</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../../api/julia/index.html">Julia Documents</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../../api/c++/index.html">C++ Documents</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../../api/scala/index.html">Scala Documents</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../../api/perl/index.html">Perl Documents</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../../faq/index.html">HowTo Documents</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../../architecture/index.html">System Documents</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../../tutorials/index.html">Tutorials</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../../community/contribute.html">Community</a></li>
</ul>
</div>
</div>
<div class="content">
<div class="page-tracker"></div>
<h1>Source code for mxnet.gluon.rnn.rnn_cell</h1><div class="highlight"><pre>
<span></span><span class="c1"># Licensed to the Apache Software Foundation (ASF) under one</span>
<span class="c1"># or more contributor license agreements. See the NOTICE file</span>
<span class="c1"># distributed with this work for additional information</span>
<span class="c1"># regarding copyright ownership. The ASF licenses this file</span>
<span class="c1"># to you under the Apache License, Version 2.0 (the</span>
<span class="c1"># "License"); you may not use this file except in compliance</span>
<span class="c1"># with the License. You may obtain a copy of the License at</span>
<span class="c1">#</span>
<span class="c1"># http://www.apache.org/licenses/LICENSE-2.0</span>
<span class="c1">#</span>
<span class="c1"># Unless required by applicable law or agreed to in writing,</span>
<span class="c1"># software distributed under the License is distributed on an</span>
<span class="c1"># "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY</span>
<span class="c1"># KIND, either express or implied. See the License for the</span>
<span class="c1"># specific language governing permissions and limitations</span>
<span class="c1"># under the License.</span>
<span class="c1"># coding: utf-8</span>
<span class="c1"># pylint: disable=no-member, invalid-name, protected-access, no-self-use</span>
<span class="c1"># pylint: disable=too-many-branches, too-many-arguments, no-self-use</span>
<span class="c1"># pylint: disable=too-many-lines, arguments-differ</span>
<span class="sd">"""Definition of various recurrent neural network cells."""</span>
<span class="n">__all__</span> <span class="o">=</span> <span class="p">[</span><span class="s1">'RecurrentCell'</span><span class="p">,</span> <span class="s1">'HybridRecurrentCell'</span><span class="p">,</span>
<span class="s1">'RNNCell'</span><span class="p">,</span> <span class="s1">'LSTMCell'</span><span class="p">,</span> <span class="s1">'GRUCell'</span><span class="p">,</span>
<span class="s1">'SequentialRNNCell'</span><span class="p">,</span> <span class="s1">'HybridSequentialRNNCell'</span><span class="p">,</span> <span class="s1">'DropoutCell'</span><span class="p">,</span>
<span class="s1">'ModifierCell'</span><span class="p">,</span> <span class="s1">'ZoneoutCell'</span><span class="p">,</span> <span class="s1">'ResidualCell'</span><span class="p">,</span>
<span class="s1">'BidirectionalCell'</span><span class="p">]</span>
<span class="kn">from</span> <span class="nn">...</span> <span class="k">import</span> <span class="n">symbol</span><span class="p">,</span> <span class="n">ndarray</span>
<span class="kn">from</span> <span class="nn">...base</span> <span class="k">import</span> <span class="n">string_types</span><span class="p">,</span> <span class="n">numeric_types</span><span class="p">,</span> <span class="n">_as_list</span>
<span class="kn">from</span> <span class="nn">..block</span> <span class="k">import</span> <span class="n">Block</span><span class="p">,</span> <span class="n">HybridBlock</span>
<span class="kn">from</span> <span class="nn">..utils</span> <span class="k">import</span> <span class="n">_indent</span>
<span class="kn">from</span> <span class="nn">..</span> <span class="k">import</span> <span class="n">tensor_types</span>
<span class="kn">from</span> <span class="nn">..nn</span> <span class="k">import</span> <span class="n">LeakyReLU</span>
<span class="k">def</span> <span class="nf">_cells_state_info</span><span class="p">(</span><span class="n">cells</span><span class="p">,</span> <span class="n">batch_size</span><span class="p">):</span>
<span class="k">return</span> <span class="nb">sum</span><span class="p">([</span><span class="n">c</span><span class="o">.</span><span class="n">state_info</span><span class="p">(</span><span class="n">batch_size</span><span class="p">)</span> <span class="k">for</span> <span class="n">c</span> <span class="ow">in</span> <span class="n">cells</span><span class="p">],</span> <span class="p">[])</span>
<span class="k">def</span> <span class="nf">_cells_begin_state</span><span class="p">(</span><span class="n">cells</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
<span class="k">return</span> <span class="nb">sum</span><span class="p">([</span><span class="n">c</span><span class="o">.</span><span class="n">begin_state</span><span class="p">(</span><span class="o">**</span><span class="n">kwargs</span><span class="p">)</span> <span class="k">for</span> <span class="n">c</span> <span class="ow">in</span> <span class="n">cells</span><span class="p">],</span> <span class="p">[])</span>
<span class="k">def</span> <span class="nf">_get_begin_state</span><span class="p">(</span><span class="n">cell</span><span class="p">,</span> <span class="n">F</span><span class="p">,</span> <span class="n">begin_state</span><span class="p">,</span> <span class="n">inputs</span><span class="p">,</span> <span class="n">batch_size</span><span class="p">):</span>
<span class="k">if</span> <span class="n">begin_state</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="k">if</span> <span class="n">F</span> <span class="ow">is</span> <span class="n">ndarray</span><span class="p">:</span>
<span class="n">ctx</span> <span class="o">=</span> <span class="n">inputs</span><span class="o">.</span><span class="n">context</span> <span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">inputs</span><span class="p">,</span> <span class="n">tensor_types</span><span class="p">)</span> <span class="k">else</span> <span class="n">inputs</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span><span class="o">.</span><span class="n">context</span>
<span class="k">with</span> <span class="n">ctx</span><span class="p">:</span>
<span class="n">begin_state</span> <span class="o">=</span> <span class="n">cell</span><span class="o">.</span><span class="n">begin_state</span><span class="p">(</span><span class="n">func</span><span class="o">=</span><span class="n">F</span><span class="o">.</span><span class="n">zeros</span><span class="p">,</span> <span class="n">batch_size</span><span class="o">=</span><span class="n">batch_size</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">begin_state</span> <span class="o">=</span> <span class="n">cell</span><span class="o">.</span><span class="n">begin_state</span><span class="p">(</span><span class="n">func</span><span class="o">=</span><span class="n">F</span><span class="o">.</span><span class="n">zeros</span><span class="p">,</span> <span class="n">batch_size</span><span class="o">=</span><span class="n">batch_size</span><span class="p">)</span>
<span class="k">return</span> <span class="n">begin_state</span>
<span class="k">def</span> <span class="nf">_format_sequence</span><span class="p">(</span><span class="n">length</span><span class="p">,</span> <span class="n">inputs</span><span class="p">,</span> <span class="n">layout</span><span class="p">,</span> <span class="n">merge</span><span class="p">,</span> <span class="n">in_layout</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span>
<span class="k">assert</span> <span class="n">inputs</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">,</span> \
<span class="s2">"unroll(inputs=None) has been deprecated. "</span> \
<span class="s2">"Please create input variables outside unroll."</span>
<span class="n">axis</span> <span class="o">=</span> <span class="n">layout</span><span class="o">.</span><span class="n">find</span><span class="p">(</span><span class="s1">'T'</span><span class="p">)</span>
<span class="n">batch_axis</span> <span class="o">=</span> <span class="n">layout</span><span class="o">.</span><span class="n">find</span><span class="p">(</span><span class="s1">'N'</span><span class="p">)</span>
<span class="n">batch_size</span> <span class="o">=</span> <span class="mi">0</span>
<span class="n">in_axis</span> <span class="o">=</span> <span class="n">in_layout</span><span class="o">.</span><span class="n">find</span><span class="p">(</span><span class="s1">'T'</span><span class="p">)</span> <span class="k">if</span> <span class="n">in_layout</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span> <span class="k">else</span> <span class="n">axis</span>
<span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">inputs</span><span class="p">,</span> <span class="n">symbol</span><span class="o">.</span><span class="n">Symbol</span><span class="p">):</span>
<span class="n">F</span> <span class="o">=</span> <span class="n">symbol</span>
<span class="k">if</span> <span class="n">merge</span> <span class="ow">is</span> <span class="kc">False</span><span class="p">:</span>
<span class="k">assert</span> <span class="nb">len</span><span class="p">(</span><span class="n">inputs</span><span class="o">.</span><span class="n">list_outputs</span><span class="p">())</span> <span class="o">==</span> <span class="mi">1</span><span class="p">,</span> \
<span class="s2">"unroll doesn't allow grouped symbol as input. Please convert "</span> \
<span class="s2">"to list with list(inputs) first or let unroll handle splitting."</span>
<span class="n">inputs</span> <span class="o">=</span> <span class="nb">list</span><span class="p">(</span><span class="n">symbol</span><span class="o">.</span><span class="n">split</span><span class="p">(</span><span class="n">inputs</span><span class="p">,</span> <span class="n">axis</span><span class="o">=</span><span class="n">in_axis</span><span class="p">,</span> <span class="n">num_outputs</span><span class="o">=</span><span class="n">length</span><span class="p">,</span>
<span class="n">squeeze_axis</span><span class="o">=</span><span class="mi">1</span><span class="p">))</span>
<span class="k">elif</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">inputs</span><span class="p">,</span> <span class="n">ndarray</span><span class="o">.</span><span class="n">NDArray</span><span class="p">):</span>
<span class="n">F</span> <span class="o">=</span> <span class="n">ndarray</span>
<span class="n">batch_size</span> <span class="o">=</span> <span class="n">inputs</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="n">batch_axis</span><span class="p">]</span>
<span class="k">if</span> <span class="n">merge</span> <span class="ow">is</span> <span class="kc">False</span><span class="p">:</span>
<span class="k">assert</span> <span class="n">length</span> <span class="ow">is</span> <span class="kc">None</span> <span class="ow">or</span> <span class="n">length</span> <span class="o">==</span> <span class="n">inputs</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="n">in_axis</span><span class="p">]</span>
<span class="n">inputs</span> <span class="o">=</span> <span class="n">_as_list</span><span class="p">(</span><span class="n">ndarray</span><span class="o">.</span><span class="n">split</span><span class="p">(</span><span class="n">inputs</span><span class="p">,</span> <span class="n">axis</span><span class="o">=</span><span class="n">in_axis</span><span class="p">,</span>
<span class="n">num_outputs</span><span class="o">=</span><span class="n">inputs</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="n">in_axis</span><span class="p">],</span>
<span class="n">squeeze_axis</span><span class="o">=</span><span class="mi">1</span><span class="p">))</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">assert</span> <span class="n">length</span> <span class="ow">is</span> <span class="kc">None</span> <span class="ow">or</span> <span class="nb">len</span><span class="p">(</span><span class="n">inputs</span><span class="p">)</span> <span class="o">==</span> <span class="n">length</span>
<span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">inputs</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">symbol</span><span class="o">.</span><span class="n">Symbol</span><span class="p">):</span>
<span class="n">F</span> <span class="o">=</span> <span class="n">symbol</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">F</span> <span class="o">=</span> <span class="n">ndarray</span>
<span class="n">batch_size</span> <span class="o">=</span> <span class="n">inputs</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span>
<span class="k">if</span> <span class="n">merge</span> <span class="ow">is</span> <span class="kc">True</span><span class="p">:</span>
<span class="n">inputs</span> <span class="o">=</span> <span class="n">F</span><span class="o">.</span><span class="n">stack</span><span class="p">(</span><span class="o">*</span><span class="n">inputs</span><span class="p">,</span> <span class="n">axis</span><span class="o">=</span><span class="n">axis</span><span class="p">)</span>
<span class="n">in_axis</span> <span class="o">=</span> <span class="n">axis</span>
<span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">inputs</span><span class="p">,</span> <span class="n">tensor_types</span><span class="p">)</span> <span class="ow">and</span> <span class="n">axis</span> <span class="o">!=</span> <span class="n">in_axis</span><span class="p">:</span>
<span class="n">inputs</span> <span class="o">=</span> <span class="n">F</span><span class="o">.</span><span class="n">swapaxes</span><span class="p">(</span><span class="n">inputs</span><span class="p">,</span> <span class="n">dim1</span><span class="o">=</span><span class="n">axis</span><span class="p">,</span> <span class="n">dim2</span><span class="o">=</span><span class="n">in_axis</span><span class="p">)</span>
<span class="k">return</span> <span class="n">inputs</span><span class="p">,</span> <span class="n">axis</span><span class="p">,</span> <span class="n">F</span><span class="p">,</span> <span class="n">batch_size</span>
<span class="k">def</span> <span class="nf">_mask_sequence_variable_length</span><span class="p">(</span><span class="n">F</span><span class="p">,</span> <span class="n">data</span><span class="p">,</span> <span class="n">length</span><span class="p">,</span> <span class="n">valid_length</span><span class="p">,</span> <span class="n">time_axis</span><span class="p">,</span> <span class="n">merge</span><span class="p">):</span>
<span class="k">assert</span> <span class="n">valid_length</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span>
<span class="k">if</span> <span class="ow">not</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">data</span><span class="p">,</span> <span class="n">tensor_types</span><span class="p">):</span>
<span class="n">data</span> <span class="o">=</span> <span class="n">F</span><span class="o">.</span><span class="n">stack</span><span class="p">(</span><span class="o">*</span><span class="n">data</span><span class="p">,</span> <span class="n">axis</span><span class="o">=</span><span class="n">time_axis</span><span class="p">)</span>
<span class="n">outputs</span> <span class="o">=</span> <span class="n">F</span><span class="o">.</span><span class="n">SequenceMask</span><span class="p">(</span><span class="n">data</span><span class="p">,</span> <span class="n">sequence_length</span><span class="o">=</span><span class="n">valid_length</span><span class="p">,</span> <span class="n">use_sequence_length</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span>
<span class="n">axis</span><span class="o">=</span><span class="n">time_axis</span><span class="p">)</span>
<span class="k">if</span> <span class="ow">not</span> <span class="n">merge</span><span class="p">:</span>
<span class="n">outputs</span> <span class="o">=</span> <span class="n">_as_list</span><span class="p">(</span><span class="n">F</span><span class="o">.</span><span class="n">split</span><span class="p">(</span><span class="n">outputs</span><span class="p">,</span> <span class="n">num_outputs</span><span class="o">=</span><span class="n">length</span><span class="p">,</span> <span class="n">axis</span><span class="o">=</span><span class="n">time_axis</span><span class="p">,</span>
<span class="n">squeeze_axis</span><span class="o">=</span><span class="kc">True</span><span class="p">))</span>
<span class="k">return</span> <span class="n">outputs</span>
<div class="viewcode-block" id="RecurrentCell"><a class="viewcode-back" href="../../../../api/python/gluon/rnn.html#mxnet.gluon.rnn.RecurrentCell">[docs]</a><span class="k">class</span> <span class="nc">RecurrentCell</span><span class="p">(</span><span class="n">Block</span><span class="p">):</span>
<span class="sd">"""Abstract base class for RNN cells</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> prefix : str, optional</span>
<span class="sd"> Prefix for names of `Block`s</span>
<span class="sd"> (this prefix is also used for names of weights if `params` is `None`</span>
<span class="sd"> i.e. if `params` are being created and not reused)</span>
<span class="sd"> params : Parameter or None, default None</span>
<span class="sd"> Container for weight sharing between cells.</span>
<span class="sd"> A new Parameter container is created if `params` is `None`.</span>
<span class="sd"> """</span>
<span class="k">def</span> <span class="nf">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">prefix</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="n">params</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span>
<span class="nb">super</span><span class="p">(</span><span class="n">RecurrentCell</span><span class="p">,</span> <span class="bp">self</span><span class="p">)</span><span class="o">.</span><span class="fm">__init__</span><span class="p">(</span><span class="n">prefix</span><span class="o">=</span><span class="n">prefix</span><span class="p">,</span> <span class="n">params</span><span class="o">=</span><span class="n">params</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_modified</span> <span class="o">=</span> <span class="kc">False</span>
<span class="bp">self</span><span class="o">.</span><span class="n">reset</span><span class="p">()</span>
<div class="viewcode-block" id="RecurrentCell.reset"><a class="viewcode-back" href="../../../../api/python/gluon/rnn.html#mxnet.gluon.rnn.RecurrentCell.reset">[docs]</a> <span class="k">def</span> <span class="nf">reset</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="sd">"""Reset before re-using the cell for another graph."""</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_init_counter</span> <span class="o">=</span> <span class="o">-</span><span class="mi">1</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_counter</span> <span class="o">=</span> <span class="o">-</span><span class="mi">1</span>
<span class="k">for</span> <span class="n">cell</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">_children</span><span class="o">.</span><span class="n">values</span><span class="p">():</span>
<span class="n">cell</span><span class="o">.</span><span class="n">reset</span><span class="p">()</span></div>
<div class="viewcode-block" id="RecurrentCell.state_info"><a class="viewcode-back" href="../../../../api/python/gluon/rnn.html#mxnet.gluon.rnn.RecurrentCell.state_info">[docs]</a> <span class="k">def</span> <span class="nf">state_info</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">batch_size</span><span class="o">=</span><span class="mi">0</span><span class="p">):</span>
<span class="sd">"""shape and layout information of states"""</span>
<span class="k">raise</span> <span class="ne">NotImplementedError</span><span class="p">()</span></div>
<div class="viewcode-block" id="RecurrentCell.begin_state"><a class="viewcode-back" href="../../../../api/python/gluon/rnn.html#mxnet.gluon.rnn.RecurrentCell.begin_state">[docs]</a> <span class="k">def</span> <span class="nf">begin_state</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">batch_size</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span> <span class="n">func</span><span class="o">=</span><span class="n">ndarray</span><span class="o">.</span><span class="n">zeros</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
<span class="sd">"""Initial state for this cell.</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> func : callable, default symbol.zeros</span>
<span class="sd"> Function for creating initial state.</span>
<span class="sd"> For Symbol API, func can be `symbol.zeros`, `symbol.uniform`,</span>
<span class="sd"> `symbol.var etc`. Use `symbol.var` if you want to directly</span>
<span class="sd"> feed input as states.</span>
<span class="sd"> For NDArray API, func can be `ndarray.zeros`, `ndarray.ones`, etc.</span>
<span class="sd"> batch_size: int, default 0</span>
<span class="sd"> Only required for NDArray API. Size of the batch ('N' in layout)</span>
<span class="sd"> dimension of input.</span>
<span class="sd"> **kwargs :</span>
<span class="sd"> Additional keyword arguments passed to func. For example</span>
<span class="sd"> `mean`, `std`, `dtype`, etc.</span>
<span class="sd"> Returns</span>
<span class="sd"> -------</span>
<span class="sd"> states : nested list of Symbol</span>
<span class="sd"> Starting states for the first RNN step.</span>
<span class="sd"> """</span>
<span class="k">assert</span> <span class="ow">not</span> <span class="bp">self</span><span class="o">.</span><span class="n">_modified</span><span class="p">,</span> \
<span class="s2">"After applying modifier cells (e.g. ZoneoutCell) the base "</span> \
<span class="s2">"cell cannot be called directly. Call the modifier cell instead."</span>
<span class="n">states</span> <span class="o">=</span> <span class="p">[]</span>
<span class="k">for</span> <span class="n">info</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">state_info</span><span class="p">(</span><span class="n">batch_size</span><span class="p">):</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_init_counter</span> <span class="o">+=</span> <span class="mi">1</span>
<span class="k">if</span> <span class="n">info</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">info</span><span class="o">.</span><span class="n">update</span><span class="p">(</span><span class="n">kwargs</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">info</span> <span class="o">=</span> <span class="n">kwargs</span>
<span class="n">state</span> <span class="o">=</span> <span class="n">func</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="s1">'</span><span class="si">%s</span><span class="s1">begin_state_</span><span class="si">%d</span><span class="s1">'</span><span class="o">%</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">_prefix</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">_init_counter</span><span class="p">),</span>
<span class="o">**</span><span class="n">info</span><span class="p">)</span>
<span class="n">states</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">state</span><span class="p">)</span>
<span class="k">return</span> <span class="n">states</span></div>
<div class="viewcode-block" id="RecurrentCell.unroll"><a class="viewcode-back" href="../../../../api/python/gluon/rnn.html#mxnet.gluon.rnn.RecurrentCell.unroll">[docs]</a> <span class="k">def</span> <span class="nf">unroll</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">length</span><span class="p">,</span> <span class="n">inputs</span><span class="p">,</span> <span class="n">begin_state</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="n">layout</span><span class="o">=</span><span class="s1">'NTC'</span><span class="p">,</span> <span class="n">merge_outputs</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">valid_length</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span>
<span class="sd">"""Unrolls an RNN cell across time steps.</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> length : int</span>
<span class="sd"> Number of steps to unroll.</span>
<span class="sd"> inputs : Symbol, list of Symbol, or None</span>
<span class="sd"> If `inputs` is a single Symbol (usually the output</span>
<span class="sd"> of Embedding symbol), it should have shape</span>
<span class="sd"> (batch_size, length, ...) if `layout` is 'NTC',</span>
<span class="sd"> or (length, batch_size, ...) if `layout` is 'TNC'.</span>
<span class="sd"> If `inputs` is a list of symbols (usually output of</span>
<span class="sd"> previous unroll), they should all have shape</span>
<span class="sd"> (batch_size, ...).</span>
<span class="sd"> begin_state : nested list of Symbol, optional</span>
<span class="sd"> Input states created by `begin_state()`</span>
<span class="sd"> or output state of another cell.</span>
<span class="sd"> Created from `begin_state()` if `None`.</span>
<span class="sd"> layout : str, optional</span>
<span class="sd"> `layout` of input symbol. Only used if inputs</span>
<span class="sd"> is a single Symbol.</span>
<span class="sd"> merge_outputs : bool, optional</span>
<span class="sd"> If `False`, returns outputs as a list of Symbols.</span>
<span class="sd"> If `True`, concatenates output across time steps</span>
<span class="sd"> and returns a single symbol with shape</span>
<span class="sd"> (batch_size, length, ...) if layout is 'NTC',</span>
<span class="sd"> or (length, batch_size, ...) if layout is 'TNC'.</span>
<span class="sd"> If `None`, output whatever is faster.</span>
<span class="sd"> valid_length : Symbol, NDArray or None</span>
<span class="sd"> `valid_length` specifies the length of the sequences in the batch without padding.</span>
<span class="sd"> This option is especially useful for building sequence-to-sequence models where</span>
<span class="sd"> the input and output sequences would potentially be padded.</span>
<span class="sd"> If `valid_length` is None, all sequences are assumed to have the same length.</span>
<span class="sd"> If `valid_length` is a Symbol or NDArray, it should have shape (batch_size,).</span>
<span class="sd"> The ith element will be the length of the ith sequence in the batch.</span>
<span class="sd"> The last valid state will be return and the padded outputs will be masked with 0.</span>
<span class="sd"> Note that `valid_length` must be smaller or equal to `length`.</span>
<span class="sd"> Returns</span>
<span class="sd"> -------</span>
<span class="sd"> outputs : list of Symbol or Symbol</span>
<span class="sd"> Symbol (if `merge_outputs` is True) or list of Symbols</span>
<span class="sd"> (if `merge_outputs` is False) corresponding to the output from</span>
<span class="sd"> the RNN from this unrolling.</span>
<span class="sd"> states : list of Symbol</span>
<span class="sd"> The new state of this RNN after this unrolling.</span>
<span class="sd"> The type of this symbol is same as the output of `begin_state()`.</span>
<span class="sd"> """</span>
<span class="c1"># pylint: disable=too-many-locals</span>
<span class="bp">self</span><span class="o">.</span><span class="n">reset</span><span class="p">()</span>
<span class="n">inputs</span><span class="p">,</span> <span class="n">axis</span><span class="p">,</span> <span class="n">F</span><span class="p">,</span> <span class="n">batch_size</span> <span class="o">=</span> <span class="n">_format_sequence</span><span class="p">(</span><span class="n">length</span><span class="p">,</span> <span class="n">inputs</span><span class="p">,</span> <span class="n">layout</span><span class="p">,</span> <span class="kc">False</span><span class="p">)</span>
<span class="n">begin_state</span> <span class="o">=</span> <span class="n">_get_begin_state</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">F</span><span class="p">,</span> <span class="n">begin_state</span><span class="p">,</span> <span class="n">inputs</span><span class="p">,</span> <span class="n">batch_size</span><span class="p">)</span>
<span class="n">states</span> <span class="o">=</span> <span class="n">begin_state</span>
<span class="n">outputs</span> <span class="o">=</span> <span class="p">[]</span>
<span class="n">all_states</span> <span class="o">=</span> <span class="p">[]</span>
<span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">length</span><span class="p">):</span>
<span class="n">output</span><span class="p">,</span> <span class="n">states</span> <span class="o">=</span> <span class="bp">self</span><span class="p">(</span><span class="n">inputs</span><span class="p">[</span><span class="n">i</span><span class="p">],</span> <span class="n">states</span><span class="p">)</span>
<span class="n">outputs</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">output</span><span class="p">)</span>
<span class="k">if</span> <span class="n">valid_length</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">all_states</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">states</span><span class="p">)</span>
<span class="k">if</span> <span class="n">valid_length</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">states</span> <span class="o">=</span> <span class="p">[</span><span class="n">F</span><span class="o">.</span><span class="n">SequenceLast</span><span class="p">(</span><span class="n">F</span><span class="o">.</span><span class="n">stack</span><span class="p">(</span><span class="o">*</span><span class="n">ele_list</span><span class="p">,</span> <span class="n">axis</span><span class="o">=</span><span class="mi">0</span><span class="p">),</span>
<span class="n">sequence_length</span><span class="o">=</span><span class="n">valid_length</span><span class="p">,</span>
<span class="n">use_sequence_length</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span>
<span class="n">axis</span><span class="o">=</span><span class="mi">0</span><span class="p">)</span>
<span class="k">for</span> <span class="n">ele_list</span> <span class="ow">in</span> <span class="nb">zip</span><span class="p">(</span><span class="o">*</span><span class="n">all_states</span><span class="p">)]</span>
<span class="n">outputs</span> <span class="o">=</span> <span class="n">_mask_sequence_variable_length</span><span class="p">(</span><span class="n">F</span><span class="p">,</span> <span class="n">outputs</span><span class="p">,</span> <span class="n">length</span><span class="p">,</span> <span class="n">valid_length</span><span class="p">,</span> <span class="n">axis</span><span class="p">,</span> <span class="kc">True</span><span class="p">)</span>
<span class="n">outputs</span><span class="p">,</span> <span class="n">_</span><span class="p">,</span> <span class="n">_</span><span class="p">,</span> <span class="n">_</span> <span class="o">=</span> <span class="n">_format_sequence</span><span class="p">(</span><span class="n">length</span><span class="p">,</span> <span class="n">outputs</span><span class="p">,</span> <span class="n">layout</span><span class="p">,</span> <span class="n">merge_outputs</span><span class="p">)</span>
<span class="k">return</span> <span class="n">outputs</span><span class="p">,</span> <span class="n">states</span></div>
<span class="c1">#pylint: disable=no-self-use</span>
<span class="k">def</span> <span class="nf">_get_activation</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">F</span><span class="p">,</span> <span class="n">inputs</span><span class="p">,</span> <span class="n">activation</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
<span class="sd">"""Get activation function. Convert if is string"""</span>
<span class="k">if</span> <span class="n">activation</span> <span class="o">==</span> <span class="s1">'tanh'</span><span class="p">:</span>
<span class="k">return</span> <span class="n">F</span><span class="o">.</span><span class="n">tanh</span><span class="p">(</span><span class="n">inputs</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span>
<span class="k">elif</span> <span class="n">activation</span> <span class="o">==</span> <span class="s1">'sigmoid'</span><span class="p">:</span>
<span class="k">return</span> <span class="n">F</span><span class="o">.</span><span class="n">sigmoid</span><span class="p">(</span><span class="n">inputs</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span>
<span class="k">elif</span> <span class="n">activation</span> <span class="o">==</span> <span class="s1">'relu'</span><span class="p">:</span>
<span class="k">return</span> <span class="n">F</span><span class="o">.</span><span class="n">relu</span><span class="p">(</span><span class="n">inputs</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span>
<span class="k">elif</span> <span class="n">activation</span> <span class="o">==</span> <span class="s1">'softsign'</span><span class="p">:</span>
<span class="k">return</span> <span class="n">F</span><span class="o">.</span><span class="n">softsign</span><span class="p">(</span><span class="n">inputs</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span>
<span class="k">elif</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">activation</span><span class="p">,</span> <span class="n">string_types</span><span class="p">):</span>
<span class="k">return</span> <span class="n">F</span><span class="o">.</span><span class="n">Activation</span><span class="p">(</span><span class="n">inputs</span><span class="p">,</span> <span class="n">act_type</span><span class="o">=</span><span class="n">activation</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span>
<span class="k">elif</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">activation</span><span class="p">,</span> <span class="n">LeakyReLU</span><span class="p">):</span>
<span class="k">return</span> <span class="n">F</span><span class="o">.</span><span class="n">LeakyReLU</span><span class="p">(</span><span class="n">inputs</span><span class="p">,</span> <span class="n">act_type</span><span class="o">=</span><span class="s1">'leaky'</span><span class="p">,</span> <span class="n">slope</span><span class="o">=</span><span class="n">activation</span><span class="o">.</span><span class="n">_alpha</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span>
<span class="k">return</span> <span class="n">activation</span><span class="p">(</span><span class="n">inputs</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span>
<div class="viewcode-block" id="RecurrentCell.forward"><a class="viewcode-back" href="../../../../api/python/gluon/rnn.html#mxnet.gluon.rnn.RecurrentCell.forward">[docs]</a> <span class="k">def</span> <span class="nf">forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">inputs</span><span class="p">,</span> <span class="n">states</span><span class="p">):</span>
<span class="sd">"""Unrolls the recurrent cell for one time step.</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> inputs : sym.Variable</span>
<span class="sd"> Input symbol, 2D, of shape (batch_size * num_units).</span>
<span class="sd"> states : list of sym.Variable</span>
<span class="sd"> RNN state from previous step or the output of begin_state().</span>
<span class="sd"> Returns</span>
<span class="sd"> -------</span>
<span class="sd"> output : Symbol</span>
<span class="sd"> Symbol corresponding to the output from the RNN when unrolling</span>
<span class="sd"> for a single time step.</span>
<span class="sd"> states : list of Symbol</span>
<span class="sd"> The new state of this RNN after this unrolling.</span>
<span class="sd"> The type of this symbol is same as the output of `begin_state()`.</span>
<span class="sd"> This can be used as an input state to the next time step</span>
<span class="sd"> of this RNN.</span>
<span class="sd"> See Also</span>
<span class="sd"> --------</span>
<span class="sd"> begin_state: This function can provide the states for the first time step.</span>
<span class="sd"> unroll: This function unrolls an RNN for a given number of (>=1) time steps.</span>
<span class="sd"> """</span>
<span class="c1"># pylint: disable= arguments-differ</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_counter</span> <span class="o">+=</span> <span class="mi">1</span>
<span class="k">return</span> <span class="nb">super</span><span class="p">(</span><span class="n">RecurrentCell</span><span class="p">,</span> <span class="bp">self</span><span class="p">)</span><span class="o">.</span><span class="n">forward</span><span class="p">(</span><span class="n">inputs</span><span class="p">,</span> <span class="n">states</span><span class="p">)</span></div></div>
<div class="viewcode-block" id="HybridRecurrentCell"><a class="viewcode-back" href="../../../../api/python/gluon/rnn.html#mxnet.gluon.rnn.HybridRecurrentCell">[docs]</a><span class="k">class</span> <span class="nc">HybridRecurrentCell</span><span class="p">(</span><span class="n">RecurrentCell</span><span class="p">,</span> <span class="n">HybridBlock</span><span class="p">):</span>
<span class="sd">"""HybridRecurrentCell supports hybridize."""</span>
<span class="k">def</span> <span class="nf">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">prefix</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="n">params</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span>
<span class="nb">super</span><span class="p">(</span><span class="n">HybridRecurrentCell</span><span class="p">,</span> <span class="bp">self</span><span class="p">)</span><span class="o">.</span><span class="fm">__init__</span><span class="p">(</span><span class="n">prefix</span><span class="o">=</span><span class="n">prefix</span><span class="p">,</span> <span class="n">params</span><span class="o">=</span><span class="n">params</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">hybrid_forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">F</span><span class="p">,</span> <span class="n">x</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
<span class="k">raise</span> <span class="ne">NotImplementedError</span></div>
<div class="viewcode-block" id="RNNCell"><a class="viewcode-back" href="../../../../api/python/gluon/rnn.html#mxnet.gluon.rnn.RNNCell">[docs]</a><span class="k">class</span> <span class="nc">RNNCell</span><span class="p">(</span><span class="n">HybridRecurrentCell</span><span class="p">):</span>
<span class="sa">r</span><span class="sd">"""Elman RNN recurrent neural network cell.</span>
<span class="sd"> Each call computes the following function:</span>
<span class="sd"> .. math::</span>
<span class="sd"> h_t = \tanh(w_{ih} * x_t + b_{ih} + w_{hh} * h_{(t-1)} + b_{hh})</span>
<span class="sd"> where :math:`h_t` is the hidden state at time `t`, and :math:`x_t` is the hidden</span>
<span class="sd"> state of the previous layer at time `t` or :math:`input_t` for the first layer.</span>
<span class="sd"> If nonlinearity='relu', then `ReLU` is used instead of `tanh`.</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> hidden_size : int</span>
<span class="sd"> Number of units in output symbol</span>
<span class="sd"> activation : str or Symbol, default 'tanh'</span>
<span class="sd"> Type of activation function.</span>
<span class="sd"> i2h_weight_initializer : str or Initializer</span>
<span class="sd"> Initializer for the input weights matrix, used for the linear</span>
<span class="sd"> transformation of the inputs.</span>
<span class="sd"> h2h_weight_initializer : str or Initializer</span>
<span class="sd"> Initializer for the recurrent weights matrix, used for the linear</span>
<span class="sd"> transformation of the recurrent state.</span>
<span class="sd"> i2h_bias_initializer : str or Initializer, default 'zeros'</span>
<span class="sd"> Initializer for the bias vector.</span>
<span class="sd"> h2h_bias_initializer : str or Initializer, default 'zeros'</span>
<span class="sd"> Initializer for the bias vector.</span>
<span class="sd"> prefix : str, default 'rnn_'</span>
<span class="sd"> Prefix for name of `Block`s</span>
<span class="sd"> (and name of weight if params is `None`).</span>
<span class="sd"> params : Parameter or None</span>
<span class="sd"> Container for weight sharing between cells.</span>
<span class="sd"> Created if `None`.</span>
<span class="sd"> Inputs:</span>
<span class="sd"> - **data**: input tensor with shape `(batch_size, input_size)`.</span>
<span class="sd"> - **states**: a list of one initial recurrent state tensor with shape</span>
<span class="sd"> `(batch_size, num_hidden)`.</span>
<span class="sd"> Outputs:</span>
<span class="sd"> - **out**: output tensor with shape `(batch_size, num_hidden)`.</span>
<span class="sd"> - **next_states**: a list of one output recurrent state tensor with the</span>
<span class="sd"> same shape as `states`.</span>
<span class="sd"> """</span>
<span class="k">def</span> <span class="nf">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">hidden_size</span><span class="p">,</span> <span class="n">activation</span><span class="o">=</span><span class="s1">'tanh'</span><span class="p">,</span>
<span class="n">i2h_weight_initializer</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="n">h2h_weight_initializer</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">i2h_bias_initializer</span><span class="o">=</span><span class="s1">'zeros'</span><span class="p">,</span> <span class="n">h2h_bias_initializer</span><span class="o">=</span><span class="s1">'zeros'</span><span class="p">,</span>
<span class="n">input_size</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span> <span class="n">prefix</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="n">params</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span>
<span class="nb">super</span><span class="p">(</span><span class="n">RNNCell</span><span class="p">,</span> <span class="bp">self</span><span class="p">)</span><span class="o">.</span><span class="fm">__init__</span><span class="p">(</span><span class="n">prefix</span><span class="o">=</span><span class="n">prefix</span><span class="p">,</span> <span class="n">params</span><span class="o">=</span><span class="n">params</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_hidden_size</span> <span class="o">=</span> <span class="n">hidden_size</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_activation</span> <span class="o">=</span> <span class="n">activation</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_input_size</span> <span class="o">=</span> <span class="n">input_size</span>
<span class="bp">self</span><span class="o">.</span><span class="n">i2h_weight</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">params</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s1">'i2h_weight'</span><span class="p">,</span> <span class="n">shape</span><span class="o">=</span><span class="p">(</span><span class="n">hidden_size</span><span class="p">,</span> <span class="n">input_size</span><span class="p">),</span>
<span class="n">init</span><span class="o">=</span><span class="n">i2h_weight_initializer</span><span class="p">,</span>
<span class="n">allow_deferred_init</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">h2h_weight</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">params</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s1">'h2h_weight'</span><span class="p">,</span> <span class="n">shape</span><span class="o">=</span><span class="p">(</span><span class="n">hidden_size</span><span class="p">,</span> <span class="n">hidden_size</span><span class="p">),</span>
<span class="n">init</span><span class="o">=</span><span class="n">h2h_weight_initializer</span><span class="p">,</span>
<span class="n">allow_deferred_init</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">i2h_bias</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">params</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s1">'i2h_bias'</span><span class="p">,</span> <span class="n">shape</span><span class="o">=</span><span class="p">(</span><span class="n">hidden_size</span><span class="p">,),</span>
<span class="n">init</span><span class="o">=</span><span class="n">i2h_bias_initializer</span><span class="p">,</span>
<span class="n">allow_deferred_init</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">h2h_bias</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">params</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s1">'h2h_bias'</span><span class="p">,</span> <span class="n">shape</span><span class="o">=</span><span class="p">(</span><span class="n">hidden_size</span><span class="p">,),</span>
<span class="n">init</span><span class="o">=</span><span class="n">h2h_bias_initializer</span><span class="p">,</span>
<span class="n">allow_deferred_init</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">state_info</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">batch_size</span><span class="o">=</span><span class="mi">0</span><span class="p">):</span>
<span class="k">return</span> <span class="p">[{</span><span class="s1">'shape'</span><span class="p">:</span> <span class="p">(</span><span class="n">batch_size</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">_hidden_size</span><span class="p">),</span> <span class="s1">'__layout__'</span><span class="p">:</span> <span class="s1">'NC'</span><span class="p">}]</span>
<span class="k">def</span> <span class="nf">_alias</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="k">return</span> <span class="s1">'rnn'</span>
<span class="k">def</span> <span class="nf">__repr__</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="n">s</span> <span class="o">=</span> <span class="s1">'</span><span class="si">{name}</span><span class="s1">(</span><span class="si">{mapping}</span><span class="s1">'</span>
<span class="k">if</span> <span class="nb">hasattr</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="s1">'_activation'</span><span class="p">):</span>
<span class="n">s</span> <span class="o">+=</span> <span class="s1">', </span><span class="si">{_activation}</span><span class="s1">'</span>
<span class="n">s</span> <span class="o">+=</span> <span class="s1">')'</span>
<span class="n">shape</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">i2h_weight</span><span class="o">.</span><span class="n">shape</span>
<span class="n">mapping</span> <span class="o">=</span> <span class="s1">'</span><span class="si">{0}</span><span class="s1"> -> </span><span class="si">{1}</span><span class="s1">'</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">shape</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span> <span class="k">if</span> <span class="n">shape</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span> <span class="k">else</span> <span class="kc">None</span><span class="p">,</span> <span class="n">shape</span><span class="p">[</span><span class="mi">0</span><span class="p">])</span>
<span class="k">return</span> <span class="n">s</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="vm">__class__</span><span class="o">.</span><span class="vm">__name__</span><span class="p">,</span>
<span class="n">mapping</span><span class="o">=</span><span class="n">mapping</span><span class="p">,</span>
<span class="o">**</span><span class="bp">self</span><span class="o">.</span><span class="vm">__dict__</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">hybrid_forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">F</span><span class="p">,</span> <span class="n">inputs</span><span class="p">,</span> <span class="n">states</span><span class="p">,</span> <span class="n">i2h_weight</span><span class="p">,</span>
<span class="n">h2h_weight</span><span class="p">,</span> <span class="n">i2h_bias</span><span class="p">,</span> <span class="n">h2h_bias</span><span class="p">):</span>
<span class="n">prefix</span> <span class="o">=</span> <span class="s1">'t</span><span class="si">%d</span><span class="s1">_'</span><span class="o">%</span><span class="bp">self</span><span class="o">.</span><span class="n">_counter</span>
<span class="n">i2h</span> <span class="o">=</span> <span class="n">F</span><span class="o">.</span><span class="n">FullyConnected</span><span class="p">(</span><span class="n">data</span><span class="o">=</span><span class="n">inputs</span><span class="p">,</span> <span class="n">weight</span><span class="o">=</span><span class="n">i2h_weight</span><span class="p">,</span> <span class="n">bias</span><span class="o">=</span><span class="n">i2h_bias</span><span class="p">,</span>
<span class="n">num_hidden</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">_hidden_size</span><span class="p">,</span>
<span class="n">name</span><span class="o">=</span><span class="n">prefix</span><span class="o">+</span><span class="s1">'i2h'</span><span class="p">)</span>
<span class="n">h2h</span> <span class="o">=</span> <span class="n">F</span><span class="o">.</span><span class="n">FullyConnected</span><span class="p">(</span><span class="n">data</span><span class="o">=</span><span class="n">states</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">weight</span><span class="o">=</span><span class="n">h2h_weight</span><span class="p">,</span> <span class="n">bias</span><span class="o">=</span><span class="n">h2h_bias</span><span class="p">,</span>
<span class="n">num_hidden</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">_hidden_size</span><span class="p">,</span>
<span class="n">name</span><span class="o">=</span><span class="n">prefix</span><span class="o">+</span><span class="s1">'h2h'</span><span class="p">)</span>
<span class="n">i2h_plus_h2h</span> <span class="o">=</span> <span class="n">F</span><span class="o">.</span><span class="n">elemwise_add</span><span class="p">(</span><span class="n">i2h</span><span class="p">,</span> <span class="n">h2h</span><span class="p">,</span> <span class="n">name</span><span class="o">=</span><span class="n">prefix</span><span class="o">+</span><span class="s1">'plus0'</span><span class="p">)</span>
<span class="n">output</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_get_activation</span><span class="p">(</span><span class="n">F</span><span class="p">,</span> <span class="n">i2h_plus_h2h</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">_activation</span><span class="p">,</span>
<span class="n">name</span><span class="o">=</span><span class="n">prefix</span><span class="o">+</span><span class="s1">'out'</span><span class="p">)</span>
<span class="k">return</span> <span class="n">output</span><span class="p">,</span> <span class="p">[</span><span class="n">output</span><span class="p">]</span></div>
<div class="viewcode-block" id="LSTMCell"><a class="viewcode-back" href="../../../../api/python/gluon/rnn.html#mxnet.gluon.rnn.LSTMCell">[docs]</a><span class="k">class</span> <span class="nc">LSTMCell</span><span class="p">(</span><span class="n">HybridRecurrentCell</span><span class="p">):</span>
<span class="sa">r</span><span class="sd">"""Long-Short Term Memory (LSTM) network cell.</span>
<span class="sd"> Each call computes the following function:</span>
<span class="sd"> .. math::</span>
<span class="sd"> \begin{array}{ll}</span>
<span class="sd"> i_t = sigmoid(W_{ii} x_t + b_{ii} + W_{hi} h_{(t-1)} + b_{hi}) \\</span>
<span class="sd"> f_t = sigmoid(W_{if} x_t + b_{if} + W_{hf} h_{(t-1)} + b_{hf}) \\</span>
<span class="sd"> g_t = \tanh(W_{ig} x_t + b_{ig} + W_{hc} h_{(t-1)} + b_{hg}) \\</span>
<span class="sd"> o_t = sigmoid(W_{io} x_t + b_{io} + W_{ho} h_{(t-1)} + b_{ho}) \\</span>
<span class="sd"> c_t = f_t * c_{(t-1)} + i_t * g_t \\</span>
<span class="sd"> h_t = o_t * \tanh(c_t)</span>
<span class="sd"> \end{array}</span>
<span class="sd"> where :math:`h_t` is the hidden state at time `t`, :math:`c_t` is the</span>
<span class="sd"> cell state at time `t`, :math:`x_t` is the hidden state of the previous</span>
<span class="sd"> layer at time `t` or :math:`input_t` for the first layer, and :math:`i_t`,</span>
<span class="sd"> :math:`f_t`, :math:`g_t`, :math:`o_t` are the input, forget, cell, and</span>
<span class="sd"> out gates, respectively.</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> hidden_size : int</span>
<span class="sd"> Number of units in output symbol.</span>
<span class="sd"> i2h_weight_initializer : str or Initializer</span>
<span class="sd"> Initializer for the input weights matrix, used for the linear</span>
<span class="sd"> transformation of the inputs.</span>
<span class="sd"> h2h_weight_initializer : str or Initializer</span>
<span class="sd"> Initializer for the recurrent weights matrix, used for the linear</span>
<span class="sd"> transformation of the recurrent state.</span>
<span class="sd"> i2h_bias_initializer : str or Initializer, default 'zeros'</span>
<span class="sd"> Initializer for the bias vector.</span>
<span class="sd"> h2h_bias_initializer : str or Initializer, default 'zeros'</span>
<span class="sd"> Initializer for the bias vector.</span>
<span class="sd"> prefix : str, default 'lstm_'</span>
<span class="sd"> Prefix for name of `Block`s</span>
<span class="sd"> (and name of weight if params is `None`).</span>
<span class="sd"> params : Parameter or None, default None</span>
<span class="sd"> Container for weight sharing between cells.</span>
<span class="sd"> Created if `None`.</span>
<span class="sd"> activation : str, default 'tanh'</span>
<span class="sd"> Activation type to use. See nd/symbol Activation</span>
<span class="sd"> for supported types.</span>
<span class="sd"> recurrent_activation : str, default 'sigmoid'</span>
<span class="sd"> Activation type to use for the recurrent step. See nd/symbol Activation</span>
<span class="sd"> for supported types.</span>
<span class="sd"> Inputs:</span>
<span class="sd"> - **data**: input tensor with shape `(batch_size, input_size)`.</span>
<span class="sd"> - **states**: a list of two initial recurrent state tensors. Each has shape</span>
<span class="sd"> `(batch_size, num_hidden)`.</span>
<span class="sd"> Outputs:</span>
<span class="sd"> - **out**: output tensor with shape `(batch_size, num_hidden)`.</span>
<span class="sd"> - **next_states**: a list of two output recurrent state tensors. Each has</span>
<span class="sd"> the same shape as `states`.</span>
<span class="sd"> """</span>
<span class="c1"># pylint: disable=too-many-instance-attributes</span>
<span class="k">def</span> <span class="nf">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">hidden_size</span><span class="p">,</span>
<span class="n">i2h_weight_initializer</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="n">h2h_weight_initializer</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">i2h_bias_initializer</span><span class="o">=</span><span class="s1">'zeros'</span><span class="p">,</span> <span class="n">h2h_bias_initializer</span><span class="o">=</span><span class="s1">'zeros'</span><span class="p">,</span>
<span class="n">input_size</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span> <span class="n">prefix</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="n">params</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="n">activation</span><span class="o">=</span><span class="s1">'tanh'</span><span class="p">,</span>
<span class="n">recurrent_activation</span><span class="o">=</span><span class="s1">'sigmoid'</span><span class="p">):</span>
<span class="nb">super</span><span class="p">(</span><span class="n">LSTMCell</span><span class="p">,</span> <span class="bp">self</span><span class="p">)</span><span class="o">.</span><span class="fm">__init__</span><span class="p">(</span><span class="n">prefix</span><span class="o">=</span><span class="n">prefix</span><span class="p">,</span> <span class="n">params</span><span class="o">=</span><span class="n">params</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_hidden_size</span> <span class="o">=</span> <span class="n">hidden_size</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_input_size</span> <span class="o">=</span> <span class="n">input_size</span>
<span class="bp">self</span><span class="o">.</span><span class="n">i2h_weight</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">params</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s1">'i2h_weight'</span><span class="p">,</span> <span class="n">shape</span><span class="o">=</span><span class="p">(</span><span class="mi">4</span><span class="o">*</span><span class="n">hidden_size</span><span class="p">,</span> <span class="n">input_size</span><span class="p">),</span>
<span class="n">init</span><span class="o">=</span><span class="n">i2h_weight_initializer</span><span class="p">,</span>
<span class="n">allow_deferred_init</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">h2h_weight</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">params</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s1">'h2h_weight'</span><span class="p">,</span> <span class="n">shape</span><span class="o">=</span><span class="p">(</span><span class="mi">4</span><span class="o">*</span><span class="n">hidden_size</span><span class="p">,</span> <span class="n">hidden_size</span><span class="p">),</span>
<span class="n">init</span><span class="o">=</span><span class="n">h2h_weight_initializer</span><span class="p">,</span>
<span class="n">allow_deferred_init</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">i2h_bias</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">params</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s1">'i2h_bias'</span><span class="p">,</span> <span class="n">shape</span><span class="o">=</span><span class="p">(</span><span class="mi">4</span><span class="o">*</span><span class="n">hidden_size</span><span class="p">,),</span>
<span class="n">init</span><span class="o">=</span><span class="n">i2h_bias_initializer</span><span class="p">,</span>
<span class="n">allow_deferred_init</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">h2h_bias</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">params</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s1">'h2h_bias'</span><span class="p">,</span> <span class="n">shape</span><span class="o">=</span><span class="p">(</span><span class="mi">4</span><span class="o">*</span><span class="n">hidden_size</span><span class="p">,),</span>
<span class="n">init</span><span class="o">=</span><span class="n">h2h_bias_initializer</span><span class="p">,</span>
<span class="n">allow_deferred_init</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_activation</span> <span class="o">=</span> <span class="n">activation</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_recurrent_activation</span> <span class="o">=</span> <span class="n">recurrent_activation</span>
<span class="k">def</span> <span class="nf">state_info</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">batch_size</span><span class="o">=</span><span class="mi">0</span><span class="p">):</span>
<span class="k">return</span> <span class="p">[{</span><span class="s1">'shape'</span><span class="p">:</span> <span class="p">(</span><span class="n">batch_size</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">_hidden_size</span><span class="p">),</span> <span class="s1">'__layout__'</span><span class="p">:</span> <span class="s1">'NC'</span><span class="p">},</span>
<span class="p">{</span><span class="s1">'shape'</span><span class="p">:</span> <span class="p">(</span><span class="n">batch_size</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">_hidden_size</span><span class="p">),</span> <span class="s1">'__layout__'</span><span class="p">:</span> <span class="s1">'NC'</span><span class="p">}]</span>
<span class="k">def</span> <span class="nf">_alias</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="k">return</span> <span class="s1">'lstm'</span>
<span class="k">def</span> <span class="nf">__repr__</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="n">s</span> <span class="o">=</span> <span class="s1">'</span><span class="si">{name}</span><span class="s1">(</span><span class="si">{mapping}</span><span class="s1">)'</span>
<span class="n">shape</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">i2h_weight</span><span class="o">.</span><span class="n">shape</span>
<span class="n">mapping</span> <span class="o">=</span> <span class="s1">'</span><span class="si">{0}</span><span class="s1"> -> </span><span class="si">{1}</span><span class="s1">'</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">shape</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span> <span class="k">if</span> <span class="n">shape</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span> <span class="k">else</span> <span class="kc">None</span><span class="p">,</span> <span class="n">shape</span><span class="p">[</span><span class="mi">0</span><span class="p">])</span>
<span class="k">return</span> <span class="n">s</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="vm">__class__</span><span class="o">.</span><span class="vm">__name__</span><span class="p">,</span>
<span class="n">mapping</span><span class="o">=</span><span class="n">mapping</span><span class="p">,</span>
<span class="o">**</span><span class="bp">self</span><span class="o">.</span><span class="vm">__dict__</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">hybrid_forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">F</span><span class="p">,</span> <span class="n">inputs</span><span class="p">,</span> <span class="n">states</span><span class="p">,</span> <span class="n">i2h_weight</span><span class="p">,</span>
<span class="n">h2h_weight</span><span class="p">,</span> <span class="n">i2h_bias</span><span class="p">,</span> <span class="n">h2h_bias</span><span class="p">):</span>
<span class="c1"># pylint: disable=too-many-locals</span>
<span class="n">prefix</span> <span class="o">=</span> <span class="s1">'t</span><span class="si">%d</span><span class="s1">_'</span><span class="o">%</span><span class="bp">self</span><span class="o">.</span><span class="n">_counter</span>
<span class="n">i2h</span> <span class="o">=</span> <span class="n">F</span><span class="o">.</span><span class="n">FullyConnected</span><span class="p">(</span><span class="n">data</span><span class="o">=</span><span class="n">inputs</span><span class="p">,</span> <span class="n">weight</span><span class="o">=</span><span class="n">i2h_weight</span><span class="p">,</span> <span class="n">bias</span><span class="o">=</span><span class="n">i2h_bias</span><span class="p">,</span>
<span class="n">num_hidden</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">_hidden_size</span><span class="o">*</span><span class="mi">4</span><span class="p">,</span> <span class="n">name</span><span class="o">=</span><span class="n">prefix</span><span class="o">+</span><span class="s1">'i2h'</span><span class="p">)</span>
<span class="n">h2h</span> <span class="o">=</span> <span class="n">F</span><span class="o">.</span><span class="n">FullyConnected</span><span class="p">(</span><span class="n">data</span><span class="o">=</span><span class="n">states</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">weight</span><span class="o">=</span><span class="n">h2h_weight</span><span class="p">,</span> <span class="n">bias</span><span class="o">=</span><span class="n">h2h_bias</span><span class="p">,</span>
<span class="n">num_hidden</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">_hidden_size</span><span class="o">*</span><span class="mi">4</span><span class="p">,</span> <span class="n">name</span><span class="o">=</span><span class="n">prefix</span><span class="o">+</span><span class="s1">'h2h'</span><span class="p">)</span>
<span class="n">gates</span> <span class="o">=</span> <span class="n">F</span><span class="o">.</span><span class="n">elemwise_add</span><span class="p">(</span><span class="n">i2h</span><span class="p">,</span> <span class="n">h2h</span><span class="p">,</span> <span class="n">name</span><span class="o">=</span><span class="n">prefix</span><span class="o">+</span><span class="s1">'plus0'</span><span class="p">)</span>
<span class="n">slice_gates</span> <span class="o">=</span> <span class="n">F</span><span class="o">.</span><span class="n">SliceChannel</span><span class="p">(</span><span class="n">gates</span><span class="p">,</span> <span class="n">num_outputs</span><span class="o">=</span><span class="mi">4</span><span class="p">,</span> <span class="n">name</span><span class="o">=</span><span class="n">prefix</span><span class="o">+</span><span class="s1">'slice'</span><span class="p">)</span>
<span class="n">in_gate</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_get_activation</span><span class="p">(</span>
<span class="n">F</span><span class="p">,</span> <span class="n">slice_gates</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="bp">self</span><span class="o">.</span><span class="n">_recurrent_activation</span><span class="p">,</span> <span class="n">name</span><span class="o">=</span><span class="n">prefix</span><span class="o">+</span><span class="s1">'i'</span><span class="p">)</span>
<span class="n">forget_gate</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_get_activation</span><span class="p">(</span>
<span class="n">F</span><span class="p">,</span> <span class="n">slice_gates</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span> <span class="bp">self</span><span class="o">.</span><span class="n">_recurrent_activation</span><span class="p">,</span> <span class="n">name</span><span class="o">=</span><span class="n">prefix</span><span class="o">+</span><span class="s1">'f'</span><span class="p">)</span>
<span class="n">in_transform</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_get_activation</span><span class="p">(</span>
<span class="n">F</span><span class="p">,</span> <span class="n">slice_gates</span><span class="p">[</span><span class="mi">2</span><span class="p">],</span> <span class="bp">self</span><span class="o">.</span><span class="n">_activation</span><span class="p">,</span> <span class="n">name</span><span class="o">=</span><span class="n">prefix</span><span class="o">+</span><span class="s1">'c'</span><span class="p">)</span>
<span class="n">out_gate</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_get_activation</span><span class="p">(</span>
<span class="n">F</span><span class="p">,</span> <span class="n">slice_gates</span><span class="p">[</span><span class="mi">3</span><span class="p">],</span> <span class="bp">self</span><span class="o">.</span><span class="n">_recurrent_activation</span><span class="p">,</span> <span class="n">name</span><span class="o">=</span><span class="n">prefix</span><span class="o">+</span><span class="s1">'o'</span><span class="p">)</span>
<span class="n">next_c</span> <span class="o">=</span> <span class="n">F</span><span class="o">.</span><span class="n">_internal</span><span class="o">.</span><span class="n">_plus</span><span class="p">(</span><span class="n">F</span><span class="o">.</span><span class="n">elemwise_mul</span><span class="p">(</span><span class="n">forget_gate</span><span class="p">,</span> <span class="n">states</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span> <span class="n">name</span><span class="o">=</span><span class="n">prefix</span><span class="o">+</span><span class="s1">'mul0'</span><span class="p">),</span>
<span class="n">F</span><span class="o">.</span><span class="n">elemwise_mul</span><span class="p">(</span><span class="n">in_gate</span><span class="p">,</span> <span class="n">in_transform</span><span class="p">,</span> <span class="n">name</span><span class="o">=</span><span class="n">prefix</span><span class="o">+</span><span class="s1">'mul1'</span><span class="p">),</span>
<span class="n">name</span><span class="o">=</span><span class="n">prefix</span><span class="o">+</span><span class="s1">'state'</span><span class="p">)</span>
<span class="n">next_h</span> <span class="o">=</span> <span class="n">F</span><span class="o">.</span><span class="n">_internal</span><span class="o">.</span><span class="n">_mul</span><span class="p">(</span><span class="n">out_gate</span><span class="p">,</span> <span class="n">F</span><span class="o">.</span><span class="n">Activation</span><span class="p">(</span><span class="n">next_c</span><span class="p">,</span> <span class="n">act_type</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">_activation</span><span class="p">,</span> <span class="n">name</span><span class="o">=</span><span class="n">prefix</span><span class="o">+</span><span class="s1">'activation0'</span><span class="p">),</span>
<span class="n">name</span><span class="o">=</span><span class="n">prefix</span><span class="o">+</span><span class="s1">'out'</span><span class="p">)</span>
<span class="k">return</span> <span class="n">next_h</span><span class="p">,</span> <span class="p">[</span><span class="n">next_h</span><span class="p">,</span> <span class="n">next_c</span><span class="p">]</span></div>
<div class="viewcode-block" id="GRUCell"><a class="viewcode-back" href="../../../../api/python/gluon/rnn.html#mxnet.gluon.rnn.GRUCell">[docs]</a><span class="k">class</span> <span class="nc">GRUCell</span><span class="p">(</span><span class="n">HybridRecurrentCell</span><span class="p">):</span>
<span class="sa">r</span><span class="sd">"""Gated Rectified Unit (GRU) network cell.</span>
<span class="sd"> Note: this is an implementation of the cuDNN version of GRUs</span>
<span class="sd"> (slight modification compared to Cho et al. 2014).</span>
<span class="sd"> Each call computes the following function:</span>
<span class="sd"> .. math::</span>
<span class="sd"> \begin{array}{ll}</span>
<span class="sd"> r_t = sigmoid(W_{ir} x_t + b_{ir} + W_{hr} h_{(t-1)} + b_{hr}) \\</span>
<span class="sd"> i_t = sigmoid(W_{ii} x_t + b_{ii} + W_hi h_{(t-1)} + b_{hi}) \\</span>
<span class="sd"> n_t = \tanh(W_{in} x_t + b_{in} + r_t * (W_{hn} h_{(t-1)}+ b_{hn})) \\</span>
<span class="sd"> h_t = (1 - i_t) * n_t + i_t * h_{(t-1)} \\</span>
<span class="sd"> \end{array}</span>
<span class="sd"> where :math:`h_t` is the hidden state at time `t`, :math:`x_t` is the hidden</span>
<span class="sd"> state of the previous layer at time `t` or :math:`input_t` for the first layer,</span>
<span class="sd"> and :math:`r_t`, :math:`i_t`, :math:`n_t` are the reset, input, and new gates, respectively.</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> hidden_size : int</span>
<span class="sd"> Number of units in output symbol.</span>
<span class="sd"> i2h_weight_initializer : str or Initializer</span>
<span class="sd"> Initializer for the input weights matrix, used for the linear</span>
<span class="sd"> transformation of the inputs.</span>
<span class="sd"> h2h_weight_initializer : str or Initializer</span>
<span class="sd"> Initializer for the recurrent weights matrix, used for the linear</span>
<span class="sd"> transformation of the recurrent state.</span>
<span class="sd"> i2h_bias_initializer : str or Initializer, default 'zeros'</span>
<span class="sd"> Initializer for the bias vector.</span>
<span class="sd"> h2h_bias_initializer : str or Initializer, default 'zeros'</span>
<span class="sd"> Initializer for the bias vector.</span>
<span class="sd"> prefix : str, default 'gru_'</span>
<span class="sd"> prefix for name of `Block`s</span>
<span class="sd"> (and name of weight if params is `None`).</span>
<span class="sd"> params : Parameter or None, default None</span>
<span class="sd"> Container for weight sharing between cells.</span>
<span class="sd"> Created if `None`.</span>
<span class="sd"> Inputs:</span>
<span class="sd"> - **data**: input tensor with shape `(batch_size, input_size)`.</span>
<span class="sd"> - **states**: a list of one initial recurrent state tensor with shape</span>
<span class="sd"> `(batch_size, num_hidden)`.</span>
<span class="sd"> Outputs:</span>
<span class="sd"> - **out**: output tensor with shape `(batch_size, num_hidden)`.</span>
<span class="sd"> - **next_states**: a list of one output recurrent state tensor with the</span>
<span class="sd"> same shape as `states`.</span>
<span class="sd"> """</span>
<span class="k">def</span> <span class="nf">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">hidden_size</span><span class="p">,</span>
<span class="n">i2h_weight_initializer</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="n">h2h_weight_initializer</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">i2h_bias_initializer</span><span class="o">=</span><span class="s1">'zeros'</span><span class="p">,</span> <span class="n">h2h_bias_initializer</span><span class="o">=</span><span class="s1">'zeros'</span><span class="p">,</span>
<span class="n">input_size</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span> <span class="n">prefix</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="n">params</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span>
<span class="nb">super</span><span class="p">(</span><span class="n">GRUCell</span><span class="p">,</span> <span class="bp">self</span><span class="p">)</span><span class="o">.</span><span class="fm">__init__</span><span class="p">(</span><span class="n">prefix</span><span class="o">=</span><span class="n">prefix</span><span class="p">,</span> <span class="n">params</span><span class="o">=</span><span class="n">params</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_hidden_size</span> <span class="o">=</span> <span class="n">hidden_size</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_input_size</span> <span class="o">=</span> <span class="n">input_size</span>
<span class="bp">self</span><span class="o">.</span><span class="n">i2h_weight</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">params</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s1">'i2h_weight'</span><span class="p">,</span> <span class="n">shape</span><span class="o">=</span><span class="p">(</span><span class="mi">3</span><span class="o">*</span><span class="n">hidden_size</span><span class="p">,</span> <span class="n">input_size</span><span class="p">),</span>
<span class="n">init</span><span class="o">=</span><span class="n">i2h_weight_initializer</span><span class="p">,</span>
<span class="n">allow_deferred_init</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">h2h_weight</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">params</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s1">'h2h_weight'</span><span class="p">,</span> <span class="n">shape</span><span class="o">=</span><span class="p">(</span><span class="mi">3</span><span class="o">*</span><span class="n">hidden_size</span><span class="p">,</span> <span class="n">hidden_size</span><span class="p">),</span>
<span class="n">init</span><span class="o">=</span><span class="n">h2h_weight_initializer</span><span class="p">,</span>
<span class="n">allow_deferred_init</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">i2h_bias</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">params</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s1">'i2h_bias'</span><span class="p">,</span> <span class="n">shape</span><span class="o">=</span><span class="p">(</span><span class="mi">3</span><span class="o">*</span><span class="n">hidden_size</span><span class="p">,),</span>
<span class="n">init</span><span class="o">=</span><span class="n">i2h_bias_initializer</span><span class="p">,</span>
<span class="n">allow_deferred_init</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">h2h_bias</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">params</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s1">'h2h_bias'</span><span class="p">,</span> <span class="n">shape</span><span class="o">=</span><span class="p">(</span><span class="mi">3</span><span class="o">*</span><span class="n">hidden_size</span><span class="p">,),</span>
<span class="n">init</span><span class="o">=</span><span class="n">h2h_bias_initializer</span><span class="p">,</span>
<span class="n">allow_deferred_init</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">state_info</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">batch_size</span><span class="o">=</span><span class="mi">0</span><span class="p">):</span>
<span class="k">return</span> <span class="p">[{</span><span class="s1">'shape'</span><span class="p">:</span> <span class="p">(</span><span class="n">batch_size</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">_hidden_size</span><span class="p">),</span> <span class="s1">'__layout__'</span><span class="p">:</span> <span class="s1">'NC'</span><span class="p">}]</span>
<span class="k">def</span> <span class="nf">_alias</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="k">return</span> <span class="s1">'gru'</span>
<span class="k">def</span> <span class="nf">__repr__</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="n">s</span> <span class="o">=</span> <span class="s1">'</span><span class="si">{name}</span><span class="s1">(</span><span class="si">{mapping}</span><span class="s1">)'</span>
<span class="n">shape</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">i2h_weight</span><span class="o">.</span><span class="n">shape</span>
<span class="n">mapping</span> <span class="o">=</span> <span class="s1">'</span><span class="si">{0}</span><span class="s1"> -> </span><span class="si">{1}</span><span class="s1">'</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">shape</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span> <span class="k">if</span> <span class="n">shape</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span> <span class="k">else</span> <span class="kc">None</span><span class="p">,</span> <span class="n">shape</span><span class="p">[</span><span class="mi">0</span><span class="p">])</span>
<span class="k">return</span> <span class="n">s</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="vm">__class__</span><span class="o">.</span><span class="vm">__name__</span><span class="p">,</span>
<span class="n">mapping</span><span class="o">=</span><span class="n">mapping</span><span class="p">,</span>
<span class="o">**</span><span class="bp">self</span><span class="o">.</span><span class="vm">__dict__</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">hybrid_forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">F</span><span class="p">,</span> <span class="n">inputs</span><span class="p">,</span> <span class="n">states</span><span class="p">,</span> <span class="n">i2h_weight</span><span class="p">,</span>
<span class="n">h2h_weight</span><span class="p">,</span> <span class="n">i2h_bias</span><span class="p">,</span> <span class="n">h2h_bias</span><span class="p">):</span>
<span class="c1"># pylint: disable=too-many-locals</span>
<span class="n">prefix</span> <span class="o">=</span> <span class="s1">'t</span><span class="si">%d</span><span class="s1">_'</span><span class="o">%</span><span class="bp">self</span><span class="o">.</span><span class="n">_counter</span>
<span class="n">prev_state_h</span> <span class="o">=</span> <span class="n">states</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span>
<span class="n">i2h</span> <span class="o">=</span> <span class="n">F</span><span class="o">.</span><span class="n">FullyConnected</span><span class="p">(</span><span class="n">data</span><span class="o">=</span><span class="n">inputs</span><span class="p">,</span>
<span class="n">weight</span><span class="o">=</span><span class="n">i2h_weight</span><span class="p">,</span>
<span class="n">bias</span><span class="o">=</span><span class="n">i2h_bias</span><span class="p">,</span>
<span class="n">num_hidden</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">_hidden_size</span> <span class="o">*</span> <span class="mi">3</span><span class="p">,</span>
<span class="n">name</span><span class="o">=</span><span class="n">prefix</span><span class="o">+</span><span class="s1">'i2h'</span><span class="p">)</span>
<span class="n">h2h</span> <span class="o">=</span> <span class="n">F</span><span class="o">.</span><span class="n">FullyConnected</span><span class="p">(</span><span class="n">data</span><span class="o">=</span><span class="n">prev_state_h</span><span class="p">,</span>
<span class="n">weight</span><span class="o">=</span><span class="n">h2h_weight</span><span class="p">,</span>
<span class="n">bias</span><span class="o">=</span><span class="n">h2h_bias</span><span class="p">,</span>
<span class="n">num_hidden</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">_hidden_size</span> <span class="o">*</span> <span class="mi">3</span><span class="p">,</span>
<span class="n">name</span><span class="o">=</span><span class="n">prefix</span><span class="o">+</span><span class="s1">'h2h'</span><span class="p">)</span>
<span class="n">i2h_r</span><span class="p">,</span> <span class="n">i2h_z</span><span class="p">,</span> <span class="n">i2h</span> <span class="o">=</span> <span class="n">F</span><span class="o">.</span><span class="n">SliceChannel</span><span class="p">(</span><span class="n">i2h</span><span class="p">,</span> <span class="n">num_outputs</span><span class="o">=</span><span class="mi">3</span><span class="p">,</span>
<span class="n">name</span><span class="o">=</span><span class="n">prefix</span><span class="o">+</span><span class="s1">'i2h_slice'</span><span class="p">)</span>
<span class="n">h2h_r</span><span class="p">,</span> <span class="n">h2h_z</span><span class="p">,</span> <span class="n">h2h</span> <span class="o">=</span> <span class="n">F</span><span class="o">.</span><span class="n">SliceChannel</span><span class="p">(</span><span class="n">h2h</span><span class="p">,</span> <span class="n">num_outputs</span><span class="o">=</span><span class="mi">3</span><span class="p">,</span>
<span class="n">name</span><span class="o">=</span><span class="n">prefix</span><span class="o">+</span><span class="s1">'h2h_slice'</span><span class="p">)</span>
<span class="n">reset_gate</span> <span class="o">=</span> <span class="n">F</span><span class="o">.</span><span class="n">Activation</span><span class="p">(</span><span class="n">F</span><span class="o">.</span><span class="n">elemwise_add</span><span class="p">(</span><span class="n">i2h_r</span><span class="p">,</span> <span class="n">h2h_r</span><span class="p">,</span> <span class="n">name</span><span class="o">=</span><span class="n">prefix</span><span class="o">+</span><span class="s1">'plus0'</span><span class="p">),</span> <span class="n">act_type</span><span class="o">=</span><span class="s2">"sigmoid"</span><span class="p">,</span>
<span class="n">name</span><span class="o">=</span><span class="n">prefix</span><span class="o">+</span><span class="s1">'r_act'</span><span class="p">)</span>
<span class="n">update_gate</span> <span class="o">=</span> <span class="n">F</span><span class="o">.</span><span class="n">Activation</span><span class="p">(</span><span class="n">F</span><span class="o">.</span><span class="n">elemwise_add</span><span class="p">(</span><span class="n">i2h_z</span><span class="p">,</span> <span class="n">h2h_z</span><span class="p">,</span> <span class="n">name</span><span class="o">=</span><span class="n">prefix</span><span class="o">+</span><span class="s1">'plus1'</span><span class="p">),</span> <span class="n">act_type</span><span class="o">=</span><span class="s2">"sigmoid"</span><span class="p">,</span>
<span class="n">name</span><span class="o">=</span><span class="n">prefix</span><span class="o">+</span><span class="s1">'z_act'</span><span class="p">)</span>
<span class="n">next_h_tmp</span> <span class="o">=</span> <span class="n">F</span><span class="o">.</span><span class="n">Activation</span><span class="p">(</span><span class="n">F</span><span class="o">.</span><span class="n">elemwise_add</span><span class="p">(</span><span class="n">i2h</span><span class="p">,</span>
<span class="n">F</span><span class="o">.</span><span class="n">elemwise_mul</span><span class="p">(</span><span class="n">reset_gate</span><span class="p">,</span> <span class="n">h2h</span><span class="p">,</span> <span class="n">name</span><span class="o">=</span><span class="n">prefix</span><span class="o">+</span><span class="s1">'mul0'</span><span class="p">),</span>
<span class="n">name</span><span class="o">=</span><span class="n">prefix</span><span class="o">+</span><span class="s1">'plus2'</span><span class="p">),</span>
<span class="n">act_type</span><span class="o">=</span><span class="s2">"tanh"</span><span class="p">,</span>
<span class="n">name</span><span class="o">=</span><span class="n">prefix</span><span class="o">+</span><span class="s1">'h_act'</span><span class="p">)</span>
<span class="n">ones</span> <span class="o">=</span> <span class="n">F</span><span class="o">.</span><span class="n">ones_like</span><span class="p">(</span><span class="n">update_gate</span><span class="p">,</span> <span class="n">name</span><span class="o">=</span><span class="n">prefix</span><span class="o">+</span><span class="s2">"ones_like0"</span><span class="p">)</span>
<span class="n">next_h</span> <span class="o">=</span> <span class="n">F</span><span class="o">.</span><span class="n">_internal</span><span class="o">.</span><span class="n">_plus</span><span class="p">(</span><span class="n">F</span><span class="o">.</span><span class="n">elemwise_mul</span><span class="p">(</span><span class="n">F</span><span class="o">.</span><span class="n">elemwise_sub</span><span class="p">(</span><span class="n">ones</span><span class="p">,</span> <span class="n">update_gate</span><span class="p">,</span> <span class="n">name</span><span class="o">=</span><span class="n">prefix</span><span class="o">+</span><span class="s1">'minus0'</span><span class="p">),</span>
<span class="n">next_h_tmp</span><span class="p">,</span>
<span class="n">name</span><span class="o">=</span><span class="n">prefix</span><span class="o">+</span><span class="s1">'mul1'</span><span class="p">),</span>
<span class="n">F</span><span class="o">.</span><span class="n">elemwise_mul</span><span class="p">(</span><span class="n">update_gate</span><span class="p">,</span> <span class="n">prev_state_h</span><span class="p">,</span> <span class="n">name</span><span class="o">=</span><span class="n">prefix</span><span class="o">+</span><span class="s1">'mul20'</span><span class="p">),</span>
<span class="n">name</span><span class="o">=</span><span class="n">prefix</span><span class="o">+</span><span class="s1">'out'</span><span class="p">)</span>
<span class="k">return</span> <span class="n">next_h</span><span class="p">,</span> <span class="p">[</span><span class="n">next_h</span><span class="p">]</span></div>
<div class="viewcode-block" id="SequentialRNNCell"><a class="viewcode-back" href="../../../../api/python/gluon/rnn.html#mxnet.gluon.rnn.SequentialRNNCell">[docs]</a><span class="k">class</span> <span class="nc">SequentialRNNCell</span><span class="p">(</span><span class="n">RecurrentCell</span><span class="p">):</span>
<span class="sd">"""Sequentially stacking multiple RNN cells."""</span>
<span class="k">def</span> <span class="nf">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">prefix</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="n">params</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span>
<span class="nb">super</span><span class="p">(</span><span class="n">SequentialRNNCell</span><span class="p">,</span> <span class="bp">self</span><span class="p">)</span><span class="o">.</span><span class="fm">__init__</span><span class="p">(</span><span class="n">prefix</span><span class="o">=</span><span class="n">prefix</span><span class="p">,</span> <span class="n">params</span><span class="o">=</span><span class="n">params</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">__repr__</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="n">s</span> <span class="o">=</span> <span class="s1">'</span><span class="si">{name}</span><span class="s1">(</span><span class="se">\n</span><span class="si">{modstr}</span><span class="se">\n</span><span class="s1">)'</span>
<span class="k">return</span> <span class="n">s</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="vm">__class__</span><span class="o">.</span><span class="vm">__name__</span><span class="p">,</span>
<span class="n">modstr</span><span class="o">=</span><span class="s1">'</span><span class="se">\n</span><span class="s1">'</span><span class="o">.</span><span class="n">join</span><span class="p">([</span><span class="s1">'(</span><span class="si">{i}</span><span class="s1">): </span><span class="si">{m}</span><span class="s1">'</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">i</span><span class="o">=</span><span class="n">i</span><span class="p">,</span> <span class="n">m</span><span class="o">=</span><span class="n">_indent</span><span class="p">(</span><span class="n">m</span><span class="o">.</span><span class="fm">__repr__</span><span class="p">(),</span> <span class="mi">2</span><span class="p">))</span>
<span class="k">for</span> <span class="n">i</span><span class="p">,</span> <span class="n">m</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">_children</span><span class="o">.</span><span class="n">items</span><span class="p">()]))</span>
<div class="viewcode-block" id="SequentialRNNCell.add"><a class="viewcode-back" href="../../../../api/python/gluon/rnn.html#mxnet.gluon.rnn.SequentialRNNCell.add">[docs]</a> <span class="k">def</span> <span class="nf">add</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">cell</span><span class="p">):</span>
<span class="sd">"""Appends a cell into the stack.</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> cell : RecurrentCell</span>
<span class="sd"> The cell to add.</span>
<span class="sd"> """</span>
<span class="bp">self</span><span class="o">.</span><span class="n">register_child</span><span class="p">(</span><span class="n">cell</span><span class="p">)</span></div>
<span class="k">def</span> <span class="nf">state_info</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">batch_size</span><span class="o">=</span><span class="mi">0</span><span class="p">):</span>
<span class="k">return</span> <span class="n">_cells_state_info</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">_children</span><span class="o">.</span><span class="n">values</span><span class="p">(),</span> <span class="n">batch_size</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">begin_state</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
<span class="k">assert</span> <span class="ow">not</span> <span class="bp">self</span><span class="o">.</span><span class="n">_modified</span><span class="p">,</span> \
<span class="s2">"After applying modifier cells (e.g. ZoneoutCell) the base "</span> \
<span class="s2">"cell cannot be called directly. Call the modifier cell instead."</span>
<span class="k">return</span> <span class="n">_cells_begin_state</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">_children</span><span class="o">.</span><span class="n">values</span><span class="p">(),</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">__call__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">inputs</span><span class="p">,</span> <span class="n">states</span><span class="p">):</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_counter</span> <span class="o">+=</span> <span class="mi">1</span>
<span class="n">next_states</span> <span class="o">=</span> <span class="p">[]</span>
<span class="n">p</span> <span class="o">=</span> <span class="mi">0</span>
<span class="k">assert</span> <span class="nb">all</span><span class="p">(</span><span class="ow">not</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">cell</span><span class="p">,</span> <span class="n">BidirectionalCell</span><span class="p">)</span> <span class="k">for</span> <span class="n">cell</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">_children</span><span class="o">.</span><span class="n">values</span><span class="p">())</span>
<span class="k">for</span> <span class="n">cell</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">_children</span><span class="o">.</span><span class="n">values</span><span class="p">():</span>
<span class="k">assert</span> <span class="ow">not</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">cell</span><span class="p">,</span> <span class="n">BidirectionalCell</span><span class="p">)</span>
<span class="n">n</span> <span class="o">=</span> <span class="nb">len</span><span class="p">(</span><span class="n">cell</span><span class="o">.</span><span class="n">state_info</span><span class="p">())</span>
<span class="n">state</span> <span class="o">=</span> <span class="n">states</span><span class="p">[</span><span class="n">p</span><span class="p">:</span><span class="n">p</span><span class="o">+</span><span class="n">n</span><span class="p">]</span>
<span class="n">p</span> <span class="o">+=</span> <span class="n">n</span>
<span class="n">inputs</span><span class="p">,</span> <span class="n">state</span> <span class="o">=</span> <span class="n">cell</span><span class="p">(</span><span class="n">inputs</span><span class="p">,</span> <span class="n">state</span><span class="p">)</span>
<span class="n">next_states</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">state</span><span class="p">)</span>
<span class="k">return</span> <span class="n">inputs</span><span class="p">,</span> <span class="nb">sum</span><span class="p">(</span><span class="n">next_states</span><span class="p">,</span> <span class="p">[])</span>
<span class="k">def</span> <span class="nf">unroll</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">length</span><span class="p">,</span> <span class="n">inputs</span><span class="p">,</span> <span class="n">begin_state</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="n">layout</span><span class="o">=</span><span class="s1">'NTC'</span><span class="p">,</span> <span class="n">merge_outputs</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">valid_length</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span>
<span class="c1"># pylint: disable=too-many-locals</span>
<span class="bp">self</span><span class="o">.</span><span class="n">reset</span><span class="p">()</span>
<span class="n">inputs</span><span class="p">,</span> <span class="n">_</span><span class="p">,</span> <span class="n">F</span><span class="p">,</span> <span class="n">batch_size</span> <span class="o">=</span> <span class="n">_format_sequence</span><span class="p">(</span><span class="n">length</span><span class="p">,</span> <span class="n">inputs</span><span class="p">,</span> <span class="n">layout</span><span class="p">,</span> <span class="kc">None</span><span class="p">)</span>
<span class="n">num_cells</span> <span class="o">=</span> <span class="nb">len</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">_children</span><span class="p">)</span>
<span class="n">begin_state</span> <span class="o">=</span> <span class="n">_get_begin_state</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">F</span><span class="p">,</span> <span class="n">begin_state</span><span class="p">,</span> <span class="n">inputs</span><span class="p">,</span> <span class="n">batch_size</span><span class="p">)</span>
<span class="n">p</span> <span class="o">=</span> <span class="mi">0</span>
<span class="n">next_states</span> <span class="o">=</span> <span class="p">[]</span>
<span class="k">for</span> <span class="n">i</span><span class="p">,</span> <span class="n">cell</span> <span class="ow">in</span> <span class="nb">enumerate</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">_children</span><span class="o">.</span><span class="n">values</span><span class="p">()):</span>
<span class="n">n</span> <span class="o">=</span> <span class="nb">len</span><span class="p">(</span><span class="n">cell</span><span class="o">.</span><span class="n">state_info</span><span class="p">())</span>
<span class="n">states</span> <span class="o">=</span> <span class="n">begin_state</span><span class="p">[</span><span class="n">p</span><span class="p">:</span><span class="n">p</span><span class="o">+</span><span class="n">n</span><span class="p">]</span>
<span class="n">p</span> <span class="o">+=</span> <span class="n">n</span>
<span class="n">inputs</span><span class="p">,</span> <span class="n">states</span> <span class="o">=</span> <span class="n">cell</span><span class="o">.</span><span class="n">unroll</span><span class="p">(</span><span class="n">length</span><span class="p">,</span> <span class="n">inputs</span><span class="o">=</span><span class="n">inputs</span><span class="p">,</span> <span class="n">begin_state</span><span class="o">=</span><span class="n">states</span><span class="p">,</span>
<span class="n">layout</span><span class="o">=</span><span class="n">layout</span><span class="p">,</span>
<span class="n">merge_outputs</span><span class="o">=</span><span class="kc">None</span> <span class="k">if</span> <span class="n">i</span> <span class="o"><</span> <span class="n">num_cells</span><span class="o">-</span><span class="mi">1</span> <span class="k">else</span> <span class="n">merge_outputs</span><span class="p">,</span>
<span class="n">valid_length</span><span class="o">=</span><span class="n">valid_length</span><span class="p">)</span>
<span class="n">next_states</span><span class="o">.</span><span class="n">extend</span><span class="p">(</span><span class="n">states</span><span class="p">)</span>
<span class="k">return</span> <span class="n">inputs</span><span class="p">,</span> <span class="n">next_states</span>
<span class="k">def</span> <span class="nf">__getitem__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">i</span><span class="p">):</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_children</span><span class="p">[</span><span class="nb">str</span><span class="p">(</span><span class="n">i</span><span class="p">)]</span>
<span class="k">def</span> <span class="nf">__len__</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="k">return</span> <span class="nb">len</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">_children</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">hybrid_forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
<span class="c1"># pylint: disable=missing-docstring</span>
<span class="k">raise</span> <span class="ne">NotImplementedError</span></div>
<div class="viewcode-block" id="HybridSequentialRNNCell"><a class="viewcode-back" href="../../../../api/python/gluon/rnn.html#mxnet.gluon.rnn.HybridSequentialRNNCell">[docs]</a><span class="k">class</span> <span class="nc">HybridSequentialRNNCell</span><span class="p">(</span><span class="n">HybridRecurrentCell</span><span class="p">):</span>
<span class="sd">"""Sequentially stacking multiple HybridRNN cells."""</span>
<span class="k">def</span> <span class="nf">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">prefix</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="n">params</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span>
<span class="nb">super</span><span class="p">(</span><span class="n">HybridSequentialRNNCell</span><span class="p">,</span> <span class="bp">self</span><span class="p">)</span><span class="o">.</span><span class="fm">__init__</span><span class="p">(</span><span class="n">prefix</span><span class="o">=</span><span class="n">prefix</span><span class="p">,</span> <span class="n">params</span><span class="o">=</span><span class="n">params</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">__repr__</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="n">s</span> <span class="o">=</span> <span class="s1">'</span><span class="si">{name}</span><span class="s1">(</span><span class="se">\n</span><span class="si">{modstr}</span><span class="se">\n</span><span class="s1">)'</span>
<span class="k">return</span> <span class="n">s</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="vm">__class__</span><span class="o">.</span><span class="vm">__name__</span><span class="p">,</span>
<span class="n">modstr</span><span class="o">=</span><span class="s1">'</span><span class="se">\n</span><span class="s1">'</span><span class="o">.</span><span class="n">join</span><span class="p">([</span><span class="s1">'(</span><span class="si">{i}</span><span class="s1">): </span><span class="si">{m}</span><span class="s1">'</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">i</span><span class="o">=</span><span class="n">i</span><span class="p">,</span> <span class="n">m</span><span class="o">=</span><span class="n">_indent</span><span class="p">(</span><span class="n">m</span><span class="o">.</span><span class="fm">__repr__</span><span class="p">(),</span> <span class="mi">2</span><span class="p">))</span>
<span class="k">for</span> <span class="n">i</span><span class="p">,</span> <span class="n">m</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">_children</span><span class="o">.</span><span class="n">items</span><span class="p">()]))</span>
<div class="viewcode-block" id="HybridSequentialRNNCell.add"><a class="viewcode-back" href="../../../../api/python/gluon/rnn.html#mxnet.gluon.rnn.HybridSequentialRNNCell.add">[docs]</a> <span class="k">def</span> <span class="nf">add</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">cell</span><span class="p">):</span>
<span class="sd">"""Appends a cell into the stack.</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> cell : RecurrentCell</span>
<span class="sd"> The cell to add.</span>
<span class="sd"> """</span>
<span class="bp">self</span><span class="o">.</span><span class="n">register_child</span><span class="p">(</span><span class="n">cell</span><span class="p">)</span></div>
<span class="k">def</span> <span class="nf">state_info</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">batch_size</span><span class="o">=</span><span class="mi">0</span><span class="p">):</span>
<span class="k">return</span> <span class="n">_cells_state_info</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">_children</span><span class="o">.</span><span class="n">values</span><span class="p">(),</span> <span class="n">batch_size</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">begin_state</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
<span class="k">assert</span> <span class="ow">not</span> <span class="bp">self</span><span class="o">.</span><span class="n">_modified</span><span class="p">,</span> \
<span class="s2">"After applying modifier cells (e.g. ZoneoutCell) the base "</span> \
<span class="s2">"cell cannot be called directly. Call the modifier cell instead."</span>
<span class="k">return</span> <span class="n">_cells_begin_state</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">_children</span><span class="o">.</span><span class="n">values</span><span class="p">(),</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">__call__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">inputs</span><span class="p">,</span> <span class="n">states</span><span class="p">):</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_counter</span> <span class="o">+=</span> <span class="mi">1</span>
<span class="n">next_states</span> <span class="o">=</span> <span class="p">[]</span>
<span class="n">p</span> <span class="o">=</span> <span class="mi">0</span>
<span class="k">assert</span> <span class="nb">all</span><span class="p">(</span><span class="ow">not</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">cell</span><span class="p">,</span> <span class="n">BidirectionalCell</span><span class="p">)</span> <span class="k">for</span> <span class="n">cell</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">_children</span><span class="o">.</span><span class="n">values</span><span class="p">())</span>
<span class="k">for</span> <span class="n">cell</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">_children</span><span class="o">.</span><span class="n">values</span><span class="p">():</span>
<span class="n">n</span> <span class="o">=</span> <span class="nb">len</span><span class="p">(</span><span class="n">cell</span><span class="o">.</span><span class="n">state_info</span><span class="p">())</span>
<span class="n">state</span> <span class="o">=</span> <span class="n">states</span><span class="p">[</span><span class="n">p</span><span class="p">:</span><span class="n">p</span><span class="o">+</span><span class="n">n</span><span class="p">]</span>
<span class="n">p</span> <span class="o">+=</span> <span class="n">n</span>
<span class="n">inputs</span><span class="p">,</span> <span class="n">state</span> <span class="o">=</span> <span class="n">cell</span><span class="p">(</span><span class="n">inputs</span><span class="p">,</span> <span class="n">state</span><span class="p">)</span>
<span class="n">next_states</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">state</span><span class="p">)</span>
<span class="k">return</span> <span class="n">inputs</span><span class="p">,</span> <span class="nb">sum</span><span class="p">(</span><span class="n">next_states</span><span class="p">,</span> <span class="p">[])</span>
<span class="k">def</span> <span class="nf">unroll</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">length</span><span class="p">,</span> <span class="n">inputs</span><span class="p">,</span> <span class="n">begin_state</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="n">layout</span><span class="o">=</span><span class="s1">'NTC'</span><span class="p">,</span> <span class="n">merge_outputs</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">valid_length</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span>
<span class="bp">self</span><span class="o">.</span><span class="n">reset</span><span class="p">()</span>
<span class="n">inputs</span><span class="p">,</span> <span class="n">_</span><span class="p">,</span> <span class="n">F</span><span class="p">,</span> <span class="n">batch_size</span> <span class="o">=</span> <span class="n">_format_sequence</span><span class="p">(</span><span class="n">length</span><span class="p">,</span> <span class="n">inputs</span><span class="p">,</span> <span class="n">layout</span><span class="p">,</span> <span class="kc">None</span><span class="p">)</span>
<span class="n">num_cells</span> <span class="o">=</span> <span class="nb">len</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">_children</span><span class="p">)</span>
<span class="n">begin_state</span> <span class="o">=</span> <span class="n">_get_begin_state</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">F</span><span class="p">,</span> <span class="n">begin_state</span><span class="p">,</span> <span class="n">inputs</span><span class="p">,</span> <span class="n">batch_size</span><span class="p">)</span>
<span class="n">p</span> <span class="o">=</span> <span class="mi">0</span>
<span class="n">next_states</span> <span class="o">=</span> <span class="p">[]</span>
<span class="k">for</span> <span class="n">i</span><span class="p">,</span> <span class="n">cell</span> <span class="ow">in</span> <span class="nb">enumerate</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">_children</span><span class="o">.</span><span class="n">values</span><span class="p">()):</span>
<span class="n">n</span> <span class="o">=</span> <span class="nb">len</span><span class="p">(</span><span class="n">cell</span><span class="o">.</span><span class="n">state_info</span><span class="p">())</span>
<span class="n">states</span> <span class="o">=</span> <span class="n">begin_state</span><span class="p">[</span><span class="n">p</span><span class="p">:</span><span class="n">p</span><span class="o">+</span><span class="n">n</span><span class="p">]</span>
<span class="n">p</span> <span class="o">+=</span> <span class="n">n</span>
<span class="n">inputs</span><span class="p">,</span> <span class="n">states</span> <span class="o">=</span> <span class="n">cell</span><span class="o">.</span><span class="n">unroll</span><span class="p">(</span><span class="n">length</span><span class="p">,</span> <span class="n">inputs</span><span class="o">=</span><span class="n">inputs</span><span class="p">,</span> <span class="n">begin_state</span><span class="o">=</span><span class="n">states</span><span class="p">,</span>
<span class="n">layout</span><span class="o">=</span><span class="n">layout</span><span class="p">,</span>
<span class="n">merge_outputs</span><span class="o">=</span><span class="kc">None</span> <span class="k">if</span> <span class="n">i</span> <span class="o"><</span> <span class="n">num_cells</span><span class="o">-</span><span class="mi">1</span> <span class="k">else</span> <span class="n">merge_outputs</span><span class="p">,</span>
<span class="n">valid_length</span><span class="o">=</span><span class="n">valid_length</span><span class="p">)</span>
<span class="n">next_states</span><span class="o">.</span><span class="n">extend</span><span class="p">(</span><span class="n">states</span><span class="p">)</span>
<span class="k">return</span> <span class="n">inputs</span><span class="p">,</span> <span class="n">next_states</span>
<span class="k">def</span> <span class="nf">__getitem__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">i</span><span class="p">):</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_children</span><span class="p">[</span><span class="nb">str</span><span class="p">(</span><span class="n">i</span><span class="p">)]</span>
<span class="k">def</span> <span class="nf">__len__</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="k">return</span> <span class="nb">len</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">_children</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">hybrid_forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">F</span><span class="p">,</span> <span class="n">inputs</span><span class="p">,</span> <span class="n">states</span><span class="p">):</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="fm">__call__</span><span class="p">(</span><span class="n">inputs</span><span class="p">,</span> <span class="n">states</span><span class="p">)</span></div>
<div class="viewcode-block" id="DropoutCell"><a class="viewcode-back" href="../../../../api/python/gluon/rnn.html#mxnet.gluon.rnn.DropoutCell">[docs]</a><span class="k">class</span> <span class="nc">DropoutCell</span><span class="p">(</span><span class="n">HybridRecurrentCell</span><span class="p">):</span>
<span class="sd">"""Applies dropout on input.</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> rate : float</span>
<span class="sd"> Percentage of elements to drop out, which</span>
<span class="sd"> is 1 - percentage to retain.</span>
<span class="sd"> axes : tuple of int, default ()</span>
<span class="sd"> The axes on which dropout mask is shared. If empty, regular dropout is applied.</span>
<span class="sd"> Inputs:</span>
<span class="sd"> - **data**: input tensor with shape `(batch_size, size)`.</span>
<span class="sd"> - **states**: a list of recurrent state tensors.</span>
<span class="sd"> Outputs:</span>
<span class="sd"> - **out**: output tensor with shape `(batch_size, size)`.</span>
<span class="sd"> - **next_states**: returns input `states` directly.</span>
<span class="sd"> """</span>
<span class="k">def</span> <span class="nf">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">rate</span><span class="p">,</span> <span class="n">axes</span><span class="o">=</span><span class="p">(),</span> <span class="n">prefix</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="n">params</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span>
<span class="nb">super</span><span class="p">(</span><span class="n">DropoutCell</span><span class="p">,</span> <span class="bp">self</span><span class="p">)</span><span class="o">.</span><span class="fm">__init__</span><span class="p">(</span><span class="n">prefix</span><span class="p">,</span> <span class="n">params</span><span class="p">)</span>
<span class="k">assert</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">rate</span><span class="p">,</span> <span class="n">numeric_types</span><span class="p">),</span> <span class="s2">"rate must be a number"</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_rate</span> <span class="o">=</span> <span class="n">rate</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_axes</span> <span class="o">=</span> <span class="n">axes</span>
<span class="k">def</span> <span class="nf">__repr__</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="n">s</span> <span class="o">=</span> <span class="s1">'</span><span class="si">{name}</span><span class="s1">(rate=</span><span class="si">{_rate}</span><span class="s1">, axes=</span><span class="si">{_axes}</span><span class="s1">)'</span>
<span class="k">return</span> <span class="n">s</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="vm">__class__</span><span class="o">.</span><span class="vm">__name__</span><span class="p">,</span>
<span class="o">**</span><span class="bp">self</span><span class="o">.</span><span class="vm">__dict__</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">state_info</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">batch_size</span><span class="o">=</span><span class="mi">0</span><span class="p">):</span>
<span class="k">return</span> <span class="p">[]</span>
<span class="k">def</span> <span class="nf">_alias</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="k">return</span> <span class="s1">'dropout'</span>
<span class="k">def</span> <span class="nf">hybrid_forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">F</span><span class="p">,</span> <span class="n">inputs</span><span class="p">,</span> <span class="n">states</span><span class="p">):</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">_rate</span> <span class="o">></span> <span class="mi">0</span><span class="p">:</span>
<span class="n">inputs</span> <span class="o">=</span> <span class="n">F</span><span class="o">.</span><span class="n">Dropout</span><span class="p">(</span><span class="n">data</span><span class="o">=</span><span class="n">inputs</span><span class="p">,</span> <span class="n">p</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">_rate</span><span class="p">,</span> <span class="n">axes</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">_axes</span><span class="p">,</span>
<span class="n">name</span><span class="o">=</span><span class="s1">'t</span><span class="si">%d</span><span class="s1">_fwd'</span><span class="o">%</span><span class="bp">self</span><span class="o">.</span><span class="n">_counter</span><span class="p">)</span>
<span class="k">return</span> <span class="n">inputs</span><span class="p">,</span> <span class="n">states</span>
<span class="k">def</span> <span class="nf">unroll</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">length</span><span class="p">,</span> <span class="n">inputs</span><span class="p">,</span> <span class="n">begin_state</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="n">layout</span><span class="o">=</span><span class="s1">'NTC'</span><span class="p">,</span> <span class="n">merge_outputs</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">valid_length</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span>
<span class="bp">self</span><span class="o">.</span><span class="n">reset</span><span class="p">()</span>
<span class="n">inputs</span><span class="p">,</span> <span class="n">_</span><span class="p">,</span> <span class="n">F</span><span class="p">,</span> <span class="n">_</span> <span class="o">=</span> <span class="n">_format_sequence</span><span class="p">(</span><span class="n">length</span><span class="p">,</span> <span class="n">inputs</span><span class="p">,</span> <span class="n">layout</span><span class="p">,</span> <span class="n">merge_outputs</span><span class="p">)</span>
<span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">inputs</span><span class="p">,</span> <span class="n">tensor_types</span><span class="p">):</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">hybrid_forward</span><span class="p">(</span><span class="n">F</span><span class="p">,</span> <span class="n">inputs</span><span class="p">,</span> <span class="n">begin_state</span> <span class="k">if</span> <span class="n">begin_state</span> <span class="k">else</span> <span class="p">[])</span>
<span class="k">return</span> <span class="nb">super</span><span class="p">(</span><span class="n">DropoutCell</span><span class="p">,</span> <span class="bp">self</span><span class="p">)</span><span class="o">.</span><span class="n">unroll</span><span class="p">(</span>
<span class="n">length</span><span class="p">,</span> <span class="n">inputs</span><span class="p">,</span> <span class="n">begin_state</span><span class="o">=</span><span class="n">begin_state</span><span class="p">,</span> <span class="n">layout</span><span class="o">=</span><span class="n">layout</span><span class="p">,</span>
<span class="n">merge_outputs</span><span class="o">=</span><span class="n">merge_outputs</span><span class="p">,</span> <span class="n">valid_length</span><span class="o">=</span><span class="kc">None</span><span class="p">)</span></div>
<div class="viewcode-block" id="ModifierCell"><a class="viewcode-back" href="../../../../api/python/gluon/rnn.html#mxnet.gluon.rnn.ModifierCell">[docs]</a><span class="k">class</span> <span class="nc">ModifierCell</span><span class="p">(</span><span class="n">HybridRecurrentCell</span><span class="p">):</span>
<span class="sd">"""Base class for modifier cells. A modifier</span>
<span class="sd"> cell takes a base cell, apply modifications</span>
<span class="sd"> on it (e.g. Zoneout), and returns a new cell.</span>
<span class="sd"> After applying modifiers the base cell should</span>
<span class="sd"> no longer be called directly. The modifier cell</span>
<span class="sd"> should be used instead.</span>
<span class="sd"> """</span>
<span class="k">def</span> <span class="nf">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">base_cell</span><span class="p">):</span>
<span class="k">assert</span> <span class="ow">not</span> <span class="n">base_cell</span><span class="o">.</span><span class="n">_modified</span><span class="p">,</span> \
<span class="s2">"Cell </span><span class="si">%s</span><span class="s2"> is already modified. One cell cannot be modified twice"</span><span class="o">%</span><span class="n">base_cell</span><span class="o">.</span><span class="n">name</span>
<span class="n">base_cell</span><span class="o">.</span><span class="n">_modified</span> <span class="o">=</span> <span class="kc">True</span>
<span class="nb">super</span><span class="p">(</span><span class="n">ModifierCell</span><span class="p">,</span> <span class="bp">self</span><span class="p">)</span><span class="o">.</span><span class="fm">__init__</span><span class="p">(</span><span class="n">prefix</span><span class="o">=</span><span class="n">base_cell</span><span class="o">.</span><span class="n">prefix</span><span class="o">+</span><span class="bp">self</span><span class="o">.</span><span class="n">_alias</span><span class="p">(),</span>
<span class="n">params</span><span class="o">=</span><span class="kc">None</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">base_cell</span> <span class="o">=</span> <span class="n">base_cell</span>
<span class="nd">@property</span>
<span class="k">def</span> <span class="nf">params</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">base_cell</span><span class="o">.</span><span class="n">params</span>
<span class="k">def</span> <span class="nf">state_info</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">batch_size</span><span class="o">=</span><span class="mi">0</span><span class="p">):</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">base_cell</span><span class="o">.</span><span class="n">state_info</span><span class="p">(</span><span class="n">batch_size</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">begin_state</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">func</span><span class="o">=</span><span class="n">symbol</span><span class="o">.</span><span class="n">zeros</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
<span class="k">assert</span> <span class="ow">not</span> <span class="bp">self</span><span class="o">.</span><span class="n">_modified</span><span class="p">,</span> \
<span class="s2">"After applying modifier cells (e.g. DropoutCell) the base "</span> \
<span class="s2">"cell cannot be called directly. Call the modifier cell instead."</span>
<span class="bp">self</span><span class="o">.</span><span class="n">base_cell</span><span class="o">.</span><span class="n">_modified</span> <span class="o">=</span> <span class="kc">False</span>
<span class="n">begin</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">base_cell</span><span class="o">.</span><span class="n">begin_state</span><span class="p">(</span><span class="n">func</span><span class="o">=</span><span class="n">func</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">base_cell</span><span class="o">.</span><span class="n">_modified</span> <span class="o">=</span> <span class="kc">True</span>
<span class="k">return</span> <span class="n">begin</span>
<span class="k">def</span> <span class="nf">hybrid_forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">F</span><span class="p">,</span> <span class="n">inputs</span><span class="p">,</span> <span class="n">states</span><span class="p">):</span>
<span class="k">raise</span> <span class="ne">NotImplementedError</span>
<span class="k">def</span> <span class="nf">__repr__</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="n">s</span> <span class="o">=</span> <span class="s1">'</span><span class="si">{name}</span><span class="s1">(</span><span class="si">{base_cell}</span><span class="s1">)'</span>
<span class="k">return</span> <span class="n">s</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="vm">__class__</span><span class="o">.</span><span class="vm">__name__</span><span class="p">,</span>
<span class="o">**</span><span class="bp">self</span><span class="o">.</span><span class="vm">__dict__</span><span class="p">)</span></div>
<div class="viewcode-block" id="ZoneoutCell"><a class="viewcode-back" href="../../../../api/python/gluon/rnn.html#mxnet.gluon.rnn.ZoneoutCell">[docs]</a><span class="k">class</span> <span class="nc">ZoneoutCell</span><span class="p">(</span><span class="n">ModifierCell</span><span class="p">):</span>
<span class="sd">"""Applies Zoneout on base cell."""</span>
<span class="k">def</span> <span class="nf">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">base_cell</span><span class="p">,</span> <span class="n">zoneout_outputs</span><span class="o">=</span><span class="mf">0.</span><span class="p">,</span> <span class="n">zoneout_states</span><span class="o">=</span><span class="mf">0.</span><span class="p">):</span>
<span class="k">assert</span> <span class="ow">not</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">base_cell</span><span class="p">,</span> <span class="n">BidirectionalCell</span><span class="p">),</span> \
<span class="s2">"BidirectionalCell doesn't support zoneout since it doesn't support step. "</span> \
<span class="s2">"Please add ZoneoutCell to the cells underneath instead."</span>
<span class="k">assert</span> <span class="ow">not</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">base_cell</span><span class="p">,</span> <span class="n">SequentialRNNCell</span><span class="p">)</span> <span class="ow">or</span> <span class="ow">not</span> <span class="n">base_cell</span><span class="o">.</span><span class="n">_bidirectional</span><span class="p">,</span> \
<span class="s2">"Bidirectional SequentialRNNCell doesn't support zoneout. "</span> \
<span class="s2">"Please add ZoneoutCell to the cells underneath instead."</span>
<span class="nb">super</span><span class="p">(</span><span class="n">ZoneoutCell</span><span class="p">,</span> <span class="bp">self</span><span class="p">)</span><span class="o">.</span><span class="fm">__init__</span><span class="p">(</span><span class="n">base_cell</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">zoneout_outputs</span> <span class="o">=</span> <span class="n">zoneout_outputs</span>
<span class="bp">self</span><span class="o">.</span><span class="n">zoneout_states</span> <span class="o">=</span> <span class="n">zoneout_states</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_prev_output</span> <span class="o">=</span> <span class="kc">None</span>
<span class="k">def</span> <span class="nf">__repr__</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="n">s</span> <span class="o">=</span> <span class="s1">'</span><span class="si">{name}</span><span class="s1">(p_out=</span><span class="si">{zoneout_outputs}</span><span class="s1">, p_state=</span><span class="si">{zoneout_states}</span><span class="s1">, </span><span class="si">{base_cell}</span><span class="s1">)'</span>
<span class="k">return</span> <span class="n">s</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="vm">__class__</span><span class="o">.</span><span class="vm">__name__</span><span class="p">,</span>
<span class="o">**</span><span class="bp">self</span><span class="o">.</span><span class="vm">__dict__</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">_alias</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="k">return</span> <span class="s1">'zoneout'</span>
<span class="k">def</span> <span class="nf">reset</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="nb">super</span><span class="p">(</span><span class="n">ZoneoutCell</span><span class="p">,</span> <span class="bp">self</span><span class="p">)</span><span class="o">.</span><span class="n">reset</span><span class="p">()</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_prev_output</span> <span class="o">=</span> <span class="kc">None</span>
<span class="k">def</span> <span class="nf">hybrid_forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">F</span><span class="p">,</span> <span class="n">inputs</span><span class="p">,</span> <span class="n">states</span><span class="p">):</span>
<span class="n">cell</span><span class="p">,</span> <span class="n">p_outputs</span><span class="p">,</span> <span class="n">p_states</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">base_cell</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">zoneout_outputs</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">zoneout_states</span>
<span class="n">next_output</span><span class="p">,</span> <span class="n">next_states</span> <span class="o">=</span> <span class="n">cell</span><span class="p">(</span><span class="n">inputs</span><span class="p">,</span> <span class="n">states</span><span class="p">)</span>
<span class="n">mask</span> <span class="o">=</span> <span class="p">(</span><span class="k">lambda</span> <span class="n">p</span><span class="p">,</span> <span class="n">like</span><span class="p">:</span> <span class="n">F</span><span class="o">.</span><span class="n">Dropout</span><span class="p">(</span><span class="n">F</span><span class="o">.</span><span class="n">ones_like</span><span class="p">(</span><span class="n">like</span><span class="p">),</span> <span class="n">p</span><span class="o">=</span><span class="n">p</span><span class="p">))</span>
<span class="n">prev_output</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_prev_output</span>
<span class="k">if</span> <span class="n">prev_output</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">prev_output</span> <span class="o">=</span> <span class="n">F</span><span class="o">.</span><span class="n">zeros_like</span><span class="p">(</span><span class="n">next_output</span><span class="p">)</span>
<span class="n">output</span> <span class="o">=</span> <span class="p">(</span><span class="n">F</span><span class="o">.</span><span class="n">where</span><span class="p">(</span><span class="n">mask</span><span class="p">(</span><span class="n">p_outputs</span><span class="p">,</span> <span class="n">next_output</span><span class="p">),</span> <span class="n">next_output</span><span class="p">,</span> <span class="n">prev_output</span><span class="p">)</span>
<span class="k">if</span> <span class="n">p_outputs</span> <span class="o">!=</span> <span class="mf">0.</span> <span class="k">else</span> <span class="n">next_output</span><span class="p">)</span>
<span class="n">states</span> <span class="o">=</span> <span class="p">([</span><span class="n">F</span><span class="o">.</span><span class="n">where</span><span class="p">(</span><span class="n">mask</span><span class="p">(</span><span class="n">p_states</span><span class="p">,</span> <span class="n">new_s</span><span class="p">),</span> <span class="n">new_s</span><span class="p">,</span> <span class="n">old_s</span><span class="p">)</span> <span class="k">for</span> <span class="n">new_s</span><span class="p">,</span> <span class="n">old_s</span> <span class="ow">in</span>
<span class="nb">zip</span><span class="p">(</span><span class="n">next_states</span><span class="p">,</span> <span class="n">states</span><span class="p">)]</span> <span class="k">if</span> <span class="n">p_states</span> <span class="o">!=</span> <span class="mf">0.</span> <span class="k">else</span> <span class="n">next_states</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_prev_output</span> <span class="o">=</span> <span class="n">output</span>
<span class="k">return</span> <span class="n">output</span><span class="p">,</span> <span class="n">states</span></div>
<div class="viewcode-block" id="ResidualCell"><a class="viewcode-back" href="../../../../api/python/gluon/rnn.html#mxnet.gluon.rnn.ResidualCell">[docs]</a><span class="k">class</span> <span class="nc">ResidualCell</span><span class="p">(</span><span class="n">ModifierCell</span><span class="p">):</span>
<span class="sd">"""</span>
<span class="sd"> Adds residual connection as described in Wu et al, 2016</span>
<span class="sd"> (https://arxiv.org/abs/1609.08144).</span>
<span class="sd"> Output of the cell is output of the base cell plus input.</span>
<span class="sd"> """</span>
<span class="k">def</span> <span class="nf">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">base_cell</span><span class="p">):</span>
<span class="c1"># pylint: disable=useless-super-delegation</span>
<span class="nb">super</span><span class="p">(</span><span class="n">ResidualCell</span><span class="p">,</span> <span class="bp">self</span><span class="p">)</span><span class="o">.</span><span class="fm">__init__</span><span class="p">(</span><span class="n">base_cell</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">hybrid_forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">F</span><span class="p">,</span> <span class="n">inputs</span><span class="p">,</span> <span class="n">states</span><span class="p">):</span>
<span class="n">output</span><span class="p">,</span> <span class="n">states</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">base_cell</span><span class="p">(</span><span class="n">inputs</span><span class="p">,</span> <span class="n">states</span><span class="p">)</span>
<span class="n">output</span> <span class="o">=</span> <span class="n">F</span><span class="o">.</span><span class="n">elemwise_add</span><span class="p">(</span><span class="n">output</span><span class="p">,</span> <span class="n">inputs</span><span class="p">,</span> <span class="n">name</span><span class="o">=</span><span class="s1">'t</span><span class="si">%d</span><span class="s1">_fwd'</span><span class="o">%</span><span class="bp">self</span><span class="o">.</span><span class="n">_counter</span><span class="p">)</span>
<span class="k">return</span> <span class="n">output</span><span class="p">,</span> <span class="n">states</span>
<span class="k">def</span> <span class="nf">unroll</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">length</span><span class="p">,</span> <span class="n">inputs</span><span class="p">,</span> <span class="n">begin_state</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="n">layout</span><span class="o">=</span><span class="s1">'NTC'</span><span class="p">,</span> <span class="n">merge_outputs</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">valid_length</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span>
<span class="bp">self</span><span class="o">.</span><span class="n">reset</span><span class="p">()</span>
<span class="bp">self</span><span class="o">.</span><span class="n">base_cell</span><span class="o">.</span><span class="n">_modified</span> <span class="o">=</span> <span class="kc">False</span>
<span class="n">outputs</span><span class="p">,</span> <span class="n">states</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">base_cell</span><span class="o">.</span><span class="n">unroll</span><span class="p">(</span><span class="n">length</span><span class="p">,</span> <span class="n">inputs</span><span class="o">=</span><span class="n">inputs</span><span class="p">,</span> <span class="n">begin_state</span><span class="o">=</span><span class="n">begin_state</span><span class="p">,</span>
<span class="n">layout</span><span class="o">=</span><span class="n">layout</span><span class="p">,</span> <span class="n">merge_outputs</span><span class="o">=</span><span class="n">merge_outputs</span><span class="p">,</span>
<span class="n">valid_length</span><span class="o">=</span><span class="n">valid_length</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">base_cell</span><span class="o">.</span><span class="n">_modified</span> <span class="o">=</span> <span class="kc">True</span>
<span class="n">merge_outputs</span> <span class="o">=</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">outputs</span><span class="p">,</span> <span class="n">tensor_types</span><span class="p">)</span> <span class="k">if</span> <span class="n">merge_outputs</span> <span class="ow">is</span> <span class="kc">None</span> <span class="k">else</span> \
<span class="n">merge_outputs</span>
<span class="n">inputs</span><span class="p">,</span> <span class="n">axis</span><span class="p">,</span> <span class="n">F</span><span class="p">,</span> <span class="n">_</span> <span class="o">=</span> <span class="n">_format_sequence</span><span class="p">(</span><span class="n">length</span><span class="p">,</span> <span class="n">inputs</span><span class="p">,</span> <span class="n">layout</span><span class="p">,</span> <span class="n">merge_outputs</span><span class="p">)</span>
<span class="k">if</span> <span class="n">valid_length</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="c1"># mask the padded inputs to zero</span>
<span class="n">inputs</span> <span class="o">=</span> <span class="n">_mask_sequence_variable_length</span><span class="p">(</span><span class="n">F</span><span class="p">,</span> <span class="n">inputs</span><span class="p">,</span> <span class="n">length</span><span class="p">,</span> <span class="n">valid_length</span><span class="p">,</span> <span class="n">axis</span><span class="p">,</span>
<span class="n">merge_outputs</span><span class="p">)</span>
<span class="k">if</span> <span class="n">merge_outputs</span><span class="p">:</span>
<span class="n">outputs</span> <span class="o">=</span> <span class="n">F</span><span class="o">.</span><span class="n">elemwise_add</span><span class="p">(</span><span class="n">outputs</span><span class="p">,</span> <span class="n">inputs</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">outputs</span> <span class="o">=</span> <span class="p">[</span><span class="n">F</span><span class="o">.</span><span class="n">elemwise_add</span><span class="p">(</span><span class="n">i</span><span class="p">,</span> <span class="n">j</span><span class="p">)</span> <span class="k">for</span> <span class="n">i</span><span class="p">,</span> <span class="n">j</span> <span class="ow">in</span> <span class="nb">zip</span><span class="p">(</span><span class="n">outputs</span><span class="p">,</span> <span class="n">inputs</span><span class="p">)]</span>
<span class="k">return</span> <span class="n">outputs</span><span class="p">,</span> <span class="n">states</span></div>
<div class="viewcode-block" id="BidirectionalCell"><a class="viewcode-back" href="../../../../api/python/gluon/rnn.html#mxnet.gluon.rnn.BidirectionalCell">[docs]</a><span class="k">class</span> <span class="nc">BidirectionalCell</span><span class="p">(</span><span class="n">HybridRecurrentCell</span><span class="p">):</span>
<span class="sd">"""Bidirectional RNN cell.</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> l_cell : RecurrentCell</span>
<span class="sd"> Cell for forward unrolling</span>
<span class="sd"> r_cell : RecurrentCell</span>
<span class="sd"> Cell for backward unrolling</span>
<span class="sd"> """</span>
<span class="k">def</span> <span class="nf">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">l_cell</span><span class="p">,</span> <span class="n">r_cell</span><span class="p">,</span> <span class="n">output_prefix</span><span class="o">=</span><span class="s1">'bi_'</span><span class="p">):</span>
<span class="nb">super</span><span class="p">(</span><span class="n">BidirectionalCell</span><span class="p">,</span> <span class="bp">self</span><span class="p">)</span><span class="o">.</span><span class="fm">__init__</span><span class="p">(</span><span class="n">prefix</span><span class="o">=</span><span class="s1">''</span><span class="p">,</span> <span class="n">params</span><span class="o">=</span><span class="kc">None</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">register_child</span><span class="p">(</span><span class="n">l_cell</span><span class="p">,</span> <span class="s1">'l_cell'</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">register_child</span><span class="p">(</span><span class="n">r_cell</span><span class="p">,</span> <span class="s1">'r_cell'</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_output_prefix</span> <span class="o">=</span> <span class="n">output_prefix</span>
<span class="k">def</span> <span class="nf">__call__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">inputs</span><span class="p">,</span> <span class="n">states</span><span class="p">):</span>
<span class="k">raise</span> <span class="ne">NotImplementedError</span><span class="p">(</span><span class="s2">"Bidirectional cannot be stepped. Please use unroll"</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">__repr__</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="n">s</span> <span class="o">=</span> <span class="s1">'</span><span class="si">{name}</span><span class="s1">(forward=</span><span class="si">{l_cell}</span><span class="s1">, backward=</span><span class="si">{r_cell}</span><span class="s1">)'</span>
<span class="k">return</span> <span class="n">s</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="vm">__class__</span><span class="o">.</span><span class="vm">__name__</span><span class="p">,</span>
<span class="n">l_cell</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">_children</span><span class="p">[</span><span class="s1">'l_cell'</span><span class="p">],</span>
<span class="n">r_cell</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">_children</span><span class="p">[</span><span class="s1">'r_cell'</span><span class="p">])</span>
<span class="k">def</span> <span class="nf">state_info</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">batch_size</span><span class="o">=</span><span class="mi">0</span><span class="p">):</span>
<span class="k">return</span> <span class="n">_cells_state_info</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">_children</span><span class="o">.</span><span class="n">values</span><span class="p">(),</span> <span class="n">batch_size</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">begin_state</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
<span class="k">assert</span> <span class="ow">not</span> <span class="bp">self</span><span class="o">.</span><span class="n">_modified</span><span class="p">,</span> \
<span class="s2">"After applying modifier cells (e.g. DropoutCell) the base "</span> \
<span class="s2">"cell cannot be called directly. Call the modifier cell instead."</span>
<span class="k">return</span> <span class="n">_cells_begin_state</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">_children</span><span class="o">.</span><span class="n">values</span><span class="p">(),</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">unroll</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">length</span><span class="p">,</span> <span class="n">inputs</span><span class="p">,</span> <span class="n">begin_state</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="n">layout</span><span class="o">=</span><span class="s1">'NTC'</span><span class="p">,</span> <span class="n">merge_outputs</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">valid_length</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span>
<span class="c1"># pylint: disable=too-many-locals</span>
<span class="bp">self</span><span class="o">.</span><span class="n">reset</span><span class="p">()</span>
<span class="n">inputs</span><span class="p">,</span> <span class="n">axis</span><span class="p">,</span> <span class="n">F</span><span class="p">,</span> <span class="n">batch_size</span> <span class="o">=</span> <span class="n">_format_sequence</span><span class="p">(</span><span class="n">length</span><span class="p">,</span> <span class="n">inputs</span><span class="p">,</span> <span class="n">layout</span><span class="p">,</span> <span class="kc">False</span><span class="p">)</span>
<span class="k">if</span> <span class="n">valid_length</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">reversed_inputs</span> <span class="o">=</span> <span class="nb">list</span><span class="p">(</span><span class="nb">reversed</span><span class="p">(</span><span class="n">inputs</span><span class="p">))</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">reversed_inputs</span> <span class="o">=</span> <span class="n">F</span><span class="o">.</span><span class="n">SequenceReverse</span><span class="p">(</span><span class="n">F</span><span class="o">.</span><span class="n">stack</span><span class="p">(</span><span class="o">*</span><span class="n">inputs</span><span class="p">,</span> <span class="n">axis</span><span class="o">=</span><span class="mi">0</span><span class="p">),</span>
<span class="n">sequence_length</span><span class="o">=</span><span class="n">valid_length</span><span class="p">,</span>
<span class="n">use_sequence_length</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
<span class="n">reversed_inputs</span> <span class="o">=</span> <span class="n">_as_list</span><span class="p">(</span><span class="n">F</span><span class="o">.</span><span class="n">split</span><span class="p">(</span><span class="n">reversed_inputs</span><span class="p">,</span> <span class="n">axis</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span> <span class="n">num_outputs</span><span class="o">=</span><span class="n">length</span><span class="p">,</span>
<span class="n">squeeze_axis</span><span class="o">=</span><span class="kc">True</span><span class="p">))</span>
<span class="n">begin_state</span> <span class="o">=</span> <span class="n">_get_begin_state</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">F</span><span class="p">,</span> <span class="n">begin_state</span><span class="p">,</span> <span class="n">inputs</span><span class="p">,</span> <span class="n">batch_size</span><span class="p">)</span>
<span class="n">states</span> <span class="o">=</span> <span class="n">begin_state</span>
<span class="n">l_cell</span><span class="p">,</span> <span class="n">r_cell</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_children</span><span class="o">.</span><span class="n">values</span><span class="p">()</span>
<span class="n">l_outputs</span><span class="p">,</span> <span class="n">l_states</span> <span class="o">=</span> <span class="n">l_cell</span><span class="o">.</span><span class="n">unroll</span><span class="p">(</span><span class="n">length</span><span class="p">,</span> <span class="n">inputs</span><span class="o">=</span><span class="n">inputs</span><span class="p">,</span>
<span class="n">begin_state</span><span class="o">=</span><span class="n">states</span><span class="p">[:</span><span class="nb">len</span><span class="p">(</span><span class="n">l_cell</span><span class="o">.</span><span class="n">state_info</span><span class="p">(</span><span class="n">batch_size</span><span class="p">))],</span>
<span class="n">layout</span><span class="o">=</span><span class="n">layout</span><span class="p">,</span> <span class="n">merge_outputs</span><span class="o">=</span><span class="n">merge_outputs</span><span class="p">,</span>
<span class="n">valid_length</span><span class="o">=</span><span class="n">valid_length</span><span class="p">)</span>
<span class="n">r_outputs</span><span class="p">,</span> <span class="n">r_states</span> <span class="o">=</span> <span class="n">r_cell</span><span class="o">.</span><span class="n">unroll</span><span class="p">(</span><span class="n">length</span><span class="p">,</span>
<span class="n">inputs</span><span class="o">=</span><span class="n">reversed_inputs</span><span class="p">,</span>
<span class="n">begin_state</span><span class="o">=</span><span class="n">states</span><span class="p">[</span><span class="nb">len</span><span class="p">(</span><span class="n">l_cell</span><span class="o">.</span><span class="n">state_info</span><span class="p">(</span><span class="n">batch_size</span><span class="p">)):],</span>
<span class="n">layout</span><span class="o">=</span><span class="n">layout</span><span class="p">,</span> <span class="n">merge_outputs</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span>
<span class="n">valid_length</span><span class="o">=</span><span class="n">valid_length</span><span class="p">)</span>
<span class="k">if</span> <span class="n">valid_length</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">reversed_r_outputs</span> <span class="o">=</span> <span class="nb">list</span><span class="p">(</span><span class="nb">reversed</span><span class="p">(</span><span class="n">r_outputs</span><span class="p">))</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">reversed_r_outputs</span> <span class="o">=</span> <span class="n">F</span><span class="o">.</span><span class="n">SequenceReverse</span><span class="p">(</span><span class="n">F</span><span class="o">.</span><span class="n">stack</span><span class="p">(</span><span class="o">*</span><span class="n">r_outputs</span><span class="p">,</span> <span class="n">axis</span><span class="o">=</span><span class="mi">0</span><span class="p">),</span>
<span class="n">sequence_length</span><span class="o">=</span><span class="n">valid_length</span><span class="p">,</span>
<span class="n">use_sequence_length</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span>
<span class="n">axis</span><span class="o">=</span><span class="mi">0</span><span class="p">)</span>
<span class="n">reversed_r_outputs</span> <span class="o">=</span> <span class="n">_as_list</span><span class="p">(</span><span class="n">F</span><span class="o">.</span><span class="n">split</span><span class="p">(</span><span class="n">reversed_r_outputs</span><span class="p">,</span> <span class="n">axis</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span> <span class="n">num_outputs</span><span class="o">=</span><span class="n">length</span><span class="p">,</span>
<span class="n">squeeze_axis</span><span class="o">=</span><span class="kc">True</span><span class="p">))</span>
<span class="k">if</span> <span class="n">merge_outputs</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">merge_outputs</span> <span class="o">=</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">l_outputs</span><span class="p">,</span> <span class="n">tensor_types</span><span class="p">)</span>
<span class="n">l_outputs</span><span class="p">,</span> <span class="n">_</span><span class="p">,</span> <span class="n">_</span><span class="p">,</span> <span class="n">_</span> <span class="o">=</span> <span class="n">_format_sequence</span><span class="p">(</span><span class="kc">None</span><span class="p">,</span> <span class="n">l_outputs</span><span class="p">,</span> <span class="n">layout</span><span class="p">,</span> <span class="n">merge_outputs</span><span class="p">)</span>
<span class="n">reversed_r_outputs</span><span class="p">,</span> <span class="n">_</span><span class="p">,</span> <span class="n">_</span><span class="p">,</span> <span class="n">_</span> <span class="o">=</span> <span class="n">_format_sequence</span><span class="p">(</span><span class="kc">None</span><span class="p">,</span> <span class="n">reversed_r_outputs</span><span class="p">,</span> <span class="n">layout</span><span class="p">,</span>
<span class="n">merge_outputs</span><span class="p">)</span>
<span class="k">if</span> <span class="n">merge_outputs</span><span class="p">:</span>
<span class="n">reversed_r_outputs</span> <span class="o">=</span> <span class="n">F</span><span class="o">.</span><span class="n">stack</span><span class="p">(</span><span class="o">*</span><span class="n">reversed_r_outputs</span><span class="p">,</span> <span class="n">axis</span><span class="o">=</span><span class="n">axis</span><span class="p">)</span>
<span class="n">outputs</span> <span class="o">=</span> <span class="n">F</span><span class="o">.</span><span class="n">concat</span><span class="p">(</span><span class="n">l_outputs</span><span class="p">,</span> <span class="n">reversed_r_outputs</span><span class="p">,</span> <span class="n">dim</span><span class="o">=</span><span class="mi">2</span><span class="p">,</span>
<span class="n">name</span><span class="o">=</span><span class="s1">'</span><span class="si">%s</span><span class="s1">out'</span><span class="o">%</span><span class="bp">self</span><span class="o">.</span><span class="n">_output_prefix</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">outputs</span> <span class="o">=</span> <span class="p">[</span><span class="n">F</span><span class="o">.</span><span class="n">concat</span><span class="p">(</span><span class="n">l_o</span><span class="p">,</span> <span class="n">r_o</span><span class="p">,</span> <span class="n">dim</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">name</span><span class="o">=</span><span class="s1">'</span><span class="si">%s</span><span class="s1">t</span><span class="si">%d</span><span class="s1">'</span><span class="o">%</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">_output_prefix</span><span class="p">,</span> <span class="n">i</span><span class="p">))</span>
<span class="k">for</span> <span class="n">i</span><span class="p">,</span> <span class="p">(</span><span class="n">l_o</span><span class="p">,</span> <span class="n">r_o</span><span class="p">)</span> <span class="ow">in</span> <span class="nb">enumerate</span><span class="p">(</span><span class="nb">zip</span><span class="p">(</span><span class="n">l_outputs</span><span class="p">,</span> <span class="n">reversed_r_outputs</span><span class="p">))]</span>
<span class="k">if</span> <span class="n">valid_length</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">outputs</span> <span class="o">=</span> <span class="n">_mask_sequence_variable_length</span><span class="p">(</span><span class="n">F</span><span class="p">,</span> <span class="n">outputs</span><span class="p">,</span> <span class="n">length</span><span class="p">,</span> <span class="n">valid_length</span><span class="p">,</span> <span class="n">axis</span><span class="p">,</span>
<span class="n">merge_outputs</span><span class="p">)</span>
<span class="n">states</span> <span class="o">=</span> <span class="n">l_states</span> <span class="o">+</span> <span class="n">r_states</span>
<span class="k">return</span> <span class="n">outputs</span><span class="p">,</span> <span class="n">states</span></div>
</pre></div>
</div>
</div>
<div aria-label="main navigation" class="sphinxsidebar rightsidebar" role="navigation">
<div class="sphinxsidebarwrapper">
</div>
</div>
</div><div class="footer">
<div class="section-disclaimer">
<div class="container">
<div>
<img height="60" src="https://raw.githubusercontent.com/dmlc/web-data/master/mxnet/image/apache_incubator_logo.png"/>
<p>
Apache MXNet is an effort undergoing incubation at The Apache Software Foundation (ASF), <strong>sponsored by the <i>Apache Incubator</i></strong>. Incubation is required of all newly accepted projects until a further review indicates that the infrastructure, communications, and decision making process have stabilized in a manner consistent with other successful ASF projects. While incubation status is not necessarily a reflection of the completeness or stability of the code, it does indicate that the project has yet to be fully endorsed by the ASF.
</p>
<p>
"Copyright © 2017-2018, The Apache Software Foundation
Apache MXNet, MXNet, Apache, the Apache feather, and the Apache MXNet project logo are either registered trademarks or trademarks of the Apache Software Foundation."
</p>
</div>
</div>
</div>
</div> <!-- pagename != index -->
</div>
<script crossorigin="anonymous" integrity="sha384-0mSbJDEHialfmuBBQP6A4Qrprq5OVfW37PRR3j5ELqxss1yVqOtnepnHVP9aJ7xS" src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/js/bootstrap.min.js"></script>
<script src="../../../../_static/js/sidebar.js" type="text/javascript"></script>
<script src="../../../../_static/js/search.js" type="text/javascript"></script>
<script src="../../../../_static/js/navbar.js" type="text/javascript"></script>
<script src="../../../../_static/js/clipboard.min.js" type="text/javascript"></script>
<script src="../../../../_static/js/copycode.js" type="text/javascript"></script>
<script src="../../../../_static/js/page.js" type="text/javascript"></script>
<script src="../../../../_static/js/docversion.js" type="text/javascript"></script>
<script type="text/javascript">
$('body').ready(function () {
$('body').css('visibility', 'visible');
});
</script>
</body>
</html>