| <!DOCTYPE html> |
| |
| <html lang="en"> |
| <head> |
| <meta charset="utf-8"/> |
| <meta content="IE=edge" http-equiv="X-UA-Compatible"/> |
| <meta content="width=device-width, initial-scale=1" name="viewport"/> |
| <meta content="Basics" property="og:title"> |
| <meta content="https://raw.githubusercontent.com/dmlc/web-data/master/mxnet/image/og-logo.png" property="og:image"> |
| <meta content="https://raw.githubusercontent.com/dmlc/web-data/master/mxnet/image/og-logo.png" property="og:image:secure_url"> |
| <meta content="Basics" property="og:description"/> |
| <title>Basics — mxnet documentation</title> |
| <link crossorigin="anonymous" href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/css/bootstrap.min.css" integrity="sha384-1q8mTJOASx8j1Au+a5WDVnPi2lkFfwwEAa8hDDdjZlpLegxhjVME1fgjWPGmkzs7" rel="stylesheet"/> |
| <link href="https://maxcdn.bootstrapcdn.com/font-awesome/4.5.0/css/font-awesome.min.css" rel="stylesheet"/> |
| <link href="../../_static/basic.css" rel="stylesheet" type="text/css"> |
| <link href="../../_static/pygments.css" rel="stylesheet" type="text/css"> |
| <link href="../../_static/mxnet.css" rel="stylesheet" type="text/css"/> |
| <script type="text/javascript"> |
| var DOCUMENTATION_OPTIONS = { |
| URL_ROOT: '../../', |
| VERSION: '', |
| COLLAPSE_INDEX: false, |
| FILE_SUFFIX: '.html', |
| HAS_SOURCE: true, |
| SOURCELINK_SUFFIX: '.txt' |
| }; |
| </script> |
| <script src="https://code.jquery.com/jquery-1.11.1.min.js" type="text/javascript"></script> |
| <script src="../../_static/underscore.js" type="text/javascript"></script> |
| <script src="../../_static/searchtools_custom.js" type="text/javascript"></script> |
| <script src="../../_static/doctools.js" type="text/javascript"></script> |
| <script src="../../_static/selectlang.js" type="text/javascript"></script> |
| <script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.1/MathJax.js?config=TeX-AMS-MML_HTMLorMML" type="text/javascript"></script> |
| <script type="text/javascript"> jQuery(function() { Search.loadIndex("/versions/1.2.1/searchindex.js"); Search.init();}); </script> |
| <script> |
| (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ |
| (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new |
| Date();a=s.createElement(o), |
| m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) |
| })(window,document,'script','https://www.google-analytics.com/analytics.js','ga'); |
| |
| ga('create', 'UA-96378503-1', 'auto'); |
| ga('send', 'pageview'); |
| |
| </script> |
| <!-- --> |
| <!-- <script type="text/javascript" src="../../_static/jquery.js"></script> --> |
| <!-- --> |
| <!-- <script type="text/javascript" src="../../_static/underscore.js"></script> --> |
| <!-- --> |
| <!-- <script type="text/javascript" src="../../_static/doctools.js"></script> --> |
| <!-- --> |
| <!-- <script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script> --> |
| <!-- --> |
| <link href="../../genindex.html" rel="index" title="Index"> |
| <link href="../../search.html" rel="search" title="Search"/> |
| <link href="https://raw.githubusercontent.com/dmlc/web-data/master/mxnet/image/mxnet-icon.png" rel="icon" type="image/png"/> |
| </link></link></link></meta></meta></meta></head> |
| <body background="https://raw.githubusercontent.com/dmlc/web-data/master/mxnet/image/mxnet-background-compressed.jpeg" role="document"> |
| <div class="content-block"><div class="navbar navbar-fixed-top"> |
| <div class="container" id="navContainer"> |
| <div class="innder" id="header-inner"> |
| <h1 id="logo-wrap"> |
| <a href="../../" id="logo"><img src="https://raw.githubusercontent.com/dmlc/web-data/master/mxnet/image/mxnet_logo.png"/></a> |
| </h1> |
| <nav class="nav-bar" id="main-nav"> |
| <a class="main-nav-link" href="/versions/1.2.1/install/index.html">Install</a> |
| <span id="dropdown-menu-position-anchor"> |
| <a aria-expanded="true" aria-haspopup="true" class="main-nav-link dropdown-toggle" data-toggle="dropdown" href="#" role="button">Gluon <span class="caret"></span></a> |
| <ul class="dropdown-menu navbar-menu" id="package-dropdown-menu"> |
| <li><a class="main-nav-link" href="/versions/1.2.1/tutorials/gluon/gluon.html">About</a></li> |
| <li><a class="main-nav-link" href="https://www.d2l.ai/">Dive into Deep Learning</a></li> |
| <li><a class="main-nav-link" href="https://gluon-cv.mxnet.io">GluonCV Toolkit</a></li> |
| <li><a class="main-nav-link" href="https://gluon-nlp.mxnet.io/">GluonNLP Toolkit</a></li> |
| </ul> |
| </span> |
| <span id="dropdown-menu-position-anchor"> |
| <a aria-expanded="true" aria-haspopup="true" class="main-nav-link dropdown-toggle" data-toggle="dropdown" href="#" role="button">API <span class="caret"></span></a> |
| <ul class="dropdown-menu navbar-menu" id="package-dropdown-menu"> |
| <li><a class="main-nav-link" href="/versions/1.2.1/api/python/index.html">Python</a></li> |
| <li><a class="main-nav-link" href="/versions/1.2.1/api/c++/index.html">C++</a></li> |
| <li><a class="main-nav-link" href="/versions/1.2.1/api/julia/index.html">Julia</a></li> |
| <li><a class="main-nav-link" href="/versions/1.2.1/api/perl/index.html">Perl</a></li> |
| <li><a class="main-nav-link" href="/versions/1.2.1/api/r/index.html">R</a></li> |
| <li><a class="main-nav-link" href="/versions/1.2.1/api/scala/index.html">Scala</a></li> |
| </ul> |
| </span> |
| <span id="dropdown-menu-position-anchor-docs"> |
| <a aria-expanded="true" aria-haspopup="true" class="main-nav-link dropdown-toggle" data-toggle="dropdown" href="#" role="button">Docs <span class="caret"></span></a> |
| <ul class="dropdown-menu navbar-menu" id="package-dropdown-menu-docs"> |
| <li><a class="main-nav-link" href="/versions/1.2.1/faq/index.html">FAQ</a></li> |
| <li><a class="main-nav-link" href="/versions/1.2.1/tutorials/index.html">Tutorials</a> |
| <li><a class="main-nav-link" href="https://github.com/apache/incubator-mxnet/tree/1.2.1/example">Examples</a></li> |
| <li><a class="main-nav-link" href="/versions/1.2.1/architecture/index.html">Architecture</a></li> |
| <li><a class="main-nav-link" href="https://cwiki.apache.org/confluence/display/MXNET/Apache+MXNet+Home">Developer Wiki</a></li> |
| <li><a class="main-nav-link" href="/versions/1.2.1/model_zoo/index.html">Model Zoo</a></li> |
| <li><a class="main-nav-link" href="https://github.com/onnx/onnx-mxnet">ONNX</a></li> |
| </li></ul> |
| </span> |
| <span id="dropdown-menu-position-anchor-community"> |
| <a aria-expanded="true" aria-haspopup="true" class="main-nav-link dropdown-toggle" data-toggle="dropdown" href="#" role="button">Community <span class="caret"></span></a> |
| <ul class="dropdown-menu navbar-menu" id="package-dropdown-menu-community"> |
| <li><a class="main-nav-link" href="http://discuss.mxnet.io">Forum</a></li> |
| <li><a class="main-nav-link" href="https://github.com/apache/incubator-mxnet/tree/1.2.1">Github</a></li> |
| <li><a class="main-nav-link" href="/versions/1.2.1/community/contribute.html">Contribute</a></li> |
| <li><a class="main-nav-link" href="/versions/1.2.1/community/powered_by.html">Powered By</a></li> |
| </ul> |
| </span> |
| <span id="dropdown-menu-position-anchor-version" style="position: relative"><a href="#" class="main-nav-link dropdown-toggle" data-toggle="dropdown" role="button" aria-haspopup="true" aria-expanded="true">1.2.1<span class="caret"></span></a><ul id="package-dropdown-menu" class="dropdown-menu"><li><a href="/">master</a></li><li><a href="/versions/1.7/">1.7</a></li><li><a href=/versions/1.6/>1.6</a></li><li><a href=/versions/1.5.0/>1.5.0</a></li><li><a href=/versions/1.4.1/>1.4.1</a></li><li><a href=/versions/1.3.1/>1.3.1</a></li><li><a href=/versions/1.2.1/>1.2.1</a></li><li><a href=/versions/1.1.0/>1.1.0</a></li><li><a href=/versions/1.0.0/>1.0.0</a></li><li><a href=/versions/0.12.1/>0.12.1</a></li><li><a href=/versions/0.11.0/>0.11.0</a></li></ul></span></nav> |
| <script> function getRootPath(){ return "../../" } </script> |
| <div class="burgerIcon dropdown"> |
| <a class="dropdown-toggle" data-toggle="dropdown" href="#" role="button">☰</a> |
| <ul class="dropdown-menu" id="burgerMenu"> |
| <li><a href="/versions/1.2.1/install/index.html">Install</a></li> |
| <li><a class="main-nav-link" href="/versions/1.2.1/tutorials/index.html">Tutorials</a></li> |
| <li class="dropdown-submenu dropdown"> |
| <a aria-expanded="true" aria-haspopup="true" class="dropdown-toggle burger-link" data-toggle="dropdown" href="#" tabindex="-1">Gluon</a> |
| <ul class="dropdown-menu navbar-menu" id="package-dropdown-menu"> |
| <li><a class="main-nav-link" href="/versions/1.2.1/tutorials/gluon/gluon.html">About</a></li> |
| <li><a class="main-nav-link" href="http://gluon.mxnet.io">The Straight Dope (Tutorials)</a></li> |
| <li><a class="main-nav-link" href="https://gluon-cv.mxnet.io">GluonCV Toolkit</a></li> |
| <li><a class="main-nav-link" href="https://gluon-nlp.mxnet.io/">GluonNLP Toolkit</a></li> |
| </ul> |
| </li> |
| <li class="dropdown-submenu"> |
| <a aria-expanded="true" aria-haspopup="true" class="dropdown-toggle burger-link" data-toggle="dropdown" href="#" tabindex="-1">API</a> |
| <ul class="dropdown-menu"> |
| <li><a class="main-nav-link" href="/versions/1.2.1/api/python/index.html">Python</a></li> |
| <li><a class="main-nav-link" href="/versions/1.2.1/api/c++/index.html">C++</a></li> |
| <li><a class="main-nav-link" href="/versions/1.2.1/api/julia/index.html">Julia</a></li> |
| <li><a class="main-nav-link" href="/versions/1.2.1/api/perl/index.html">Perl</a></li> |
| <li><a class="main-nav-link" href="/versions/1.2.1/api/r/index.html">R</a></li> |
| <li><a class="main-nav-link" href="/versions/1.2.1/api/scala/index.html">Scala</a></li> |
| </ul> |
| </li> |
| <li class="dropdown-submenu"> |
| <a aria-expanded="true" aria-haspopup="true" class="dropdown-toggle burger-link" data-toggle="dropdown" href="#" tabindex="-1">Docs</a> |
| <ul class="dropdown-menu"> |
| <li><a href="/versions/1.2.1/faq/index.html" tabindex="-1">FAQ</a></li> |
| <li><a href="/versions/1.2.1/tutorials/index.html" tabindex="-1">Tutorials</a></li> |
| <li><a href="https://github.com/apache/incubator-mxnet/tree/1.2.1/example" tabindex="-1">Examples</a></li> |
| <li><a href="/versions/1.2.1/architecture/index.html" tabindex="-1">Architecture</a></li> |
| <li><a href="https://cwiki.apache.org/confluence/display/MXNET/Apache+MXNet+Home" tabindex="-1">Developer Wiki</a></li> |
| <li><a href="/versions/1.2.1/model_zoo/index.html" tabindex="-1">Gluon Model Zoo</a></li> |
| <li><a href="https://github.com/onnx/onnx-mxnet" tabindex="-1">ONNX</a></li> |
| </ul> |
| </li> |
| <li class="dropdown-submenu dropdown"> |
| <a aria-haspopup="true" class="dropdown-toggle burger-link" data-toggle="dropdown" href="#" role="button" tabindex="-1">Community</a> |
| <ul class="dropdown-menu"> |
| <li><a href="http://discuss.mxnet.io" tabindex="-1">Forum</a></li> |
| <li><a href="https://github.com/apache/incubator-mxnet/tree/1.2.1" tabindex="-1">Github</a></li> |
| <li><a href="/versions/1.2.1/community/contribute.html" tabindex="-1">Contribute</a></li> |
| <li><a href="/versions/1.2.1/community/powered_by.html" tabindex="-1">Powered By</a></li> |
| </ul> |
| </li> |
| <li id="dropdown-menu-position-anchor-version-mobile" class="dropdown-submenu" style="position: relative"><a href="#" tabindex="-1">1.2.1</a><ul class="dropdown-menu"><li><a tabindex="-1" href=/>master</a></li><li><a tabindex="-1" href=/versions/1.6/>1.6</a></li><li><a tabindex="-1" href=/versions/1.5.0/>1.5.0</a></li><li><a tabindex="-1" href=/versions/1.4.1/>1.4.1</a></li><li><a tabindex="-1" href=/versions/1.3.1/>1.3.1</a></li><li><a tabindex="-1" href=/versions/1.2.1/>1.2.1</a></li><li><a tabindex="-1" href=/versions/1.1.0/>1.1.0</a></li><li><a tabindex="-1" href=/versions/1.0.0/>1.0.0</a></li><li><a tabindex="-1" href=/versions/0.12.1/>0.12.1</a></li><li><a tabindex="-1" href=/versions/0.11.0/>0.11.0</a></li></ul></li></ul> |
| </div> |
| <div class="plusIcon dropdown"> |
| <a class="dropdown-toggle" data-toggle="dropdown" href="#" role="button"><span aria-hidden="true" class="glyphicon glyphicon-plus"></span></a> |
| <ul class="dropdown-menu dropdown-menu-right" id="plusMenu"></ul> |
| </div> |
| <div id="search-input-wrap"> |
| <form action="../../search.html" autocomplete="off" class="" method="get" role="search"> |
| <div class="form-group inner-addon left-addon"> |
| <i class="glyphicon glyphicon-search"></i> |
| <input class="form-control" name="q" placeholder="Search" type="text"/> |
| </div> |
| <input name="check_keywords" type="hidden" value="yes"> |
| <input name="area" type="hidden" value="default"/> |
| </input></form> |
| <div id="search-preview"></div> |
| </div> |
| <div id="searchIcon"> |
| <span aria-hidden="true" class="glyphicon glyphicon-search"></span> |
| </div> |
| <!-- <div id="lang-select-wrap"> --> |
| <!-- <label id="lang-select-label"> --> |
| <!-- <\!-- <i class="fa fa-globe"></i> -\-> --> |
| <!-- <span></span> --> |
| <!-- </label> --> |
| <!-- <select id="lang-select"> --> |
| <!-- <option value="en">Eng</option> --> |
| <!-- <option value="zh">中文</option> --> |
| <!-- </select> --> |
| <!-- </div> --> |
| <!-- <a id="mobile-nav-toggle"> |
| <span class="mobile-nav-toggle-bar"></span> |
| <span class="mobile-nav-toggle-bar"></span> |
| <span class="mobile-nav-toggle-bar"></span> |
| </a> --> |
| </div> |
| </div> |
| </div> |
| <script type="text/javascript"> |
| $('body').css('background', 'white'); |
| </script> |
| <div class="container"> |
| <div class="row"> |
| <div aria-label="main navigation" class="sphinxsidebar leftsidebar" role="navigation"> |
| <div class="sphinxsidebarwrapper"> |
| <ul> |
| <li class="toctree-l1"><a class="reference internal" href="../../api/python/index.html">Python Documents</a></li> |
| <li class="toctree-l1"><a class="reference internal" href="../../api/r/index.html">R Documents</a></li> |
| <li class="toctree-l1"><a class="reference internal" href="../../api/julia/index.html">Julia Documents</a></li> |
| <li class="toctree-l1"><a class="reference internal" href="../../api/c++/index.html">C++ Documents</a></li> |
| <li class="toctree-l1"><a class="reference internal" href="../../api/scala/index.html">Scala Documents</a></li> |
| <li class="toctree-l1"><a class="reference internal" href="../../api/perl/index.html">Perl Documents</a></li> |
| <li class="toctree-l1"><a class="reference internal" href="../../faq/index.html">HowTo Documents</a></li> |
| <li class="toctree-l1"><a class="reference internal" href="../../architecture/index.html">System Documents</a></li> |
| <li class="toctree-l1"><a class="reference internal" href="../index.html">Tutorials</a></li> |
| <li class="toctree-l1"><a class="reference internal" href="../../community/index.html">Community</a></li> |
| </ul> |
| </div> |
| </div> |
| <div class="content"> |
| <div class="page-tracker"></div> |
| <div class="section" id="basics"> |
| <span id="basics"></span><h1>Basics<a class="headerlink" href="#basics" title="Permalink to this headline">¶</a></h1> |
| <p>This tutorial provides basic usages of the C++ package through the classical handwritten digits |
| identification database–<a class="reference external" href="http://yann.lecun.com/exdb/mnist/">MNIST</a>.</p> |
| <p>The following contents assume that the working directory is <code class="docutils literal"><span class="pre">/path/to/mxnet/cpp-package/example</span></code>.</p> |
| <div class="section" id="load-data"> |
| <span id="load-data"></span><h2>Load Data<a class="headerlink" href="#load-data" title="Permalink to this headline">¶</a></h2> |
| <p>Before going into codes, we need to fetch MNIST data. You can either use the script <code class="docutils literal"><span class="pre">get_mnist.sh</span></code>, |
| or download mnist data by yourself from Lecun’s <a class="reference external" href="http://yann.lecun.com/exdb/mnist/">website</a> |
| and decompress them into <code class="docutils literal"><span class="pre">mnist_data</span></code> folder.</p> |
| <p>Except linking the MXNet shared library, the C++ package itself is a header-only package, |
| which means all you need to do is to include the header files. Among the header files, |
| <code class="docutils literal"><span class="pre">op.h</span></code> is special since it is generated dynamically. The generation should be done when |
| <a class="reference external" href="/versions/1.2.1/get_started/build_from_source.html#build-the-c++-package">building the C++ package</a>. |
| It is important to note that you need to <strong>copy the shared library</strong> (<code class="docutils literal"><span class="pre">libmxnet.so</span></code> in Linux and MacOS, |
| <code class="docutils literal"><span class="pre">libmxnet.dll</span></code> in Windows) from <code class="docutils literal"><span class="pre">/path/to/mxnet/lib</span></code> to the working directory. |
| We do not recommend you to use pre-built binaries because MXNet is under heavy development, |
| the operator definitions in <code class="docutils literal"><span class="pre">op.h</span></code> may be incompatible with the pre-built version.</p> |
| <p>In order to use functionalities provides by the C++ package, first we include the general |
| header file <code class="docutils literal"><span class="pre">MxNetCpp.h</span></code> and specify the namespaces.</p> |
| <div class="highlight-cpp"><div class="highlight"><pre><span></span><span class="cp">#include</span> <span class="cpf">"mxnet-cpp/MxNetCpp.h"</span><span class="cp"></span> |
| |
| <span class="k">using</span> <span class="k">namespace</span> <span class="n">std</span><span class="p">;</span> |
| <span class="k">using</span> <span class="k">namespace</span> <span class="n">mxnet</span><span class="o">::</span><span class="n">cpp</span><span class="p">;</span> |
| </pre></div> |
| </div> |
| <p>Next we can use the data iter to load MNIST data (separated to training sets and validation sets). |
| The digits in MNIST are 2-dimension arrays, so we should set <code class="docutils literal"><span class="pre">flat</span></code> to true to flatten the data.</p> |
| <div class="highlight-cpp"><div class="highlight"><pre><span></span><span class="k">auto</span> <span class="n">train_iter</span> <span class="o">=</span> <span class="n">MXDataIter</span><span class="p">(</span><span class="s">"MNISTIter"</span><span class="p">)</span> |
| <span class="p">.</span><span class="n">SetParam</span><span class="p">(</span><span class="s">"image"</span><span class="p">,</span> <span class="s">"./mnist_data/train-images-idx3-ubyte"</span><span class="p">)</span> |
| <span class="p">.</span><span class="n">SetParam</span><span class="p">(</span><span class="s">"label"</span><span class="p">,</span> <span class="s">"./mnist_data/train-labels-idx1-ubyte"</span><span class="p">)</span> |
| <span class="p">.</span><span class="n">SetParam</span><span class="p">(</span><span class="s">"batch_size"</span><span class="p">,</span> <span class="n">batch_size</span><span class="p">)</span> |
| <span class="p">.</span><span class="n">SetParam</span><span class="p">(</span><span class="s">"flat"</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span> |
| <span class="p">.</span><span class="n">CreateDataIter</span><span class="p">();</span> |
| <span class="k">auto</span> <span class="n">val_iter</span> <span class="o">=</span> <span class="n">MXDataIter</span><span class="p">(</span><span class="s">"MNISTIter"</span><span class="p">)</span> |
| <span class="p">.</span><span class="n">SetParam</span><span class="p">(</span><span class="s">"image"</span><span class="p">,</span> <span class="s">"./mnist_data/t10k-images-idx3-ubyte"</span><span class="p">)</span> |
| <span class="p">.</span><span class="n">SetParam</span><span class="p">(</span><span class="s">"label"</span><span class="p">,</span> <span class="s">"./mnist_data/t10k-labels-idx1-ubyte"</span><span class="p">)</span> |
| <span class="p">.</span><span class="n">SetParam</span><span class="p">(</span><span class="s">"batch_size"</span><span class="p">,</span> <span class="n">batch_size</span><span class="p">)</span> |
| <span class="p">.</span><span class="n">SetParam</span><span class="p">(</span><span class="s">"flat"</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span> |
| <span class="p">.</span><span class="n">CreateDataIter</span><span class="p">();</span> |
| </pre></div> |
| </div> |
| <p>The data have been successfully loaded. We can now easily construct various models to identify |
| the digits with the help of C++ package.</p> |
| </div> |
| <div class="section" id="multilayer-perceptron"> |
| <span id="multilayer-perceptron"></span><h2>Multilayer Perceptron<a class="headerlink" href="#multilayer-perceptron" title="Permalink to this headline">¶</a></h2> |
| <p>If you are not familiar with multilayer perceptron, you can get some basic information |
| <a class="reference external" href="/versions/1.2.1/tutorials/python/mnist.html#multilayer-perceptron">here</a>. We only focus on |
| the implementation in this tutorial.</p> |
| <p>Constructing multilayer perceptron model is straightforward, assume we store the hidden size |
| for each layer in <code class="docutils literal"><span class="pre">layers</span></code>, and each layer uses |
| <a class="reference external" href="https://en.wikipedia.org/wiki/Rectifier_(neural_networks)">ReLu</a> function as activation.</p> |
| <div class="highlight-cpp"><div class="highlight"><pre><span></span><span class="n">Symbol</span> <span class="nf">mlp</span><span class="p">(</span><span class="k">const</span> <span class="n">vector</span><span class="o"><</span><span class="kt">int</span><span class="o">></span> <span class="o">&</span><span class="n">layers</span><span class="p">)</span> <span class="p">{</span> |
| <span class="k">auto</span> <span class="n">x</span> <span class="o">=</span> <span class="n">Symbol</span><span class="o">::</span><span class="n">Variable</span><span class="p">(</span><span class="s">"X"</span><span class="p">);</span> |
| <span class="k">auto</span> <span class="n">label</span> <span class="o">=</span> <span class="n">Symbol</span><span class="o">::</span><span class="n">Variable</span><span class="p">(</span><span class="s">"label"</span><span class="p">);</span> |
| |
| <span class="n">vector</span><span class="o"><</span><span class="n">Symbol</span><span class="o">></span> <span class="n">weights</span><span class="p">(</span><span class="n">layers</span><span class="p">.</span><span class="n">size</span><span class="p">());</span> |
| <span class="n">vector</span><span class="o"><</span><span class="n">Symbol</span><span class="o">></span> <span class="n">biases</span><span class="p">(</span><span class="n">layers</span><span class="p">.</span><span class="n">size</span><span class="p">());</span> |
| <span class="n">vector</span><span class="o"><</span><span class="n">Symbol</span><span class="o">></span> <span class="n">outputs</span><span class="p">(</span><span class="n">layers</span><span class="p">.</span><span class="n">size</span><span class="p">());</span> |
| |
| <span class="k">for</span> <span class="p">(</span><span class="kt">int</span> <span class="n">i</span><span class="o">=</span><span class="mi">0</span><span class="p">;</span> <span class="n">i</span><span class="o"><</span><span class="n">layers</span><span class="p">.</span><span class="n">size</span><span class="p">();</span> <span class="o">++</span><span class="n">i</span><span class="p">)</span> <span class="p">{</span> |
| <span class="n">weights</span><span class="p">[</span><span class="n">i</span><span class="p">]</span> <span class="o">=</span> <span class="n">Symbol</span><span class="o">::</span><span class="n">Variable</span><span class="p">(</span><span class="s">"w"</span> <span class="o">+</span> <span class="n">to_string</span><span class="p">(</span><span class="n">i</span><span class="p">));</span> |
| <span class="n">biases</span><span class="p">[</span><span class="n">i</span><span class="p">]</span> <span class="o">=</span> <span class="n">Symbol</span><span class="o">::</span><span class="n">Variable</span><span class="p">(</span><span class="s">"b"</span> <span class="o">+</span> <span class="n">to_string</span><span class="p">(</span><span class="n">i</span><span class="p">));</span> |
| <span class="n">Symbol</span> <span class="n">fc</span> <span class="o">=</span> <span class="n">FullyConnected</span><span class="p">(</span> |
| <span class="n">i</span> <span class="o">==</span> <span class="mi">0</span><span class="o">?</span> <span class="nl">x</span> <span class="p">:</span> <span class="n">outputs</span><span class="p">[</span><span class="n">i</span><span class="o">-</span><span class="mi">1</span><span class="p">]</span> |
| <span class="n">weights</span><span class="p">[</span><span class="n">i</span><span class="p">],</span> |
| <span class="n">biases</span><span class="p">[</span><span class="n">i</span><span class="p">],</span> |
| <span class="n">layers</span><span class="p">[</span><span class="n">i</span><span class="p">]</span> |
| <span class="p">);</span> |
| <span class="n">outputs</span><span class="p">[</span><span class="n">i</span><span class="p">]</span> <span class="o">=</span> <span class="n">i</span> <span class="o">==</span> <span class="n">layers</span><span class="p">.</span><span class="n">size</span><span class="p">()</span><span class="o">-</span><span class="mi">1</span> <span class="o">?</span> <span class="nl">fc</span> <span class="p">:</span> <span class="n">Activation</span><span class="p">(</span><span class="n">fc</span><span class="p">,</span> <span class="n">ActivationActType</span><span class="o">::</span><span class="n">relu</span><span class="p">);</span> |
| <span class="p">}</span> |
| |
| <span class="k">return</span> <span class="n">SoftmaxOutput</span><span class="p">(</span><span class="n">outputs</span><span class="p">.</span><span class="n">back</span><span class="p">(),</span> <span class="n">label</span><span class="p">);</span> |
| <span class="p">}</span> |
| </pre></div> |
| </div> |
| <p>The above function defines a multilayer perceptron model where hidden sizes are specified |
| by <code class="docutils literal"><span class="pre">layers</span></code>.</p> |
| <p>We now create and initialize the parameters after the model is constructed. MXNet can help |
| you to infer shapes of most of the parameters. Basically only the shape of data and label |
| is needed.</p> |
| <div class="highlight-cpp"><div class="highlight"><pre><span></span><span class="n">std</span><span class="o">::</span><span class="n">map</span><span class="o"><</span><span class="n">string</span><span class="p">,</span> <span class="n">NDArray</span><span class="o">></span> <span class="n">args</span><span class="p">;</span> |
| <span class="n">args</span><span class="p">[</span><span class="s">"X"</span><span class="p">]</span> <span class="o">=</span> <span class="n">NDArray</span><span class="p">(</span><span class="n">Shape</span><span class="p">(</span><span class="n">batch_size</span><span class="p">,</span> <span class="n">image_size</span><span class="o">*</span><span class="n">image_size</span><span class="p">),</span> <span class="n">ctx</span><span class="p">);</span> |
| <span class="n">args</span><span class="p">[</span><span class="s">"label"</span><span class="p">]</span> <span class="o">=</span> <span class="n">NDArray</span><span class="p">(</span><span class="n">Shape</span><span class="p">(</span><span class="n">batch_size</span><span class="p">),</span> <span class="n">ctx</span><span class="p">);</span> |
| <span class="c1">// Let MXNet infer shapes other parameters such as weights</span> |
| <span class="n">net</span><span class="p">.</span><span class="n">InferArgsMap</span><span class="p">(</span><span class="n">ctx</span><span class="p">,</span> <span class="o">&</span><span class="n">args</span><span class="p">,</span> <span class="n">args</span><span class="p">);</span> |
| |
| <span class="c1">// Initialize all parameters with uniform distribution U(-0.01, 0.01)</span> |
| <span class="k">auto</span> <span class="n">initializer</span> <span class="o">=</span> <span class="n">Uniform</span><span class="p">(</span><span class="mf">0.01</span><span class="p">);</span> |
| <span class="k">for</span> <span class="p">(</span><span class="k">auto</span><span class="o">&</span> <span class="nl">arg</span> <span class="p">:</span> <span class="n">args</span><span class="p">)</span> <span class="p">{</span> |
| <span class="c1">// arg.first is parameter name, and arg.second is the value</span> |
| <span class="n">initializer</span><span class="p">(</span><span class="n">arg</span><span class="p">.</span><span class="n">first</span><span class="p">,</span> <span class="o">&</span><span class="n">arg</span><span class="p">.</span><span class="n">second</span><span class="p">);</span> |
| <span class="p">}</span> |
| </pre></div> |
| </div> |
| <p>The rest is to train the model with an optimizer.</p> |
| <div class="highlight-cpp"><div class="highlight"><pre><span></span><span class="c1">// Create sgd optimizer</span> |
| <span class="n">Optimizer</span><span class="o">*</span> <span class="n">opt</span> <span class="o">=</span> <span class="n">OptimizerRegistry</span><span class="o">::</span><span class="n">Find</span><span class="p">(</span><span class="s">"sgd"</span><span class="p">);</span> |
| <span class="n">opt</span><span class="o">-></span><span class="n">SetParam</span><span class="p">(</span><span class="s">"rescale_grad"</span><span class="p">,</span> <span class="mf">1.0</span><span class="o">/</span><span class="n">batch_size</span><span class="p">);</span> |
| |
| <span class="c1">// Start training</span> |
| <span class="k">for</span> <span class="p">(</span><span class="kt">int</span> <span class="n">iter</span> <span class="o">=</span> <span class="mi">0</span><span class="p">;</span> <span class="n">iter</span> <span class="o"><</span> <span class="n">max_epoch</span><span class="p">;</span> <span class="o">++</span><span class="n">iter</span><span class="p">)</span> <span class="p">{</span> |
| <span class="n">train_iter</span><span class="p">.</span><span class="n">Reset</span><span class="p">();</span> |
| |
| <span class="k">while</span> <span class="p">(</span><span class="n">train_iter</span><span class="p">.</span><span class="n">Next</span><span class="p">())</span> <span class="p">{</span> |
| <span class="k">auto</span> <span class="n">data_batch</span> <span class="o">=</span> <span class="n">train_iter</span><span class="p">.</span><span class="n">GetDataBatch</span><span class="p">();</span> |
| <span class="c1">// Set data and label</span> |
| <span class="n">args</span><span class="p">[</span><span class="s">"X"</span><span class="p">]</span> <span class="o">=</span> <span class="n">data_batch</span><span class="p">.</span><span class="n">data</span><span class="p">;</span> |
| <span class="n">args</span><span class="p">[</span><span class="s">"label"</span><span class="p">]</span> <span class="o">=</span> <span class="n">data_batch</span><span class="p">.</span><span class="n">label</span><span class="p">;</span> |
| |
| <span class="c1">// Create executor by binding parameters to the model</span> |
| <span class="k">auto</span> <span class="o">*</span><span class="n">exec</span> <span class="o">=</span> <span class="n">net</span><span class="p">.</span><span class="n">SimpleBind</span><span class="p">(</span><span class="n">ctx</span><span class="p">,</span> <span class="n">args</span><span class="p">);</span> |
| <span class="c1">// Compute gradients</span> |
| <span class="n">exec</span><span class="o">-></span><span class="n">Forward</span><span class="p">(</span><span class="nb">true</span><span class="p">);</span> |
| <span class="n">exec</span><span class="o">-></span><span class="n">Backward</span><span class="p">();</span> |
| <span class="c1">// Update parameters</span> |
| <span class="n">exec</span><span class="o">-></span><span class="n">UpdateAll</span><span class="p">(</span><span class="n">opt</span><span class="p">,</span> <span class="n">learning_rate</span><span class="p">,</span> <span class="n">weight_decay</span><span class="p">);</span> |
| <span class="c1">// Remember to free the memory</span> |
| <span class="k">delete</span> <span class="n">exec</span><span class="p">;</span> |
| <span class="p">}</span> |
| <span class="p">}</span> |
| </pre></div> |
| </div> |
| <p>We also want to see how our model performs. The C++ package provides convenient APIs for |
| evaluating. Here we use accuracy as metric. The inference is almost the same as training, |
| except that we don’t need gradients.</p> |
| <div class="highlight-cpp"><div class="highlight"><pre><span></span><span class="n">Accuracy</span> <span class="n">acc</span><span class="p">;</span> |
| <span class="n">val_iter</span><span class="p">.</span><span class="n">Reset</span><span class="p">();</span> |
| <span class="k">while</span> <span class="p">(</span><span class="n">val_iter</span><span class="p">.</span><span class="n">Next</span><span class="p">())</span> <span class="p">{</span> |
| <span class="k">auto</span> <span class="n">data_batch</span> <span class="o">=</span> <span class="n">val_iter</span><span class="p">.</span><span class="n">GetDataBatch</span><span class="p">();</span> |
| <span class="n">args</span><span class="p">[</span><span class="s">"X"</span><span class="p">]</span> <span class="o">=</span> <span class="n">data_batch</span><span class="p">.</span><span class="n">data</span><span class="p">;</span> |
| <span class="n">args</span><span class="p">[</span><span class="s">"label"</span><span class="p">]</span> <span class="o">=</span> <span class="n">data_batch</span><span class="p">.</span><span class="n">label</span><span class="p">;</span> |
| <span class="k">auto</span> <span class="o">*</span><span class="n">exec</span> <span class="o">=</span> <span class="n">net</span><span class="p">.</span><span class="n">SimpleBind</span><span class="p">(</span><span class="n">ctx</span><span class="p">,</span> <span class="n">args</span><span class="p">);</span> |
| <span class="c1">// Forward pass is enough as no gradient is needed when evaluating</span> |
| <span class="n">exec</span><span class="o">-></span><span class="n">Forward</span><span class="p">(</span><span class="nb">false</span><span class="p">);</span> |
| <span class="n">acc</span><span class="p">.</span><span class="n">Update</span><span class="p">(</span><span class="n">data_batch</span><span class="p">.</span><span class="n">label</span><span class="p">,</span> <span class="n">exec</span><span class="o">-></span><span class="n">outputs</span><span class="p">[</span><span class="mi">0</span><span class="p">]);</span> |
| <span class="k">delete</span> <span class="n">exec</span><span class="p">;</span> |
| <span class="p">}</span> |
| </pre></div> |
| </div> |
| <p>You can find the complete code in <code class="docutils literal"><span class="pre">mlp_cpu.cpp</span></code>. Use <code class="docutils literal"><span class="pre">make</span> <span class="pre">mlp_cpu</span></code> to compile it, |
| and <code class="docutils literal"><span class="pre">./mlp_cpu</span></code> to run it. If it complains that the shared library <code class="docutils literal"><span class="pre">libmxnet.so</span></code> is not found |
| after typing <code class="docutils literal"><span class="pre">./mlp_cpu</span></code>, you will need to specify the path to the shared library in |
| the environment variable <code class="docutils literal"><span class="pre">LD_LIBRARY_PATH</span></code> in Linux and <code class="docutils literal"><span class="pre">DYLD_LIBRARY_PATH</span></code> |
| in MacOS. For example, if you are using MacOS, typing |
| <code class="docutils literal"><span class="pre">DYLD_LIBRARY_PATH+=.</span> <span class="pre">./mlp_cpu</span></code> would solve the problem. It basically tells the system |
| to find the shared library under the current directory since we have just copied it here.</p> |
| </div> |
| <div class="section" id="gpu-support"> |
| <span id="gpu-support"></span><h2>GPU Support<a class="headerlink" href="#gpu-support" title="Permalink to this headline">¶</a></h2> |
| <p>It’s worth noting that changing context from <code class="docutils literal"><span class="pre">Context::cpu()</span></code> to <code class="docutils literal"><span class="pre">Context::gpu()</span></code> is not enough, |
| because the data read by data iter are stored in memory, we cannot assign it directly to the |
| parameters. To bridge this gap, NDArray provides data synchronization functionalities between |
| GPU and CPU. We will illustrate it by making the mlp code run on GPU.</p> |
| <p>In the previous code, data are used like</p> |
| <div class="highlight-cpp"><div class="highlight"><pre><span></span><span class="n">args</span><span class="p">[</span><span class="s">"X"</span><span class="p">]</span> <span class="o">=</span> <span class="n">data_batch</span><span class="p">.</span><span class="n">data</span><span class="p">;</span> |
| <span class="n">args</span><span class="p">[</span><span class="s">"label"</span><span class="p">]</span> <span class="o">=</span> <span class="n">data_batch</span><span class="p">.</span><span class="n">label</span><span class="p">;</span> |
| </pre></div> |
| </div> |
| <p>It will be problematic if other parameters are created in the context of GPU. We can use |
| <code class="docutils literal"><span class="pre">NDArray::CopyTo</span></code> to solve this problem.</p> |
| <div class="highlight-cpp"><div class="highlight"><pre><span></span><span class="c1">// Data provided by DataIter are stored in memory, should be copied to GPU first.</span> |
| <span class="n">data_batch</span><span class="p">.</span><span class="n">data</span><span class="p">.</span><span class="n">CopyTo</span><span class="p">(</span><span class="o">&</span><span class="n">args</span><span class="p">[</span><span class="s">"X"</span><span class="p">]);</span> |
| <span class="n">data_batch</span><span class="p">.</span><span class="n">label</span><span class="p">.</span><span class="n">CopyTo</span><span class="p">(</span><span class="o">&</span><span class="n">args</span><span class="p">[</span><span class="s">"label"</span><span class="p">]);</span> |
| <span class="c1">// CopyTo is imperative, need to wait for it to complete.</span> |
| <span class="n">NDArray</span><span class="o">::</span><span class="n">WaitAll</span><span class="p">();</span> |
| </pre></div> |
| </div> |
| <p>By replacing the former code to the latter one, we successfully port the code to GPU. |
| You can find the complete code in <code class="docutils literal"><span class="pre">mlp_gpu.cpp</span></code>. Compilation is similar to the cpu version. |
| Note that the shared library must be built with GPU support enabled.</p> |
| </div> |
| </div> |
| </div> |
| </div> |
| <div aria-label="main navigation" class="sphinxsidebar rightsidebar" role="navigation"> |
| <div class="sphinxsidebarwrapper"> |
| <h3><a href="../../index.html">Table Of Contents</a></h3> |
| <ul> |
| <li><a class="reference internal" href="#">Basics</a><ul> |
| <li><a class="reference internal" href="#load-data">Load Data</a></li> |
| <li><a class="reference internal" href="#multilayer-perceptron">Multilayer Perceptron</a></li> |
| <li><a class="reference internal" href="#gpu-support">GPU Support</a></li> |
| </ul> |
| </li> |
| </ul> |
| </div> |
| </div> |
| </div><div class="footer"> |
| <div class="section-disclaimer"> |
| <div class="container"> |
| <div> |
| <img height="60" src="https://raw.githubusercontent.com/dmlc/web-data/master/mxnet/image/apache_incubator_logo.png"/> |
| <p> |
| Apache MXNet is an effort undergoing incubation at The Apache Software Foundation (ASF), <strong>sponsored by the <i>Apache Incubator</i></strong>. Incubation is required of all newly accepted projects until a further review indicates that the infrastructure, communications, and decision making process have stabilized in a manner consistent with other successful ASF projects. While incubation status is not necessarily a reflection of the completeness or stability of the code, it does indicate that the project has yet to be fully endorsed by the ASF. |
| </p> |
| <p> |
| "Copyright © 2017-2018, The Apache Software Foundation |
| Apache MXNet, MXNet, Apache, the Apache feather, and the Apache MXNet project logo are either registered trademarks or trademarks of the Apache Software Foundation." |
| </p> |
| </div> |
| </div> |
| </div> |
| </div> <!-- pagename != index --> |
| </div> |
| <script crossorigin="anonymous" integrity="sha384-0mSbJDEHialfmuBBQP6A4Qrprq5OVfW37PRR3j5ELqxss1yVqOtnepnHVP9aJ7xS" src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/js/bootstrap.min.js"></script> |
| <script src="../../_static/js/sidebar.js" type="text/javascript"></script> |
| <script src="../../_static/js/search.js" type="text/javascript"></script> |
| <script src="../../_static/js/navbar.js" type="text/javascript"></script> |
| <script src="../../_static/js/clipboard.min.js" type="text/javascript"></script> |
| <script src="../../_static/js/copycode.js" type="text/javascript"></script> |
| <script src="../../_static/js/page.js" type="text/javascript"></script> |
| <script src="../../_static/js/docversion.js" type="text/javascript"></script> |
| <script type="text/javascript"> |
| $('body').ready(function () { |
| $('body').css('visibility', 'visible'); |
| }); |
| </script> |
| </body> |
| </html> |