| <!DOCTYPE html> |
| |
| <html lang="en"> |
| <head> |
| <meta charset="utf-8"/> |
| <meta content="IE=edge" http-equiv="X-UA-Compatible"/> |
| <meta content="width=device-width, initial-scale=1" name="viewport"/> |
| <meta content="Predict with pre-trained models" property="og:title"> |
| <meta content="https://raw.githubusercontent.com/dmlc/web-data/master/mxnet/image/og-logo.png" property="og:image"> |
| <meta content="https://raw.githubusercontent.com/dmlc/web-data/master/mxnet/image/og-logo.png" property="og:image:secure_url"> |
| <meta content="Predict with pre-trained models" property="og:description"/> |
| <title>Predict with pre-trained models — mxnet documentation</title> |
| <link crossorigin="anonymous" href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/css/bootstrap.min.css" integrity="sha384-1q8mTJOASx8j1Au+a5WDVnPi2lkFfwwEAa8hDDdjZlpLegxhjVME1fgjWPGmkzs7" rel="stylesheet"/> |
| <link href="https://maxcdn.bootstrapcdn.com/font-awesome/4.5.0/css/font-awesome.min.css" rel="stylesheet"/> |
| <link href="../../_static/basic.css" rel="stylesheet" type="text/css"> |
| <link href="../../_static/pygments.css" rel="stylesheet" type="text/css"> |
| <link href="../../_static/mxnet.css" rel="stylesheet" type="text/css"/> |
| <script type="text/javascript"> |
| var DOCUMENTATION_OPTIONS = { |
| URL_ROOT: '../../', |
| VERSION: '', |
| COLLAPSE_INDEX: false, |
| FILE_SUFFIX: '.html', |
| HAS_SOURCE: true, |
| SOURCELINK_SUFFIX: '.txt' |
| }; |
| </script> |
| <script src="https://code.jquery.com/jquery-1.11.1.min.js" type="text/javascript"></script> |
| <script src="../../_static/underscore.js" type="text/javascript"></script> |
| <script src="../../_static/searchtools_custom.js" type="text/javascript"></script> |
| <script src="../../_static/doctools.js" type="text/javascript"></script> |
| <script src="../../_static/selectlang.js" type="text/javascript"></script> |
| <script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.1/MathJax.js?config=TeX-AMS-MML_HTMLorMML" type="text/javascript"></script> |
| <script type="text/javascript"> jQuery(function() { Search.loadIndex("/versions/0.11.0/searchindex.js"); Search.init();}); </script> |
| <script> |
| (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ |
| (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new |
| Date();a=s.createElement(o), |
| m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) |
| })(window,document,'script','https://www.google-analytics.com/analytics.js','ga'); |
| |
| ga('create', 'UA-96378503-1', 'auto'); |
| ga('send', 'pageview'); |
| |
| </script> |
| <!-- --> |
| <!-- <script type="text/javascript" src="../../_static/jquery.js"></script> --> |
| <!-- --> |
| <!-- <script type="text/javascript" src="../../_static/underscore.js"></script> --> |
| <!-- --> |
| <!-- <script type="text/javascript" src="../../_static/doctools.js"></script> --> |
| <!-- --> |
| <!-- <script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script> --> |
| <!-- --> |
| <link href="../../genindex.html" rel="index" title="Index"> |
| <link href="../../search.html" rel="search" title="Search"/> |
| <link href="../index.html" rel="up" title="Tutorials"/> |
| <link href="../vision/large_scale_classification.html" rel="next" title="Large Scale Image Classification"/> |
| <link href="mnist.html" rel="prev" title="Handwritten Digit Recognition"/> |
| <link href="https://raw.githubusercontent.com/dmlc/web-data/master/mxnet/image/mxnet-icon.png" rel="icon" type="image/png"/> |
| </link></link></link></meta></meta></meta></head> |
| <body background="https://raw.githubusercontent.com/dmlc/web-data/master/mxnet/image/mxnet-background-compressed.jpeg" role="document"> |
| <div class="content-block"><div class="navbar navbar-fixed-top"> |
| <div class="container" id="navContainer"> |
| <div class="innder" id="header-inner"> |
| <h1 id="logo-wrap"> |
| <a href="../../" id="logo"><img src="https://raw.githubusercontent.com/dmlc/web-data/master/mxnet/image/mxnet_logo.png"/></a> |
| </h1> |
| <nav class="nav-bar" id="main-nav"> |
| <a class="main-nav-link" href="/versions/0.11.0/get_started/install.html">Install</a> |
| <span id="dropdown-menu-position-anchor"> |
| <a aria-expanded="true" aria-haspopup="true" class="main-nav-link dropdown-toggle" data-toggle="dropdown" href="#" role="button">Gluon <span class="caret"></span></a> |
| <ul class="dropdown-menu navbar-menu" id="package-dropdown-menu"> |
| <li><a class="main-nav-link" href="/versions/0.11.0/tutorials/gluon/gluon.html">About</a></li> |
| <li><a class="main-nav-link" href="https://www.d2l.ai/">Dive into Deep Learning</a></li> |
| <li><a class="main-nav-link" href="https://gluon-cv.mxnet.io">GluonCV Toolkit</a></li> |
| <li><a class="main-nav-link" href="https://gluon-nlp.mxnet.io/">GluonNLP Toolkit</a></li> |
| </ul> |
| </span> |
| <span id="dropdown-menu-position-anchor"> |
| <a aria-expanded="true" aria-haspopup="true" class="main-nav-link dropdown-toggle" data-toggle="dropdown" href="#" role="button">API <span class="caret"></span></a> |
| <ul class="dropdown-menu navbar-menu" id="package-dropdown-menu"> |
| <li><a class="main-nav-link" href="/versions/0.11.0/api/python/index.html">Python</a></li> |
| <li><a class="main-nav-link" href="/versions/0.11.0/api/c++/index.html">C++</a></li> |
| <li><a class="main-nav-link" href="/versions/0.11.0/api/julia/index.html">Julia</a></li> |
| <li><a class="main-nav-link" href="/versions/0.11.0/api/perl/index.html">Perl</a></li> |
| <li><a class="main-nav-link" href="/versions/0.11.0/api/r/index.html">R</a></li> |
| <li><a class="main-nav-link" href="/versions/0.11.0/api/scala/index.html">Scala</a></li> |
| </ul> |
| </span> |
| <span id="dropdown-menu-position-anchor-docs"> |
| <a aria-expanded="true" aria-haspopup="true" class="main-nav-link dropdown-toggle" data-toggle="dropdown" href="#" role="button">Docs <span class="caret"></span></a> |
| <ul class="dropdown-menu navbar-menu" id="package-dropdown-menu-docs"> |
| <li><a class="main-nav-link" href="/versions/0.11.0/how_to/faq.html">FAQ</a></li> |
| <li><a class="main-nav-link" href="/versions/0.11.0/tutorials/index.html">Tutorials</a> |
| <li><a class="main-nav-link" href="https://github.com/apache/incubator-mxnet/tree/v0.11.0/example">Examples</a></li> |
| <li><a class="main-nav-link" href="/versions/0.11.0/architecture/index.html">Architecture</a></li> |
| <li><a class="main-nav-link" href="https://cwiki.apache.org/confluence/display/MXNET/Apache+MXNet+Home">Developer Wiki</a></li> |
| <li><a class="main-nav-link" href="/versions/0.11.0/model_zoo/index.html">Model Zoo</a></li> |
| <li><a class="main-nav-link" href="https://github.com/onnx/onnx-mxnet">ONNX</a></li> |
| </li></ul> |
| </span> |
| <span id="dropdown-menu-position-anchor-community"> |
| <a aria-expanded="true" aria-haspopup="true" class="main-nav-link dropdown-toggle" data-toggle="dropdown" href="#" role="button">Community <span class="caret"></span></a> |
| <ul class="dropdown-menu navbar-menu" id="package-dropdown-menu-community"> |
| <li><a class="main-nav-link" href="http://discuss.mxnet.io">Forum</a></li> |
| <li><a class="main-nav-link" href="https://github.com/apache/incubator-mxnet/tree/v0.11.0">Github</a></li> |
| <li><a class="main-nav-link" href="/versions/0.11.0/community/contribute.html">Contribute</a></li> |
| </ul> |
| </span> |
| <span id="dropdown-menu-position-anchor-version" style="position: relative"><a href="#" class="main-nav-link dropdown-toggle" data-toggle="dropdown" role="button" aria-haspopup="true" aria-expanded="true">0.11.0<span class="caret"></span></a><ul id="package-dropdown-menu" class="dropdown-menu"><li><a href="/">master</a></li><li><a href="/versions/1.7/">1.7</a></li><li><a href=/versions/1.6/>1.6</a></li><li><a href=/versions/1.5.0/>1.5.0</a></li><li><a href=/versions/1.4.1/>1.4.1</a></li><li><a href=/versions/1.3.1/>1.3.1</a></li><li><a href=/versions/1.2.1/>1.2.1</a></li><li><a href=/versions/1.1.0/>1.1.0</a></li><li><a href=/versions/1.0.0/>1.0.0</a></li><li><a href=/versions/0.12.1/>0.12.1</a></li><li><a href=/versions/0.11.0/>0.11.0</a></li></ul></span></nav> |
| <script> function getRootPath(){ return "../../" } </script> |
| <div class="burgerIcon dropdown"> |
| <a class="dropdown-toggle" data-toggle="dropdown" href="#" role="button">☰</a> |
| <ul class="dropdown-menu" id="burgerMenu"> |
| <li><a href="/versions/0.11.0/get_started/install.html">Install</a></li> |
| <li><a class="main-nav-link" href="/versions/0.11.0/tutorials/index.html">Tutorials</a></li> |
| <li class="dropdown-submenu dropdown"> |
| <a aria-expanded="true" aria-haspopup="true" class="dropdown-toggle burger-link" data-toggle="dropdown" href="#" tabindex="-1">Gluon</a> |
| <ul class="dropdown-menu navbar-menu" id="package-dropdown-menu"> |
| <li><a class="main-nav-link" href="/versions/0.11.0/tutorials/gluon/gluon.html">About</a></li> |
| <li><a class="main-nav-link" href="http://gluon.mxnet.io">The Straight Dope (Tutorials)</a></li> |
| <li><a class="main-nav-link" href="https://gluon-cv.mxnet.io">GluonCV Toolkit</a></li> |
| <li><a class="main-nav-link" href="https://gluon-nlp.mxnet.io/">GluonNLP Toolkit</a></li> |
| </ul> |
| </li> |
| <li class="dropdown-submenu"> |
| <a aria-expanded="true" aria-haspopup="true" class="dropdown-toggle burger-link" data-toggle="dropdown" href="#" tabindex="-1">API</a> |
| <ul class="dropdown-menu"> |
| <li><a class="main-nav-link" href="/versions/0.11.0/api/python/index.html">Python</a></li> |
| <li><a class="main-nav-link" href="/versions/0.11.0/api/c++/index.html">C++</a></li> |
| <li><a class="main-nav-link" href="/versions/0.11.0/api/julia/index.html">Julia</a></li> |
| <li><a class="main-nav-link" href="/versions/0.11.0/api/perl/index.html">Perl</a></li> |
| <li><a class="main-nav-link" href="/versions/0.11.0/api/r/index.html">R</a></li> |
| <li><a class="main-nav-link" href="/versions/0.11.0/api/scala/index.html">Scala</a></li> |
| </ul> |
| </li> |
| <li class="dropdown-submenu"> |
| <a aria-expanded="true" aria-haspopup="true" class="dropdown-toggle burger-link" data-toggle="dropdown" href="#" tabindex="-1">Docs</a> |
| <ul class="dropdown-menu"> |
| <li><a href="/versions/0.11.0/how_to/faq.html" tabindex="-1">FAQ</a></li> |
| <li><a href="/versions/0.11.0/tutorials/index.html" tabindex="-1">Tutorials</a></li> |
| <li><a href="https://github.com/apache/incubator-mxnet/tree/v0.11.0/example" tabindex="-1">Examples</a></li> |
| <li><a href="/versions/0.11.0/architecture/index.html" tabindex="-1">Architecture</a></li> |
| <li><a href="https://cwiki.apache.org/confluence/display/MXNET/Apache+MXNet+Home" tabindex="-1">Developer Wiki</a></li> |
| <li><a href="/versions/0.11.0/model_zoo/index.html" tabindex="-1">Gluon Model Zoo</a></li> |
| <li><a href="https://github.com/onnx/onnx-mxnet" tabindex="-1">ONNX</a></li> |
| </ul> |
| </li> |
| <li class="dropdown-submenu dropdown"> |
| <a aria-haspopup="true" class="dropdown-toggle burger-link" data-toggle="dropdown" href="#" role="button" tabindex="-1">Community</a> |
| <ul class="dropdown-menu"> |
| <li><a href="http://discuss.mxnet.io" tabindex="-1">Forum</a></li> |
| <li><a href="https://github.com/apache/incubator-mxnet/tree/v0.11.0" tabindex="-1">Github</a></li> |
| <li><a href="/versions/0.11.0/community/contribute.html" tabindex="-1">Contribute</a></li> |
| </ul> |
| </li> |
| <li id="dropdown-menu-position-anchor-version-mobile" class="dropdown-submenu" style="position: relative"><a href="#" tabindex="-1">0.11.0</a><ul class="dropdown-menu"><li><a tabindex="-1" href=/>master</a></li><li><a tabindex="-1" href=/versions/1.6/>1.6</a></li><li><a tabindex="-1" href=/versions/1.5.0/>1.5.0</a></li><li><a tabindex="-1" href=/versions/1.4.1/>1.4.1</a></li><li><a tabindex="-1" href=/versions/1.3.1/>1.3.1</a></li><li><a tabindex="-1" href=/versions/1.2.1/>1.2.1</a></li><li><a tabindex="-1" href=/versions/1.1.0/>1.1.0</a></li><li><a tabindex="-1" href=/versions/1.0.0/>1.0.0</a></li><li><a tabindex="-1" href=/versions/0.12.1/>0.12.1</a></li><li><a tabindex="-1" href=/versions/0.11.0/>0.11.0</a></li></ul></li></ul> |
| </div> |
| <div class="plusIcon dropdown"> |
| <a class="dropdown-toggle" data-toggle="dropdown" href="#" role="button"><span aria-hidden="true" class="glyphicon glyphicon-plus"></span></a> |
| <ul class="dropdown-menu dropdown-menu-right" id="plusMenu"></ul> |
| </div> |
| <div id="search-input-wrap"> |
| <form action="../../search.html" autocomplete="off" class="" method="get" role="search"> |
| <div class="form-group inner-addon left-addon"> |
| <i class="glyphicon glyphicon-search"></i> |
| <input class="form-control" name="q" placeholder="Search" type="text"/> |
| </div> |
| <input name="check_keywords" type="hidden" value="yes"> |
| <input name="area" type="hidden" value="default"/> |
| </input></form> |
| <div id="search-preview"></div> |
| </div> |
| <div id="searchIcon"> |
| <span aria-hidden="true" class="glyphicon glyphicon-search"></span> |
| </div> |
| <!-- <div id="lang-select-wrap"> --> |
| <!-- <label id="lang-select-label"> --> |
| <!-- <\!-- <i class="fa fa-globe"></i> -\-> --> |
| <!-- <span></span> --> |
| <!-- </label> --> |
| <!-- <select id="lang-select"> --> |
| <!-- <option value="en">Eng</option> --> |
| <!-- <option value="zh">中文</option> --> |
| <!-- </select> --> |
| <!-- </div> --> |
| <!-- <a id="mobile-nav-toggle"> |
| <span class="mobile-nav-toggle-bar"></span> |
| <span class="mobile-nav-toggle-bar"></span> |
| <span class="mobile-nav-toggle-bar"></span> |
| </a> --> |
| </div> |
| </div> |
| </div> |
| <script type="text/javascript"> |
| $('body').css('background', 'white'); |
| </script> |
| <div class="container"> |
| <div class="row"> |
| <div aria-label="main navigation" class="sphinxsidebar leftsidebar" role="navigation"> |
| <div class="sphinxsidebarwrapper"> |
| <ul class="current"> |
| <li class="toctree-l1"><a class="reference internal" href="../../api/python/index.html">Python Documents</a></li> |
| <li class="toctree-l1"><a class="reference internal" href="../../api/r/index.html">R Documents</a></li> |
| <li class="toctree-l1"><a class="reference internal" href="../../api/julia/index.html">Julia Documents</a></li> |
| <li class="toctree-l1"><a class="reference internal" href="../../api/c++/index.html">C++ Documents</a></li> |
| <li class="toctree-l1"><a class="reference internal" href="../../api/scala/index.html">Scala Documents</a></li> |
| <li class="toctree-l1"><a class="reference internal" href="../../api/perl/index.html">Perl Documents</a></li> |
| <li class="toctree-l1"><a class="reference internal" href="../../how_to/index.html">HowTo Documents</a></li> |
| <li class="toctree-l1"><a class="reference internal" href="../../architecture/index.html">System Documents</a></li> |
| <li class="toctree-l1 current"><a class="reference internal" href="../index.html">Tutorials</a><ul class="current"> |
| <li class="toctree-l2 current"><a class="reference internal" href="../index.html#python">Python</a><ul class="current"> |
| <li class="toctree-l3"><a class="reference internal" href="../index.html#basic">Basic</a></li> |
| <li class="toctree-l3 current"><a class="reference internal" href="../index.html#training-and-inference">Training and Inference</a><ul class="current"> |
| <li class="toctree-l4"><a class="reference internal" href="linear-regression.html">Linear Regression</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="mnist.html">Handwritten Digit Recognition</a></li> |
| <li class="toctree-l4 current"><a class="current reference internal" href="#">Predict with pre-trained models</a></li> |
| <li class="toctree-l4"><a class="reference internal" href="../vision/large_scale_classification.html">Large Scale Image Classification</a></li> |
| </ul> |
| </li> |
| </ul> |
| </li> |
| <li class="toctree-l2"><a class="reference internal" href="../index.html#contributing-tutorials">Contributing Tutorials</a></li> |
| </ul> |
| </li> |
| </ul> |
| </div> |
| </div> |
| <div class="content"> |
| <div class="page-tracker"></div> |
| <div class="section" id="predict-with-pre-trained-models"> |
| <span id="predict-with-pre-trained-models"></span><h1>Predict with pre-trained models<a class="headerlink" href="#predict-with-pre-trained-models" title="Permalink to this headline">¶</a></h1> |
| <p>This tutorial explains how to recognize objects in an image with a |
| pre-trained model, and how to perform feature extraction.</p> |
| <div class="section" id="prerequisites"> |
| <span id="prerequisites"></span><h2>Prerequisites<a class="headerlink" href="#prerequisites" title="Permalink to this headline">¶</a></h2> |
| <p>To complete this tutorial, we need:</p> |
| <ul class="simple"> |
| <li>MXNet. See the instructions for your operating system in <a class="reference external" href="/versions/0.11.0/get_started/install.html">Setup and Installation</a></li> |
| <li><a class="reference external" href="http://docs.python-requests.org/en/master/">Python Requests</a>, <a class="reference external" href="https://matplotlib.org/">Matplotlib</a> and <a class="reference external" href="http://jupyter.org/index.html">Jupyter Notebook</a>.</li> |
| </ul> |
| <div class="highlight-default"><div class="highlight"><pre><span></span>$ pip install requests matplotlib jupyter |
| </pre></div> |
| </div> |
| </div> |
| <div class="section" id="loading"> |
| <span id="loading"></span><h2>Loading<a class="headerlink" href="#loading" title="Permalink to this headline">¶</a></h2> |
| <p>We first download a pre-trained ResNet 152 layer that is trained on the full |
| ImageNet dataset with over 10 million images and 10 thousand classes. A |
| pre-trained model contains two parts, a json file containing the model |
| definition and a binary file containing the parameters. In addition, there may be |
| a text file for the labels.</p> |
| <div class="highlight-python"><div class="highlight"><pre><span></span><span class="kn">import</span> <span class="nn">mxnet</span> <span class="kn">as</span> <span class="nn">mx</span> |
| <span class="n">path</span><span class="o">=</span><span class="s1">'http://data.mxnet.io/models/imagenet-11k/'</span> |
| <span class="p">[</span><span class="n">mx</span><span class="o">.</span><span class="n">test_utils</span><span class="o">.</span><span class="n">download</span><span class="p">(</span><span class="n">path</span><span class="o">+</span><span class="s1">'resnet-152/resnet-152-symbol.json'</span><span class="p">),</span> |
| <span class="n">mx</span><span class="o">.</span><span class="n">test_utils</span><span class="o">.</span><span class="n">download</span><span class="p">(</span><span class="n">path</span><span class="o">+</span><span class="s1">'resnet-152/resnet-152-0000.params'</span><span class="p">),</span> |
| <span class="n">mx</span><span class="o">.</span><span class="n">test_utils</span><span class="o">.</span><span class="n">download</span><span class="p">(</span><span class="n">path</span><span class="o">+</span><span class="s1">'synset.txt'</span><span class="p">)]</span> |
| </pre></div> |
| </div> |
| <p>Next, we load the downloaded model. <em>Note:</em> If GPU is available, we can replace all |
| occurrences of <code class="docutils literal"><span class="pre">mx.cpu()</span></code> with <code class="docutils literal"><span class="pre">mx.gpu()</span></code> to accelerate the computation.</p> |
| <div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">sym</span><span class="p">,</span> <span class="n">arg_params</span><span class="p">,</span> <span class="n">aux_params</span> <span class="o">=</span> <span class="n">mx</span><span class="o">.</span><span class="n">model</span><span class="o">.</span><span class="n">load_checkpoint</span><span class="p">(</span><span class="s1">'resnet-152'</span><span class="p">,</span> <span class="mi">0</span><span class="p">)</span> |
| <span class="n">mod</span> <span class="o">=</span> <span class="n">mx</span><span class="o">.</span><span class="n">mod</span><span class="o">.</span><span class="n">Module</span><span class="p">(</span><span class="n">symbol</span><span class="o">=</span><span class="n">sym</span><span class="p">,</span> <span class="n">context</span><span class="o">=</span><span class="n">mx</span><span class="o">.</span><span class="n">cpu</span><span class="p">(),</span> <span class="n">label_names</span><span class="o">=</span><span class="bp">None</span><span class="p">)</span> |
| <span class="n">mod</span><span class="o">.</span><span class="n">bind</span><span class="p">(</span><span class="n">for_training</span><span class="o">=</span><span class="bp">False</span><span class="p">,</span> <span class="n">data_shapes</span><span class="o">=</span><span class="p">[(</span><span class="s1">'data'</span><span class="p">,</span> <span class="p">(</span><span class="mi">1</span><span class="p">,</span><span class="mi">3</span><span class="p">,</span><span class="mi">224</span><span class="p">,</span><span class="mi">224</span><span class="p">))],</span> |
| <span class="n">label_shapes</span><span class="o">=</span><span class="n">mod</span><span class="o">.</span><span class="n">_label_shapes</span><span class="p">)</span> |
| <span class="n">mod</span><span class="o">.</span><span class="n">set_params</span><span class="p">(</span><span class="n">arg_params</span><span class="p">,</span> <span class="n">aux_params</span><span class="p">,</span> <span class="n">allow_missing</span><span class="o">=</span><span class="bp">True</span><span class="p">)</span> |
| <span class="k">with</span> <span class="nb">open</span><span class="p">(</span><span class="s1">'synset.txt'</span><span class="p">,</span> <span class="s1">'r'</span><span class="p">)</span> <span class="k">as</span> <span class="n">f</span><span class="p">:</span> |
| <span class="n">labels</span> <span class="o">=</span> <span class="p">[</span><span class="n">l</span><span class="o">.</span><span class="n">rstrip</span><span class="p">()</span> <span class="k">for</span> <span class="n">l</span> <span class="ow">in</span> <span class="n">f</span><span class="p">]</span> |
| </pre></div> |
| </div> |
| </div> |
| <div class="section" id="predicting"> |
| <span id="predicting"></span><h2>Predicting<a class="headerlink" href="#predicting" title="Permalink to this headline">¶</a></h2> |
| <p>We first define helper functions for downloading an image and performing the |
| prediction:</p> |
| <div class="highlight-python"><div class="highlight"><pre><span></span><span class="o">%</span><span class="n">matplotlib</span> <span class="n">inline</span> |
| <span class="kn">import</span> <span class="nn">matplotlib.pyplot</span> <span class="kn">as</span> <span class="nn">plt</span> |
| <span class="kn">import</span> <span class="nn">cv2</span> |
| <span class="kn">import</span> <span class="nn">numpy</span> <span class="kn">as</span> <span class="nn">np</span> |
| <span class="c1"># define a simple data batch</span> |
| <span class="kn">from</span> <span class="nn">collections</span> <span class="kn">import</span> <span class="n">namedtuple</span> |
| <span class="n">Batch</span> <span class="o">=</span> <span class="n">namedtuple</span><span class="p">(</span><span class="s1">'Batch'</span><span class="p">,</span> <span class="p">[</span><span class="s1">'data'</span><span class="p">])</span> |
| |
| <span class="k">def</span> <span class="nf">get_image</span><span class="p">(</span><span class="n">url</span><span class="p">,</span> <span class="n">show</span><span class="o">=</span><span class="bp">False</span><span class="p">):</span> |
| <span class="c1"># download and show the image</span> |
| <span class="n">fname</span> <span class="o">=</span> <span class="n">mx</span><span class="o">.</span><span class="n">test_utils</span><span class="o">.</span><span class="n">download</span><span class="p">(</span><span class="n">url</span><span class="p">)</span> |
| <span class="n">img</span> <span class="o">=</span> <span class="n">cv2</span><span class="o">.</span><span class="n">cvtColor</span><span class="p">(</span><span class="n">cv2</span><span class="o">.</span><span class="n">imread</span><span class="p">(</span><span class="n">fname</span><span class="p">),</span> <span class="n">cv2</span><span class="o">.</span><span class="n">COLOR_BGR2RGB</span><span class="p">)</span> |
| <span class="k">if</span> <span class="n">img</span> <span class="ow">is</span> <span class="bp">None</span><span class="p">:</span> |
| <span class="k">return</span> <span class="bp">None</span> |
| <span class="k">if</span> <span class="n">show</span><span class="p">:</span> |
| <span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">img</span><span class="p">)</span> |
| <span class="n">plt</span><span class="o">.</span><span class="n">axis</span><span class="p">(</span><span class="s1">'off'</span><span class="p">)</span> |
| <span class="c1"># convert into format (batch, RGB, width, height)</span> |
| <span class="n">img</span> <span class="o">=</span> <span class="n">cv2</span><span class="o">.</span><span class="n">resize</span><span class="p">(</span><span class="n">img</span><span class="p">,</span> <span class="p">(</span><span class="mi">224</span><span class="p">,</span> <span class="mi">224</span><span class="p">))</span> |
| <span class="n">img</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">swapaxes</span><span class="p">(</span><span class="n">img</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">2</span><span class="p">)</span> |
| <span class="n">img</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">swapaxes</span><span class="p">(</span><span class="n">img</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">)</span> |
| <span class="n">img</span> <span class="o">=</span> <span class="n">img</span><span class="p">[</span><span class="n">np</span><span class="o">.</span><span class="n">newaxis</span><span class="p">,</span> <span class="p">:]</span> |
| <span class="k">return</span> <span class="n">img</span> |
| |
| <span class="k">def</span> <span class="nf">predict</span><span class="p">(</span><span class="n">url</span><span class="p">):</span> |
| <span class="n">img</span> <span class="o">=</span> <span class="n">get_image</span><span class="p">(</span><span class="n">url</span><span class="p">,</span> <span class="n">show</span><span class="o">=</span><span class="bp">True</span><span class="p">)</span> |
| <span class="c1"># compute the predict probabilities</span> |
| <span class="n">mod</span><span class="o">.</span><span class="n">forward</span><span class="p">(</span><span class="n">Batch</span><span class="p">([</span><span class="n">mx</span><span class="o">.</span><span class="n">nd</span><span class="o">.</span><span class="n">array</span><span class="p">(</span><span class="n">img</span><span class="p">)]))</span> |
| <span class="n">prob</span> <span class="o">=</span> <span class="n">mod</span><span class="o">.</span><span class="n">get_outputs</span><span class="p">()[</span><span class="mi">0</span><span class="p">]</span><span class="o">.</span><span class="n">asnumpy</span><span class="p">()</span> |
| <span class="c1"># print the top-5</span> |
| <span class="n">prob</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">squeeze</span><span class="p">(</span><span class="n">prob</span><span class="p">)</span> |
| <span class="n">a</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">argsort</span><span class="p">(</span><span class="n">prob</span><span class="p">)[::</span><span class="o">-</span><span class="mi">1</span><span class="p">]</span> |
| <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="n">a</span><span class="p">[</span><span class="mi">0</span><span class="p">:</span><span class="mi">5</span><span class="p">]:</span> |
| <span class="k">print</span><span class="p">(</span><span class="s1">'probability=</span><span class="si">%f</span><span class="s1">, class=</span><span class="si">%s</span><span class="s1">'</span> <span class="o">%</span><span class="p">(</span><span class="n">prob</span><span class="p">[</span><span class="n">i</span><span class="p">],</span> <span class="n">labels</span><span class="p">[</span><span class="n">i</span><span class="p">]))</span> |
| </pre></div> |
| </div> |
| <p>Now, we can perform prediction with any downloadable URL:</p> |
| <div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">predict</span><span class="p">(</span><span class="s1">'http://writm.com/wp-content/uploads/2016/08/Cat-hd-wallpapers.jpg'</span><span class="p">)</span> |
| </pre></div> |
| </div> |
| <div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">predict</span><span class="p">(</span><span class="s1">'http://thenotoriouspug.com/wp-content/uploads/2015/01/Pug-Cookie-1920x1080-1024x576.jpg'</span><span class="p">)</span> |
| </pre></div> |
| </div> |
| </div> |
| <div class="section" id="feature-extraction"> |
| <span id="feature-extraction"></span><h2>Feature extraction<a class="headerlink" href="#feature-extraction" title="Permalink to this headline">¶</a></h2> |
| <p>By feature extraction, we mean presenting the input images by the output of an |
| internal layer rather than the last softmax layer. These outputs, which can be |
| viewed as the feature of the raw input image, can then be used by other |
| applications such as object detection.</p> |
| <p>We can use the <code class="docutils literal"><span class="pre">get_internals</span></code> method to get all internal layers from a |
| Symbol.</p> |
| <div class="highlight-python"><div class="highlight"><pre><span></span><span class="c1"># list the last 10 layers</span> |
| <span class="n">all_layers</span> <span class="o">=</span> <span class="n">sym</span><span class="o">.</span><span class="n">get_internals</span><span class="p">()</span> |
| <span class="n">all_layers</span><span class="o">.</span><span class="n">list_outputs</span><span class="p">()[</span><span class="o">-</span><span class="mi">10</span><span class="p">:]</span> |
| </pre></div> |
| </div> |
| <p>An often used layer for feature extraction is the one before the last fully |
| connected layer. For ResNet, and also Inception, it is the flattened layer with |
| name <code class="docutils literal"><span class="pre">flatten0</span></code> which reshapes the 4-D convolutional layer output into 2-D for |
| the fully connected layer. The following source code extracts a new Symbol which |
| outputs the flattened layer and creates a model.</p> |
| <div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">fe_sym</span> <span class="o">=</span> <span class="n">all_layers</span><span class="p">[</span><span class="s1">'flatten0_output'</span><span class="p">]</span> |
| <span class="n">fe_mod</span> <span class="o">=</span> <span class="n">mx</span><span class="o">.</span><span class="n">mod</span><span class="o">.</span><span class="n">Module</span><span class="p">(</span><span class="n">symbol</span><span class="o">=</span><span class="n">fe_sym</span><span class="p">,</span> <span class="n">context</span><span class="o">=</span><span class="n">mx</span><span class="o">.</span><span class="n">cpu</span><span class="p">(),</span> <span class="n">label_names</span><span class="o">=</span><span class="bp">None</span><span class="p">)</span> |
| <span class="n">fe_mod</span><span class="o">.</span><span class="n">bind</span><span class="p">(</span><span class="n">for_training</span><span class="o">=</span><span class="bp">False</span><span class="p">,</span> <span class="n">data_shapes</span><span class="o">=</span><span class="p">[(</span><span class="s1">'data'</span><span class="p">,</span> <span class="p">(</span><span class="mi">1</span><span class="p">,</span><span class="mi">3</span><span class="p">,</span><span class="mi">224</span><span class="p">,</span><span class="mi">224</span><span class="p">))])</span> |
| <span class="n">fe_mod</span><span class="o">.</span><span class="n">set_params</span><span class="p">(</span><span class="n">arg_params</span><span class="p">,</span> <span class="n">aux_params</span><span class="p">)</span> |
| </pre></div> |
| </div> |
| <p>We can now invoke <code class="docutils literal"><span class="pre">forward</span></code> to obtain the features:</p> |
| <div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">img</span> <span class="o">=</span> <span class="n">get_image</span><span class="p">(</span><span class="s1">'http://writm.com/wp-content/uploads/2016/08/Cat-hd-wallpapers.jpg'</span><span class="p">)</span> |
| <span class="n">fe_mod</span><span class="o">.</span><span class="n">forward</span><span class="p">(</span><span class="n">Batch</span><span class="p">([</span><span class="n">mx</span><span class="o">.</span><span class="n">nd</span><span class="o">.</span><span class="n">array</span><span class="p">(</span><span class="n">img</span><span class="p">)]))</span> |
| <span class="n">features</span> <span class="o">=</span> <span class="n">fe_mod</span><span class="o">.</span><span class="n">get_outputs</span><span class="p">()[</span><span class="mi">0</span><span class="p">]</span><span class="o">.</span><span class="n">asnumpy</span><span class="p">()</span> |
| <span class="k">print</span><span class="p">(</span><span class="n">features</span><span class="p">)</span> |
| <span class="k">assert</span> <span class="n">features</span><span class="o">.</span><span class="n">shape</span> <span class="o">==</span> <span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="mi">2048</span><span class="p">)</span> |
| </pre></div> |
| </div> |
| <div class="btn-group" role="group"> |
| <div class="download-btn"><a download="predict_image.ipynb" href="predict_image.ipynb"><span class="glyphicon glyphicon-download-alt"></span> predict_image.ipynb</a></div></div></div> |
| </div> |
| </div> |
| </div> |
| <div aria-label="main navigation" class="sphinxsidebar rightsidebar" role="navigation"> |
| <div class="sphinxsidebarwrapper"> |
| <h3><a href="../../index.html">Table Of Contents</a></h3> |
| <ul> |
| <li><a class="reference internal" href="#">Predict with pre-trained models</a><ul> |
| <li><a class="reference internal" href="#prerequisites">Prerequisites</a></li> |
| <li><a class="reference internal" href="#loading">Loading</a></li> |
| <li><a class="reference internal" href="#predicting">Predicting</a></li> |
| <li><a class="reference internal" href="#feature-extraction">Feature extraction</a></li> |
| </ul> |
| </li> |
| </ul> |
| </div> |
| </div> |
| </div><div class="footer"> |
| <div class="section-disclaimer"> |
| <div class="container"> |
| <div> |
| <img height="60" src="https://raw.githubusercontent.com/dmlc/web-data/master/mxnet/image/apache_incubator_logo.png"/> |
| <p> |
| Apache MXNet is an effort undergoing incubation at The Apache Software Foundation (ASF), <strong>sponsored by the <i>Apache Incubator</i></strong>. Incubation is required of all newly accepted projects until a further review indicates that the infrastructure, communications, and decision making process have stabilized in a manner consistent with other successful ASF projects. While incubation status is not necessarily a reflection of the completeness or stability of the code, it does indicate that the project has yet to be fully endorsed by the ASF. |
| </p> |
| <p> |
| "Copyright © 2017-2018, The Apache Software Foundation |
| Apache MXNet, MXNet, Apache, the Apache feather, and the Apache MXNet project logo are either registered trademarks or trademarks of the Apache Software Foundation." |
| </p> |
| </div> |
| </div> |
| </div> |
| </div> <!-- pagename != index --> |
| </div> |
| <script crossorigin="anonymous" integrity="sha384-0mSbJDEHialfmuBBQP6A4Qrprq5OVfW37PRR3j5ELqxss1yVqOtnepnHVP9aJ7xS" src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/js/bootstrap.min.js"></script> |
| <script src="../../_static/js/sidebar.js" type="text/javascript"></script> |
| <script src="../../_static/js/search.js" type="text/javascript"></script> |
| <script src="../../_static/js/navbar.js" type="text/javascript"></script> |
| <script src="../../_static/js/clipboard.min.js" type="text/javascript"></script> |
| <script src="../../_static/js/copycode.js" type="text/javascript"></script> |
| <script src="../../_static/js/page.js" type="text/javascript"></script> |
| <script src="../../_static/js/docversion.js" type="text/javascript"></script> |
| <script type="text/javascript"> |
| $('body').ready(function () { |
| $('body').css('visibility', 'visible'); |
| }); |
| </script> |
| </body> |
| </html> |