blob: 2ccc44aa0066f3be63c66c8ce8a1362c462c0bc1 [file] [log] [blame]
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*
* A copy of Apache Spark KMeansSample.scala @52facb0062a4253fa45ac0c633d0510a9b684a62
*/
// scalastyle:off println
package org.apache.mnemonic.bench
import org.apache.spark.{SparkConf, SparkContext}
// $example on$
import org.apache.spark.mllib.clustering.{KMeans, KMeansModel}
import org.apache.spark.mllib.linalg.Vectors
// $example off$
object RegularKMeans {
def main(args: Array[String]) {
if (args.length == 0) {
println("no input file name")
System.exit(1)
}
val conf = new SparkConf().setAppName("RegularKMeans")
val sc = new SparkContext(conf)
val start = System.currentTimeMillis
// $example on$
// Load and parse the data
val data = sc.textFile(args(0))
//val parsedData = data.map(s => Vectors.dense(s.split(' ').map(_.toDouble))).cache()
val parsedData = data.map(s => Vectors.dense(s.split(' ').map(_.toDouble)))
// Cluster the data into two classes using KMeans
val numClusters = 2
val numIterations = 20
val clusters = KMeans.train(parsedData, numClusters, numIterations)
// Evaluate clustering by computing Within Set Sum of Squared Errors
val WSSSE = clusters.computeCost(parsedData)
val totalTime = System.currentTimeMillis - start
println("Within Set Sum of Squared Errors = " + WSSSE)
println("Total count of processed points = " + parsedData.count) // verify code
println("Elapsed time: %1d s".format(totalTime/1000))
// Save and load model
//clusters.save(sc, "target/org/apache/spark/KMeansExample/KMeansModel")
//val sameModel = KMeansModel.load(sc, "target/org/apache/spark/KMeansExample/KMeansModel")
// $example off$
sc.stop()
}
}
// scalastyle:on println