blob: 1329359040082ed128d8dbc45381aa3e529224e4 [file] [log] [blame]
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef __MASTER_ALLOCATOR_SORTER_RANDOM_UTILS_HPP__
#define __MASTER_ALLOCATOR_SORTER_RANDOM_UTILS_HPP__
#include <algorithm>
#include <cmath>
#include <numeric>
#include <random>
#include <vector>
#include <stout/check.hpp>
namespace mesos {
namespace internal {
namespace master {
namespace allocator {
// A weighted variant of std::shuffle. Items with higher weight
// have a higher chance of being towards the front of the list,
// equivalent to weighted random sampling without replacement.
// Code adapted from the following paper:
//
// http://utopia.duth.gr/~pefraimi/research/data/2007EncOfAlg.pdf
// Found from: https://softwareengineering.stackexchange.com/a/344274
//
// This has O(n log n) runtime complexity.
template <class RandomAccessIterator, class URBG>
void weightedShuffle(
RandomAccessIterator begin,
RandomAccessIterator end,
const std::vector<double>& weights,
URBG&& urbg)
{
CHECK_EQ(end - begin, (int) weights.size());
std::vector<double> keys(weights.size());
for (size_t i = 0; i < weights.size(); ++i) {
CHECK_GT(weights[i], 0.0);
// Make the key negative so that we don't have to reverse sort.
double random = std::uniform_real_distribution<>(0.0, 1.0)(urbg);
keys[i] = 0.0 - std::pow(random, (1.0 / weights[i]));
}
// Sort from smallest to largest keys. We store the sort permutation
// so that we can apply it to `items`.
std::vector<size_t> permutation(keys.size());
std::iota(permutation.begin(), permutation.end(), 0);
std::sort(permutation.begin(), permutation.end(),
[&](size_t i, size_t j){ return keys[i] < keys[j]; });
// Now apply the permutation to `items`.
//
// TODO(bmahler): Consider avoiding the copy of entries in `items`
// via an in-place application of the permutation:
// https://blog.merovius.de/2014/08/12/applying-permutation-in-constant.html
std::vector<typename std::iterator_traits<RandomAccessIterator>::value_type>
shuffled(end - begin);
std::transform(
permutation.begin(),
permutation.end(),
shuffled.begin(),
[&](size_t i){ return begin[i]; });
// Move the shuffled copy back into the `items`.
std::move(shuffled.begin(), shuffled.end(), begin);
}
} // namespace allocator {
} // namespace master {
} // namespace internal {
} // namespace mesos {
#endif // __MASTER_ALLOCATOR_SORTER_RANDOM_UTILS_HPP__