blob: 0a1bfdcfbbc1c834db63cda9b11609491d8c2db9 [file] [log] [blame]
/* ----------------------------------------------------------------------- *//**
*
* @file pca_project.sql_in
*
* @brief Principal Component Analysis Projection
*
* @sa For a brief introduction to Principal Component Analysis, see the module
* description \ref grp_pca.
*
*//* ----------------------------------------------------------------------- */
m4_include(`SQLCommon.m4')
/**
@addtogroup grp_pca_project
<div class ="toc"><b>Contents</b>
<ul>
<li class="level1"><a href="#project">Projection Function</a></li>
<li class="level1"><a href="#examples">Examples</a></li>
<li class="level1"><a href="#notes">Notes</a></li>
<li class="level1"><a href="#background">Technical Background</a></li>
<li class="level1"><a href="#related">Related Topics</a></li>
</ul>
</div>
@brief Projects a higher dimensional data point to a lower
dimensional subspace spanned by principal components learned through the PCA training
procedure.
Principal component projection is a mathematical procedure that projects high
dimensional data onto a lower dimensional space. This lower dimensional space
is defined by the \f$ k \f$ principal components with the highest variance in
the training data. More details on the mathematics of PCA can be found in \ref
pca_train and some details about the principal component projection calculations
can be found in the \ref background "Technical Background".
@anchor project
@par Projection Function
The projection functions have the following formats:
<pre class="syntax">
madlib.pca_project( source_table,
pc_table,
out_table,
row_id,
residual_table,
result_summary_table
)
</pre>
and
<pre class="syntax">
madlib.pca_sparse_project( source_table,
pc_table,
out_table,
row_id,
col_id,
val_id,
row_dim,
col_dim,
residual_table,
result_summary_table
)
</pre>
@par Arguments
<DL class="arglist">
<DT>source_table</DT>
<DD>TEXT. Source table name.
Identical to \ref pca_train, the input data matrix should have \f$ N \f$ rows
and \f$ M \f$ columns, where \f$ N \f$ is the number of data points, and \f$ M
\f$ is the number of features for each data point.
The input table for <em> pca_project </em> is expected to be in the one of the
two standard MADlib dense matrix formats, and the sparse input table for <em>
pca_sparse_project </em> should be in the standard MADlib sparse matrix format.
These formats are described in the documentation for \ref pca_train.</DD>
<DT>pc_table</DT>
<DD>TEXT. Table name for the table containing principal components. </DD>
<DT>out_table</DT>
<DD>TEXT. Name of the table that will contain the low-dimensional representation of the input data.
The <em>out_table</em> encodes a dense matrix with the projection onto the
principal components. The table has the following columns:
<table class="output">
<tr>
<th>row_id</th>
<td>Row id of the output matrix.</td>
</tr>
<tr>
<th>row_vec</th>
<td>A vector containing elements in the row of the matrix.</td>
</tr>
</table>
</DD>
<DT>row_id</DT>
<DD>TEXT. Column name containing the row IDs in the input source table. The column
needs to be of type that can be cast to INT and should only contain values between 1 and
<em>N</em>. For dense matrix format, it should contain all continguous integers from 1 to <em>N</em>.</DD>
<DT>col_id</DT>
<DD>TEXT. Column name of containing the col IDS in sparse matrix representation
(sparse matrices only). The column should be of type that can be cast to INT and
contain values between 1 and <em>M</em>.</DD>
<DT>val_id</DT>
<DD>TEXT. Name of 'val_id' column in sparse matrix representation (sparse matrices only). </DD>
<DT>row_dim</DT>
<DD>INTEGER. The number of rows in the sparse matrix (sparse matrices only). </DD>
<DT>col_dim</DT>
<DD>INTEGER. The number of columns in the sparse matrix (sparse matrices only). </DD>
<DT>residual_table (optional)</DT>
<DD>TEXT, default: NULL. Name of the optional residual table.
The <em>residual_table</em> encodes a dense residual matrix. The table has the following columns:
<table class="output">
<tr>
<th>row_id</th>
<td>Row id of the output matrix.</td>
</tr>
<tr>
<th>row_vec</th>
<td>A vector containing elements in the row of the residual matrix.</td>
</tr>
</table>
</DD>
<DT>result_summary_table (optional)</DT>
<DD>TEXT, default: NULL. Name of the optional summary table.
The <em>result_summary_table</em> contains information about the performance time of the PCA projection. The table has the following columns:
<table class="output">
<tr>
<th>exec_time</th>
<td>Wall clock time (ms) of the function.</td>
</tr>
<tr>
<th>residual_norm</th>
<td>Absolute error of the residuals.</td>
</tr>
<tr>
<th>relative_residual_norm</th>
<td>Relative error of the residuals.</td>
</tr>
</table></DD>
</DL>
@anchor examples
@examp
-# View online help for the PCA projection function.
<pre class="example">
SELECT madlib.pca_project();
</pre>
-# Create the sample data.
<pre class="example">
DROP TABLE IF EXISTS mat;
CREATE TABLE mat (
row_id integer,
row_vec double precision[]
);
INSERT INTO mat VALUES
(1, ARRAY[4,7,5]),
(2, ARRAY[1,2,5]),
(3, ARRAY[7,4,4]),
(4, ARRAY[9,2,4]),
(5, ARRAY[8,5,7]),
(6, ARRAY[0,5,5]);
</pre>
-# Run the PCA function and keep only the top two PCs:
<pre class="example">
DROP TABLE IF EXISTS result_table;
SELECT pca_train ( 'mat',
'result_table',
'row_id',
2
);
</pre>
-# Project the original data into a low-dimensional representation.
<pre class="example">
DROP TABLE IF EXISTS residual_table, result_summary_table, out_table;
SELECT pca_project( 'mat',
'result_table',
'out_table'
'row_id',
'residual_table',
'result_summary_table'
);
</pre>
-# Check the error in the projection.
<pre class="example">
SELECT * FROM result_summary_table;
</pre>
Result:
<pre class="result">
exec_time | residual_norm | relative_residual_norm
---------------+---------------+------------------------
5685.40501595 | 2.19726255664 | 0.099262204234
</pre>
@anchor notes
@par Notes
- This function is intended to operate on the principal component tables
generated by <em> pca_train </em> or <em> pca_sparse_train</em>. The MADlib PCA
functions generate a table containing the column-means in addition to a table
containing the principal components. If this table is not found by the MADlib
projection function, it will trigger an error. As long the principal component
tables are created with MADlib functions, then the column-means table will be
automatically found by the MADlib projection functions.
- Because of the centering step in PCA projection
(see "Technical Background"), sparse matrices almost always
become dense during the projection
process. Thus, this implementation automatically densifies sparse matrix input,
and there should be no expected performance improvement in using sparse matrix
input over dense matrix input.
- Table names can be optionally schema qualified (current_schemas() is
searched if a schema name is not provided) and all table and column names
should follow case-sensitivity and quoting rules per the database.
(For instance, 'mytable' and 'MyTable' both resolve to the same entity, i.e. 'mytable'.
If mixed-case or multi-byte characters are desired for entity names then the
string should be double-quoted; in this case the input would be '"MyTable"').
@anchor background
@par Technical Background
Given a table containing some principal components \f$ \boldsymbol P \f$ and
some input data \f$ \boldsymbol X \f$, the low-dimensional representation \f$
{\boldsymbol X}' \f$ is computed as \f{align*}{ {\boldsymbol {\hat{X}}} & =
{\boldsymbol X} - \vec{e} \hat{x}^T \\ {\boldsymbol X}' & = {\boldsymbol
{\hat {X}}} {\boldsymbol P}. \f} where \f$\hat{x} \f$ is the column means of
\f$ \boldsymbol X \f$ and \f$ \vec{e} \f$ is the vector of all ones. This
step is equivalent to centering the data around the origin.
The residual table \f$ \boldsymbol R \f$ is a measure of how well the
low-dimensional representation approximates the true input data, and is computed
as \f[ {\boldsymbol R} = {\boldsymbol {\hat{X}}} - {\boldsymbol X}' {\boldsymbol
P}^T. \f] A residual matrix with entries mostly close to zero indicates a good
representation.
The residual norm \f$ r \f$ is simply
\f[
r = \|{\boldsymbol R}\|_F
\f]
where \f$ \|\cdot\|_F \f$ is the Frobenius norm. The relative residual norm \f$ r' \f$ is
\f[
r' = \frac{ \|{\boldsymbol R}\|_F }{\|{\boldsymbol X}\|_F }
\f]
@anchor related
@par Related Topics
File pca_project.sql_in documenting the SQL functions
\ref grp_pca_train
*/
-- -----------------------------------------------------------------------
-- PCA projection for Dense matrices
-- -----------------------------------------------------------------------
/*
@brief Compute principal compoents for a dense matrix stored in a
database table
*/
CREATE OR REPLACE FUNCTION
MADLIB_SCHEMA.pca_project(
source_table TEXT, -- Source table name (dense matrix)
pc_table TEXT, -- Principal components table (output from pca module)
out_table TEXT, -- Output table name for the principal components
row_id TEXT, -- Column name for the ID for each row
residual_table TEXT, -- Residual table (Default: NULL)
result_summary_table TEXT -- Table name to store summary of results (Default: NULL)
)
RETURNS VOID AS $$
PythonFunction(pca, pca_project, pca_project)
$$ LANGUAGE plpythonu
m4_ifdef(`__HAS_FUNCTION_PROPERTIES__', `MODIFIES SQL DATA', `');
-- Overloaded functions for optional parameters
-- -----------------------------------------------------------------------
CREATE OR REPLACE FUNCTION
MADLIB_SCHEMA.pca_project(
source_table TEXT, -- Source table name (dense matrix)
pc_table TEXT, -- Principal components table (output from pca module)
out_table TEXT, -- Output table name for the principal components
row_id TEXT -- Column name for the ID for each row
)
RETURNS VOID AS $$
SELECT MADLIB_SCHEMA.pca_project($1, $2, $3, $4, NULL, NULL)
$$ LANGUAGE SQL
m4_ifdef(`__HAS_FUNCTION_PROPERTIES__', `MODIFIES SQL DATA', `');
CREATE OR REPLACE FUNCTION
MADLIB_SCHEMA.pca_project(
source_table TEXT, -- Source table name (dense matrix)
pc_table TEXT, -- Principal components table (output from pca module)
out_table TEXT, -- Output table name for the principal components
row_id TEXT, -- Column name for the ID for each row
residual_table TEXT -- Residual table (Default: NULL)
)
RETURNS VOID AS $$
SELECT MADLIB_SCHEMA.pca_project($1, $2, $3, $4, $5, NULL)
$$ LANGUAGE SQL
m4_ifdef(`__HAS_FUNCTION_PROPERTIES__', `MODIFIES SQL DATA', `');
-- Help and usage functions
-----------------------------------------------------------------------------
CREATE OR REPLACE FUNCTION
MADLIB_SCHEMA.pca_project(
usage_string TEXT -- Usage string
)
RETURNS VARCHAR AS $$
PythonFunction(pca, pca_project, pca_project_help)
$$ LANGUAGE plpythonu IMMUTABLE
m4_ifdef(`__HAS_FUNCTION_PROPERTIES__', `CONTAINS SQL', `');
CREATE OR REPLACE FUNCTION
MADLIB_SCHEMA.pca_project()
RETURNS VARCHAR AS $$
BEGIN
RETURN MADLIB_SCHEMA.pca_project('');
END;
$$ LANGUAGE plpgsql IMMUTABLE
m4_ifdef(`__HAS_FUNCTION_PROPERTIES__', `CONTAINS SQL', `');
-- -----------------------------------------------------------------------
-- PCA sparse projection for dense matrices
-- -----------------------------------------------------------------------
/*
@brief Compute principal compoents for a dense matrix stored in a
database table
*/
CREATE OR REPLACE FUNCTION
MADLIB_SCHEMA.pca_sparse_project(
source_table TEXT, -- Source table name (dense matrix)
pc_table TEXT, -- Principal components table (output from pca module)
out_table TEXT, -- Output table name for the principal components
row_id TEXT, -- Column name for the row id
col_id TEXT, -- Column name for the col id
val_id TEXT, -- Column name for the value id
row_dim INT4, -- Row dimension of the sparse matrix
col_dim INT4, -- Column dimension of the sparse matrix
residual_table TEXT, -- Residual table (Default: NULL)
result_summary_table TEXT -- Table name to store summary of results (Default: NULL)
)
RETURNS VOID AS $$
PythonFunction(pca, pca_project, pca_sparse_project)
$$ LANGUAGE plpythonu
m4_ifdef(`__HAS_FUNCTION_PROPERTIES__', `MODIFIES SQL DATA', `');
-- Overloaded functions for optional parameters
-- -----------------------------------------------------------------------
CREATE OR REPLACE FUNCTION
MADLIB_SCHEMA.pca_sparse_project(
source_table TEXT, -- Source table name (dense matrix)
pc_table TEXT, -- Principal components table (output from pca module)
out_table TEXT, -- Output table name for the principal components
row_id TEXT, -- Column name for the row id
col_id TEXT, -- Column name for the col id
val_id TEXT, -- Column name for the value id
row_dim INT4, -- Row dimension of the sparse matrix
col_dim INT4 -- Column dimension of the sparse matrix
)
RETURNS VOID AS $$
SELECT MADLIB_SCHEMA.pca_sparse_project($1, $2, $3, $4, $5, $6, $7, $8, NULL, NULL)
$$ LANGUAGE SQL
m4_ifdef(`__HAS_FUNCTION_PROPERTIES__', `MODIFIES SQL DATA', `');
CREATE OR REPLACE FUNCTION
MADLIB_SCHEMA.pca_sparse_project(
source_table TEXT, -- Source table name (dense matrix)
pc_table TEXT, -- Principal components table (output from pca module)
out_table TEXT, -- Output table name for the principal components
row_id TEXT, -- Column name for the row id
col_id TEXT, -- Column name for the col id
val_id TEXT, -- Column name for the value id
row_dim INT4, -- Row dimension of the sparse matrix
col_dim INT4, -- Column dimension of the sparse matrix
residual_table TEXT -- Residual table (Default: NULL)
)
RETURNS VOID AS $$
SELECT MADLIB_SCHEMA.pca_sparse_project($1, $2, $3, $4, $5, $6, $7, $8, $9, NULL)
$$ LANGUAGE SQL
m4_ifdef(`__HAS_FUNCTION_PROPERTIES__', `MODIFIES SQL DATA', `');
-- Help and usage functions
-----------------------------------------------------------------------------
CREATE OR REPLACE FUNCTION
MADLIB_SCHEMA.pca_sparse_project(
usage_string TEXT -- Usage string
)
RETURNS VARCHAR AS $$
PythonFunction(pca, pca_project, pca_sparse_project_help)
$$ LANGUAGE plpythonu IMMUTABLE
m4_ifdef(`__HAS_FUNCTION_PROPERTIES__', `CONTAINS SQL', `');
CREATE OR REPLACE FUNCTION
MADLIB_SCHEMA.pca_sparse_project()
RETURNS VARCHAR AS $$
BEGIN
RETURN MADLIB_SCHEMA.pca_sparse_project('');
END;
$$ LANGUAGE plpgsql IMMUTABLE
m4_ifdef(`__HAS_FUNCTION_PROPERTIES__', `CONTAINS SQL', `');