blob: f3948a8d166eb143a25375d9662cfeec507c7c50 [file] [log] [blame]
/* ----------------------------------------------------------------------- */
/**
*
* @file svm.sql_in
*
* @brief SQL functions for SVM (Poisson)
* @date July 2015
*
* @sa For a brief introduction to SVM (Poisson), see the
* module description \ref grp_svm.
*
*/
/* ----------------------------------------------------------------------- */
m4_include(`SQLCommon.m4')
/**
@addtogroup grp_svm
<div class="toc"><b>Contents</b><ul>
<li class="level1"><a href="#svm_classification">Classification Function</a></li>
<li class="level1"><a href="#svm_regression">Regression Function</a></li>
<li class="level1"><a href="#novelty_detection">Novelty Detection</a></li>
<li class="level1"><a href="#kernel_params">Kernel Parameters</a></li>
<li class="level1"><a href="#parameters">Other Parameters</a></li>
<li class="level1"><a href="#predict">Prediction Functions</a></li>
<li class="level1"><a href="#example">Examples</a></li>
<li class="level1"><a href="#background">Technical Background</a></li>
<li class="level1"><a href="#literature">Literature</a></li>
<li class="level1"><a href="#related">Related Topics</a></li>
</ul></div>
Support Vector Machines (SVMs) are models for regression and classification
tasks. SVM models have two particularly desirable features: robustness in the
presence of noisy data and applicability to a variety of data configurations. At
its core, a <em>linear</em> SVM model is a hyperplane separating two
distinct classes of data (in the case of classification problems), in such a way
that the distance between the hyperplane and the nearest training data point
(called the <em>margin</em>) is maximized. Vectors that lie on this margin are
called support vectors. With the support vectors fixed, perturbations of vectors
beyond the margin will not affect the model; this contributes to the model’s
robustness. By substituting a kernel function for the usual inner product, one can
approximate a large variety of decision boundaries in addition to linear hyperplanes.
@brief Solves classification and regression problems by separating data with
a hyperplane or other nonlinear decision boundary.
@anchor svm_classification
@par Classification Training Function
The SVM classification training function has the following format:
<pre class="syntax">
svm_classification(
source_table,
model_table,
dependent_varname,
independent_varname,
kernel_func,
kernel_params,
grouping_col,
params,
verbose
)
</pre>
\b Arguments
<DL class="arglist">
<DT>source_table</DT>
<DD>TEXT. Name of the table containing the training data.</DD>
<DT>model_table</DT>
<DD>TEXT. Name of the output table containing the model. Details of the output
tables are provided below.
</DD>
<DT>dependent_varname</DT>
<DD> TEXT. Name of the dependent variable column. For classification, this column
can contain values of any type, but must assume exactly two distinct values.
Otherwise, an error will be thrown.
</DD>
<DT>independent_varname</DT>
<DD>TEXT. Expression list to evaluate for the
independent variables. An intercept variable should not be included as part
of this expression. See 'fit_intercept' in the kernel params for info on
intercepts. Please note that expression should be able to be cast
to DOUBLE PRECISION[].
<DT>kernel_func (optional)</DT>
<DD>TEXT, default: 'linear'.
Type of kernel. Currently three kernel types are supported: 'linear',
'gaussian', and 'polynomial'. The text can be any subset of the three
strings; for e.g., kernel_func='ga' will create a Gaussian kernel.
</DD>
<DT>kernel_params (optional)</DT>
<DD>TEXT, defaults: NULL.
Parameters for non-linear kernel in a comma-separated string of key-value pairs.
The actual parameters differ depending on the value of \e kernel_func.
See the description below for details.
</DD>
<DT>grouping_col (optional)</DT>
<DD>TEXT, default: NULL. An expression list used to group
the input dataset into discrete groups, which results in running one model per group.
Similar to the SQL "GROUP BY" clause. When this value is NULL, no
grouping is used and a single model is generated. Please note that
cross validation is not supported if grouping is used.</DD>
<DT>params (optional)</DT>
<DD>TEXT, default: NULL.
Parameters for optimization and regularization in a comma-separated string
of key-value pairs. If a list of values is provided, then cross-validation
will be performed to select the \e best value from the list. See the
description below for details.
</DD>
<DT>verbose (optional)</DT>
<DD>BOOLEAN default: FALSE.
Verbose output of the results of training.</DD>
</DL>
<b>Output tables</b>
<br>
The model table produced by SVM contains the following columns:
<table class="output">
<tr>
<th>coef</th>
<td>FLOAT8. Vector of coefficients.</td>
</tr>
<tr>
<th>grouping_key</th>
<td>TEXT Identifies the group to which the datum belongs.</td>
</tr>
<tr>
<th>num_rows_processed</th>
<td>BIGINT. Numbers of rows processed.</td>
</tr>
<tr>
<th>num_rows_skipped</th>
<td>BIGINT. Numbers of rows skipped due to missing values or failures.</td>
</tr>
<tr>
<th>num_iterations</th>
<td>INTEGER. Number of iterations completed by stochastic gradient descent
algorithm. The algorithm either converged in this number of iterations
or hit the maximum number specified in the optimization parameters. </td>
</tr>
<tr>
<th>loss</th>
<td>FLOAT8. Value of the objective function of SVM. See Technical Background section below for more details.</td>
</tr>
<tr>
<th>norm_of_gradient</th>
<td>FLOAT8. Value of the L2-norm of the (sub)-gradient of the objective function.</td>
</tr>
<tr>
<th>__dep_var_mapping</th>
<td>TEXT[]. Vector of dependent variable labels. The first entry
corresponds to -1 and the second to +1. For internal use only.</td>
</tr>
</table>
An auxiliary table named \<model_table\>_random is created if the kernel is
not linear. It contains data needed to embed test data into a random feature
space (see references [2,3]). This data is used internally by svm_predict
and not meaningful on its own to the user, so you can ignore it.
A summary table named \<model_table\>_summary is also created, which has the following columns:
<table class="output">
<tr>
<th>method</th>
<td>'svm'</td>
</tr>
<tr>
<th>version_number</th>
<td>Version of MADlib which was used to generate the model.</td>
</tr>
<tr>
<th>source_table</th>
<td>The data source table name.</td>
</tr>
<tr>
<th>model_table</th>
<td>The model table name.</td>
</tr>
<tr>
<th>dependent_varname</th>
<td>The dependent variable.</td>
</tr>
<tr>
<th>independent_varname</th>
<td>The independent variables.</td>
</tr>
<tr>
<th>kernel_func</th>
<td>The kernel function.</td>
</tr>
<tr>
<th>kernel_parameters</th>
<td>The kernel parameters, as well as random feature map data.</td>
</tr>
<tr>
<th>grouping_col</th>
<td>Columns on which to group.</td>
</tr>
<tr>
<th>optim_params</th>
<td>A string containing the optimization parameters.</td>
</tr>
<tr>
<th>reg_params</th>
<td>A string containing the regularization parameters.</td>
</tr>
<tr>
<th>num_all_groups</th>
<td>Number of groups in SVM training.</td>
</tr>
<tr>
<th>num_failed_groups</th>
<td>Number of failed groups in SVM training.</td>
</tr>
<tr>
<th>total_rows_processed</th>
<td>Total numbers of rows processed in all groups.</td>
</tr>
<tr>
<th>total_rows_skipped</th>
<td>Total numbers of rows skipped in all groups due to missing
values or failures.</td>
</tr>
</table>
@anchor svm_regression
@par Regression Training Function
The SVM regression training function has the following format:
<pre class="syntax">
svm_regression(source_table,
model_table,
dependent_varname,
independent_varname,
kernel_func,
kernel_params,
grouping_col,
params,
verbose
)
</pre>
\b Arguments
Specifications for regression are largely the same as for classification. In the
model table, there is no dependent variable mapping. The following
arguments have specifications which differ from svm_classification:
<DL class="arglist">
<DT>dependent_varname</DT>
<DD>TEXT. Name of the dependent variable column. For regression, this column
can contain only values or expressions that can be cast to DOUBLE PRECISION.
Otherwise, an error will be thrown.
</DD>
<DT>params (optional)</DT>
<DD>TEXT, default: NULL.
The parameters \e epsilon and \e eps_table are only meaningful for regression.
See description below for more details.
</DD>
</DL>
@anchor novelty_detection
@par Novelty Detection Training Function
The novelty detection function is a one-class SVM classifier, and has the following format:
<pre class="syntax">
svm_one_class(
source_table,
model_table,
independent_varname,
kernel_func,
kernel_params,
grouping_col,
params,
verbose
)
</pre>
\b Arguments
Specifications for novelty detection are largely the same as for classification,
except the dependent variable name is not specified. The model table is the same
as that for classification.
@anchor kernel_params
@par Kernel Parameters
Kernel parameters are supplied in a string containing a comma-delimited
list of name-value pairs. All of these named parameters are optional, and
their order does not matter. You must use the format "<param_name> = <value>"
to specify the value of a parameter, otherwise the parameter is ignored.
<DL class="arglist">
<DT><i>Parameters common to all kernels</i></dt><dd></dd>
<DT>fit_intercept</dt>
<DD>Default: True. The parameter \e fit_intercept is an indicator to add an
intercept to the \e independent_varname array expression. The intercept is added
to the end of the feature list - thus the last element of the coefficient list
is the intercept.
</DD>
<DT>n_components</DT>
<DD>Default: 2*num_features. The dimensionality of the transformed feature space.
A larger value lowers the variance of the estimate of the kernel but requires
more memory and takes longer to train.</DD>
<DT>random_state</DT>
<DD>Default: 1. Seed used by a random number generator. </DD>
</DL>
<DL class="arglist">
<DT><i>Parameters for 'gaussian' kernel</i></dt><dd></dd>
<DT>gamma</dt>
<DD> Default: 1/num_features. The parameter \f$\gamma\f$ in the Radius Basis Function
kernel, i.e., \f$\exp(-\gamma||x-y||^2)\f$. Choosing a proper value for \e gamma
is critical to the performance of kernel machine; e.g., while a large \e gamma
tends to cause overfitting, a small \e gamma will make the model too constrained
to capture the complexity of the data.
</DD>
</DL>
<DL class="arglist">
<DT><i>Parameters for 'polynomial' kernel</i></dt><dd></dd>
<DT>coef0</dt>
<DD>Default: 1.0. The independent term \f$q\f$ in \f$ (\langle x,y\rangle + q)^r \f$.
Must be larger than or equal to 0. When it is 0, the polynomial kernel is in homogeneous form.
</DD>
<DT>degree</dt>
<DD>Default: 3. The parameter \f$r\f$ in \f$ (\langle x,y\rangle + q)^r \f$.
</DD>
</DL>
@anchor parameters
@par Other Parameters
Parameters in this section are supplied in the \e params argument as a string
containing a comma-delimited list of name-value pairs. All of these named
parameters are optional, and their order does not matter. You must use the
format "<param_name> = <value>" to specify the value of a parameter, otherwise
the parameter is ignored.
Hyperparameter optimization can be carried out using the built-in cross
validation mechanism, which is activated by assigning a value greater than 1 to
the parameter \e n_folds in \e params.
Please note that cross validation is not
supported if grouping is used.
The values of a parameter to cross validate should be provided in a list. For
example, if one wanted to regularize with the L1 norm and use a lambda value
from the set {0.3, 0.4, 0.5}, one might input 'lambda={0.3, 0.4, 0.5}, norm=L1,
n_folds=10' in \e params. Note that the use of '{}' and '[]' are both valid
here.
@note
Note that not all of the parameters below can be cross-validated. For
parameters where cross validation is allowed, their default values are presented
in list format; e.g., [0.01].
<pre class="syntax">
'init_stepsize = &lt;value>,
decay_factor = &lt;value>,
max_iter = &lt;value>,
tolerance = &lt;value>,
lambda = &lt;value>,
norm = &lt;value>,
epsilon = &lt;value>,
eps_table = &lt;value>,
validation_result = &lt;value>,
n_folds = &lt;value>,
class_weight = &lt;value>'
</pre>
\b Parameters
<DL class="arglist">
<DT>init_stepsize</dt>
<DD>Default: [0.01].
Also known as the initial learning rate. A small value is usually desirable to
ensure convergence, while a large value provides more room for progress during
training. Since the best value depends on the condition number of the data, in
practice one often searches in an exponential grid using built-in cross
validation; e.g., "init_stepsize = [1, 0.1, 0.001]". To reduce training time, it
is common to run cross validation on a subsampled dataset, since this usually
provides a good estimate of the condition number of the whole dataset. Then the
resulting \e init_stepsize can be run on the whole dataset.
</DD>
<DT>decay_factor</DT>
<DD>Default: [0.9]. Control the learning rate schedule: 0 means constant rate;
<-1 means inverse scaling, i.e., stepsize = init_stepsize / iteration; > 0 means
<exponential decay, i.e., stepsize = init_stepsize * decay_factor^iteration.
</DD>
<DT>max_iter</dt>
<DD>Default: [100]. The maximum number of iterations allowed.
</DD>
<DT>tolerance</dt>
<DD>Default: 1e-10. The criterion to end iterations. The training stops whenever
<the difference between the training models of two consecutive iterations is
<smaller than \e tolerance or the iteration number is larger than \e max_iter.
</DD>
<DT>lambda</dt>
<DD>Default: [0.01]. Regularization parameter. Must be non-negative.
</DD>
<DT>norm</dt>
<DD>Default: 'L2'. Name of the regularization, either 'L2' or 'L1'.
</DD>
<DT>epsilon</dt>
<DD>Default: [0.01].
Determines the \f$\epsilon\f$ for \f$\epsilon\f$-regression. Ignored during classification.
When training the model, differences of less than \f$\epsilon\f$ between estimated labels
and actual labels are ignored. A larger \f$\epsilon\f$ will yield a model
with fewer support vectors, but will not generalize as well to future data.
Generally, it has been suggested that epsilon should increase with noisier
data, and decrease with the number of samples. See [5].
</DD>
<DT>eps_table</dt>
<DD>Default: NULL.
Name of the input table that contains values of epsilon for different groups.
Ignored when \e grouping_col is NULL. Define this input table if you want
different epsilon values for different groups. The table consists of a column
named \e epsilon which specifies the epsilon values, and one or more columns for
\e grouping_col. Extra groups are ignored, and groups not present in this table
will use the epsilon value specified in parameter \e epsilon.
</DD>
<DT>validation_result</dt>
<DD>Default: NULL.
Name of the table to store the cross validation results including the values of
parameters and their averaged error values. For now, simple metric like 0-1 loss
is used for classification and mean square error is used for regression. The
table is only created if the name is not NULL.
</DD>
<DT>n_folds</dt>
<DD>Default: 0.
Number of folds (k). Must be at least 2 to activate cross validation.
If a value of k > 2 is specified, each fold is then used as a validation set once,
while the other k - 1 folds form the training set.
</DD>
<DT>class_weight</dt>
<DD>Default: 1 for classification, 'balanced' for one-class novelty detection,
n/a for regression.
Set the weight for the positive and negative classes. If not given, all classes
are set to have weight one.
If class_weight = balanced, values of y are automatically adjusted as inversely
proportional to class frequencies in the input data i.e. the weights are set as
n_samples / (n_classes * bincount(y)).
Alternatively, class_weight can be a mapping, giving the weight for each class.
Eg. For dependent variable values 'a' and 'b', the class_weight can be
{a: 2, b: 3}. This would lead to each 'a' tuple's y value multiplied by 2 and
each 'b' y value will be multiplied by 3.
For regression, the class weights are always one.
</DD>
</DL>
@anchor predict
@par Prediction Function
The prediction function is used to estimate the conditional mean given a new
predictor. The same syntax is used for classification, regression and novelty
detection:
<pre class="syntax">
svm_predict(model_table,
new_data_table,
id_col_name,
output_table)
</pre>
\b Arguments
<DL class="arglist">
<DT>model_table</DT>
<DD>TEXT. Model table produced by the training function.</DD>
<DT>new_data_table</DT>
<DD>TEXT. Name of the table containing the prediction data. This table is expected
to contain the same features that were used during training. The table should
also contain id_col_name used for identifying each row.</DD>
<DT>id_col_name</DT>
<DD>TEXT. The name of the id column in the input table.</DD>
<DT>output_table</DT>
<DD>TEXT. Name of the table where output predictions are written. If this
table name is already in use, then an error is returned. Table contains:</DD>
<table class="output">
<tr>
<th>id</th>
<td>Gives the 'id' for each prediction, corresponding to each row from the new_data_table.</td>
</tr>
<tr>
<th>prediction</th>
<td>Provides the prediction for each row in new_data_table.
For regression this would be the same as decision_function. For classification,
this will be one of the dependent variable values.</td>
</tr>
<tr>
<th>decision_function</th>
<td>Provides the distance between each point and the separating hyperplane.</td>
</tr>
</DL>
</table>
@anchor example
@par Examples
-# Create an input data set.
<pre class="example">
DROP TABLE IF EXISTS houses;
CREATE TABLE houses (id INT, tax INT, bedroom INT, bath FLOAT, price INT,
size INT, lot INT);
COPY houses FROM STDIN WITH DELIMITER '|';
1 | 590 | 2 | 1 | 50000 | 770 | 22100
2 | 1050 | 3 | 2 | 85000 | 1410 | 12000
3 | 20 | 3 | 1 | 22500 | 1060 | 3500
4 | 870 | 2 | 2 | 90000 | 1300 | 17500
5 | 1320 | 3 | 2 | 133000 | 1500 | 30000
6 | 1350 | 2 | 1 | 90500 | 820 | 25700
7 | 2790 | 3 | 2.5 | 260000 | 2130 | 25000
8 | 680 | 2 | 1 | 142500 | 1170 | 22000
9 | 1840 | 3 | 2 | 160000 | 1500 | 19000
10 | 3680 | 4 | 2 | 240000 | 2790 | 20000
11 | 1660 | 3 | 1 | 87000 | 1030 | 17500
12 | 1620 | 3 | 2 | 118600 | 1250 | 20000
13 | 3100 | 3 | 2 | 140000 | 1760 | 38000
14 | 2070 | 2 | 3 | 148000 | 1550 | 14000
15 | 650 | 3 | 1.5 | 65000 | 1450 | 12000
\\.
</pre>
-# Train a classification model. First, use a linear model.
<pre class="example">
DROP TABLE IF EXISTS houses_svm, houses_svm_summary;
SELECT madlib.svm_classification('houses',
'houses_svm',
'price < 100000',
'ARRAY[1, tax, bath, size]'
);
</pre>
-# View the result for the linear classification model.
<pre class="example">
-- Set extended display on for easier reading of output
\\x ON
SELECT * FROM houses_svm;
</pre>
Result:
<pre class="result">
-[ RECORD 1 ]------+---------------------------------------------------------------
coef | {0.152192069515,-0.29631947495,0.0968619000065,0.362682248051}
loss | 601.279740124
norm_of_gradient | 1300.96615851627
num_iterations | 100
num_rows_processed | 15
num_rows_skipped | 0
dep_var_mapping | {f,t}
</pre>
-# Next generate a nonlinear model using a Gaussian kernel. This time we specify
the initial step size and maximum number of iterations to run. As part of the
kernel parameter, we choose 10 as the dimension of the space where we train
SVM. A larger number will lead to a more powerful model but run the risk of
overfitting. As a result, the model will be a 10 dimensional vector, instead
of 4 as in the case of linear model, which we will verify when we examine the
models.
<pre class="example">
DROP TABLE IF EXISTS houses_svm_gaussian, houses_svm_gaussian_summary, houses_svm_gaussian_random;
SELECT madlib.svm_classification( 'houses',
'houses_svm_gaussian',
'price < 100000',
'ARRAY[1, tax, bath, size]',
'gaussian',
'n_components=10',
'',
'init_stepsize=1, max_iter=200'
);
</pre>
-# View the results from kernel SVM for classification.
<pre class="example">
-- Set extended display on for easier reading of output
\\x ON
SELECT * FROM houses_svm_gaussian;
</pre>
Result:
<pre class="result">
-[ RECORD 1 ]------+--------------------------------------------------------------------------------------------------------------------------------------------------
coef | {0.183800813574,-0.78724997813,1.54121854068,1.24432527042,4.01230959334,1.07061097224,-4.92576349408,0.437699542875,0.3128600981,-1.63880635658}
loss | 0.998735180388
norm_of_gradient | 0.729823950583579
num_iterations | 196
num_rows_processed | 15
num_rows_skipped | 0
dep_var_mapping | {f,t}
</pre>
-# The regression models have a similar format (model output not shown). First, for a linear model:
<pre class="example">
DROP TABLE IF EXISTS houses_svm_regression, houses_svm_regression_summary;
SELECT madlib.svm_regression('houses',
'houses_svm_regression',
'price',
'ARRAY[1, tax, bath, size]'
);
</pre>
For a non-linear regression model using a Gaussian kernel:
<pre class="example">
DROP TABLE IF EXISTS houses_svm_gaussian_regression, houses_svm_gaussian_regression_summary, houses_svm_gaussian_regression_random;
SELECT madlib.svm_regression( 'houses',
'houses_svm_gaussian_regression',
'price',
'ARRAY[1, tax, bath, size]',
'gaussian',
'n_components=10',
'',
'init_stepsize=1, max_iter=200'
);
</pre>
-# Now train a non-linear one-class SVM for novelty detection, using a Gaussian kernel.
Note that the dependent variable is not a parameter for one-class:
<pre class="example">
DROP TABLE IF EXISTS houses_one_class_gaussian, houses_one_class_gaussian_summary, houses_one_class_gaussian_random;
select madlib.svm_one_class('houses',
'houses_one_class_gaussian',
'ARRAY[1,tax,bedroom,bath,size,lot,price]',
'gaussian',
'gamma=0.5,n_components=55, random_state=3',
NULL,
'max_iter=100, init_stepsize=10,lambda=10, tolerance=0'
);
</pre>
-# View the result for the Gaussian novelty detection model.
<pre class="example">
-- Set extended display on for easier reading of output
\\x ON
SELECT * FROM houses_one_class_gaussian;
</pre>
Result:
<pre class="result">
-[ RECORD 1 ]------+----------------------------------------------------------------------------------------------------------------------------------------------------------------------------
coef | {redacted for brevity}
loss | 15.1053343738
norm_of_gradient | 13.9133653663837
num_iterations | 100
num_rows_processed | 16
num_rows_skipped | -1
dep_var_mapping | {-1,1}
</pre>
-# Now let's look at the prediction functions. We want to predict if house price
is less than $100,000. In the following examples we will
use the training data set for prediction as well, which is not usual but serves to
show the syntax. The predicted results are in the \e prediction column and the
actual data is in the \e target column.
For the linear model:
<pre class="example">
DROP TABLE IF EXISTS houses_pred;
SELECT madlib.svm_predict('houses_svm', 'houses', 'id', 'houses_pred');
SELECT *, price < 100000 AS target FROM houses JOIN houses_pred USING (id) ORDER BY id;
</pre>
Result:
<pre class="result">
id | tax | bedroom | bath | price | size | lot | prediction | decision_function | target
----+------+---------+------+--------+------+-------+------------+--------------------+--------
1 | 590 | 2 | 1 | 50000 | 770 | 22100 | t | 104.685894748292 | t
2 | 1050 | 3 | 2 | 85000 | 1410 | 12000 | t | 200.592436923938 | t
3 | 20 | 3 | 1 | 22500 | 1060 | 3500 | t | 378.765847404582 | t
4 | 870 | 2 | 2 | 90000 | 1300 | 17500 | t | 214.034895129328 | t
5 | 1320 | 3 | 2 | 133000 | 1500 | 30000 | t | 153.227581012028 | f
6 | 1350 | 2 | 1 | 90500 | 820 | 25700 | f | -102.382793811158 | t
7 | 2790 | 3 | 2.5 | 260000 | 2130 | 25000 | f | -53.8237999423388 | f
8 | 680 | 2 | 1 | 142500 | 1170 | 22000 | t | 223.090041223192 | f
9 | 1840 | 3 | 2 | 160000 | 1500 | 19000 | f | -0.858545961972027 | f
10 | 3680 | 4 | 2 | 240000 | 2790 | 20000 | f | -78.226279884182 | f
11 | 1660 | 3 | 1 | 87000 | 1030 | 17500 | f | -118.078558954948 | t
12 | 1620 | 3 | 2 | 118600 | 1250 | 20000 | f | -26.3388234857219 | f
13 | 3100 | 3 | 2 | 140000 | 1760 | 38000 | f | -279.923699905712 | f
14 | 2070 | 2 | 3 | 148000 | 1550 | 14000 | f | -50.7810508979155 | f
15 | 650 | 3 | 1.5 | 65000 | 1450 | 12000 | t | 333.579085875975 | t
</pre>
Prediction using the Gaussian model:
<pre class="example">
DROP TABLE IF EXISTS houses_pred_gaussian;
SELECT madlib.svm_predict('houses_svm_gaussian', 'houses', 'id', 'houses_pred_gaussian');
SELECT *, price < 100000 AS target FROM houses JOIN houses_pred_gaussian USING (id) ORDER BY id;
</pre>
This produces a more accurate result than the linear case for this small data set:
<pre class="result">
id | tax | bedroom | bath | price | size | lot | prediction | decision_function | target
----+------+---------+------+--------+------+-------+------------+-------------------+--------
1 | 590 | 2 | 1 | 50000 | 770 | 22100 | t | 1.00338548176312 | t
2 | 1050 | 3 | 2 | 85000 | 1410 | 12000 | t | 1.00000000098154 | t
3 | 20 | 3 | 1 | 22500 | 1060 | 3500 | t | 0.246566699635389 | t
4 | 870 | 2 | 2 | 90000 | 1300 | 17500 | t | 1.0000000003367 | t
5 | 1320 | 3 | 2 | 133000 | 1500 | 30000 | f | -1.98940593324397 | f
6 | 1350 | 2 | 1 | 90500 | 820 | 25700 | t | 3.74336995109761 | t
7 | 2790 | 3 | 2.5 | 260000 | 2130 | 25000 | f | -1.01574407296086 | f
8 | 680 | 2 | 1 | 142500 | 1170 | 22000 | f | -1.0000000002071 | f
9 | 1840 | 3 | 2 | 160000 | 1500 | 19000 | f | -3.88267069310101 | f
10 | 3680 | 4 | 2 | 240000 | 2790 | 20000 | f | -3.44507576539002 | f
11 | 1660 | 3 | 1 | 87000 | 1030 | 17500 | t | 2.3409866081761 | t
12 | 1620 | 3 | 2 | 118600 | 1250 | 20000 | f | -3.51563221173085 | f
13 | 3100 | 3 | 2 | 140000 | 1760 | 38000 | f | -1.00000000011163 | f
14 | 2070 | 2 | 3 | 148000 | 1550 | 14000 | f | -1.87710363254055 | f
15 | 650 | 3 | 1.5 | 65000 | 1450 | 12000 | t | 1.34334834982263 | t
</pre>
-# Prediction using the linear regression model:
<pre class="example">
DROP TABLE IF EXISTS houses_regr;
SELECT madlib.svm_predict('houses_svm_regression', 'houses', 'id', 'houses_regr');
SELECT * FROM houses JOIN houses_regr USING (id) ORDER BY id;
</pre>
Result for the linear regression model:
<pre class="result">
id | tax | bedroom | bath | price | size | lot | prediction | decision_function
----+------+---------+------+--------+------+-------+------------------+-------------------
1 | 590 | 2 | 1 | 50000 | 770 | 22100 | 55288.6992755623 | 55288.6992755623
2 | 1050 | 3 | 2 | 85000 | 1410 | 12000 | 99978.8137019119 | 99978.8137019119
3 | 20 | 3 | 1 | 22500 | 1060 | 3500 | 43157.5130381023 | 43157.5130381023
4 | 870 | 2 | 2 | 90000 | 1300 | 17500 | 88098.9557296729 | 88098.9557296729
5 | 1320 | 3 | 2 | 133000 | 1500 | 30000 | 114803.884262468 | 114803.884262468
6 | 1350 | 2 | 1 | 90500 | 820 | 25700 | 88899.5186193813 | 88899.5186193813
7 | 2790 | 3 | 2.5 | 260000 | 2130 | 25000 | 201108.397013076 | 201108.397013076
8 | 680 | 2 | 1 | 142500 | 1170 | 22000 | 75004.3236915733 | 75004.3236915733
9 | 1840 | 3 | 2 | 160000 | 1500 | 19000 | 136434.749667136 | 136434.749667136
10 | 3680 | 4 | 2 | 240000 | 2790 | 20000 | 264483.856987395 | 264483.856987395
11 | 1660 | 3 | 1 | 87000 | 1030 | 17500 | 110180.048139857 | 110180.048139857
12 | 1620 | 3 | 2 | 118600 | 1250 | 20000 | 117300.841695563 | 117300.841695563
13 | 3100 | 3 | 2 | 140000 | 1760 | 38000 | 199229.683967752 | 199229.683967752
14 | 2070 | 2 | 3 | 148000 | 1550 | 14000 | 147998.930271016 | 147998.930271016
15 | 650 | 3 | 1.5 | 65000 | 1450 | 12000 | 84936.7661235861 | 84936.7661235861
</pre>
For the non-linear Gaussian regression model (output not shown):
<pre class="example">
DROP TABLE IF EXISTS houses_gaussian_regr;
SELECT madlib.svm_predict('houses_svm_gaussian_regression', 'houses', 'id', 'houses_gaussian_regr');
SELECT * FROM houses JOIN houses_gaussian_regr USING (id) ORDER BY id;
</pre>
-# For the novelty detection using one-class, let's create a test data set using
the last 3 values from the training set plus an outlier at the end (10x price):
<pre class="example">
DROP TABLE IF EXISTS houses_one_class_test;
CREATE TABLE houses_one_class_test (id INT, tax INT, bedroom INT, bath FLOAT, price INT,
size INT, lot INT);
COPY houses_one_class_test FROM STDIN WITH DELIMITER '|';
1 | 3100 | 3 | 2 | 140000 | 1760 | 38000
2 | 2070 | 2 | 3 | 148000 | 1550 | 14000
3 | 650 | 3 | 1.5 | 65000 | 1450 | 12000
4 | 650 | 3 | 1.5 | 650000 | 1450 | 12000
\\.
</pre>
Now run prediction on the Gaussian one-class novelty detection model:
<pre class="example">
DROP TABLE IF EXISTS houses_once_class_pred;
SELECT madlib.svm_predict('houses_one_class_gaussian', 'houses_one_class_test', 'id', 'houses_one_class_pred');
SELECT * FROM houses_one_class_test JOIN houses_one_class_pred USING (id) ORDER BY id;
</pre>
Result showing the last row predicted to be novel:
<pre class="result">
id | tax | bedroom | bath | price | size | lot | prediction | decision_function
----+------+---------+------+--------+------+-------+------------+---------------------
1 | 3100 | 3 | 2 | 140000 | 1760 | 38000 | 1 | 0.111497008121437
2 | 2070 | 2 | 3 | 148000 | 1550 | 14000 | 1 | 0.0996021345169148
3 | 650 | 3 | 1.5 | 65000 | 1450 | 12000 | 1 | 0.0435064008756942
4 | 650 | 3 | 1.5 | 650000 | 1450 | 12000 | -1 | -0.0168967845338403
</pre>
-# Create a model for an unbalanced class-size dataset, then use the 'balanced' parameter
to classify:
<pre class="example">
DROP TABLE IF EXISTS houses_svm_gaussian, houses_svm_gaussian_summary, houses_svm_gaussian_random;
SELECT madlib.svm_classification( 'houses',
'houses_svm_gaussian',
'price < 150000',
'ARRAY[1, tax, bath, size]',
'gaussian',
'n_components=10',
'',
'init_stepsize=1, max_iter=200, class_weight=balanced'
);
SELECT * FROM houses_svm_gaussian;
</pre>
<pre class="result">
-[ RECORD 1 ]------+----------------------------------------------------------------------------------------------------------------------------------------------------
coef | {-0.621843913637,2.4166374426,-1.54726833725,-1.74512599505,1.16231799548,-0.54019307285,-4.14373293694,-0.623069170717,3.59669949057,-1.005501237}
loss | 1.87657250199
norm_of_gradient | 1.41148000266816
num_iterations | 174
num_rows_processed | 15
num_rows_skipped | 0
dep_var_mapping | {f,t}
</pre>
Note that the results you get for all examples may vary with the platform you are using.
@anchor background
@par Technical Background
To solve linear SVM, the following objective function is minimized:
\f[
\underset{w,b}{\text{Minimize }} \lambda||w||^2 + \frac{1}{n}\sum_{i=1}^n \ell(y_i,f_{w,b}(x_i))
\f]
where \f$(x_1,y_1),\ldots,(x_n,y_n)\f$ are labeled training data and
\f$\ell(y,f(x))\f$ is a loss function. When performing classification,
\f$\ell(y,f(x)) = \max(0,1-yf(x))\f$ is the <em>hinge loss</em>.
For regression, the loss function \f$\ell(y,f(x)) = \max(0,|y-f(x)|-\epsilon)\f$
is used.
If \f$ f_{w,b}(x) = \langle w, x\rangle + b\f$ is linear, then the
objective function is convex and incremental gradient descent (IGD, or SGD)
can be applied to find a global minimum. See Feng, et al. [1] for more details.
To learn with Gaussian or polynomial kernels, the training data is first mapped
via a <em>random feature map</em> in such a way that the usual inner product in
the feature space approximates the kernel function in the input space. The
linear SVM training function is then run on the resulting data. See the papers
[2,3] for more information on random feature maps.
Also, see the book [4] by Scholkopf and Smola for more details on SVMs in general.
@anchor literature
@literature
@anchor svm-lit-1
[1] Xixuan Feng, Arun Kumar, Ben Recht, and Christopher Re:
Towards a Unified Architecture for in-RDBMS analytics,
in SIGMOD Conference, 2012
http://www.eecs.berkeley.edu/~brecht/papers/12.FengEtAl.SIGMOD.pdf
@anchor svm-lit-2
[2] Purushottam Kar and Harish Karnick: Random Feature Maps for Dot
Product Kernels, Proceedings of the 15th International Conference
on Artificial Intelligence and Statistics, 2012,
http://machinelearning.wustl.edu/mlpapers/paper_files/AISTATS2012_KarK12.pdf
@anchor svm-lit-3
[3] Ali Rahmini and Ben Recht: Random Features for Large-Scale
Kernel Machines, Neural Information Processing Systems 2007,
http://www.eecs.berkeley.edu/~brecht/papers/07.rah.rec.nips.pdf
@anchor svm-lit-4
[4] Bernhard Scholkopf and Alexander Smola: Learning with Kernels,
The MIT Press, Cambridge, MA, 2002.
@anchor svm-lit-5
[5] Vladimir Cherkassky and Yunqian Ma: Practical Selection of SVM Parameters
and Noise Estimation for SVM Regression, Neural Networks, 2004
http://www.ece.umn.edu/users/cherkass/N2002-SI-SVM-13-whole.pdf
@anchor related
@par Related Topics
File svm.sql_in documenting the training function
@internal
@sa Namespace SVM (documenting the driver/outer loop implemented in
Python), Namespace
\ref madlib::modules::regress documenting the implementation in C++
@endinternal
*/
DROP TYPE IF EXISTS MADLIB_SCHEMA.linear_svm_result CASCADE;
CREATE TYPE MADLIB_SCHEMA.linear_svm_result AS (
coefficients double precision[],
loss double precision,
norm_of_gradient double precision,
num_rows_processed bigint
);
--------------------------------------------------------------------------
-- create SQL functions for IGD optimizer
--------------------------------------------------------------------------
-- cannot be labeled as STRICT because we set previous_state NULL initially
CREATE OR REPLACE FUNCTION MADLIB_SCHEMA.linear_svm_igd_transition(
state double precision[],
ind_var double precision[],
dep_var double precision,
previous_state double precision[],
dimension integer,
stepsize double precision,
reg double precision,
is_l2 boolean,
n_tuples integer,
epsilon double precision,
is_svc boolean,
tuple_weight double precision
)
RETURNS double precision[] AS 'MODULE_PATHNAME'
LANGUAGE C IMMUTABLE
m4_ifdef(`__HAS_FUNCTION_PROPERTIES__', `NO SQL');
CREATE OR REPLACE FUNCTION MADLIB_SCHEMA.linear_svm_igd_merge(
state1 double precision[],
state2 double precision[])
RETURNS double precision[] AS 'MODULE_PATHNAME'
LANGUAGE C IMMUTABLE STRICT
m4_ifdef(`__HAS_FUNCTION_PROPERTIES__', `NO SQL');
CREATE OR REPLACE FUNCTION MADLIB_SCHEMA.linear_svm_igd_final(
state double precision[])
RETURNS double precision[] AS 'MODULE_PATHNAME'
LANGUAGE C IMMUTABLE STRICT
m4_ifdef(`__HAS_FUNCTION_PROPERTIES__', `NO SQL');
/**
* @internal
* @brief Perform one iteration of the incremental gradient
* method for computing linear support vector machine
*/
DROP AGGREGATE IF EXISTS MADLIB_SCHEMA.linear_svm_igd_step(
/*+ ind_var */ double precision[],
/*+ dep_var */ double precision,
/*+ previous_state */ double precision[],
/*+ dimension */ integer,
/*+ stepsize */ double precision,
/*+ reg */ double precision,
/*+ is_l2 */ boolean,
/*+ n_tuples */ integer,
/*+ epsilon */ double precision,
/*+ is_svc */ boolean,
/*+ tuple_weight */ double precision
);
CREATE AGGREGATE MADLIB_SCHEMA.linear_svm_igd_step(
/*+ ind_var */ double precision[],
/*+ dep_var */ double precision,
/*+ previous_state */ double precision[],
/*+ dimension */ integer,
/*+ stepsize */ double precision,
/*+ reg */ double precision,
/*+ is_l2 */ boolean,
/*+ n_tuples */ integer,
/*+ epsilon */ double precision,
/*+ is_svc */ boolean,
/*+ tuple_weight */ double precision
) (
STYPE=double precision[],
SFUNC=MADLIB_SCHEMA.linear_svm_igd_transition,
m4_ifdef(`__POSTGRESQL__', `', `prefunc=MADLIB_SCHEMA.linear_svm_igd_merge,')
FINALFUNC=MADLIB_SCHEMA.linear_svm_igd_final,
INITCOND='{0,0,0,0,0,0,0}'
);
CREATE OR REPLACE FUNCTION MADLIB_SCHEMA.internal_linear_svm_igd_distance(
/*+ state1 */ double precision[],
/*+ state2 */ double precision[])
RETURNS double precision AS 'MODULE_PATHNAME'
LANGUAGE c IMMUTABLE STRICT
m4_ifdef(`__HAS_FUNCTION_PROPERTIES__', `NO SQL');
CREATE OR REPLACE FUNCTION MADLIB_SCHEMA.internal_linear_svm_igd_result(
/*+ state */ double precision[])
RETURNS MADLIB_SCHEMA.linear_svm_result AS 'MODULE_PATHNAME'
LANGUAGE c IMMUTABLE STRICT
m4_ifdef(`__HAS_FUNCTION_PROPERTIES__', `NO SQL');
CREATE OR REPLACE FUNCTION MADLIB_SCHEMA.svm_regression(
source_table text,
model_table text,
dependent_varname text,
independent_varname text,
kernel_func text,
kernel_params text,
grouping_col text,
params text,
verbose bool)
RETURNS void AS $$
# indent according to PythonFunction
global is_svc
is_svc = False
PythonFunction(svm, svm, svm)
$$ LANGUAGE plpythonu VOLATILE
m4_ifdef(`__HAS_FUNCTION_PROPERTIES__', `MODIFIES SQL DATA');
CREATE OR REPLACE FUNCTION MADLIB_SCHEMA.svm_regression(
source_table text,
model_table text,
dependent_varname text,
independent_varname text,
kernel_func text,
kernel_params text,
grouping_col text,
params text)
RETURNS void AS $$
SELECT MADLIB_SCHEMA.svm_regression($1, $2, $3, $4, $5, $6, $7, $8, NULL);
$$ LANGUAGE sql VOLATILE
m4_ifdef(`__HAS_FUNCTION_PROPERTIES__', `MODIFIES SQL DATA');
CREATE OR REPLACE FUNCTION MADLIB_SCHEMA.svm_regression(
source_table text,
model_table text,
dependent_varname text,
independent_varname text,
kernel_func text,
kernel_params text,
grouping_col text)
RETURNS void AS $$
SELECT MADLIB_SCHEMA.svm_regression($1, $2, $3, $4, $5, $6, $7, NULL);
$$ LANGUAGE sql VOLATILE
m4_ifdef(`__HAS_FUNCTION_PROPERTIES__', `MODIFIES SQL DATA');
CREATE OR REPLACE FUNCTION MADLIB_SCHEMA.svm_regression(
source_table text,
model_table text,
dependent_varname text,
independent_varname text,
kernel_func text,
kernel_params text)
RETURNS void AS $$
SELECT MADLIB_SCHEMA.svm_regression($1, $2, $3, $4, $5, $6, NULL);
$$ LANGUAGE sql VOLATILE
m4_ifdef(`__HAS_FUNCTION_PROPERTIES__', `MODIFIES SQL DATA');
CREATE OR REPLACE FUNCTION MADLIB_SCHEMA.svm_regression(
source_table text,
model_table text,
dependent_varname text,
independent_varname text,
kernel_func text)
RETURNS void AS $$
SELECT MADLIB_SCHEMA.svm_regression($1, $2, $3, $4, $5, NULL);
$$ LANGUAGE sql VOLATILE
m4_ifdef(`__HAS_FUNCTION_PROPERTIES__', `MODIFIES SQL DATA');
CREATE OR REPLACE FUNCTION MADLIB_SCHEMA.svm_regression(
source_table text,
model_table text,
dependent_varname text,
independent_varname text)
RETURNS void AS $$
SELECT MADLIB_SCHEMA.svm_regression($1, $2, $3, $4, NULL);
$$ LANGUAGE sql VOLATILE
m4_ifdef(`__HAS_FUNCTION_PROPERTIES__', `MODIFIES SQL DATA');
-----------------
CREATE OR REPLACE FUNCTION MADLIB_SCHEMA.svm_classification(
source_table text,
model_table text,
dependent_varname text,
independent_varname text,
kernel_func text,
kernel_params text,
grouping_col text,
params text,
verbose bool)
RETURNS void AS $$
# indent according to PythonFunction
global is_svc
is_svc = True
PythonFunction(svm, svm, svm)
$$ LANGUAGE plpythonu VOLATILE
m4_ifdef(`__HAS_FUNCTION_PROPERTIES__', `MODIFIES SQL DATA');
-- all default value handling implemented in Python
CREATE OR REPLACE FUNCTION MADLIB_SCHEMA.svm_classification(
source_table text,
model_table text,
dependent_varname text,
independent_varname text,
kernel_func text,
kernel_params text,
grouping_col text,
params text)
RETURNS void AS $$
SELECT MADLIB_SCHEMA.svm_classification($1, $2, $3, $4, $5, $6, $7, $8, NULL);
$$ LANGUAGE sql VOLATILE
m4_ifdef(`__HAS_FUNCTION_PROPERTIES__', `MODIFIES SQL DATA');
CREATE OR REPLACE FUNCTION MADLIB_SCHEMA.svm_classification(
source_table text,
model_table text,
dependent_varname text,
independent_varname text,
kernel_func text,
kernel_params text,
grouping_col text)
RETURNS void AS $$
SELECT MADLIB_SCHEMA.svm_classification($1, $2, $3, $4, $5, $6, $7, NULL);
$$ LANGUAGE sql VOLATILE
m4_ifdef(`__HAS_FUNCTION_PROPERTIES__', `MODIFIES SQL DATA');
CREATE OR REPLACE FUNCTION MADLIB_SCHEMA.svm_classification(
source_table text,
model_table text,
dependent_varname text,
independent_varname text,
kernel_func text,
kernel_params text)
RETURNS void AS $$
SELECT MADLIB_SCHEMA.svm_classification($1, $2, $3, $4, $5, $6, NULL);
$$ LANGUAGE sql VOLATILE
m4_ifdef(`__HAS_FUNCTION_PROPERTIES__', `MODIFIES SQL DATA');
CREATE OR REPLACE FUNCTION MADLIB_SCHEMA.svm_classification(
source_table text,
model_table text,
dependent_varname text,
independent_varname text,
kernel_func text)
RETURNS void AS $$
SELECT MADLIB_SCHEMA.svm_classification($1, $2, $3, $4, $5, NULL);
$$ LANGUAGE sql VOLATILE
m4_ifdef(`__HAS_FUNCTION_PROPERTIES__', `MODIFIES SQL DATA');
CREATE OR REPLACE FUNCTION MADLIB_SCHEMA.svm_classification(
source_table text,
model_table text,
dependent_varname text,
independent_varname text)
RETURNS void AS $$
SELECT MADLIB_SCHEMA.svm_classification($1, $2, $3, $4, NULL);
$$ LANGUAGE sql VOLATILE
m4_ifdef(`__HAS_FUNCTION_PROPERTIES__', `MODIFIES SQL DATA');
-----------------------------------------------------------------
CREATE OR REPLACE FUNCTION MADLIB_SCHEMA.svm_one_class(
source_table text,
model_table text,
independent_varname text,
kernel_func text,
kernel_params text,
grouping_col text,
params text,
verbose bool)
RETURNS void AS $$
PythonFunction(svm, svm, svm_one_class)
$$ LANGUAGE plpythonu VOLATILE
m4_ifdef(`__HAS_FUNCTION_PROPERTIES__', `MODIFIES SQL DATA');
-- all default value handling implemented in Python
CREATE OR REPLACE FUNCTION MADLIB_SCHEMA.svm_one_class(
source_table text,
model_table text,
independent_varname text,
kernel_func text,
kernel_params text,
grouping_col text,
params text)
RETURNS void AS $$
SELECT MADLIB_SCHEMA.svm_one_class($1, $2, $3, $4, $5, $6, $7, FALSE);
$$ LANGUAGE sql VOLATILE
m4_ifdef(`__HAS_FUNCTION_PROPERTIES__', `MODIFIES SQL DATA');
CREATE OR REPLACE FUNCTION MADLIB_SCHEMA.svm_one_class(
source_table text,
model_table text,
independent_varname text,
kernel_func text,
kernel_params text,
grouping_col text)
RETURNS void AS $$
SELECT MADLIB_SCHEMA.svm_one_class($1, $2, $3, $4, $5, $6, ''::text, FALSE);
$$ LANGUAGE sql VOLATILE
m4_ifdef(`__HAS_FUNCTION_PROPERTIES__', `MODIFIES SQL DATA');
CREATE OR REPLACE FUNCTION MADLIB_SCHEMA.svm_one_class(
source_table text,
model_table text,
independent_varname text,
kernel_func text,
kernel_params text)
RETURNS void AS $$
SELECT MADLIB_SCHEMA.svm_one_class($1, $2, $3, $4, $5, ''::text, ''::text, FALSE);
$$ LANGUAGE sql VOLATILE
m4_ifdef(`__HAS_FUNCTION_PROPERTIES__', `MODIFIES SQL DATA');
CREATE OR REPLACE FUNCTION MADLIB_SCHEMA.svm_one_class(
source_table text,
model_table text,
independent_varname text,
kernel_func text)
RETURNS void AS $$
SELECT MADLIB_SCHEMA.svm_one_class($1, $2, $3, $4, ''::text, ''::text, ''::text, FALSE);
$$ LANGUAGE sql VOLATILE
m4_ifdef(`__HAS_FUNCTION_PROPERTIES__', `MODIFIES SQL DATA');
CREATE OR REPLACE FUNCTION MADLIB_SCHEMA.svm_one_class(
source_table text,
model_table text,
independent_varname text)
RETURNS void AS $$
SELECT MADLIB_SCHEMA.svm_one_class($1, $2, $3, ''::text,
''::text, ''::text, ''::text, FALSE);
$$ LANGUAGE sql VOLATILE
m4_ifdef(`__HAS_FUNCTION_PROPERTIES__', `MODIFIES SQL DATA');
------ Prediction -------------------------------------------------------------
/**
* @brief Scores the data points stored in a table using a learned linear support-vector model
* @param model_table Name of table where the learned model to be used is stored
* @param new_data_table Name of table/view containing the data points to be scored
* @param id_col Name of column in new_data_table containing the integer identifier of data points
*
*
*
* @param output_table Name of table to store the results
*
* @return Textual summary of the algorithm run
*
* @internal
* @sa This function is a wrapper for svm.svm_predict().
*/
CREATE OR REPLACE FUNCTION MADLIB_SCHEMA.svm_predict(
model_table text,
new_data_table text,
id_col_name text,
output_table text)
RETURNS void AS $$
PythonFunction(svm, svm, svm_predict)
$$ LANGUAGE plpythonu VOLATILE
m4_ifdef(`__HAS_FUNCTION_PROPERTIES__', `MODIFIES SQL DATA');
-- Online Help -----------------------------------------------------------
/**
* @brief Help function
*/
CREATE OR REPLACE FUNCTION MADLIB_SCHEMA.svm_predict(
message TEXT
) RETURNS TEXT AS $$
PythonFunction(svm, svm, svm_predict_help)
$$ LANGUAGE plpythonu
m4_ifdef(`__HAS_FUNCTION_PROPERTIES__', `NO SQL', `');
CREATE OR REPLACE FUNCTION MADLIB_SCHEMA.svm_predict()
RETURNS TEXT AS $$
SELECT MADLIB_SCHEMA.svm_predict(NULL::TEXT)
$$ LANGUAGE SQL IMMUTABLE
m4_ifdef(`__HAS_FUNCTION_PROPERTIES__', `CONTAINS SQL', `');
CREATE OR REPLACE FUNCTION MADLIB_SCHEMA.svm_predict(
message text)
RETURNS TEXT AS $$
PythonFunction(svm, svm, svm_predict_help)
$$ LANGUAGE plpythonu
m4_ifdef(`__HAS_FUNCTION_PROPERTIES__', `NO SQL', `');
CREATE OR REPLACE FUNCTION MADLIB_SCHEMA.svm_classification (
message TEXT
) RETURNS TEXT AS $$
PythonFunctionBodyOnly(svm, svm)
return svm.svm_help(schema_madlib, message, True)
$$ LANGUAGE plpythonu
m4_ifdef(`__HAS_FUNCTION_PROPERTIES__', `NO SQL', `');
CREATE OR REPLACE FUNCTION MADLIB_SCHEMA.svm_classification ()
RETURNS TEXT AS $$
SELECT MADLIB_SCHEMA.svm_classification(NULL::TEXT)
$$ LANGUAGE SQL IMMUTABLE
m4_ifdef(`__HAS_FUNCTION_PROPERTIES__', `CONTAINS SQL', `');
CREATE OR REPLACE FUNCTION MADLIB_SCHEMA.svm_one_class (
message TEXT
) RETURNS TEXT AS $$
PythonFunctionBodyOnly(svm, svm)
return svm.svm_one_class_help(schema_madlib, message, True)
$$ LANGUAGE plpythonu
m4_ifdef(`__HAS_FUNCTION_PROPERTIES__', `NO SQL', `');
CREATE OR REPLACE FUNCTION MADLIB_SCHEMA.svm_one_class ()
RETURNS TEXT AS $$
SELECT MADLIB_SCHEMA.svm_one_class(NULL::TEXT)
$$ LANGUAGE SQL IMMUTABLE
m4_ifdef(`__HAS_FUNCTION_PROPERTIES__', `CONTAINS SQL', `');
CREATE OR REPLACE FUNCTION MADLIB_SCHEMA.svm_regression (
message TEXT
) RETURNS TEXT AS $$
PythonFunctionBodyOnly(svm, svm)
return svm.svm_help(schema_madlib, message, False)
$$ LANGUAGE plpythonu
m4_ifdef(`__HAS_FUNCTION_PROPERTIES__', `NO SQL', `');
CREATE OR REPLACE FUNCTION MADLIB_SCHEMA.svm_regression ()
RETURNS TEXT AS $$
SELECT MADLIB_SCHEMA.svm_regression(''::TEXT)
$$ LANGUAGE SQL IMMUTABLE
m4_ifdef(`__HAS_FUNCTION_PROPERTIES__', `CONTAINS SQL', `');