blob: 5f69f166b06401857b218d8ba3212dd693a2199f [file] [log] [blame]
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/xhtml;charset=UTF-8"/>
<title>MADlib: online_sv.sql_in File Reference</title>
<link href="tabs.css" rel="stylesheet" type="text/css"/>
<link href="doxygen.css" rel="stylesheet" type="text/css" />
<link href="navtree.css" rel="stylesheet" type="text/css"/>
<script type="text/javascript" src="jquery.js"></script>
<script type="text/javascript" src="resize.js"></script>
<script type="text/javascript" src="navtree.js"></script>
<script type="text/javascript">
$(document).ready(initResizable);
</script>
<link href="search/search.css" rel="stylesheet" type="text/css"/>
<script type="text/javascript" src="search/search.js"></script>
<script type="text/javascript">
$(document).ready(function() { searchBox.OnSelectItem(0); });
</script>
<script src="../mathjax/MathJax.js">
MathJax.Hub.Config({
extensions: ["tex2jax.js", "TeX/AMSmath.js", "TeX/AMSsymbols.js"],
jax: ["input/TeX","output/HTML-CSS"],
});
</script>
</head>
<body>
<div id="top"><!-- do not remove this div! -->
<div id="titlearea">
<table cellspacing="0" cellpadding="0">
<tbody>
<tr style="height: 56px;">
<td style="padding-left: 0.5em;">
<div id="projectname">MADlib
&#160;<span id="projectnumber">0.6</span> <span style="font-size:10pt; font-style:italic"><a href="../latest/./online__sv_8sql__in.html"> A newer version is available</a></span>
</div>
<div id="projectbrief">User Documentation</div>
</td>
</tr>
</tbody>
</table>
</div>
<!-- Generated by Doxygen 1.7.5.1 -->
<script type="text/javascript">
var searchBox = new SearchBox("searchBox", "search",false,'Search');
</script>
<script type="text/javascript" src="dynsections.js"></script>
<div id="navrow1" class="tabs">
<ul class="tablist">
<li><a href="index.html"><span>Main&#160;Page</span></a></li>
<li><a href="modules.html"><span>Modules</span></a></li>
<li class="current"><a href="files.html"><span>Files</span></a></li>
<li>
<div id="MSearchBox" class="MSearchBoxInactive">
<span class="left">
<img id="MSearchSelect" src="search/mag_sel.png"
onmouseover="return searchBox.OnSearchSelectShow()"
onmouseout="return searchBox.OnSearchSelectHide()"
alt=""/>
<input type="text" id="MSearchField" value="Search" accesskey="S"
onfocus="searchBox.OnSearchFieldFocus(true)"
onblur="searchBox.OnSearchFieldFocus(false)"
onkeyup="searchBox.OnSearchFieldChange(event)"/>
</span><span class="right">
<a id="MSearchClose" href="javascript:searchBox.CloseResultsWindow()"><img id="MSearchCloseImg" border="0" src="search/close.png" alt=""/></a>
</span>
</div>
</li>
</ul>
</div>
<div id="navrow2" class="tabs2">
<ul class="tablist">
<li><a href="files.html"><span>File&#160;List</span></a></li>
<li><a href="globals.html"><span>File&#160;Members</span></a></li>
</ul>
</div>
</div>
<div id="side-nav" class="ui-resizable side-nav-resizable">
<div id="nav-tree">
<div id="nav-tree-contents">
</div>
</div>
<div id="splitbar" style="-moz-user-select:none;"
class="ui-resizable-handle">
</div>
</div>
<script type="text/javascript">
initNavTree('online__sv_8sql__in.html','');
</script>
<div id="doc-content">
<div class="header">
<div class="summary">
<a href="#func-members">Functions</a> </div>
<div class="headertitle">
<div class="title">online_sv.sql_in File Reference</div> </div>
</div>
<div class="contents">
<p>SQL functions for support vector machines.
<a href="#details">More...</a></p>
<p><a href="online__sv_8sql__in_source.html">Go to the source code of this file.</a></p>
<table class="memberdecls">
<tr><td colspan="2"><h2><a name="func-members"></a>
Functions</h2></td></tr>
<tr><td class="memItemLeft" align="right" valign="top">float8&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="online__sv_8sql__in.html#acc2d778a8eb48ab775ff9c1dff4a3141">svm_dot</a> (float8[] x, float8[] y)</td></tr>
<tr><td class="mdescLeft">&#160;</td><td class="mdescRight">Dot product kernel function. <a href="#acc2d778a8eb48ab775ff9c1dff4a3141"></a><br/></td></tr>
<tr><td class="memItemLeft" align="right" valign="top">float8&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="online__sv_8sql__in.html#a1ac76fdf9623e0a4db47665f2a80be90">svm_polynomial</a> (float8[] x, float8[] y, float8 degree)</td></tr>
<tr><td class="mdescLeft">&#160;</td><td class="mdescRight">Polynomial kernel function. <a href="#a1ac76fdf9623e0a4db47665f2a80be90"></a><br/></td></tr>
<tr><td class="memItemLeft" align="right" valign="top">float8&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="online__sv_8sql__in.html#a9f2a96e1a241ecc66386a78b110777d3">svm_gaussian</a> (float8[] x, float8[] y, float8 gamma)</td></tr>
<tr><td class="mdescLeft">&#160;</td><td class="mdescRight">Gaussian kernel function. <a href="#a9f2a96e1a241ecc66386a78b110777d3"></a><br/></td></tr>
<tr><td class="memItemLeft" align="right" valign="top">void&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="online__sv_8sql__in.html#ab54d33f13c0e00faa358e3e3f17c10fb">svm_drop_model</a> (text model_table)</td></tr>
<tr><td class="mdescLeft">&#160;</td><td class="mdescRight">Drops all tables pertaining to a model. <a href="#ab54d33f13c0e00faa358e3e3f17c10fb"></a><br/></td></tr>
<tr><td class="memItemLeft" align="right" valign="top">float8&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="online__sv_8sql__in.html#a9916305653d464b23ef0fbd78867a654">svm_predict</a> (text model_table, float8[] ind)</td></tr>
<tr><td class="mdescLeft">&#160;</td><td class="mdescRight">Evaluates a support-vector model on a given data point. <a href="#a9916305653d464b23ef0fbd78867a654"></a><br/></td></tr>
<tr><td class="memItemLeft" align="right" valign="top">set&lt; svm_model_pr &gt;&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="online__sv_8sql__in.html#a883ff4ca340d19a11204b461dd388276">svm_predict_combo</a> (text model_table, float8[] ind)</td></tr>
<tr><td class="mdescLeft">&#160;</td><td class="mdescRight">Evaluates multiple support-vector models on a data point. <a href="#a883ff4ca340d19a11204b461dd388276"></a><br/></td></tr>
<tr><td class="memItemLeft" align="right" valign="top">set&lt; svm_reg_result &gt;&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="online__sv_8sql__in.html#acaf1f4aa3eec5710de5c03e368a4b106">svm_regression</a> (text input_table, text model_table, bool parallel, text kernel_func)</td></tr>
<tr><td class="mdescLeft">&#160;</td><td class="mdescRight">This is the support vector regression function. <a href="#acaf1f4aa3eec5710de5c03e368a4b106"></a><br/></td></tr>
<tr><td class="memItemLeft" align="right" valign="top">set&lt; svm_reg_result &gt;&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="online__sv_8sql__in.html#ac5cb9c20d6620b155ac872576a056f2a">svm_regression</a> (text input_table, text model_table, bool parallel, text kernel_func, bool verbose, float8 eta, float8 nu, float8 slambda)</td></tr>
<tr><td class="mdescLeft">&#160;</td><td class="mdescRight">This is the support vector regression function. <a href="#ac5cb9c20d6620b155ac872576a056f2a"></a><br/></td></tr>
<tr><td class="memItemLeft" align="right" valign="top">set&lt; svm_cls_result &gt;&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="online__sv_8sql__in.html#a20a2c8a905be6e922885e23e9dab0a4c">svm_classification</a> (text input_table, text model_table, bool parallel, text kernel_func)</td></tr>
<tr><td class="mdescLeft">&#160;</td><td class="mdescRight">This is the support vector classification function. <a href="#a20a2c8a905be6e922885e23e9dab0a4c"></a><br/></td></tr>
<tr><td class="memItemLeft" align="right" valign="top">set&lt; svm_cls_result &gt;&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="online__sv_8sql__in.html#ad90b6bf3b807f22d37b0e2b1893262f0">svm_classification</a> (text input_table, text model_table, bool parallel, text kernel_func, bool verbose, float8 eta, float8 nu)</td></tr>
<tr><td class="mdescLeft">&#160;</td><td class="mdescRight">This is the support vector classification function. <a href="#ad90b6bf3b807f22d37b0e2b1893262f0"></a><br/></td></tr>
<tr><td class="memItemLeft" align="right" valign="top">set&lt; svm_nd_result &gt;&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="online__sv_8sql__in.html#a3448ea62ab57fe4cf177f5fa6b5db7d3">svm_novelty_detection</a> (text input_table, text model_table, bool parallel, text kernel_func)</td></tr>
<tr><td class="mdescLeft">&#160;</td><td class="mdescRight">This is the support vector novelty detection function. <a href="#a3448ea62ab57fe4cf177f5fa6b5db7d3"></a><br/></td></tr>
<tr><td class="memItemLeft" align="right" valign="top">set&lt; svm_nd_result &gt;&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="online__sv_8sql__in.html#a5bae5335b51e448cd7fb9cb7a54b0bfa">svm_novelty_detection</a> (text input_table, text model_table, bool parallel, text kernel_func, bool verbose, float8 eta, float8 nu)</td></tr>
<tr><td class="mdescLeft">&#160;</td><td class="mdescRight">This is the support vector novelty detection function. <a href="#a5bae5335b51e448cd7fb9cb7a54b0bfa"></a><br/></td></tr>
<tr><td class="memItemLeft" align="right" valign="top">text&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="online__sv_8sql__in.html#a91ac71354e9dec74e25339bf168c2e5b">svm_predict_batch</a> (text input_table, text data_col, text id_col, text model_table, text output_table, bool parallel)</td></tr>
<tr><td class="mdescLeft">&#160;</td><td class="mdescRight">Scores the data points stored in a table using a learned support-vector model. <a href="#a91ac71354e9dec74e25339bf168c2e5b"></a><br/></td></tr>
<tr><td class="memItemLeft" align="right" valign="top">void&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="online__sv_8sql__in.html#a78bb07d8f4aee80c3bbc8e8176e512be">svm_data_normalization</a> (text input_table)</td></tr>
<tr><td class="mdescLeft">&#160;</td><td class="mdescRight">Normalizes the data stored in a table, and save the normalized data in a new table. <a href="#a78bb07d8f4aee80c3bbc8e8176e512be"></a><br/></td></tr>
<tr><td class="memItemLeft" align="right" valign="top">set&lt; lsvm_sgd_result &gt;&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="online__sv_8sql__in.html#a75d126981ae4bf2e6641627501f0a2a5">lsvm_classification</a> (text input_table, text model_table, bool parallel)</td></tr>
<tr><td class="mdescLeft">&#160;</td><td class="mdescRight">This is the linear support vector classification function. <a href="#a75d126981ae4bf2e6641627501f0a2a5"></a><br/></td></tr>
<tr><td class="memItemLeft" align="right" valign="top">set&lt; lsvm_sgd_result &gt;&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="online__sv_8sql__in.html#a50896def00d0e0950bec3d95b387e6b9">lsvm_classification</a> (text input_table, text model_table, bool parallel, bool verbose, float8 eta, float8 reg)</td></tr>
<tr><td class="mdescLeft">&#160;</td><td class="mdescRight">This is the linear support vector classification function. <a href="#a50896def00d0e0950bec3d95b387e6b9"></a><br/></td></tr>
<tr><td class="memItemLeft" align="right" valign="top">text&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="online__sv_8sql__in.html#a1c0a002f50250133c0ef1d3c43c6d338">lsvm_predict_batch</a> (text input_table, text data_col, text id_col, text model_table, text output_table, bool parallel)</td></tr>
<tr><td class="mdescLeft">&#160;</td><td class="mdescRight">Scores the data points stored in a table using a learned linear support-vector model. <a href="#a1c0a002f50250133c0ef1d3c43c6d338"></a><br/></td></tr>
<tr><td class="memItemLeft" align="right" valign="top">float8&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="online__sv_8sql__in.html#a5fe084c8364c0657097410458f8ea1e9">lsvm_predict</a> (text model_table, float8[] ind)</td></tr>
<tr><td class="mdescLeft">&#160;</td><td class="mdescRight">Evaluates a linear support-vector model on a given data point. <a href="#a5fe084c8364c0657097410458f8ea1e9"></a><br/></td></tr>
<tr><td class="memItemLeft" align="right" valign="top">set&lt; svm_model_pr &gt;&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="online__sv_8sql__in.html#a0ae9c50ca072757ff6493a8bf26dbc9c">lsvm_predict_combo</a> (text model_table, float8[] ind)</td></tr>
<tr><td class="mdescLeft">&#160;</td><td class="mdescRight">Evaluates multiple linear support-vector models on a data point. <a href="#a0ae9c50ca072757ff6493a8bf26dbc9c"></a><br/></td></tr>
</table>
<hr/><a name="details" id="details"></a><h2>Detailed Description</h2>
<div class="textblock"><dl class="see"><dt><b>See also:</b></dt><dd>For an introduction to Support vector machines (SVMs) and related kernel methods, see the module description <a class="el" href="group__grp__kernmach.html">Support Vector Machines</a>. </dd></dl>
<p>Definition in file <a class="el" href="online__sv_8sql__in_source.html">online_sv.sql_in</a>.</p>
</div><hr/><h2>Function Documentation</h2>
<a class="anchor" id="a75d126981ae4bf2e6641627501f0a2a5"></a><!-- doxytag: member="online_sv.sql_in::lsvm_classification" ref="a75d126981ae4bf2e6641627501f0a2a5" args="(text input_table, text model_table, bool parallel)" -->
<div class="memitem">
<div class="memproto">
<table class="memname">
<tr>
<td class="memname">set&lt;lsvm_sgd_result&gt; lsvm_classification </td>
<td>(</td>
<td class="paramtype">text&#160;</td>
<td class="paramname"><em>input_table</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">text&#160;</td>
<td class="paramname"><em>model_table</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">bool&#160;</td>
<td class="paramname"><em>parallel</em>&#160;</td>
</tr>
<tr>
<td></td>
<td>)</td>
<td></td><td></td>
</tr>
</table>
</div>
<div class="memdoc">
<dl><dt><b>Parameters:</b></dt><dd>
<table class="params">
<tr><td class="paramname">input_table</td><td>The name of the table/view with the training data </td></tr>
<tr><td class="paramname">model_table</td><td>The name of the table under which we want to store the learned model </td></tr>
<tr><td class="paramname">parallel</td><td>A flag indicating whether the system should learn multiple models in parallel </td></tr>
</table>
</dd>
</dl>
<dl class="return"><dt><b>Returns:</b></dt><dd>A summary of the learning process </dd></dl>
<p>Definition at line <a class="el" href="online__sv_8sql__in_source.html#l00871">871</a> of file <a class="el" href="online__sv_8sql__in_source.html">online_sv.sql_in</a>.</p>
</div>
</div>
<a class="anchor" id="a50896def00d0e0950bec3d95b387e6b9"></a><!-- doxytag: member="online_sv.sql_in::lsvm_classification" ref="a50896def00d0e0950bec3d95b387e6b9" args="(text input_table, text model_table, bool parallel, bool verbose, float8 eta, float8 reg)" -->
<div class="memitem">
<div class="memproto">
<table class="memname">
<tr>
<td class="memname">set&lt;lsvm_sgd_result&gt; lsvm_classification </td>
<td>(</td>
<td class="paramtype">text&#160;</td>
<td class="paramname"><em>input_table</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">text&#160;</td>
<td class="paramname"><em>model_table</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">bool&#160;</td>
<td class="paramname"><em>parallel</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">bool&#160;</td>
<td class="paramname"><em>verbose</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">float8&#160;</td>
<td class="paramname"><em>eta</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">float8&#160;</td>
<td class="paramname"><em>reg</em>&#160;</td>
</tr>
<tr>
<td></td>
<td>)</td>
<td></td><td></td>
</tr>
</table>
</div>
<div class="memdoc">
<dl><dt><b>Parameters:</b></dt><dd>
<table class="params">
<tr><td class="paramname">input_table</td><td>The name of the table/view with the training data </td></tr>
<tr><td class="paramname">model_table</td><td>The name of the table under which we want to store the learned model </td></tr>
<tr><td class="paramname">parallel</td><td>A flag indicating whether the system should learn multiple models in parallel </td></tr>
<tr><td class="paramname">verbose</td><td>Verbosity of reporting </td></tr>
<tr><td class="paramname">eta</td><td>Initial learning rate in (0,1] </td></tr>
<tr><td class="paramname">reg</td><td>Regularization parameter, often chosen by cross-validation </td></tr>
</table>
</dd>
</dl>
<dl class="return"><dt><b>Returns:</b></dt><dd>A summary of the learning process </dd></dl>
<p>Definition at line <a class="el" href="online__sv_8sql__in_source.html#l00896">896</a> of file <a class="el" href="online__sv_8sql__in_source.html">online_sv.sql_in</a>.</p>
</div>
</div>
<a class="anchor" id="a5fe084c8364c0657097410458f8ea1e9"></a><!-- doxytag: member="online_sv.sql_in::lsvm_predict" ref="a5fe084c8364c0657097410458f8ea1e9" args="(text model_table, float8[] ind)" -->
<div class="memitem">
<div class="memproto">
<table class="memname">
<tr>
<td class="memname">float8 lsvm_predict </td>
<td>(</td>
<td class="paramtype">text&#160;</td>
<td class="paramname"><em>model_table</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">float8[]&#160;</td>
<td class="paramname"><em>ind</em>&#160;</td>
</tr>
<tr>
<td></td>
<td>)</td>
<td></td><td></td>
</tr>
</table>
</div>
<div class="memdoc">
<dl><dt><b>Parameters:</b></dt><dd>
<table class="params">
<tr><td class="paramname">model_table</td><td>The table storing the learned model \( f \) to be used </td></tr>
<tr><td class="paramname">ind</td><td>The data point \( \boldsymbol x \) </td></tr>
</table>
</dd>
</dl>
<dl class="return"><dt><b>Returns:</b></dt><dd>This function returns \( f(\boldsymbol x) \) </dd></dl>
<p>Definition at line <a class="el" href="online__sv_8sql__in_source.html#l00943">943</a> of file <a class="el" href="online__sv_8sql__in_source.html">online_sv.sql_in</a>.</p>
</div>
</div>
<a class="anchor" id="a1c0a002f50250133c0ef1d3c43c6d338"></a><!-- doxytag: member="online_sv.sql_in::lsvm_predict_batch" ref="a1c0a002f50250133c0ef1d3c43c6d338" args="(text input_table, text data_col, text id_col, text model_table, text output_table, bool parallel)" -->
<div class="memitem">
<div class="memproto">
<table class="memname">
<tr>
<td class="memname">text lsvm_predict_batch </td>
<td>(</td>
<td class="paramtype">text&#160;</td>
<td class="paramname"><em>input_table</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">text&#160;</td>
<td class="paramname"><em>data_col</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">text&#160;</td>
<td class="paramname"><em>id_col</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">text&#160;</td>
<td class="paramname"><em>model_table</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">text&#160;</td>
<td class="paramname"><em>output_table</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">bool&#160;</td>
<td class="paramname"><em>parallel</em>&#160;</td>
</tr>
<tr>
<td></td>
<td>)</td>
<td></td><td></td>
</tr>
</table>
</div>
<div class="memdoc">
<dl><dt><b>Parameters:</b></dt><dd>
<table class="params">
<tr><td class="paramname">input_table</td><td>Name of table/view containing the data points to be scored </td></tr>
<tr><td class="paramname">data_col</td><td>Name of column in input_table containing the data points </td></tr>
<tr><td class="paramname">id_col</td><td>Name of column in input_table containing the integer identifier of data points </td></tr>
<tr><td class="paramname">model_table</td><td>Name of table where the learned model to be used is stored </td></tr>
<tr><td class="paramname">output_table</td><td>Name of table to store the results </td></tr>
<tr><td class="paramname">parallel</td><td>A flag indicating whether the model to be used was learned in parallel </td></tr>
</table>
</dd>
</dl>
<dl class="return"><dt><b>Returns:</b></dt><dd>Textual summary of the algorithm run </dd></dl>
<p>Definition at line <a class="el" href="online__sv_8sql__in_source.html#l00923">923</a> of file <a class="el" href="online__sv_8sql__in_source.html">online_sv.sql_in</a>.</p>
</div>
</div>
<a class="anchor" id="a0ae9c50ca072757ff6493a8bf26dbc9c"></a><!-- doxytag: member="online_sv.sql_in::lsvm_predict_combo" ref="a0ae9c50ca072757ff6493a8bf26dbc9c" args="(text model_table, float8[] ind)" -->
<div class="memitem">
<div class="memproto">
<table class="memname">
<tr>
<td class="memname">set&lt;svm_model_pr&gt; lsvm_predict_combo </td>
<td>(</td>
<td class="paramtype">text&#160;</td>
<td class="paramname"><em>model_table</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">float8[]&#160;</td>
<td class="paramname"><em>ind</em>&#160;</td>
</tr>
<tr>
<td></td>
<td>)</td>
<td></td><td></td>
</tr>
</table>
</div>
<div class="memdoc">
<dl><dt><b>Parameters:</b></dt><dd>
<table class="params">
<tr><td class="paramname">model_table</td><td>The table storing the learned models to be used. </td></tr>
<tr><td class="paramname">ind</td><td>The data point \( \boldsymbol x \) </td></tr>
</table>
</dd>
</dl>
<dl class="return"><dt><b>Returns:</b></dt><dd>This function returns a table, a row for each model. Moreover, the last row contains the average value, over all models.</dd></dl>
<p>The different models are assumed to be named <code><em>model_table</em>0</code>, <code><em>model_table</em>1</code>, .... </p>
<p>Definition at line <a class="el" href="online__sv_8sql__in_source.html#l00964">964</a> of file <a class="el" href="online__sv_8sql__in_source.html">online_sv.sql_in</a>.</p>
</div>
</div>
<a class="anchor" id="a20a2c8a905be6e922885e23e9dab0a4c"></a><!-- doxytag: member="online_sv.sql_in::svm_classification" ref="a20a2c8a905be6e922885e23e9dab0a4c" args="(text input_table, text model_table, bool parallel, text kernel_func)" -->
<div class="memitem">
<div class="memproto">
<table class="memname">
<tr>
<td class="memname">set&lt;svm_cls_result&gt; svm_classification </td>
<td>(</td>
<td class="paramtype">text&#160;</td>
<td class="paramname"><em>input_table</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">text&#160;</td>
<td class="paramname"><em>model_table</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">bool&#160;</td>
<td class="paramname"><em>parallel</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">text&#160;</td>
<td class="paramname"><em>kernel_func</em>&#160;</td>
</tr>
<tr>
<td></td>
<td>)</td>
<td></td><td></td>
</tr>
</table>
</div>
<div class="memdoc">
<dl><dt><b>Parameters:</b></dt><dd>
<table class="params">
<tr><td class="paramname">input_table</td><td>The name of the table/view with the training data </td></tr>
<tr><td class="paramname">model_table</td><td>The name of the table under which we want to store the learned model </td></tr>
<tr><td class="paramname">parallel</td><td>A flag indicating whether the system should learn multiple models in parallel </td></tr>
<tr><td class="paramname">kernel_func</td><td>Kernel function </td></tr>
</table>
</dd>
</dl>
<dl class="return"><dt><b>Returns:</b></dt><dd>A summary of the learning process </dd></dl>
<p>Definition at line <a class="el" href="online__sv_8sql__in_source.html#l00661">661</a> of file <a class="el" href="online__sv_8sql__in_source.html">online_sv.sql_in</a>.</p>
</div>
</div>
<a class="anchor" id="ad90b6bf3b807f22d37b0e2b1893262f0"></a><!-- doxytag: member="online_sv.sql_in::svm_classification" ref="ad90b6bf3b807f22d37b0e2b1893262f0" args="(text input_table, text model_table, bool parallel, text kernel_func, bool verbose, float8 eta, float8 nu)" -->
<div class="memitem">
<div class="memproto">
<table class="memname">
<tr>
<td class="memname">set&lt;svm_cls_result&gt; svm_classification </td>
<td>(</td>
<td class="paramtype">text&#160;</td>
<td class="paramname"><em>input_table</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">text&#160;</td>
<td class="paramname"><em>model_table</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">bool&#160;</td>
<td class="paramname"><em>parallel</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">text&#160;</td>
<td class="paramname"><em>kernel_func</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">bool&#160;</td>
<td class="paramname"><em>verbose</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">float8&#160;</td>
<td class="paramname"><em>eta</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">float8&#160;</td>
<td class="paramname"><em>nu</em>&#160;</td>
</tr>
<tr>
<td></td>
<td>)</td>
<td></td><td></td>
</tr>
</table>
</div>
<div class="memdoc">
<dl><dt><b>Parameters:</b></dt><dd>
<table class="params">
<tr><td class="paramname">input_table</td><td>The name of the table/view with the training data </td></tr>
<tr><td class="paramname">model_table</td><td>The name of the table under which we want to store the learned model </td></tr>
<tr><td class="paramname">parallel</td><td>A flag indicating whether the system should learn multiple models in parallel </td></tr>
<tr><td class="paramname">kernel_func</td><td>Kernel function </td></tr>
<tr><td class="paramname">verbose</td><td>Verbosity of reporting </td></tr>
<tr><td class="paramname">eta</td><td>Learning rate in (0,1] </td></tr>
<tr><td class="paramname">nu</td><td>Compression parameter in (0,1] associated with the fraction of training data that will become support vectors </td></tr>
</table>
</dd>
</dl>
<dl class="return"><dt><b>Returns:</b></dt><dd>A summary of the learning process </dd></dl>
<p>Definition at line <a class="el" href="online__sv_8sql__in_source.html#l00688">688</a> of file <a class="el" href="online__sv_8sql__in_source.html">online_sv.sql_in</a>.</p>
</div>
</div>
<a class="anchor" id="a78bb07d8f4aee80c3bbc8e8176e512be"></a><!-- doxytag: member="online_sv.sql_in::svm_data_normalization" ref="a78bb07d8f4aee80c3bbc8e8176e512be" args="(text input_table)" -->
<div class="memitem">
<div class="memproto">
<table class="memname">
<tr>
<td class="memname">void svm_data_normalization </td>
<td>(</td>
<td class="paramtype">text&#160;</td>
<td class="paramname"><em>input_table</em></td><td>)</td>
<td></td>
</tr>
</table>
</div>
<div class="memdoc">
<dl><dt><b>Parameters:</b></dt><dd>
<table class="params">
<tr><td class="paramname">input_table</td><td>Name of table/view containing the data points to be scored </td></tr>
</table>
</dd>
</dl>
<p>Definition at line <a class="el" href="online__sv_8sql__in_source.html#l00851">851</a> of file <a class="el" href="online__sv_8sql__in_source.html">online_sv.sql_in</a>.</p>
</div>
</div>
<a class="anchor" id="acc2d778a8eb48ab775ff9c1dff4a3141"></a><!-- doxytag: member="online_sv.sql_in::svm_dot" ref="acc2d778a8eb48ab775ff9c1dff4a3141" args="(float8[] x, float8[] y)" -->
<div class="memitem">
<div class="memproto">
<table class="memname">
<tr>
<td class="memname">float8 svm_dot </td>
<td>(</td>
<td class="paramtype">float8[]&#160;</td>
<td class="paramname"><em>x</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">float8[]&#160;</td>
<td class="paramname"><em>y</em>&#160;</td>
</tr>
<tr>
<td></td>
<td>)</td>
<td></td><td></td>
</tr>
</table>
</div>
<div class="memdoc">
<dl><dt><b>Parameters:</b></dt><dd>
<table class="params">
<tr><td class="paramname">x</td><td>The data point \( \boldsymbol x \) </td></tr>
<tr><td class="paramname">y</td><td>The data point \( \boldsymbol y \) </td></tr>
</table>
</dd>
</dl>
<dl class="return"><dt><b>Returns:</b></dt><dd>Returns dot product of the two data points. </dd></dl>
<p>Definition at line <a class="el" href="online__sv_8sql__in_source.html#l00424">424</a> of file <a class="el" href="online__sv_8sql__in_source.html">online_sv.sql_in</a>.</p>
</div>
</div>
<a class="anchor" id="ab54d33f13c0e00faa358e3e3f17c10fb"></a><!-- doxytag: member="online_sv.sql_in::svm_drop_model" ref="ab54d33f13c0e00faa358e3e3f17c10fb" args="(text model_table)" -->
<div class="memitem">
<div class="memproto">
<table class="memname">
<tr>
<td class="memname">void svm_drop_model </td>
<td>(</td>
<td class="paramtype">text&#160;</td>
<td class="paramname"><em>model_table</em></td><td>)</td>
<td></td>
</tr>
</table>
</div>
<div class="memdoc">
<dl><dt><b>Parameters:</b></dt><dd>
<table class="params">
<tr><td class="paramname">model_table</td><td>The table to be dropped. </td></tr>
</table>
</dd>
</dl>
<p>Definition at line <a class="el" href="online__sv_8sql__in_source.html#l00551">551</a> of file <a class="el" href="online__sv_8sql__in_source.html">online_sv.sql_in</a>.</p>
</div>
</div>
<a class="anchor" id="a9f2a96e1a241ecc66386a78b110777d3"></a><!-- doxytag: member="online_sv.sql_in::svm_gaussian" ref="a9f2a96e1a241ecc66386a78b110777d3" args="(float8[] x, float8[] y, float8 gamma)" -->
<div class="memitem">
<div class="memproto">
<table class="memname">
<tr>
<td class="memname">float8 svm_gaussian </td>
<td>(</td>
<td class="paramtype">float8[]&#160;</td>
<td class="paramname"><em>x</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">float8[]&#160;</td>
<td class="paramname"><em>y</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">float8&#160;</td>
<td class="paramname"><em>gamma</em>&#160;</td>
</tr>
<tr>
<td></td>
<td>)</td>
<td></td><td></td>
</tr>
</table>
</div>
<div class="memdoc">
<dl><dt><b>Parameters:</b></dt><dd>
<table class="params">
<tr><td class="paramname">x</td><td>The data point \( \boldsymbol x \) </td></tr>
<tr><td class="paramname">y</td><td>The data point \( \boldsymbol y \) </td></tr>
<tr><td class="paramname">gamma</td><td>The spread \( \gamma \) </td></tr>
</table>
</dd>
</dl>
<dl class="return"><dt><b>Returns:</b></dt><dd>Returns \( K(\boldsymbol x,\boldsymbol y)=exp(-\gamma || \boldsymbol x \cdot \boldsymbol y ||^2 ) \) </dd></dl>
<p>Definition at line <a class="el" href="online__sv_8sql__in_source.html#l00448">448</a> of file <a class="el" href="online__sv_8sql__in_source.html">online_sv.sql_in</a>.</p>
</div>
</div>
<a class="anchor" id="a3448ea62ab57fe4cf177f5fa6b5db7d3"></a><!-- doxytag: member="online_sv.sql_in::svm_novelty_detection" ref="a3448ea62ab57fe4cf177f5fa6b5db7d3" args="(text input_table, text model_table, bool parallel, text kernel_func)" -->
<div class="memitem">
<div class="memproto">
<table class="memname">
<tr>
<td class="memname">set&lt;svm_nd_result&gt; svm_novelty_detection </td>
<td>(</td>
<td class="paramtype">text&#160;</td>
<td class="paramname"><em>input_table</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">text&#160;</td>
<td class="paramname"><em>model_table</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">bool&#160;</td>
<td class="paramname"><em>parallel</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">text&#160;</td>
<td class="paramname"><em>kernel_func</em>&#160;</td>
</tr>
<tr>
<td></td>
<td>)</td>
<td></td><td></td>
</tr>
</table>
</div>
<div class="memdoc">
<dl><dt><b>Parameters:</b></dt><dd>
<table class="params">
<tr><td class="paramname">input_table</td><td>The name of the table/view with the training data </td></tr>
<tr><td class="paramname">model_table</td><td>The name of the table under which we want to store the learned model </td></tr>
<tr><td class="paramname">parallel</td><td>A flag indicating whether the system should learn multiple models in parallel </td></tr>
<tr><td class="paramname">kernel_func</td><td>Kernel function </td></tr>
</table>
</dd>
</dl>
<dl class="return"><dt><b>Returns:</b></dt><dd>A summary of the learning process </dd></dl>
<p>Definition at line <a class="el" href="online__sv_8sql__in_source.html#l00712">712</a> of file <a class="el" href="online__sv_8sql__in_source.html">online_sv.sql_in</a>.</p>
</div>
</div>
<a class="anchor" id="a5bae5335b51e448cd7fb9cb7a54b0bfa"></a><!-- doxytag: member="online_sv.sql_in::svm_novelty_detection" ref="a5bae5335b51e448cd7fb9cb7a54b0bfa" args="(text input_table, text model_table, bool parallel, text kernel_func, bool verbose, float8 eta, float8 nu)" -->
<div class="memitem">
<div class="memproto">
<table class="memname">
<tr>
<td class="memname">set&lt;svm_nd_result&gt; svm_novelty_detection </td>
<td>(</td>
<td class="paramtype">text&#160;</td>
<td class="paramname"><em>input_table</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">text&#160;</td>
<td class="paramname"><em>model_table</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">bool&#160;</td>
<td class="paramname"><em>parallel</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">text&#160;</td>
<td class="paramname"><em>kernel_func</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">bool&#160;</td>
<td class="paramname"><em>verbose</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">float8&#160;</td>
<td class="paramname"><em>eta</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">float8&#160;</td>
<td class="paramname"><em>nu</em>&#160;</td>
</tr>
<tr>
<td></td>
<td>)</td>
<td></td><td></td>
</tr>
</table>
</div>
<div class="memdoc">
<dl><dt><b>Parameters:</b></dt><dd>
<table class="params">
<tr><td class="paramname">input_table</td><td>The name of the table/view with the training data </td></tr>
<tr><td class="paramname">model_table</td><td>The name of the table under which we want to store the learned model </td></tr>
<tr><td class="paramname">parallel</td><td>A flag indicating whether the system should learn multiple models in parallel </td></tr>
<tr><td class="paramname">kernel_func</td><td>Kernel function </td></tr>
<tr><td class="paramname">verbose</td><td>Verbosity of reporting </td></tr>
<tr><td class="paramname">eta</td><td>Learning rate in (0,1] </td></tr>
<tr><td class="paramname">nu</td><td>Compression parameter in (0,1] associated with the fraction of training data that will become support vectors </td></tr>
</table>
</dd>
</dl>
<dl class="return"><dt><b>Returns:</b></dt><dd>A summary of the learning process </dd></dl>
<p>Definition at line <a class="el" href="online__sv_8sql__in_source.html#l00739">739</a> of file <a class="el" href="online__sv_8sql__in_source.html">online_sv.sql_in</a>.</p>
</div>
</div>
<a class="anchor" id="a1ac76fdf9623e0a4db47665f2a80be90"></a><!-- doxytag: member="online_sv.sql_in::svm_polynomial" ref="a1ac76fdf9623e0a4db47665f2a80be90" args="(float8[] x, float8[] y, float8 degree)" -->
<div class="memitem">
<div class="memproto">
<table class="memname">
<tr>
<td class="memname">float8 svm_polynomial </td>
<td>(</td>
<td class="paramtype">float8[]&#160;</td>
<td class="paramname"><em>x</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">float8[]&#160;</td>
<td class="paramname"><em>y</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">float8&#160;</td>
<td class="paramname"><em>degree</em>&#160;</td>
</tr>
<tr>
<td></td>
<td>)</td>
<td></td><td></td>
</tr>
</table>
</div>
<div class="memdoc">
<dl><dt><b>Parameters:</b></dt><dd>
<table class="params">
<tr><td class="paramname">x</td><td>The data point \( \boldsymbol x \) </td></tr>
<tr><td class="paramname">y</td><td>The data point \( \boldsymbol y \) </td></tr>
<tr><td class="paramname">degree</td><td>The degree \( d \) </td></tr>
</table>
</dd>
</dl>
<dl class="return"><dt><b>Returns:</b></dt><dd>Returns \( K(\boldsymbol x,\boldsymbol y)=(\boldsymbol x \cdot \boldsymbol y)^d \) </dd></dl>
<p>Definition at line <a class="el" href="online__sv_8sql__in_source.html#l00436">436</a> of file <a class="el" href="online__sv_8sql__in_source.html">online_sv.sql_in</a>.</p>
</div>
</div>
<a class="anchor" id="a9916305653d464b23ef0fbd78867a654"></a><!-- doxytag: member="online_sv.sql_in::svm_predict" ref="a9916305653d464b23ef0fbd78867a654" args="(text model_table, float8[] ind)" -->
<div class="memitem">
<div class="memproto">
<table class="memname">
<tr>
<td class="memname">float8 svm_predict </td>
<td>(</td>
<td class="paramtype">text&#160;</td>
<td class="paramname"><em>model_table</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">float8[]&#160;</td>
<td class="paramname"><em>ind</em>&#160;</td>
</tr>
<tr>
<td></td>
<td>)</td>
<td></td><td></td>
</tr>
</table>
</div>
<div class="memdoc">
<dl><dt><b>Parameters:</b></dt><dd>
<table class="params">
<tr><td class="paramname">model_table</td><td>The table storing the learned model \( f \) to be used </td></tr>
<tr><td class="paramname">ind</td><td>The data point \( \boldsymbol x \) </td></tr>
</table>
</dd>
</dl>
<dl class="return"><dt><b>Returns:</b></dt><dd>This function returns \( f(\boldsymbol x) \) </dd></dl>
<p>Definition at line <a class="el" href="online__sv_8sql__in_source.html#l00565">565</a> of file <a class="el" href="online__sv_8sql__in_source.html">online_sv.sql_in</a>.</p>
</div>
</div>
<a class="anchor" id="a91ac71354e9dec74e25339bf168c2e5b"></a><!-- doxytag: member="online_sv.sql_in::svm_predict_batch" ref="a91ac71354e9dec74e25339bf168c2e5b" args="(text input_table, text data_col, text id_col, text model_table, text output_table, bool parallel)" -->
<div class="memitem">
<div class="memproto">
<table class="memname">
<tr>
<td class="memname">text svm_predict_batch </td>
<td>(</td>
<td class="paramtype">text&#160;</td>
<td class="paramname"><em>input_table</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">text&#160;</td>
<td class="paramname"><em>data_col</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">text&#160;</td>
<td class="paramname"><em>id_col</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">text&#160;</td>
<td class="paramname"><em>model_table</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">text&#160;</td>
<td class="paramname"><em>output_table</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">bool&#160;</td>
<td class="paramname"><em>parallel</em>&#160;</td>
</tr>
<tr>
<td></td>
<td>)</td>
<td></td><td></td>
</tr>
</table>
</div>
<div class="memdoc">
<dl><dt><b>Parameters:</b></dt><dd>
<table class="params">
<tr><td class="paramname">input_table</td><td>Name of table/view containing the data points to be scored </td></tr>
<tr><td class="paramname">data_col</td><td>Name of column in input_table containing the data points </td></tr>
<tr><td class="paramname">id_col</td><td>Name of column in input_table containing the integer identifier of data points </td></tr>
<tr><td class="paramname">model_table</td><td>Name of table where the learned model to be used is stored </td></tr>
<tr><td class="paramname">output_table</td><td>Name of table to store the results </td></tr>
<tr><td class="paramname">parallel</td><td>A flag indicating whether the model to be used was learned in parallel </td></tr>
</table>
</dd>
</dl>
<dl class="return"><dt><b>Returns:</b></dt><dd>Textual summary of the algorithm run </dd></dl>
<p>Definition at line <a class="el" href="online__sv_8sql__in_source.html#l00766">766</a> of file <a class="el" href="online__sv_8sql__in_source.html">online_sv.sql_in</a>.</p>
</div>
</div>
<a class="anchor" id="a883ff4ca340d19a11204b461dd388276"></a><!-- doxytag: member="online_sv.sql_in::svm_predict_combo" ref="a883ff4ca340d19a11204b461dd388276" args="(text model_table, float8[] ind)" -->
<div class="memitem">
<div class="memproto">
<table class="memname">
<tr>
<td class="memname">set&lt;svm_model_pr&gt; svm_predict_combo </td>
<td>(</td>
<td class="paramtype">text&#160;</td>
<td class="paramname"><em>model_table</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">float8[]&#160;</td>
<td class="paramname"><em>ind</em>&#160;</td>
</tr>
<tr>
<td></td>
<td>)</td>
<td></td><td></td>
</tr>
</table>
</div>
<div class="memdoc">
<dl><dt><b>Parameters:</b></dt><dd>
<table class="params">
<tr><td class="paramname">model_table</td><td>The table storing the learned models to be used. </td></tr>
<tr><td class="paramname">ind</td><td>The data point \( \boldsymbol x \) </td></tr>
</table>
</dd>
</dl>
<dl class="return"><dt><b>Returns:</b></dt><dd>This function returns a table, a row for each model. Moreover, the last row contains the average value, over all models.</dd></dl>
<p>The different models are assumed to be named <code><em>model_table</em>1</code>, <code><em>model_table</em>2</code>, .... </p>
<p>Definition at line <a class="el" href="online__sv_8sql__in_source.html#l00586">586</a> of file <a class="el" href="online__sv_8sql__in_source.html">online_sv.sql_in</a>.</p>
</div>
</div>
<a class="anchor" id="acaf1f4aa3eec5710de5c03e368a4b106"></a><!-- doxytag: member="online_sv.sql_in::svm_regression" ref="acaf1f4aa3eec5710de5c03e368a4b106" args="(text input_table, text model_table, bool parallel, text kernel_func)" -->
<div class="memitem">
<div class="memproto">
<table class="memname">
<tr>
<td class="memname">set&lt;svm_reg_result&gt; svm_regression </td>
<td>(</td>
<td class="paramtype">text&#160;</td>
<td class="paramname"><em>input_table</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">text&#160;</td>
<td class="paramname"><em>model_table</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">bool&#160;</td>
<td class="paramname"><em>parallel</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">text&#160;</td>
<td class="paramname"><em>kernel_func</em>&#160;</td>
</tr>
<tr>
<td></td>
<td>)</td>
<td></td><td></td>
</tr>
</table>
</div>
<div class="memdoc">
<dl><dt><b>Parameters:</b></dt><dd>
<table class="params">
<tr><td class="paramname">input_table</td><td>The name of the table/view with the training data </td></tr>
<tr><td class="paramname">model_table</td><td>The name of the table under which we want to store the learned model </td></tr>
<tr><td class="paramname">parallel</td><td>A flag indicating whether the system should learn multiple models in parallel </td></tr>
<tr><td class="paramname">kernel_func</td><td>Kernel function </td></tr>
</table>
</dd>
</dl>
<dl class="return"><dt><b>Returns:</b></dt><dd>A summary of the learning process </dd></dl>
<p>Definition at line <a class="el" href="online__sv_8sql__in_source.html#l00609">609</a> of file <a class="el" href="online__sv_8sql__in_source.html">online_sv.sql_in</a>.</p>
</div>
</div>
<a class="anchor" id="ac5cb9c20d6620b155ac872576a056f2a"></a><!-- doxytag: member="online_sv.sql_in::svm_regression" ref="ac5cb9c20d6620b155ac872576a056f2a" args="(text input_table, text model_table, bool parallel, text kernel_func, bool verbose, float8 eta, float8 nu, float8 slambda)" -->
<div class="memitem">
<div class="memproto">
<table class="memname">
<tr>
<td class="memname">set&lt;svm_reg_result&gt; svm_regression </td>
<td>(</td>
<td class="paramtype">text&#160;</td>
<td class="paramname"><em>input_table</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">text&#160;</td>
<td class="paramname"><em>model_table</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">bool&#160;</td>
<td class="paramname"><em>parallel</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">text&#160;</td>
<td class="paramname"><em>kernel_func</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">bool&#160;</td>
<td class="paramname"><em>verbose</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">float8&#160;</td>
<td class="paramname"><em>eta</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">float8&#160;</td>
<td class="paramname"><em>nu</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">float8&#160;</td>
<td class="paramname"><em>slambda</em>&#160;</td>
</tr>
<tr>
<td></td>
<td>)</td>
<td></td><td></td>
</tr>
</table>
</div>
<div class="memdoc">
<dl><dt><b>Parameters:</b></dt><dd>
<table class="params">
<tr><td class="paramname">input_table</td><td>The name of the table/view with the training data </td></tr>
<tr><td class="paramname">model_table</td><td>The name of the table under which we want to store the learned model </td></tr>
<tr><td class="paramname">parallel</td><td>A flag indicating whether the system should learn multiple models in parallel </td></tr>
<tr><td class="paramname">kernel_func</td><td>Kernel function </td></tr>
<tr><td class="paramname">verbose</td><td>Verbosity of reporting </td></tr>
<tr><td class="paramname">eta</td><td>Learning rate in (0,1] </td></tr>
<tr><td class="paramname">nu</td><td>Compression parameter in (0,1] associated with the fraction of training data that will become support vectors </td></tr>
<tr><td class="paramname">slambda</td><td>Regularisation parameter </td></tr>
</table>
</dd>
</dl>
<dl class="return"><dt><b>Returns:</b></dt><dd>A summary of the learning process </dd></dl>
<p>Definition at line <a class="el" href="online__sv_8sql__in_source.html#l00637">637</a> of file <a class="el" href="online__sv_8sql__in_source.html">online_sv.sql_in</a>.</p>
</div>
</div>
</div>
</div>
<div id="nav-path" class="navpath">
<ul>
<li class="navelem"><a class="el" href="online__sv_8sql__in.html">online_sv.sql_in</a> </li>
<!-- window showing the filter options -->
<div id="MSearchSelectWindow"
onmouseover="return searchBox.OnSearchSelectShow()"
onmouseout="return searchBox.OnSearchSelectHide()"
onkeydown="return searchBox.OnSearchSelectKey(event)">
<a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(0)"><span class="SelectionMark">&#160;</span>All</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(1)"><span class="SelectionMark">&#160;</span>Files</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(2)"><span class="SelectionMark">&#160;</span>Functions</a></div>
<!-- iframe showing the search results (closed by default) -->
<div id="MSearchResultsWindow">
<iframe src="javascript:void(0)" frameborder="0"
name="MSearchResults" id="MSearchResults">
</iframe>
</div>
<li class="footer">Generated on Tue Apr 2 2013 14:57:03 for MADlib by
<a href="http://www.doxygen.org/index.html">
<img class="footer" src="doxygen.png" alt="doxygen"/></a> 1.7.5.1 </li>
</ul>
</div>
</body>
</html>