| <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> |
| <html xmlns="http://www.w3.org/1999/xhtml"> |
| <head> |
| <meta http-equiv="Content-Type" content="text/xhtml;charset=UTF-8"/> |
| <title>MADlib: Linear Regression</title> |
| |
| <link href="tabs.css" rel="stylesheet" type="text/css"/> |
| <link href="doxygen.css" rel="stylesheet" type="text/css" /> |
| <link href="navtree.css" rel="stylesheet" type="text/css"/> |
| <script type="text/javascript" src="jquery.js"></script> |
| <script type="text/javascript" src="resize.js"></script> |
| <script type="text/javascript" src="navtree.js"></script> |
| <script type="text/javascript"> |
| $(document).ready(initResizable); |
| </script> |
| <link href="search/search.css" rel="stylesheet" type="text/css"/> |
| <script type="text/javascript" src="search/search.js"></script> |
| <script type="text/javascript"> |
| $(document).ready(function() { searchBox.OnSelectItem(0); }); |
| </script> |
| <script src="../mathjax/MathJax.js"> |
| MathJax.Hub.Config({ |
| extensions: ["tex2jax.js", "TeX/AMSmath.js", "TeX/AMSsymbols.js"], |
| jax: ["input/TeX","output/HTML-CSS"], |
| }); |
| </script> |
| </head> |
| <body> |
| <div id="top"><!-- do not remove this div! --> |
| |
| |
| <div id="titlearea"> |
| <table cellspacing="0" cellpadding="0"> |
| <tbody> |
| <tr style="height: 56px;"> |
| |
| |
| <td style="padding-left: 0.5em;"> |
| <div id="projectname">MADlib |
|  <span id="projectnumber">0.6</span> <span style="font-size:10pt; font-style:italic"><a href="../latest/./group__grp__linreg.html"> A newer version is available</a></span> |
| </div> |
| <div id="projectbrief">User Documentation</div> |
| </td> |
| |
| |
| |
| </tr> |
| </tbody> |
| </table> |
| </div> |
| |
| <!-- Generated by Doxygen 1.7.5.1 --> |
| <script type="text/javascript"> |
| var searchBox = new SearchBox("searchBox", "search",false,'Search'); |
| </script> |
| <script type="text/javascript" src="dynsections.js"></script> |
| <div id="navrow1" class="tabs"> |
| <ul class="tablist"> |
| <li><a href="index.html"><span>Main Page</span></a></li> |
| <li><a href="modules.html"><span>Modules</span></a></li> |
| <li><a href="files.html"><span>Files</span></a></li> |
| <li> |
| <div id="MSearchBox" class="MSearchBoxInactive"> |
| <span class="left"> |
| <img id="MSearchSelect" src="search/mag_sel.png" |
| onmouseover="return searchBox.OnSearchSelectShow()" |
| onmouseout="return searchBox.OnSearchSelectHide()" |
| alt=""/> |
| <input type="text" id="MSearchField" value="Search" accesskey="S" |
| onfocus="searchBox.OnSearchFieldFocus(true)" |
| onblur="searchBox.OnSearchFieldFocus(false)" |
| onkeyup="searchBox.OnSearchFieldChange(event)"/> |
| </span><span class="right"> |
| <a id="MSearchClose" href="javascript:searchBox.CloseResultsWindow()"><img id="MSearchCloseImg" border="0" src="search/close.png" alt=""/></a> |
| </span> |
| </div> |
| </li> |
| </ul> |
| </div> |
| </div> |
| <div id="side-nav" class="ui-resizable side-nav-resizable"> |
| <div id="nav-tree"> |
| <div id="nav-tree-contents"> |
| </div> |
| </div> |
| <div id="splitbar" style="-moz-user-select:none;" |
| class="ui-resizable-handle"> |
| </div> |
| </div> |
| <script type="text/javascript"> |
| initNavTree('group__grp__linreg.html',''); |
| </script> |
| <div id="doc-content"> |
| <div class="header"> |
| <div class="headertitle"> |
| <div class="title">Linear Regression</div> </div> |
| <div class="ingroups"><a class="el" href="group__grp__suplearn.html">Supervised Learning</a></div></div> |
| <div class="contents"> |
| <div id="dynsection-0" onclick="return toggleVisibility(this)" class="dynheader closed" style="cursor:pointer;"> |
| <img id="dynsection-0-trigger" src="closed.png" alt="+"/> Collaboration diagram for Linear Regression:</div> |
| <div id="dynsection-0-summary" class="dynsummary" style="display:block;"> |
| </div> |
| <div id="dynsection-0-content" class="dyncontent" style="display:none;"> |
| <center><table><tr><td><div class="center"><iframe scrolling="no" frameborder="0" src="group__grp__linreg.svg" width="347" height="40"><p><b>This browser is not able to show SVG: try Firefox, Chrome, Safari, or Opera instead.</b></p></iframe> |
| </div> |
| </td></tr></table></center> |
| </div> |
| <dl class="user"><dt><b>About:</b></dt><dd></dd></dl> |
| <p>Ordinary least-squares (OLS) linear regression refers to a stochastic model in which the conditional mean of the dependent variable (usually denoted \( Y \)) is an affine function of the vector of independent variables (usually denoted \( \boldsymbol x \)). That is, </p> |
| <p class="formulaDsp"> |
| \[ E[Y \mid \boldsymbol x] = \boldsymbol c^T \boldsymbol x \] |
| </p> |
| <p> for some unknown vector of coefficients \( \boldsymbol c \). The assumption is that the residuals are i.i.d. distributed Gaussians. That is, the (conditional) probability density of \( Y \) is given by </p> |
| <p class="formulaDsp"> |
| \[ f(y \mid \boldsymbol x) = \frac{1}{\sqrt{2 \pi \sigma^2}} \cdot \exp\left(-\frac{1}{2 \sigma^2} \cdot (y - \boldsymbol x^T \boldsymbol c)^2 \right) \,. \] |
| </p> |
| <p> OLS linear regression finds the vector of coefficients \( \boldsymbol c \) that maximizes the likelihood of the observations.</p> |
| <p>Let</p> |
| <ul> |
| <li>\( \boldsymbol y \in \mathbf R^n \) denote the vector of observed dependent variables, with \( n \) rows, containing the observed values of the dependent variable,</li> |
| <li>\( X \in \mathbf R^{n \times k} \) denote the design matrix with \( k \) columns and \( n \) rows, containing all observed vectors of independent variables. \( \boldsymbol x_i \) as rows,</li> |
| <li>\( X^T \) denote the transpose of \( X \),</li> |
| <li>\( X^+ \) denote the pseudo-inverse of \( X \).</li> |
| </ul> |
| <p>Maximizing the likelihood is equivalent to maximizing the log-likelihood \( \sum_{i=1}^n \log f(y_i \mid \boldsymbol x_i) \), which simplifies to minimizing the <b>residual sum of squares</b> \( RSS \) (also called sum of squared residuals or sum of squared errors of prediction), </p> |
| <p class="formulaDsp"> |
| \[ RSS = \sum_{i=1}^n ( y_i - \boldsymbol c^T \boldsymbol x_i )^2 = (\boldsymbol y - X \boldsymbol c)^T (\boldsymbol y - X \boldsymbol c) \,. \] |
| </p> |
| <p> The first-order conditions yield that the \( RSS \) is minimized at </p> |
| <p class="formulaDsp"> |
| \[ \boldsymbol c = (X^T X)^+ X^T \boldsymbol y \,. \] |
| </p> |
| <p>Computing the <b>total sum of squares</b> \( TSS \), the <b>explained sum of squares</b> \( ESS \) (also called the regression sum of squares), and the <b>coefficient of determination</b> \( R^2 \) is done according to the following formulas: </p> |
| <p class="formulaDsp"> |
| \begin{align*} ESS & = \boldsymbol y^T X \boldsymbol c - \frac{ \| y \|_1^2 }{n} \\ TSS & = \sum_{i=1}^n y_i^2 - \frac{ \| y \|_1^2 }{n} \\ R^2 & = \frac{ESS}{TSS} \end{align*} |
| </p> |
| <p> Note: The last equality follows from the definition \( R^2 = 1 - \frac{RSS}{TSS} \) and the fact that for linear regression \( TSS = RSS + ESS \). A proof of the latter can be found, e.g., at: <a href="http://en.wikipedia.org/wiki/Sum_of_squares">http://en.wikipedia.org/wiki/Sum_of_squares</a></p> |
| <p>We estimate the variance \( Var[Y - \boldsymbol c^T \boldsymbol x \mid \boldsymbol x] \) as </p> |
| <p class="formulaDsp"> |
| \[ \sigma^2 = \frac{RSS}{n - k} \] |
| </p> |
| <p> and compute the t-statistic for coefficient \( i \) as </p> |
| <p class="formulaDsp"> |
| \[ t_i = \frac{c_i}{\sqrt{\sigma^2 \cdot \left( (X^T X)^{-1} \right)_{ii} }} \,. \] |
| </p> |
| <p>The \( p \)-value for coefficient \( i \) gives the probability of seeing a value at least as extreme as the one observed, provided that the null hypothesis ( \( c_i = 0 \)) is true. Letting \( F_\nu \) denote the cumulative density function of student-t with \( \nu \) degrees of freedom, the \( p \)-value for coefficient \( i \) is therefore </p> |
| <p class="formulaDsp"> |
| \[ p_i = \Pr(|T| \geq |t_i|) = 2 \cdot (1 - F_{n - k}( |t_i| )) \] |
| </p> |
| <p> where \( T \) is a student-t distributed random variable with mean 0.</p> |
| <p>The condition number [2] \( \kappa(X) = \|X\|_2\cdot\|X^{-1}\|_2\) is computed as the product of two spectral norms [3]. The spectral norm of a matrix \(X\) is the largest singular value of \(X\) i.e. the square root of the largest eigenvalue of the positive-semidefinite matrix \(X^{*}X\):</p> |
| <p class="formulaDsp"> |
| \[ \|X\|_2 = \sqrt{\lambda_{\max}\left(X^{*}X\right)}\ , \] |
| </p> |
| <p> where \(X^{*}\) is the conjugate transpose of \(X\). The condition number of a linear regression problem is a worst-case measure of how sensitive the result is to small perturbations of the input. A large condition number (say, more than 1000) indicates the presence of significant multicollinearity.</p> |
| <dl class="user"><dt><b>Input:</b></dt><dd></dd></dl> |
| <p>The training data is expected to be of the following form: </p> |
| <pre>{TABLE|VIEW} <em>sourceName</em> ( |
| ... |
| <em>dependentVariable</em> FLOAT8, |
| <em>independentVariables</em> FLOAT8[], |
| ... |
| )</pre><dl class="user"><dt><b>Usage:</b></dt><dd></dd></dl> |
| <p><b>(1) The Simple Interface</b></p> |
| <ul> |
| <li>Get vector of coefficients \( \boldsymbol c \) and all diagnostic statistics: <pre>SELECT (madlib.<a class="el" href="linear_8sql__in.html#a71d8295a18e93619b3331cefabe6e79b">linregr</a>(<em>dependentVariable</em>, |
| <em>independentVariables</em>)).* |
| FROM <em>sourceName</em>;</pre> Output: <pre> |
| coef | r2 | std_err | t_stats | p_values | condition_no |
| -----+----+---------+---------+----------+------------- |
| ... |
| </pre></li> |
| </ul> |
| <ul> |
| <li>Get vector of coefficients \( \boldsymbol c \):<br/> |
| <pre>SELECT (madlib.<a class="el" href="linear_8sql__in.html#a71d8295a18e93619b3331cefabe6e79b">linregr</a>(<em>dependentVariable</em>, |
| <em>independentVariables</em>)).coef |
| FROM <em>sourceName</em>;</pre></li> |
| </ul> |
| <ul> |
| <li>Get a subset of the output columns, e.g., only the array of coefficients \( \boldsymbol c \), the coefficient of determination \( R^2 \), and the array of p-values \( \boldsymbol p \): <pre>SELECT (lr).coef, (lr).r2, (lr).p_values |
| FROM ( |
| SELECT madlib.<a class="el" href="linear_8sql__in.html#a71d8295a18e93619b3331cefabe6e79b">linregr</a>(<em>dependentVariable</em>, |
| <em>independentVariables</em>) AS lr |
| FROM <em>sourceName</em> |
| ) AS subq;</pre></li> |
| </ul> |
| <p><b>(2) The Full Interface</b></p> |
| <p>The full interface support the analysis of heteroskedasticity of the linear fit.</p> |
| <pre> |
| SELECT madlib.linregr_train ( |
| <em>'source_table'</em>, -- name of input table, VARCHAR |
| <em>'out_table'</em>, -- name of output table, VARCHAR |
| <em>'dependent_varname'</em>, -- dependent variable, VARCHAR |
| <em>'independent_varname'</em>, -- independent variable, VARCHAR |
| [<em>group_cols</em>, -- names of columns to group by, VARCHAR[]. |
| -- Default value: Null |
| [<em>heteroskedasticity_option</em>]] -- whether to analyze |
| -- heteroskedasticity, |
| -- BOOLEAN. Default value: False |
| ); |
| </pre><p>Here the <em>'independent_varname'</em> can be the name of a column, which contains array of numeric values. It can also have a format of string 'array[1, x1, x2, x3]', where <em>x1</em>, <em>x2</em> and <em>x3</em> are all column names.</p> |
| <p>Output is stored in the <em>out_table</em>: </p> |
| <pre> |
| [ group_col_1 | group_col_2 | ... |] coef | r2 | std_err | t_stats | p_values | condition_no [| |
| -----------+-------------+-----+------+----+---------+---------+----------+--------------+---</pre><pre>bp_stats | bp_p_value ] |
| -------------+--------- |
| </pre><p>Where the first part </p> |
| <pre>[ group_col_1 | group_col_2 | ... |]</pre><p> presents only when <em>group_cols</em> is not Null. The last part </p> |
| <pre>[ bp_stats | ... | |
| corrected_p_values ]</pre><p> presents only when <em>heteroskedasticity_option</em> is <em>True</em>.</p> |
| <p>When <em>group_cols</em> is given, the data is grouped by the given columns and a linear model is fit to each group of data. The output will have additional columns for all combinations of the values of all the <em>group_cols</em>. For each combination of <em>group_cols</em> values, linear regression result is shown.</p> |
| <p>When <em>heteroskedasticity_option</em> is <em>True</em>, the output will have additional columns. The function computes the Breusch–Pagan test [4] statistics and the corresponding \(p\)-value.</p> |
| <dl class="user"><dt><b>Examples:</b></dt><dd></dd></dl> |
| <p>The following example is taken from <a href="http://www.stat.columbia.edu/~martin/W2110/SAS_7.pdf.">http://www.stat.columbia.edu/~martin/W2110/SAS_7.pdf.</a></p> |
| <ol type="1"> |
| <li>Create the sample data set: <div class="fragment"><pre class="fragment"> |
| sql> CREATE TABLE houses (id INT, tax INT, bedroom INT, bath FLOAT, price INT, |
| size INT, lot INT); |
| sql> COPY houses FROM STDIN WITH DELIMITER '|'; |
| 1 | 590 | 2 | 1 | 50000 | 770 | 22100 |
| 2 | 1050 | 3 | 2 | 85000 | 1410 | 12000 |
| 3 | 20 | 3 | 1 | 22500 | 1060 | 3500 |
| 4 | 870 | 2 | 2 | 90000 | 1300 | 17500 |
| 5 | 1320 | 3 | 2 | 133000 | 1500 | 30000 |
| 6 | 1350 | 2 | 1 | 90500 | 820 | 25700 |
| 7 | 2790 | 3 | 2.5 | 260000 | 2130 | 25000 |
| 8 | 680 | 2 | 1 | 142500 | 1170 | 22000 |
| 9 | 1840 | 3 | 2 | 160000 | 1500 | 19000 |
| 10 | 3680 | 4 | 2 | 240000 | 2790 | 20000 |
| 11 | 1660 | 3 | 1 | 87000 | 1030 | 17500 |
| 12 | 1620 | 3 | 2 | 118600 | 1250 | 20000 |
| 13 | 3100 | 3 | 2 | 140000 | 1760 | 38000 |
| 14 | 2070 | 2 | 3 | 148000 | 1550 | 14000 |
| 15 | 650 | 3 | 1.5 | 65000 | 1450 | 12000 |
| \. |
| </pre></div></li> |
| <li>You can call the <a class="el" href="linear_8sql__in.html#a71d8295a18e93619b3331cefabe6e79b" title="Compute linear regression coefficients and diagnostic statistics.">linregr()</a> function for an individual metric: <div class="fragment"><pre class="fragment"> |
| sql> SELECT (linregr(price, array[1, bedroom, bath, size])).coef FROM houses; |
| coef |
| ------------------------------------------------------------------------ |
| {27923.4334170641,-35524.7753390234,2269.34393735323,130.793920208133} |
| (1 row) |
| |
| sql> SELECT (linregr(price, array[1, bedroom, bath, size])).r2 FROM houses; |
| r2 |
| ------------------- |
| 0.745374010140315 |
| (1 row) |
| |
| sql> SELECT (linregr(price, array[1, bedroom, bath, size])).std_err FROM houses; |
| std_err |
| ---------------------------------------------------------------------- |
| {56306.4821787474,25036.6537279169,22208.6687270562,36.208642285651} |
| (1 row) |
| |
| sql> SELECT (linregr(price, array[1, bedroom, bath, size])).t_stats FROM houses; |
| t_stats |
| ------------------------------------------------------------------------ |
| {0.495918628487924,-1.41891067892239,0.10218279921428,3.6122293450358} |
| (1 row) |
| |
| sql> SELECT (linregr(price, array[1, bedroom, bath, size])).p_values FROM houses; |
| p_values |
| ----------------------------------------------------------------------------- |
| {0.629711069315512,0.183633155781461,0.920450514073051,0.00408159079312354} |
| (1 row) |
| </pre></div></li> |
| <li>Alternatively you can call the linreg() function for the full record: <div class="fragment"><pre class="fragment"> |
| sql> \x on |
| Expanded display is on. |
| sql> SELECT (r).* FROM (SELECT linregr(price, array[1, bedroom, bath, size]) |
| AS r FROM houses) q; |
| -[ RECORD 1 ]+----------------------------------------------------------------- |
| coef | {27923.4334170641,-35524.7753390234,2269.34393735323,130.793920208133} |
| r2 | 0.745374010140315 |
| std_err | {56306.4821787474,25036.6537279169,22208.6687270562,36.208642285651} |
| t_stats | {0.495918628487924,-1.41891067892239,0.10218279921428,3.6122293450358} |
| p_values | {0.629711069315512,0.183633155781461,0.920450514073051,0.00408159079312354} |
| condition_no | 9783.018 |
| |
| </pre></div></li> |
| </ol> |
| <ol type="1"> |
| <li>You can call linregr_train() function for more functionality <div class="fragment"><pre class="fragment"> |
| sql> SELECT madlib.linregr_train('houses', 'result', 'price', |
| 'array[1, tax, bath, size]', |
| '{bedroom}'::varchar[], True); |
| |
| sql> SELECT * from result; |
| -[ RECORD 1]---------+------------------------------------------------------- |
| bedroom | 2 |
| coef | {-84242.0345, 55.4430, -78966.9754, 225.6119} |
| r2 | 0.9688 |
| std_err | {35019.00, 19.57, 23036.81, 49.04} |
| t_stats | {-2.406, 2.833, -3.428, 4.600} |
| p_values | {0.251, 0.216, 0.181, 0.136} |
| condition_no | 10086.1 |
| bp_stats | 2.5451 |
| bp_p_value | 0.4672 |
| |
| -[ RECORD 2]---------+------------------------------------------------------ |
| bedroom | 3 |
| coef | {-88155.8292502747,27.1966436293179,41404.0293389239,62.6375210724027} |
| r2 | 0.841699901312963 |
| std_err | {57867.9999699512,17.82723091538,43643.1321521931,70.8506824870639} |
| t_stats | {-1.52339512850022,1.52556747362568,0.948695185179172,0.884077878626493} |
| p_values | {0.18816143289241,0.187636685729725,0.38634003235866,0.417132778730133} |
| condition_no | 11722.62 |
| bp_stats | 6.7538 |
| bp_p_value | 0.08017 |
| |
| -[ RECORD 3]---------+------------------------------------------------------- |
| bedroom | 4 |
| coef | {0.0112536020318378,41.4132554771633,0.0225072040636757,31.3975496688276} |
| r2 | 1 |
| std_err | {0,0,0,0} |
| t_stats | {Infinity,Infinity,Infinity,Infinity} |
| p_values | Null |
| condition_no | Null |
| bp_stats | Null |
| bp_p_value | Null |
| |
| </pre></div></li> |
| </ol> |
| <dl class="user"><dt><b>Literature:</b></dt><dd></dd></dl> |
| <p>[1] Cosma Shalizi: Statistics 36-350: Data Mining, Lecture Notes, 21 October 2009, <a href="http://www.stat.cmu.edu/~cshalizi/350/lectures/17/lecture-17.pdf">http://www.stat.cmu.edu/~cshalizi/350/lectures/17/lecture-17.pdf</a></p> |
| <p>[2] Wikipedia: Condition Number, <a href="http://en.wikipedia.org/wiki/Condition_number.">http://en.wikipedia.org/wiki/Condition_number.</a></p> |
| <p>[3] Wikipedia: Spectral Norm, <a href="http://en.wikipedia.org/wiki/Spectral_norm#Spectral_norm">http://en.wikipedia.org/wiki/Spectral_norm#Spectral_norm</a></p> |
| <p>[4] Wikipedia: Breusch–Pagan test, <a href="http://en.wikipedia.org/wiki/Breusch%E2%80%93Pagan_test">http://en.wikipedia.org/wiki/Breusch%E2%80%93Pagan_test</a></p> |
| <p>[5] Wikipedia: Heteroscedasticity-consistent standard errors, <a href="http://en.wikipedia.org/wiki/Heteroscedasticity-consistent_standard_errors">http://en.wikipedia.org/wiki/Heteroscedasticity-consistent_standard_errors</a></p> |
| <dl class="see"><dt><b>See also:</b></dt><dd>File <a class="el" href="linear_8sql__in.html" title="SQL functions for linear regression.">linear.sql_in</a> documenting the SQL functions. </dd></dl> |
| </div> |
| </div> |
| <div id="nav-path" class="navpath"> |
| <ul> |
| <!-- window showing the filter options --> |
| <div id="MSearchSelectWindow" |
| onmouseover="return searchBox.OnSearchSelectShow()" |
| onmouseout="return searchBox.OnSearchSelectHide()" |
| onkeydown="return searchBox.OnSearchSelectKey(event)"> |
| <a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(0)"><span class="SelectionMark"> </span>All</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(1)"><span class="SelectionMark"> </span>Files</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(2)"><span class="SelectionMark"> </span>Functions</a></div> |
| |
| <!-- iframe showing the search results (closed by default) --> |
| <div id="MSearchResultsWindow"> |
| <iframe src="javascript:void(0)" frameborder="0" |
| name="MSearchResults" id="MSearchResults"> |
| </iframe> |
| </div> |
| |
| |
| <li class="footer">Generated on Tue Apr 2 2013 14:57:03 for MADlib by |
| <a href="http://www.doxygen.org/index.html"> |
| <img class="footer" src="doxygen.png" alt="doxygen"/></a> 1.7.5.1 </li> |
| </ul> |
| </div> |
| |
| |
| </body> |
| </html> |