| <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> |
| <html xmlns="http://www.w3.org/1999/xhtml"> |
| <head> |
| <meta http-equiv="Content-Type" content="text/xhtml;charset=UTF-8"/> |
| <title>MADlib: crf.sql_in Source File</title> |
| |
| <link href="tabs.css" rel="stylesheet" type="text/css"/> |
| <link href="doxygen.css" rel="stylesheet" type="text/css" /> |
| <link href="navtree.css" rel="stylesheet" type="text/css"/> |
| <script type="text/javascript" src="jquery.js"></script> |
| <script type="text/javascript" src="resize.js"></script> |
| <script type="text/javascript" src="navtree.js"></script> |
| <script type="text/javascript"> |
| $(document).ready(initResizable); |
| </script> |
| <link href="search/search.css" rel="stylesheet" type="text/css"/> |
| <script type="text/javascript" src="search/search.js"></script> |
| <script type="text/javascript"> |
| $(document).ready(function() { searchBox.OnSelectItem(0); }); |
| </script> |
| <script src="../mathjax/MathJax.js"> |
| MathJax.Hub.Config({ |
| extensions: ["tex2jax.js", "TeX/AMSmath.js", "TeX/AMSsymbols.js"], |
| jax: ["input/TeX","output/HTML-CSS"], |
| }); |
| </script> |
| </head> |
| <body> |
| <div id="top"><!-- do not remove this div! --> |
| |
| |
| <div id="titlearea"> |
| <table cellspacing="0" cellpadding="0"> |
| <tbody> |
| <tr style="height: 56px;"> |
| |
| |
| <td style="padding-left: 0.5em;"> |
| <div id="projectname">MADlib |
|  <span id="projectnumber">0.6</span> <span style="font-size:10pt; font-style:italic"><a href="../latest/./crf_8sql__in_source.html"> A newer version is available</a></span> |
| </div> |
| <div id="projectbrief">User Documentation</div> |
| </td> |
| |
| |
| |
| </tr> |
| </tbody> |
| </table> |
| </div> |
| |
| <!-- Generated by Doxygen 1.7.5.1 --> |
| <script type="text/javascript"> |
| var searchBox = new SearchBox("searchBox", "search",false,'Search'); |
| </script> |
| <script type="text/javascript" src="dynsections.js"></script> |
| <div id="navrow1" class="tabs"> |
| <ul class="tablist"> |
| <li><a href="index.html"><span>Main Page</span></a></li> |
| <li><a href="modules.html"><span>Modules</span></a></li> |
| <li class="current"><a href="files.html"><span>Files</span></a></li> |
| <li> |
| <div id="MSearchBox" class="MSearchBoxInactive"> |
| <span class="left"> |
| <img id="MSearchSelect" src="search/mag_sel.png" |
| onmouseover="return searchBox.OnSearchSelectShow()" |
| onmouseout="return searchBox.OnSearchSelectHide()" |
| alt=""/> |
| <input type="text" id="MSearchField" value="Search" accesskey="S" |
| onfocus="searchBox.OnSearchFieldFocus(true)" |
| onblur="searchBox.OnSearchFieldFocus(false)" |
| onkeyup="searchBox.OnSearchFieldChange(event)"/> |
| </span><span class="right"> |
| <a id="MSearchClose" href="javascript:searchBox.CloseResultsWindow()"><img id="MSearchCloseImg" border="0" src="search/close.png" alt=""/></a> |
| </span> |
| </div> |
| </li> |
| </ul> |
| </div> |
| <div id="navrow2" class="tabs2"> |
| <ul class="tablist"> |
| <li><a href="files.html"><span>File List</span></a></li> |
| <li><a href="globals.html"><span>File Members</span></a></li> |
| </ul> |
| </div> |
| </div> |
| <div id="side-nav" class="ui-resizable side-nav-resizable"> |
| <div id="nav-tree"> |
| <div id="nav-tree-contents"> |
| </div> |
| </div> |
| <div id="splitbar" style="-moz-user-select:none;" |
| class="ui-resizable-handle"> |
| </div> |
| </div> |
| <script type="text/javascript"> |
| initNavTree('crf_8sql__in.html',''); |
| </script> |
| <div id="doc-content"> |
| <div class="header"> |
| <div class="headertitle"> |
| <div class="title">crf.sql_in</div> </div> |
| </div> |
| <div class="contents"> |
| <a href="crf_8sql__in.html">Go to the documentation of this file.</a><div class="fragment"><pre class="fragment"><a name="l00001"></a>00001 <span class="comment">/* ----------------------------------------------------------------------- */</span><span class="comment">/** </span> |
| <a name="l00002"></a>00002 <span class="comment"> *</span> |
| <a name="l00003"></a>00003 <span class="comment"> * @file crf.sql_in</span> |
| <a name="l00004"></a>00004 <span class="comment"> *</span> |
| <a name="l00005"></a>00005 <span class="comment"> * @brief SQL functions for conditional random field</span> |
| <a name="l00006"></a>00006 <span class="comment"> * @date July 2012</span> |
| <a name="l00007"></a>00007 <span class="comment"> *</span> |
| <a name="l00008"></a>00008 <span class="comment"> * @sa For a brief introduction to conditional random field, see the</span> |
| <a name="l00009"></a>00009 <span class="comment"> * module description \ref grp_crf.</span> |
| <a name="l00010"></a>00010 <span class="comment"> *</span> |
| <a name="l00011"></a>00011 <span class="comment"> */</span><span class="comment">/* ----------------------------------------------------------------------- */</span> |
| <a name="l00012"></a>00012 |
| <a name="l00013"></a>00013 m4_include(`SQLCommon.m4<span class="stringliteral">')</span> |
| <a name="l00014"></a>00014 <span class="stringliteral"></span><span class="comment"></span> |
| <a name="l00015"></a>00015 <span class="comment">/**</span> |
| <a name="l00016"></a>00016 <span class="comment">@addtogroup grp_crf</span> |
| <a name="l00017"></a>00017 <span class="comment"></span> |
| <a name="l00018"></a>00018 <span class="comment">@about</span> |
| <a name="l00019"></a>00019 <span class="comment">A conditional random field (CRF) is a type of discriminative, undirected probabilistic graphical model. A linear-chain CRF is a special </span> |
| <a name="l00020"></a>00020 <span class="comment">type of CRF that assumes the current state depends only on the previous state. </span> |
| <a name="l00021"></a>00021 <span class="comment"></span> |
| <a name="l00022"></a>00022 <span class="comment">Specifically, a linear-chain CRF is a distribution defined by</span> |
| <a name="l00023"></a>00023 <span class="comment">\f[</span> |
| <a name="l00024"></a>00024 <span class="comment"> p_\lambda(\boldsymbol y | \boldsymbol x) =</span> |
| <a name="l00025"></a>00025 <span class="comment"> \frac{\exp{\sum_{m=1}^M \lambda_m F_m(\boldsymbol x, \boldsymbol y)}}{Z_\lambda(\boldsymbol x)}</span> |
| <a name="l00026"></a>00026 <span class="comment"> \,.</span> |
| <a name="l00027"></a>00027 <span class="comment">\f]</span> |
| <a name="l00028"></a>00028 <span class="comment"></span> |
| <a name="l00029"></a>00029 <span class="comment">where </span> |
| <a name="l00030"></a>00030 <span class="comment">- \f$ F_m(\boldsymbol x, \boldsymbol y) = \sum_{i=1}^n f_m(y_i,y_{i-1},x_i) \f$ is a global feature function that is a sum along a sequence </span> |
| <a name="l00031"></a>00031 <span class="comment"> \f$ \boldsymbol x \f$ of length \f$ n \f$</span> |
| <a name="l00032"></a>00032 <span class="comment">- \f$ f_m(y_i,y_{i-1},x_i) \f$ is a local feature function dependent on the current token label \f$ y_i \f$, the previous token label \f$ y_{i-1} \f$, </span> |
| <a name="l00033"></a>00033 <span class="comment"> and the observation \f$ x_i \f$</span> |
| <a name="l00034"></a>00034 <span class="comment">- \f$ \lambda_m \f$ is the corresponding feature weight </span> |
| <a name="l00035"></a>00035 <span class="comment">- \f$ Z_\lambda(\boldsymbol x) \f$ is an instance-specific normalizer</span> |
| <a name="l00036"></a>00036 <span class="comment">\f[</span> |
| <a name="l00037"></a>00037 <span class="comment">Z_\lambda(\boldsymbol x) = \sum_{\boldsymbol y'} \exp{\sum_{m=1}^M \lambda_m F_m(\boldsymbol x, \boldsymbol y')}</span> |
| <a name="l00038"></a>00038 <span class="comment">\f]</span> |
| <a name="l00039"></a>00039 <span class="comment"></span> |
| <a name="l00040"></a>00040 <span class="comment">A linear-chain CRF estimates the weights \f$ \lambda_m \f$ by maximizing the log-likelihood </span> |
| <a name="l00041"></a>00041 <span class="comment">of a given training set \f$ T=\{(x_k,y_k)\}_{k=1}^N \f$. </span> |
| <a name="l00042"></a>00042 <span class="comment"></span> |
| <a name="l00043"></a>00043 <span class="comment">The log-likelihood is defined as</span> |
| <a name="l00044"></a>00044 <span class="comment">\f[</span> |
| <a name="l00045"></a>00045 <span class="comment"> \ell_{\lambda}=\sum_k \log p_\lambda(y_k|x_k) =\sum_k[\sum_{m=1}^M \lambda_m F_m(x_k,y_k) - \log Z_\lambda(x_k)]</span> |
| <a name="l00046"></a>00046 <span class="comment">\f]</span> |
| <a name="l00047"></a>00047 <span class="comment"></span> |
| <a name="l00048"></a>00048 <span class="comment">and the zero of its gradient</span> |
| <a name="l00049"></a>00049 <span class="comment">\f[</span> |
| <a name="l00050"></a>00050 <span class="comment"> \nabla \ell_{\lambda}=\sum_k[F(x_k,y_k)-E_{p_\lambda(Y|x_k)}[F(x_k,Y)]]</span> |
| <a name="l00051"></a>00051 <span class="comment">\f]</span> |
| <a name="l00052"></a>00052 <span class="comment"></span> |
| <a name="l00053"></a>00053 <span class="comment">is found since the maximum likelihood is reached when the empirical average of the global feature vector equals its model expectation. The MADlib implementation uses limited-memory BFGS (L-BFGS), a limited-memory variation of the Broyden–Fletcher–Goldfarb–Shanno (BFGS) update, a quasi-Newton method for unconstrained optimization. </span> |
| <a name="l00054"></a>00054 <span class="comment"></span> |
| <a name="l00055"></a>00055 <span class="comment">\f$E_{p_\lambda(Y|x)}[F(x,Y)]\f$ is found by using a variant of the forward-backward algorithm:</span> |
| <a name="l00056"></a>00056 <span class="comment">\f[</span> |
| <a name="l00057"></a>00057 <span class="comment"> E_{p_\lambda(Y|x)}[F(x,Y)] = \sum_y p_\lambda(y|x)F(x,y)</span> |
| <a name="l00058"></a>00058 <span class="comment"> = \sum_i\frac{\alpha_{i-1}(f_i*M_i)\beta_i^T}{Z_\lambda(x)}</span> |
| <a name="l00059"></a>00059 <span class="comment">\f]</span> |
| <a name="l00060"></a>00060 <span class="comment">\f[</span> |
| <a name="l00061"></a>00061 <span class="comment"> Z_\lambda(x) = \alpha_n.1^T</span> |
| <a name="l00062"></a>00062 <span class="comment">\f]</span> |
| <a name="l00063"></a>00063 <span class="comment"> where \f$\alpha_i\f$ and \f$ \beta_i\f$ are the forward and backward state cost vectors defined by</span> |
| <a name="l00064"></a>00064 <span class="comment">\f[</span> |
| <a name="l00065"></a>00065 <span class="comment"> \alpha_i = </span> |
| <a name="l00066"></a>00066 <span class="comment"> \begin{cases}</span> |
| <a name="l00067"></a>00067 <span class="comment"> \alpha_{i-1}M_i, & 0<i<=n\\</span> |
| <a name="l00068"></a>00068 <span class="comment"> 1, & i=0</span> |
| <a name="l00069"></a>00069 <span class="comment"> \end{cases}\\</span> |
| <a name="l00070"></a>00070 <span class="comment">\f]</span> |
| <a name="l00071"></a>00071 <span class="comment">\f[</span> |
| <a name="l00072"></a>00072 <span class="comment"> \beta_i^T = </span> |
| <a name="l00073"></a>00073 <span class="comment"> \begin{cases}</span> |
| <a name="l00074"></a>00074 <span class="comment"> M_{i+1}\beta_{i+1}^T, & 1<=i<n\\</span> |
| <a name="l00075"></a>00075 <span class="comment"> 1, & i=n</span> |
| <a name="l00076"></a>00076 <span class="comment"> \end{cases}</span> |
| <a name="l00077"></a>00077 <span class="comment">\f]</span> |
| <a name="l00078"></a>00078 <span class="comment"></span> |
| <a name="l00079"></a>00079 <span class="comment">To avoid overfitting, we penalize the likelihood with a spherical Gaussian weight prior:</span> |
| <a name="l00080"></a>00080 <span class="comment">\f[</span> |
| <a name="l00081"></a>00081 <span class="comment"> \ell_{\lambda}^\prime=\sum_k[\sum_{m=1}^M \lambda_m F_m(x_k,y_k) - \log Z_\lambda(x_k)] - \frac{\lVert \lambda \rVert^2}{2\sigma ^2}</span> |
| <a name="l00082"></a>00082 <span class="comment">\f]</span> |
| <a name="l00083"></a>00083 <span class="comment"></span> |
| <a name="l00084"></a>00084 <span class="comment">\f[</span> |
| <a name="l00085"></a>00085 <span class="comment"> \nabla \ell_{\lambda}^\prime=\sum_k[F(x_k,y_k) - E_{p_\lambda(Y|x_k)}[F(x_k,Y)]] - \frac{\lambda}{\sigma ^2}</span> |
| <a name="l00086"></a>00086 <span class="comment">\f]</span> |
| <a name="l00087"></a>00087 <span class="comment"></span> |
| <a name="l00088"></a>00088 <span class="comment"> </span> |
| <a name="l00089"></a>00089 <span class="comment"></span> |
| <a name="l00090"></a>00090 <span class="comment">Feature extraction modules are provided for text-analysis</span> |
| <a name="l00091"></a>00091 <span class="comment">tasks such as part-of-speech (POS) tagging and named-entity resolution (NER). Currently, six feature types are implemented:</span> |
| <a name="l00092"></a>00092 <span class="comment">- Edge Feature: transition feature that encodes the transition feature</span> |
| <a name="l00093"></a>00093 <span class="comment">weight from current label to next label.</span> |
| <a name="l00094"></a>00094 <span class="comment">- Start Feature: fired when the current token is the first token in a sequence.</span> |
| <a name="l00095"></a>00095 <span class="comment">- End Feature: fired when the current token is the last token in a sequence.</span> |
| <a name="l00096"></a>00096 <span class="comment">- Word Feature: fired when the current token is observed in the trained</span> |
| <a name="l00097"></a>00097 <span class="comment">dictionary.</span> |
| <a name="l00098"></a>00098 <span class="comment">- Unknown Feature: fired when the current token is not observed in the trained</span> |
| <a name="l00099"></a>00099 <span class="comment">dictionary for at least a certain number of times (default 1).</span> |
| <a name="l00100"></a>00100 <span class="comment">- Regex Feature: fired when the current token can be matched by a regular</span> |
| <a name="l00101"></a>00101 <span class="comment">expression.</span> |
| <a name="l00102"></a>00102 <span class="comment"></span> |
| <a name="l00103"></a>00103 <span class="comment">A Viterbi implementation is also provided </span> |
| <a name="l00104"></a>00104 <span class="comment">to get the best label sequence and the conditional probability</span> |
| <a name="l00105"></a>00105 <span class="comment">\f$ \Pr( \text{best label sequence} \mid \text{sequence}) \f$.</span> |
| <a name="l00106"></a>00106 <span class="comment"></span> |
| <a name="l00107"></a>00107 <span class="comment">For a full example of how to use the MADlib CRF modules for a text analytics application, see the "Example" section below.</span> |
| <a name="l00108"></a>00108 <span class="comment"></span> |
| <a name="l00109"></a>00109 <span class="comment">@input</span> |
| <a name="l00110"></a>00110 <span class="comment">- User-provided input:\n</span> |
| <a name="l00111"></a>00111 <span class="comment">The user is expected to at least provide the label table, the regular expression table, and the segment table:</span> |
| <a name="l00112"></a>00112 <span class="comment"><pre>{TABLE|VIEW} <em>labelTableName</em> (</span> |
| <a name="l00113"></a>00113 <span class="comment"> ...</span> |
| <a name="l00114"></a>00114 <span class="comment"> <em>id</em> INTEGER,</span> |
| <a name="l00115"></a>00115 <span class="comment"> <em>label</em> TEXT,</span> |
| <a name="l00116"></a>00116 <span class="comment"> ...</span> |
| <a name="l00117"></a>00117 <span class="comment">)</pre></span> |
| <a name="l00118"></a>00118 <span class="comment">where <em>id</em> is a unique ID for the label and <em>label</em> is the label name.</span> |
| <a name="l00119"></a>00119 <span class="comment"><pre>{TABLE|VIEW} <em>regexTableName</em> (</span> |
| <a name="l00120"></a>00120 <span class="comment"> ...</span> |
| <a name="l00121"></a>00121 <span class="comment"> <em>pattern</em> TEXT,</span> |
| <a name="l00122"></a>00122 <span class="comment"> <em>name</em> TEXT,</span> |
| <a name="l00123"></a>00123 <span class="comment"> ...</span> |
| <a name="l00124"></a>00124 <span class="comment">)</pre></span> |
| <a name="l00125"></a>00125 <span class="comment">where <em>pattern</em> is a regular expression pattern (e.g. '^.+ing$') and <em>name</em> is a name for the regular expression pattern (e.g. 'endsWithIng').</span> |
| <a name="l00126"></a>00126 <span class="comment"><pre>{TABLE|VIEW} <em>segmentTableName</em> (</span> |
| <a name="l00127"></a>00127 <span class="comment"> ...</span> |
| <a name="l00128"></a>00128 <span class="comment"> <em>start_pos</em> INTEGER,</span> |
| <a name="l00129"></a>00129 <span class="comment"> <em>doc_id</em> INTEGER,</span> |
| <a name="l00130"></a>00130 <span class="comment"> <em>seg_text</em> TEXT,</span> |
| <a name="l00131"></a>00131 <span class="comment"> <em>label</em> INTEGER,</span> |
| <a name="l00132"></a>00132 <span class="comment"> <em>max_pos</em> INTEGER,</span> |
| <a name="l00133"></a>00133 <span class="comment"> ...</span> |
| <a name="l00134"></a>00134 <span class="comment">)</pre></span> |
| <a name="l00135"></a>00135 <span class="comment">where <em>start_pos</em> is the position of the word in the sequence, <em>doc_id</em> is a unique ID for the sequence, <em>seg_text</em> is the word, <em>label</em> is the label for the word, and <em>max_pos</em> is the length of the sequence.</span> |
| <a name="l00136"></a>00136 <span class="comment"></span> |
| <a name="l00137"></a>00137 <span class="comment">- Training (\ref lincrf) input:\n</span> |
| <a name="l00138"></a>00138 <span class="comment">The feature table used for training is expected to be of the following form (this table can also be generated by \ref crf_train_fgen):\n</span> |
| <a name="l00139"></a>00139 <span class="comment"><pre>{TABLE|VIEW} <em>featureTableName</em> (</span> |
| <a name="l00140"></a>00140 <span class="comment"> ...</span> |
| <a name="l00141"></a>00141 <span class="comment"> <em>doc_id</em> INTEGER,</span> |
| <a name="l00142"></a>00142 <span class="comment"> <em>f_size</em> INTEGER,</span> |
| <a name="l00143"></a>00143 <span class="comment"> <em>sparse_r</em> FLOAT8[],</span> |
| <a name="l00144"></a>00144 <span class="comment"> <em>dense_m</em> FLOAT8[],</span> |
| <a name="l00145"></a>00145 <span class="comment"> <em>sparse_m</em> FLOAT8[],</span> |
| <a name="l00146"></a>00146 <span class="comment"> ...</span> |
| <a name="l00147"></a>00147 <span class="comment">)</pre></span> |
| <a name="l00148"></a>00148 <span class="comment">where </span> |
| <a name="l00149"></a>00149 <span class="comment"> - <em>doc_id</em> is a unique ID for the sequence</span> |
| <a name="l00150"></a>00150 <span class="comment"> - <em>f_size</em> is the number of features</span> |
| <a name="l00151"></a>00151 <span class="comment"> - <em>sparse_r</em> is the array union of (previous label, label, feature index, start position, training existance indicator) of individal single-state features (e.g. word features, regex features) ordered by their start positon</span> |
| <a name="l00152"></a>00152 <span class="comment"> - <em>dense_m</em> is the array union of (previous label, label, feature index, start position, training existance indicator) of edge features ordered by start position</span> |
| <a name="l00153"></a>00153 <span class="comment"> - <em>sparse_m</em> is the array union of (feature index, previous label, label) of edge features ordered by feature index. </span> |
| <a name="l00154"></a>00154 <span class="comment">Edge features were split into dense_m and sparse_m for performance reasons.</span> |
| <a name="l00155"></a>00155 <span class="comment"></span> |
| <a name="l00156"></a>00156 <span class="comment">The set of features used for training is expected to be of the following form (also can be generated by \ref crf_train_fgen):\n</span> |
| <a name="l00157"></a>00157 <span class="comment"><pre>{TABLE|VIEW} <em>featureSetName</em> (</span> |
| <a name="l00158"></a>00158 <span class="comment"> ...</span> |
| <a name="l00159"></a>00159 <span class="comment"> <em>f_index</em> INTEGER,</span> |
| <a name="l00160"></a>00160 <span class="comment"> <em>f_name</em> TEXT,</span> |
| <a name="l00161"></a>00161 <span class="comment"> <em>feature_labels</em> INTEGER[],</span> |
| <a name="l00162"></a>00162 <span class="comment"> ...</span> |
| <a name="l00163"></a>00163 <span class="comment">)</pre></span> |
| <a name="l00164"></a>00164 <span class="comment">where </span> |
| <a name="l00165"></a>00165 <span class="comment"> - <em>f_index</em> is a unique ID for the feature</span> |
| <a name="l00166"></a>00166 <span class="comment"> - <em>f_name</em> is the feature name</span> |
| <a name="l00167"></a>00167 <span class="comment"> - <em>feature_labels</em> is an array representing {previous label, label}.</span> |
| <a name="l00168"></a>00168 <span class="comment"></span> |
| <a name="l00169"></a>00169 <span class="comment">The empty feature weight table (which will be populated after training) is expected to be of the following form:</span> |
| <a name="l00170"></a>00170 <span class="comment"><pre>{TABLE|VIEW} <em>featureWeightsName</em> (</span> |
| <a name="l00171"></a>00171 <span class="comment"> ...</span> |
| <a name="l00172"></a>00172 <span class="comment"> <em>f_index</em> INTEGER,</span> |
| <a name="l00173"></a>00173 <span class="comment"> <em>f_name</em> TEXT,</span> |
| <a name="l00174"></a>00174 <span class="comment"> <em>previous_label</em> INTEGER,</span> |
| <a name="l00175"></a>00175 <span class="comment"> <em>label</em> INTEGER,</span> |
| <a name="l00176"></a>00176 <span class="comment"> <em>weight</em> FLOAT8,</span> |
| <a name="l00177"></a>00177 <span class="comment"> ...</span> |
| <a name="l00178"></a>00178 <span class="comment">)</pre></span> |
| <a name="l00179"></a>00179 <span class="comment"></span> |
| <a name="l00180"></a>00180 <span class="comment">@usage</span> |
| <a name="l00181"></a>00181 <span class="comment">- Get number of iterations and weights for features:\n</span> |
| <a name="l00182"></a>00182 <span class="comment"> <pre>SELECT * FROM \ref lincrf(</span> |
| <a name="l00183"></a>00183 <span class="comment"> '<em>featureTableName</em>', '<em>sparse_r</em>', '<em>dense_m</em>','<em>sparse_m</em>', '<em>f_size</em>', <em>tag_size</em>, '<em>feature_set</em>', '<em>featureWeightsName</em>'</span> |
| <a name="l00184"></a>00184 <span class="comment"> [, <em>maxNumberOfIterations</em> ] ]</span> |
| <a name="l00185"></a>00185 <span class="comment">);</pre></span> |
| <a name="l00186"></a>00186 <span class="comment"> where tag_size is the total number of labels.</span> |
| <a name="l00187"></a>00187 <span class="comment"></span> |
| <a name="l00188"></a>00188 <span class="comment"> Output:</span> |
| <a name="l00189"></a>00189 <span class="comment"><pre> lincrf</span> |
| <a name="l00190"></a>00190 <span class="comment">-----------------</span> |
| <a name="l00191"></a>00191 <span class="comment"> [number of iterations]</pre></span> |
| <a name="l00192"></a>00192 <span class="comment"></span> |
| <a name="l00193"></a>00193 <span class="comment"> <em>featureWeightsName</em>:</span> |
| <a name="l00194"></a>00194 <span class="comment"><pre> id | name | prev_label_id | label_id | weight </span> |
| <a name="l00195"></a>00195 <span class="comment">----+----------------+---------------+----------+-------------------</span> |
| <a name="l00196"></a>00196 <span class="comment"></pre></span> |
| <a name="l00197"></a>00197 <span class="comment"></span> |
| <a name="l00198"></a>00198 <span class="comment">- Generate text features, calculate their weights, and output the best label sequence for test data:\n</span> |
| <a name="l00199"></a>00199 <span class="comment"> -# Create tables to store the input data, intermediate data, and output data.</span> |
| <a name="l00200"></a>00200 <span class="comment"> Also import the training data to the database.</span> |
| <a name="l00201"></a>00201 <span class="comment"> <pre>SELECT madlib.crf_train_data(</span> |
| <a name="l00202"></a>00202 <span class="comment"> '<em>/path/to/data</em>');</pre> </span> |
| <a name="l00203"></a>00203 <span class="comment"> -# Generate text analytics features for the training data.</span> |
| <a name="l00204"></a>00204 <span class="comment"> <pre>SELECT madlib.crf_train_fgen(</span> |
| <a name="l00205"></a>00205 <span class="comment"> '<em>segmenttbl</em>',</span> |
| <a name="l00206"></a>00206 <span class="comment"> '<em>regextbl</em>',</span> |
| <a name="l00207"></a>00207 <span class="comment"> '<em>dictionary</em>',</span> |
| <a name="l00208"></a>00208 <span class="comment"> '<em>featuretbl</em>',</span> |
| <a name="l00209"></a>00209 <span class="comment"> '<em>featureset</em>');</pre></span> |
| <a name="l00210"></a>00210 <span class="comment"> -# Use linear-chain CRF for training.</span> |
| <a name="l00211"></a>00211 <span class="comment"> <pre>SELECT madlib.lincrf(</span> |
| <a name="l00212"></a>00212 <span class="comment"> '<em>source</em>',</span> |
| <a name="l00213"></a>00213 <span class="comment"> '<em>sparse_r</em>',</span> |
| <a name="l00214"></a>00214 <span class="comment"> '<em>dense_m</em>',</span> |
| <a name="l00215"></a>00215 <span class="comment"> '<em>sparse_m</em>',</span> |
| <a name="l00216"></a>00216 <span class="comment"> '<em>f_size</em>',</span> |
| <a name="l00217"></a>00217 <span class="comment"> <em>tag_size</em>,</span> |
| <a name="l00218"></a>00218 <span class="comment"> '<em>feature_set</em>',</span> |
| <a name="l00219"></a>00219 <span class="comment"> '<em>featureWeights</em>',</span> |
| <a name="l00220"></a>00220 <span class="comment"> '<em>maxNumIterations</em>');</pre></span> |
| <a name="l00221"></a>00221 <span class="comment"> -# Import CRF model to the database.</span> |
| <a name="l00222"></a>00222 <span class="comment"> Also load the CRF testing data to the database.</span> |
| <a name="l00223"></a>00223 <span class="comment"> <pre>SELECT madlib.crf_test_data(</span> |
| <a name="l00224"></a>00224 <span class="comment"> '<em>/path/to/data</em>');</pre></span> |
| <a name="l00225"></a>00225 <span class="comment"> -# Generate text analytics features for the testing data.</span> |
| <a name="l00226"></a>00226 <span class="comment"> <pre>SELECT madlib.crf_test_fgen(</span> |
| <a name="l00227"></a>00227 <span class="comment"> '<em>segmenttbl</em>',</span> |
| <a name="l00228"></a>00228 <span class="comment"> '<em>dictionary</em>',</span> |
| <a name="l00229"></a>00229 <span class="comment"> '<em>labeltbl</em>',</span> |
| <a name="l00230"></a>00230 <span class="comment"> '<em>regextbl</em>',</span> |
| <a name="l00231"></a>00231 <span class="comment"> '<em>featuretbl</em>',</span> |
| <a name="l00232"></a>00232 <span class="comment"> '<em>viterbi_mtbl</em>',</span> |
| <a name="l00233"></a>00233 <span class="comment"> '<em>viterbi_rtbl</em>');</pre></span> |
| <a name="l00234"></a>00234 <span class="comment"> 'viterbi_mtbl' and 'viterbi_rtbl' are simply text representing names for tables created in the feature generation module (i.e. they are NOT empty tables).</span> |
| <a name="l00235"></a>00235 <span class="comment"> -# Run the Viterbi function to get the best label sequence and the conditional</span> |
| <a name="l00236"></a>00236 <span class="comment"> probability \f$ \Pr( \text{best label sequence} \mid \text{sequence}) \f$.</span> |
| <a name="l00237"></a>00237 <span class="comment"> <pre>SELECT madlib.vcrf_label(</span> |
| <a name="l00238"></a>00238 <span class="comment"> '<em>segmenttbl</em>',</span> |
| <a name="l00239"></a>00239 <span class="comment"> '<em>viterbi_mtbl</em>',</span> |
| <a name="l00240"></a>00240 <span class="comment"> '<em>viterbi_rtbl</em>',</span> |
| <a name="l00241"></a>00241 <span class="comment"> '<em>labeltbl</em>',</span> |
| <a name="l00242"></a>00242 <span class="comment"> '<em>resulttbl</em>');</pre></span> |
| <a name="l00243"></a>00243 <span class="comment"></span> |
| <a name="l00244"></a>00244 <span class="comment">@examp</span> |
| <a name="l00245"></a>00245 <span class="comment">-# Load the label table, the regular expressions table, and the training segment table:</span> |
| <a name="l00246"></a>00246 <span class="comment">@verbatim </span> |
| <a name="l00247"></a>00247 <span class="comment">sql> SELECT * FROM crf_label;</span> |
| <a name="l00248"></a>00248 <span class="comment"> id | label </span> |
| <a name="l00249"></a>00249 <span class="comment">----+-------</span> |
| <a name="l00250"></a>00250 <span class="comment"> 1 | CD</span> |
| <a name="l00251"></a>00251 <span class="comment"> 13 | NNP</span> |
| <a name="l00252"></a>00252 <span class="comment"> 15 | PDT</span> |
| <a name="l00253"></a>00253 <span class="comment"> 17 | PRP</span> |
| <a name="l00254"></a>00254 <span class="comment"> 29 | VBN</span> |
| <a name="l00255"></a>00255 <span class="comment"> 31 | VBZ</span> |
| <a name="l00256"></a>00256 <span class="comment"> 33 | WP</span> |
| <a name="l00257"></a>00257 <span class="comment"> 35 | WRB</span> |
| <a name="l00258"></a>00258 <span class="comment">...</span> |
| <a name="l00259"></a>00259 <span class="comment"></span> |
| <a name="l00260"></a>00260 <span class="comment">sql> SELECT * from crf_regex;</span> |
| <a name="l00261"></a>00261 <span class="comment"> pattern | name </span> |
| <a name="l00262"></a>00262 <span class="comment">---------------+----------------------</span> |
| <a name="l00263"></a>00263 <span class="comment"> ^.+ing$ | endsWithIng</span> |
| <a name="l00264"></a>00264 <span class="comment"> ^[A-Z][a-z]+$ | InitCapital</span> |
| <a name="l00265"></a>00265 <span class="comment"> ^[A-Z]+$ | isAllCapital</span> |
| <a name="l00266"></a>00266 <span class="comment"> ^.*[0-9]+.*$ | containsDigit</span> |
| <a name="l00267"></a>00267 <span class="comment">...</span> |
| <a name="l00268"></a>00268 <span class="comment"></span> |
| <a name="l00269"></a>00269 <span class="comment">sql> SELECT * from train_segmenttbl;</span> |
| <a name="l00270"></a>00270 <span class="comment"> start_pos | doc_id | seg_text | label | max_pos</span> |
| <a name="l00271"></a>00271 <span class="comment">-----------+--------+------------+-------+---------</span> |
| <a name="l00272"></a>00272 <span class="comment"> 8 | 1 | alliance | 11 | 26</span> |
| <a name="l00273"></a>00273 <span class="comment"> 10 | 1 | Ford | 13 | 26</span> |
| <a name="l00274"></a>00274 <span class="comment"> 12 | 1 | that | 5 | 26</span> |
| <a name="l00275"></a>00275 <span class="comment"> 24 | 1 | likely | 6 | 26</span> |
| <a name="l00276"></a>00276 <span class="comment"> 26 | 1 | . | 43 | 26</span> |
| <a name="l00277"></a>00277 <span class="comment"> 8 | 2 | interest | 11 | 10</span> |
| <a name="l00278"></a>00278 <span class="comment"> 10 | 2 | . | 43 | 10</span> |
| <a name="l00279"></a>00279 <span class="comment"> 9 | 1 | after | 5 | 26</span> |
| <a name="l00280"></a>00280 <span class="comment"> 11 | 1 | concluded | 27 | 26</span> |
| <a name="l00281"></a>00281 <span class="comment"> 23 | 1 | the | 2 | 26</span> |
| <a name="l00282"></a>00282 <span class="comment"> 25 | 1 | return | 11 | 26</span> |
| <a name="l00283"></a>00283 <span class="comment"> 9 | 2 | later | 19 | 10</span> |
| <a name="l00284"></a>00284 <span class="comment">...</span> |
| <a name="l00285"></a>00285 <span class="comment">@endverbatim</span> |
| <a name="l00286"></a>00286 <span class="comment">-# Create the (empty) dictionary table, feature table, and feature set:</span> |
| <a name="l00287"></a>00287 <span class="comment">@verbatim</span> |
| <a name="l00288"></a>00288 <span class="comment">sql> CREATE TABLE crf_dictionary(token text,total integer);</span> |
| <a name="l00289"></a>00289 <span class="comment">sql> CREATE TABLE train_featuretbl(doc_id integer,f_size FLOAT8,sparse_r FLOAT8[],dense_m FLOAT8[],sparse_m FLOAT8[]);</span> |
| <a name="l00290"></a>00290 <span class="comment">sql> CREATE TABLE train_featureset(f_index integer, f_name text, feature integer[]);</span> |
| <a name="l00291"></a>00291 <span class="comment">@endverbatim</span> |
| <a name="l00292"></a>00292 <span class="comment">-# Generate the training features:</span> |
| <a name="l00293"></a>00293 <span class="comment">@verbatim</span> |
| <a name="l00294"></a>00294 <span class="comment">sql> SELECT crf_train_fgen('train_segmenttbl', 'crf_regex', 'crf_dictionary', 'train_featuretbl','train_featureset');</span> |
| <a name="l00295"></a>00295 <span class="comment"></span> |
| <a name="l00296"></a>00296 <span class="comment">sql> SELECT * from crf_dictionary;</span> |
| <a name="l00297"></a>00297 <span class="comment"> token | total </span> |
| <a name="l00298"></a>00298 <span class="comment">------------+-------</span> |
| <a name="l00299"></a>00299 <span class="comment"> talks | 1</span> |
| <a name="l00300"></a>00300 <span class="comment"> that | 1</span> |
| <a name="l00301"></a>00301 <span class="comment"> would | 1</span> |
| <a name="l00302"></a>00302 <span class="comment"> alliance | 1</span> |
| <a name="l00303"></a>00303 <span class="comment"> Saab | 2</span> |
| <a name="l00304"></a>00304 <span class="comment"> cost | 1</span> |
| <a name="l00305"></a>00305 <span class="comment"> after | 1</span> |
| <a name="l00306"></a>00306 <span class="comment"> operations | 1</span> |
| <a name="l00307"></a>00307 <span class="comment">...</span> |
| <a name="l00308"></a>00308 <span class="comment"></span> |
| <a name="l00309"></a>00309 <span class="comment">sql> SELECT * from train_featuretbl;</span> |
| <a name="l00310"></a>00310 <span class="comment"> doc_id | f_size | sparse_r | dense_m | sparse_m</span> |
| <a name="l00311"></a>00311 <span class="comment">--------+--------+-------------------------------+---------------------------------+-----------------------</span> |
| <a name="l00312"></a>00312 <span class="comment"> 2 | 87 | {-1,13,12,0,1,-1,13,9,0,1,..} | {13,31,79,1,1,31,29,70,2,1,...} | {51,26,2,69,29,17,...}</span> |
| <a name="l00313"></a>00313 <span class="comment"> 1 | 87 | {-1,13,0,0,1,-1,13,9,0,1,...} | {13,0,62,1,1,0,13,54,2,1,13,..} | {51,26,2,69,29,17,...}</span> |
| <a name="l00314"></a>00314 <span class="comment"></span> |
| <a name="l00315"></a>00315 <span class="comment">sql> SELECT * from train_featureset;</span> |
| <a name="l00316"></a>00316 <span class="comment"> f_index | f_name | feature </span> |
| <a name="l00317"></a>00317 <span class="comment">---------+---------------+---------</span> |
| <a name="l00318"></a>00318 <span class="comment"> 1 | R_endsWithED | {-1,29}</span> |
| <a name="l00319"></a>00319 <span class="comment"> 13 | W_outweigh | {-1,26}</span> |
| <a name="l00320"></a>00320 <span class="comment"> 29 | U | {-1,5}</span> |
| <a name="l00321"></a>00321 <span class="comment"> 31 | U | {-1,29}</span> |
| <a name="l00322"></a>00322 <span class="comment"> 33 | U | {-1,12}</span> |
| <a name="l00323"></a>00323 <span class="comment"> 35 | W_a | {-1,2}</span> |
| <a name="l00324"></a>00324 <span class="comment"> 37 | W_possible | {-1,6}</span> |
| <a name="l00325"></a>00325 <span class="comment"> 15 | W_signaled | {-1,29}</span> |
| <a name="l00326"></a>00326 <span class="comment"> 17 | End. | {-1,43}</span> |
| <a name="l00327"></a>00327 <span class="comment"> 49 | W_'s | {-1,16}</span> |
| <a name="l00328"></a>00328 <span class="comment"> 63 | W_acquire | {-1,26}</span> |
| <a name="l00329"></a>00329 <span class="comment"> 51 | E. | {26,2}</span> |
| <a name="l00330"></a>00330 <span class="comment"> 69 | E. | {29,17}</span> |
| <a name="l00331"></a>00331 <span class="comment"> 71 | E. | {2,11}</span> |
| <a name="l00332"></a>00332 <span class="comment"> 83 | W_the | {-1,2}</span> |
| <a name="l00333"></a>00333 <span class="comment"> 85 | E. | {16,11}</span> |
| <a name="l00334"></a>00334 <span class="comment"> 4 | W_return | {-1,11}</span> |
| <a name="l00335"></a>00335 <span class="comment">...</span> |
| <a name="l00336"></a>00336 <span class="comment"></span> |
| <a name="l00337"></a>00337 <span class="comment">@endverbatim</span> |
| <a name="l00338"></a>00338 <span class="comment">-# Create the (empty) feature weight table:</span> |
| <a name="l00339"></a>00339 <span class="comment">@verbatim</span> |
| <a name="l00340"></a>00340 <span class="comment">sql> CREATE TABLE train_crf_feature (id integer,name text,prev_label_id integer,label_id integer,weight float);</span> |
| <a name="l00341"></a>00341 <span class="comment">@endverbatim</span> |
| <a name="l00342"></a>00342 <span class="comment">-# Train using linear CRF:</span> |
| <a name="l00343"></a>00343 <span class="comment">@verbatim</span> |
| <a name="l00344"></a>00344 <span class="comment">sql> SELECT lincrf('train_featuretbl','sparse_r','dense_m','sparse_m','f_size',45, 'train_featureset','train_crf_feature', 20);</span> |
| <a name="l00345"></a>00345 <span class="comment"> lincrf </span> |
| <a name="l00346"></a>00346 <span class="comment">--------</span> |
| <a name="l00347"></a>00347 <span class="comment"> 20</span> |
| <a name="l00348"></a>00348 <span class="comment"></span> |
| <a name="l00349"></a>00349 <span class="comment">sql> SELECT * from train_crf_feature;</span> |
| <a name="l00350"></a>00350 <span class="comment"> id | name | prev_label_id | label_id | weight </span> |
| <a name="l00351"></a>00351 <span class="comment">----+---------------+---------------+----------+-------------------</span> |
| <a name="l00352"></a>00352 <span class="comment"> 1 | R_endsWithED | -1 | 29 | 1.54128249293937</span> |
| <a name="l00353"></a>00353 <span class="comment"> 13 | W_outweigh | -1 | 26 | 1.70691232223653</span> |
| <a name="l00354"></a>00354 <span class="comment"> 29 | U | -1 | 5 | 1.40708515869008</span> |
| <a name="l00355"></a>00355 <span class="comment"> 31 | U | -1 | 29 | 0.830356200936407</span> |
| <a name="l00356"></a>00356 <span class="comment"> 33 | U | -1 | 12 | 0.769587378281239</span> |
| <a name="l00357"></a>00357 <span class="comment"> 35 | W_a | -1 | 2 | 2.68470625883726</span> |
| <a name="l00358"></a>00358 <span class="comment"> 37 | W_possible | -1 | 6 | 3.41773107604468</span> |
| <a name="l00359"></a>00359 <span class="comment"> 15 | W_signaled | -1 | 29 | 1.68187039165771</span> |
| <a name="l00360"></a>00360 <span class="comment"> 17 | End. | -1 | 43 | 3.07687845517082</span> |
| <a name="l00361"></a>00361 <span class="comment"> 49 | W_'s | -1 | 16 | 2.61430312229883</span> |
| <a name="l00362"></a>00362 <span class="comment"> 63 | W_acquire | -1 | 26 | 1.67247047385797</span> |
| <a name="l00363"></a>00363 <span class="comment"> 51 | E. | 26 | 2 | 3.0114240119435</span> |
| <a name="l00364"></a>00364 <span class="comment"> 69 | E. | 29 | 17 | 2.82385531733866</span> |
| <a name="l00365"></a>00365 <span class="comment"> 71 | E. | 2 | 11 | 3.00970493772732</span> |
| <a name="l00366"></a>00366 <span class="comment"> 83 | W_the | -1 | 2 | 2.58742315259326</span> |
| <a name="l00367"></a>00367 <span class="comment">...</span> |
| <a name="l00368"></a>00368 <span class="comment"></span> |
| <a name="l00369"></a>00369 <span class="comment">@endverbatim</span> |
| <a name="l00370"></a>00370 <span class="comment">-# To find the best labels for a test set using the trained linear CRF model, repeat steps #1-2 and generate the test features, except instead of creating a new dictionary, use the dictionary generated from the training set.</span> |
| <a name="l00371"></a>00371 <span class="comment">@verbatim</span> |
| <a name="l00372"></a>00372 <span class="comment">sql> SELECT * from test_segmenttbl;</span> |
| <a name="l00373"></a>00373 <span class="comment"> start_pos | doc_id | seg_text | max_pos </span> |
| <a name="l00374"></a>00374 <span class="comment">-----------+--------+-------------+---------</span> |
| <a name="l00375"></a>00375 <span class="comment"> 1 | 1 | collapse | 22</span> |
| <a name="l00376"></a>00376 <span class="comment"> 13 | 1 | , | 22</span> |
| <a name="l00377"></a>00377 <span class="comment"> 15 | 1 | is | 22</span> |
| <a name="l00378"></a>00378 <span class="comment"> 17 | 1 | a | 22</span> |
| <a name="l00379"></a>00379 <span class="comment"> 4 | 1 | speculation | 22</span> |
| <a name="l00380"></a>00380 <span class="comment"> 6 | 1 | Ford | 22</span> |
| <a name="l00381"></a>00381 <span class="comment"> 18 | 1 | defensive | 22</span> |
| <a name="l00382"></a>00382 <span class="comment"> 20 | 1 | with | 22</span> |
| <a name="l00383"></a>00383 <span class="comment">...</span> |
| <a name="l00384"></a>00384 <span class="comment"></span> |
| <a name="l00385"></a>00385 <span class="comment">sql> SELECT crf_test_fgen('test_segmenttbl','crf_dictionary','crf_label','crf_regex','train_crf_feature','viterbi_mtbl','viterbi_rtbl');</span> |
| <a name="l00386"></a>00386 <span class="comment">@endverbatim</span> |
| <a name="l00387"></a>00387 <span class="comment">-# Calculate the best label sequence:</span> |
| <a name="l00388"></a>00388 <span class="comment">@verbatim</span> |
| <a name="l00389"></a>00389 <span class="comment">sql> SELECT vcrf_label('test_segmenttbl','viterbi_mtbl','viterbi_rtbl','crf_label','extracted_best_labels');</span> |
| <a name="l00390"></a>00390 <span class="comment"></span> |
| <a name="l00391"></a>00391 <span class="comment">sql> SELECT * FROM extracted_best_labels;</span> |
| <a name="l00392"></a>00392 <span class="comment"> doc_id | start_pos | seg_text | label | id | prob </span> |
| <a name="l00393"></a>00393 <span class="comment">--------+-----------+-------------+-------+----+-------</span> |
| <a name="l00394"></a>00394 <span class="comment"> 1 | 2 | Friday | NNP | 14 | 9e-06</span> |
| <a name="l00395"></a>00395 <span class="comment"> 1 | 6 | Ford | NNP | 14 | 9e-06</span> |
| <a name="l00396"></a>00396 <span class="comment"> 1 | 12 | Jaguar | NNP | 14 | 9e-06</span> |
| <a name="l00397"></a>00397 <span class="comment"> 1 | 3 | prompted | VBD | 28 | 9e-06</span> |
| <a name="l00398"></a>00398 <span class="comment"> 1 | 8 | intensify | NN | 12 | 9e-06</span> |
| <a name="l00399"></a>00399 <span class="comment"> 1 | 14 | which | NN | 12 | 9e-06</span> |
| <a name="l00400"></a>00400 <span class="comment"> 1 | 18 | defensive | NN | 12 | 9e-06</span> |
| <a name="l00401"></a>00401 <span class="comment"> 1 | 21 | GM | NN | 12 | 9e-06</span> |
| <a name="l00402"></a>00402 <span class="comment"> 1 | 22 | . | . | 44 | 9e-06</span> |
| <a name="l00403"></a>00403 <span class="comment"> 1 | 1 | collapse | CC | 1 | 9e-06</span> |
| <a name="l00404"></a>00404 <span class="comment"> 1 | 7 | would | POS | 17 | 9e-06</span> |
| <a name="l00405"></a>00405 <span class="comment">...</span> |
| <a name="l00406"></a>00406 <span class="comment">@endverbatim</span> |
| <a name="l00407"></a>00407 <span class="comment">(Note that this example was done on a trivial training and test data set.)</span> |
| <a name="l00408"></a>00408 <span class="comment"></span> |
| <a name="l00409"></a>00409 <span class="comment">@literature</span> |
| <a name="l00410"></a>00410 <span class="comment">[1] F. Sha, F. Pereira. Shallow Parsing with Conditional Random Fields, http://www-bcf.usc.edu/~feisha/pubs/shallow03.pdf</span> |
| <a name="l00411"></a>00411 <span class="comment"></span> |
| <a name="l00412"></a>00412 <span class="comment">[2] Wikipedia, Conditional Random Field, http://en.wikipedia.org/wiki/Conditional_random_field</span> |
| <a name="l00413"></a>00413 <span class="comment"></span> |
| <a name="l00414"></a>00414 <span class="comment">[3] A. Jaiswal, S.Tawari, I. Mansuri, K. Mittal, C. Tiwari (2012), CRF, http://crf.sourceforge.net/</span> |
| <a name="l00415"></a>00415 <span class="comment"></span> |
| <a name="l00416"></a>00416 <span class="comment">[4] D. Wang, ViterbiCRF, http://www.cs.berkeley.edu/~daisyw/ViterbiCRF.html</span> |
| <a name="l00417"></a>00417 <span class="comment"></span> |
| <a name="l00418"></a>00418 <span class="comment">[5] Wikipedia, Viterbi Algorithm, http://en.wikipedia.org/wiki/Viterbi_algorithm</span> |
| <a name="l00419"></a>00419 <span class="comment"></span> |
| <a name="l00420"></a>00420 <span class="comment">[6] J. Nocedal. Updating Quasi-Newton Matrices with Limited Storage (1980), Mathematics of Computation 35, pp. 773-782</span> |
| <a name="l00421"></a>00421 <span class="comment"></span> |
| <a name="l00422"></a>00422 <span class="comment">[7] J. Nocedal, Software for Large-scale Unconstrained Optimization, http://users.eecs.northwestern.edu/~nocedal/lbfgs.html</span> |
| <a name="l00423"></a>00423 <span class="comment"></span> |
| <a name="l00424"></a>00424 <span class="comment">@sa File crf.sql_in crf_feature_gen.sql_in viterbi.sql_in (documenting the SQL functions)</span> |
| <a name="l00425"></a>00425 <span class="comment"></span> |
| <a name="l00426"></a>00426 <span class="comment">*/</span> |
| <a name="l00427"></a>00427 |
| <a name="l00428"></a>00428 DROP TYPE IF EXISTS MADLIB_SCHEMA.lincrf_result; |
| <a name="l00429"></a>00429 CREATE TYPE MADLIB_SCHEMA.lincrf_result AS ( |
| <a name="l00430"></a>00430 coef DOUBLE PRECISION[], |
| <a name="l00431"></a>00431 log_likelihood DOUBLE PRECISION, |
| <a name="l00432"></a>00432 num_iterations INTEGER |
| <a name="l00433"></a>00433 ); |
| <a name="l00434"></a>00434 |
| <a name="l00435"></a>00435 CREATE OR REPLACE FUNCTION MADLIB_SCHEMA.lincrf_lbfgs_step_transition( |
| <a name="l00436"></a>00436 DOUBLE PRECISION[], |
| <a name="l00437"></a>00437 DOUBLE PRECISION[], |
| <a name="l00438"></a>00438 DOUBLE PRECISION[], |
| <a name="l00439"></a>00439 DOUBLE PRECISION[], |
| <a name="l00440"></a>00440 DOUBLE PRECISION, |
| <a name="l00441"></a>00441 DOUBLE PRECISION, |
| <a name="l00442"></a>00442 DOUBLE PRECISION[]) |
| <a name="l00443"></a>00443 RETURNS DOUBLE PRECISION[] |
| <a name="l00444"></a>00444 AS 'MODULE_PATHNAME<span class="stringliteral">'</span> |
| <a name="l00445"></a>00445 <span class="stringliteral">LANGUAGE C IMMUTABLE;</span> |
| <a name="l00446"></a>00446 <span class="stringliteral"></span> |
| <a name="l00447"></a>00447 <span class="stringliteral">CREATE OR REPLACE FUNCTION MADLIB_SCHEMA.lincrf_lbfgs_step_merge_states(</span> |
| <a name="l00448"></a>00448 <span class="stringliteral"> state1 DOUBLE PRECISION[],</span> |
| <a name="l00449"></a>00449 <span class="stringliteral"> state2 DOUBLE PRECISION[])</span> |
| <a name="l00450"></a>00450 <span class="stringliteral">RETURNS DOUBLE PRECISION[]</span> |
| <a name="l00451"></a>00451 <span class="stringliteral">AS '</span>MODULE_PATHNAME<span class="stringliteral">'</span> |
| <a name="l00452"></a>00452 <span class="stringliteral">LANGUAGE C IMMUTABLE STRICT;</span> |
| <a name="l00453"></a>00453 <span class="stringliteral"></span> |
| <a name="l00454"></a>00454 <span class="stringliteral">CREATE OR REPLACE FUNCTION MADLIB_SCHEMA.lincrf_lbfgs_step_final(</span> |
| <a name="l00455"></a>00455 <span class="stringliteral"> state DOUBLE PRECISION[])</span> |
| <a name="l00456"></a>00456 <span class="stringliteral">RETURNS DOUBLE PRECISION[]</span> |
| <a name="l00457"></a>00457 <span class="stringliteral">AS '</span>MODULE_PATHNAME<span class="stringliteral">'</span> |
| <a name="l00458"></a>00458 <span class="stringliteral">LANGUAGE C IMMUTABLE STRICT;</span> |
| <a name="l00459"></a>00459 <span class="stringliteral"></span> |
| <a name="l00460"></a>00460 <span class="stringliteral">CREATE OR REPLACE FUNCTION MADLIB_SCHEMA.internal_lincrf_lbfgs_converge(</span> |
| <a name="l00461"></a>00461 <span class="stringliteral"> /*+ state */ DOUBLE PRECISION[])</span> |
| <a name="l00462"></a>00462 <span class="stringliteral">RETURNS DOUBLE PRECISION AS</span> |
| <a name="l00463"></a>00463 <span class="stringliteral">'</span>MODULE_PATHNAME<span class="stringliteral">'</span> |
| <a name="l00464"></a>00464 <span class="stringliteral">LANGUAGE c IMMUTABLE STRICT;</span> |
| <a name="l00465"></a>00465 <span class="stringliteral"></span> |
| <a name="l00466"></a>00466 <span class="stringliteral"></span> |
| <a name="l00467"></a>00467 <span class="stringliteral">CREATE OR REPLACE FUNCTION MADLIB_SCHEMA.internal_lincrf_lbfgs_result(</span> |
| <a name="l00468"></a>00468 <span class="stringliteral"> /*+ state */ DOUBLE PRECISION[])</span> |
| <a name="l00469"></a>00469 <span class="stringliteral">RETURNS MADLIB_SCHEMA.lincrf_result AS</span> |
| <a name="l00470"></a>00470 <span class="stringliteral">'</span>MODULE_PATHNAME<span class="stringliteral">'</span> |
| <a name="l00471"></a>00471 <span class="stringliteral">LANGUAGE c IMMUTABLE STRICT;</span> |
| <a name="l00472"></a>00472 <span class="stringliteral"></span><span class="comment"></span> |
| <a name="l00473"></a>00473 <span class="comment">/**</span> |
| <a name="l00474"></a>00474 <span class="comment"> * @internal</span> |
| <a name="l00475"></a>00475 <span class="comment"> * @brief Perform one iteration of the L-BFGS method for computing</span> |
| <a name="l00476"></a>00476 <span class="comment"> * conditional random field</span> |
| <a name="l00477"></a>00477 <span class="comment"> */</span> |
| <a name="l00478"></a>00478 CREATE AGGREGATE MADLIB_SCHEMA.lincrf_lbfgs_step( |
| <a name="l00479"></a>00479 /* sparse_r columns */ DOUBLE PRECISION[], |
| <a name="l00480"></a>00480 /* dense_m columns */ DOUBLE PRECISION[], |
| <a name="l00481"></a>00481 /* sparse_m columns */ DOUBLE PRECISION[], |
| <a name="l00482"></a>00482 /* feature size */ DOUBLE PRECISION, |
| <a name="l00483"></a>00483 /* tag size */ DOUBLE PRECISION, |
| <a name="l00484"></a>00484 /* previous_state */ DOUBLE PRECISION[]) ( |
| <a name="l00485"></a>00485 |
| <a name="l00486"></a>00486 STYPE=DOUBLE PRECISION[], |
| <a name="l00487"></a>00487 SFUNC=MADLIB_SCHEMA.lincrf_lbfgs_step_transition, |
| <a name="l00488"></a>00488 m4_ifdef(`__GREENPLUM__',`prefunc=MADLIB_SCHEMA.lincrf_lbfgs_step_merge_states,<span class="stringliteral">')</span> |
| <a name="l00489"></a>00489 <span class="stringliteral"> FINALFUNC=MADLIB_SCHEMA.lincrf_lbfgs_step_final,</span> |
| <a name="l00490"></a>00490 <span class="stringliteral"> INITCOND='</span>{0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}<span class="stringliteral">'</span> |
| <a name="l00491"></a>00491 <span class="stringliteral">);</span> |
| <a name="l00492"></a>00492 <span class="stringliteral"></span> |
| <a name="l00493"></a>00493 <span class="stringliteral">m4_changequote(<!,!>)</span> |
| <a name="l00494"></a>00494 <span class="stringliteral">m4_ifdef(<!__HAS_ORDERED_AGGREGATES__!>,<!</span> |
| <a name="l00495"></a>00495 <span class="stringliteral">CREATE</span> |
| <a name="l00496"></a>00496 <span class="stringliteral">m4_ifdef(<!__GREENPLUM__!>,<!ORDERED!>)</span> |
| <a name="l00497"></a>00497 <span class="stringliteral">AGGREGATE MADLIB_SCHEMA.array_union(anyarray) (</span> |
| <a name="l00498"></a>00498 <span class="stringliteral"> SFUNC = array_cat, </span> |
| <a name="l00499"></a>00499 <span class="stringliteral"> STYPE = anyarray</span> |
| <a name="l00500"></a>00500 <span class="stringliteral">); </span> |
| <a name="l00501"></a>00501 <span class="stringliteral">!>)</span> |
| <a name="l00502"></a>00502 <span class="stringliteral">m4_changequote(`,'</span>) |
| <a name="l00503"></a>00503 |
| <a name="l00504"></a>00504 -- We only need to document the last one (unfortunately, in Greenplum we have to |
| <a name="l00505"></a>00505 -- use <span class="keyword">function</span> overloading instead of <span class="keywordflow">default</span> arguments). |
| <a name="l00506"></a>00506 CREATE FUNCTION MADLIB_SCHEMA.compute_lincrf( |
| <a name="l00507"></a>00507 <span class="stringliteral">"source"</span> VARCHAR, |
| <a name="l00508"></a>00508 <span class="stringliteral">"sparse_R"</span> VARCHAR, |
| <a name="l00509"></a>00509 <span class="stringliteral">"dense_M"</span> VARCHAR, |
| <a name="l00510"></a>00510 <span class="stringliteral">"sparse_M"</span> VARCHAR, |
| <a name="l00511"></a>00511 <span class="stringliteral">"featureSize"</span> VARCHAR, |
| <a name="l00512"></a>00512 <span class="stringliteral">"tagSize"</span> INTEGER, |
| <a name="l00513"></a>00513 <span class="stringliteral">"maxNumIterations"</span> INTEGER) |
| <a name="l00514"></a>00514 RETURNS INTEGER |
| <a name="l00515"></a>00515 AS $$PythonFunction(crf, crf, compute_lincrf)$$ |
| <a name="l00516"></a>00516 LANGUAGE plpythonu VOLATILE; |
| <a name="l00517"></a>00517 <span class="comment"></span> |
| <a name="l00518"></a>00518 <span class="comment">/**</span> |
| <a name="l00519"></a>00519 <span class="comment"> * @brief Compute linear-chain crf coefficients and diagnostic statistics</span> |
| <a name="l00520"></a>00520 <span class="comment"> *</span> |
| <a name="l00521"></a>00521 <span class="comment"> * @param source Name of the source relation containing the training data</span> |
| <a name="l00522"></a>00522 <span class="comment"> * @param sparse_R Name of the sparse single state feature column (of type DOUBLE PRECISION[])</span> |
| <a name="l00523"></a>00523 <span class="comment"> * @param dense_M Name of the dense two state feature column (of type DOUBLE PRECISION[])</span> |
| <a name="l00524"></a>00524 <span class="comment"> * @param sparse_M Name of the sparse two state feature column (of type DOUBLE PRECISION[])</span> |
| <a name="l00525"></a>00525 <span class="comment"> * @param featureSize Name of feature size column (of type DOUBLE PRECISION)</span> |
| <a name="l00526"></a>00526 <span class="comment"> * @param tagSize The number of tags in the tag set</span> |
| <a name="l00527"></a>00527 <span class="comment"> * @param featureset The unique feature set</span> |
| <a name="l00528"></a>00528 <span class="comment"> * @param crf_feature The Name of output feature table</span> |
| <a name="l00529"></a>00529 <span class="comment"> * @param maxNumIterations The maximum number of iterations</span> |
| <a name="l00530"></a>00530 <span class="comment"> *</span> |
| <a name="l00531"></a>00531 <span class="comment"> * @return a composite value:</span> |
| <a name="l00532"></a>00532 <span class="comment"> * - <tt>coef FLOAT8[]</tt> - Array of coefficients, \f$ \boldsymbol c \f$ </span> |
| <a name="l00533"></a>00533 <span class="comment"> * - <tt>log_likelihood FLOAT8</tt> - Log-likelihood \f$ l(\boldsymbol c) \f$</span> |
| <a name="l00534"></a>00534 <span class="comment"> * - <tt>num_iterations INTEGER</tt> - The number of iterations before the</span> |
| <a name="l00535"></a>00535 <span class="comment"> * algorithm terminated \n\n</span> |
| <a name="l00536"></a>00536 <span class="comment"> * A 'crf_feature' table is used to store all the features and corresponding weights</span> |
| <a name="l00537"></a>00537 <span class="comment"> *</span> |
| <a name="l00538"></a>00538 <span class="comment"> * @note This function starts an iterative algorithm. It is not an aggregate</span> |
| <a name="l00539"></a>00539 <span class="comment"> * function. Source and column names have to be passed as strings (due to</span> |
| <a name="l00540"></a>00540 <span class="comment"> * limitations of the SQL syntax).</span> |
| <a name="l00541"></a>00541 <span class="comment"> *</span> |
| <a name="l00542"></a>00542 <span class="comment"> * @internal</span> |
| <a name="l00543"></a>00543 <span class="comment"> * @sa This function is a wrapper for crf::compute_lincrf(), which</span> |
| <a name="l00544"></a>00544 <span class="comment"> * sets the default values.</span> |
| <a name="l00545"></a>00545 <span class="comment"> */</span> |
| <a name="l00546"></a>00546 |
| <a name="l00547"></a>00547 CREATE FUNCTION MADLIB_SCHEMA.lincrf( |
| <a name="l00548"></a>00548 <span class="stringliteral">"source"</span> VARCHAR, |
| <a name="l00549"></a>00549 <span class="stringliteral">"sparse_R"</span> VARCHAR, |
| <a name="l00550"></a>00550 <span class="stringliteral">"dense_M"</span> VARCHAR, |
| <a name="l00551"></a>00551 <span class="stringliteral">"sparse_M"</span> VARCHAR, |
| <a name="l00552"></a>00552 <span class="stringliteral">"featureSize"</span> VARCHAR, |
| <a name="l00553"></a>00553 <span class="stringliteral">"tagSize"</span> INTEGER, |
| <a name="l00554"></a>00554 <span class="stringliteral">"featureset"</span> VARCHAR, |
| <a name="l00555"></a>00555 <span class="stringliteral">"crf_feature"</span> VARCHAR, |
| <a name="l00556"></a>00556 <span class="stringliteral">"maxNumIterations"</span> INTEGER <span class="comment">/*+ DEFAULT 20 */</span>) |
| <a name="l00557"></a>00557 RETURNS INTEGER AS $$ |
| <a name="l00558"></a>00558 DECLARE |
| <a name="l00559"></a>00559 theIteration INTEGER; |
| <a name="l00560"></a>00560 BEGIN |
| <a name="l00561"></a>00561 theIteration := ( |
| <a name="l00562"></a>00562 SELECT MADLIB_SCHEMA.compute_lincrf($1, $2, $3, $4, $5, $6, $9) |
| <a name="l00563"></a>00563 ); |
| <a name="l00564"></a>00564 -- Because of Greenplum bug MPP-10050, we have to use dynamic SQL (<span class="keyword">using</span> |
| <a name="l00565"></a>00565 -- EXECUTE) in the following |
| <a name="l00566"></a>00566 -- Because of Greenplum bug MPP-6731, we have to hide the tuple-returning |
| <a name="l00567"></a>00567 -- function in a subquery |
| <a name="l00568"></a>00568 EXECUTE |
| <a name="l00569"></a><a class="code" href="crf_8sql__in.html#afb77a0c0a2cfacdfff33fb826ff1c0cd">00569</a> $sql$ |
| <a name="l00570"></a>00570 INSERT INTO $sql$ || $8 || $sql$ |
| <a name="l00571"></a>00571 SELECT f_index, f_name, feature[1], feature[2], (result).coef[f_index+1] |
| <a name="l00572"></a>00572 FROM ( |
| <a name="l00573"></a>00573 SELECT MADLIB_SCHEMA.internal_lincrf_lbfgs_result(_madlib_state) AS result |
| <a name="l00574"></a>00574 FROM _madlib_iterative_alg |
| <a name="l00575"></a>00575 WHERE _madlib_iteration = $sql$ || theIteration || $sql$ |
| <a name="l00576"></a>00576 ) subq, $sql$ || $7 || $sql$ |
| <a name="l00577"></a>00577 $sql$; |
| <a name="l00578"></a>00578 RETURN theIteration; |
| <a name="l00579"></a>00579 END; |
| <a name="l00580"></a>00580 $$ LANGUAGE plpgsql VOLATILE; |
| <a name="l00581"></a>00581 |
| <a name="l00582"></a>00582 CREATE FUNCTION MADLIB_SCHEMA.<a class="code" href="crf_8sql__in.html#afb77a0c0a2cfacdfff33fb826ff1c0cd" title="Compute linear-chain crf coefficients and diagnostic statistics.">lincrf</a>( |
| <a name="l00583"></a>00583 "source" VARCHAR, |
| <a name="l00584"></a>00584 "sparse_R" VARCHAR, |
| <a name="l00585"></a>00585 "dense_M" VARCHAR, |
| <a name="l00586"></a>00586 "sparse_M" VARCHAR, |
| <a name="l00587"></a>00587 "featureSize" VARCHAR, |
| <a name="l00588"></a>00588 "tagSize" INTEGER, |
| <a name="l00589"></a>00589 "featureset" VARCHAR, |
| <a name="l00590"></a>00590 "crf_feature" VARCHAR) |
| <a name="l00591"></a>00591 RETURNS INTEGER AS |
| <a name="l00592"></a>00592 $$SELECT MADLIB_SCHEMA.<a class="code" href="crf_8sql__in.html#afb77a0c0a2cfacdfff33fb826ff1c0cd" title="Compute linear-chain crf coefficients and diagnostic statistics.">lincrf</a>($1, $2, $3, $4, $5, $6, $7, $8, 20);$$ |
| <a name="l00593"></a>00593 LANGUAGE sql VOLATILE; |
| </pre></div></div> |
| </div> |
| <div id="nav-path" class="navpath"> |
| <ul> |
| <li class="navelem"><a class="el" href="crf_8sql__in.html">crf.sql_in</a> </li> |
| <!-- window showing the filter options --> |
| <div id="MSearchSelectWindow" |
| onmouseover="return searchBox.OnSearchSelectShow()" |
| onmouseout="return searchBox.OnSearchSelectHide()" |
| onkeydown="return searchBox.OnSearchSelectKey(event)"> |
| <a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(0)"><span class="SelectionMark"> </span>All</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(1)"><span class="SelectionMark"> </span>Files</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(2)"><span class="SelectionMark"> </span>Functions</a></div> |
| |
| <!-- iframe showing the search results (closed by default) --> |
| <div id="MSearchResultsWindow"> |
| <iframe src="javascript:void(0)" frameborder="0" |
| name="MSearchResults" id="MSearchResults"> |
| </iframe> |
| </div> |
| |
| |
| <li class="footer">Generated on Tue Apr 2 2013 14:57:03 for MADlib by |
| <a href="http://www.doxygen.org/index.html"> |
| <img class="footer" src="doxygen.png" alt="doxygen"/></a> 1.7.5.1 </li> |
| </ul> |
| </div> |
| |
| |
| </body> |
| </html> |