blob: 43eac75328365dabef3825fbc5f128b9c3758706 [file] [log] [blame]
<!-- HTML header for doxygen 1.8.4-->
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/xhtml;charset=UTF-8"/>
<meta http-equiv="X-UA-Compatible" content="IE=9"/>
<meta name="generator" content="Doxygen 1.8.4"/>
<meta name="keywords" content="madlib,postgres,greenplum,machine learning,data mining,deep learning,ensemble methods,data science,market basket analysis,affinity analysis,pca,lda,regression,elastic net,huber white,proportional hazards,k-means,latent dirichlet allocation,bayes,support vector machines,svm"/>
<title>MADlib: k-Means Clustering</title>
<link href="tabs.css" rel="stylesheet" type="text/css"/>
<script type="text/javascript" src="jquery.js"></script>
<script type="text/javascript" src="dynsections.js"></script>
<link href="navtree.css" rel="stylesheet" type="text/css"/>
<script type="text/javascript" src="resize.js"></script>
<script type="text/javascript" src="navtree.js"></script>
<script type="text/javascript">
$(document).ready(initResizable);
$(window).load(resizeHeight);
</script>
<link href="search/search.css" rel="stylesheet" type="text/css"/>
<script type="text/javascript" src="search/search.js"></script>
<script type="text/javascript">
$(document).ready(function() { searchBox.OnSelectItem(0); });
</script>
<script type="text/x-mathjax-config">
MathJax.Hub.Config({
extensions: ["tex2jax.js", "TeX/AMSmath.js", "TeX/AMSsymbols.js"],
jax: ["input/TeX","output/HTML-CSS"],
});
</script><script src="../mathjax/MathJax.js"></script>
<link href="doxygen.css" rel="stylesheet" type="text/css" />
<link href="madlib_extra.css" rel="stylesheet" type="text/css"/>
<!-- google analytics -->
<script>
(function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){
(i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o),
m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m)
})(window,document,'script','//www.google-analytics.com/analytics.js','ga');
ga('create', 'UA-45382226-1', 'auto');
ga('send', 'pageview');
</script>
</head>
<body>
<div id="top"><!-- do not remove this div, it is closed by doxygen! -->
<div id="titlearea">
<table cellspacing="0" cellpadding="0">
<tbody>
<tr style="height: 56px;">
<td style="padding-left: 0.5em;">
<div id="projectname">MADlib
&#160;<span id="projectnumber">1.2</span> <span style="font-size:10pt; font-style:italic"><a href="../latest/./group__grp__kmeans.html"> A newer version is available</a></span>
</div>
<div id="projectbrief">User Documentation</div>
</td>
<!--BEGIN VERSIONS LINKS-->
<td style="padding-left: 0.5em;">
<div class="versionlist"><ul>
<li class="head">More versions:</li>
<li><a href="../v1.1/index.html">v1.1</li>
<li><a href="../v1.0/index.html">v1.0</li>
<li><a href="../v0.7/index.html">v0.7</li>
<li><a href="../v0.5/index.html">v0.5</li></ul>
</div>
</td>
<td> <div id="MSearchBox" class="MSearchBoxInactive">
<span class="left">
<img id="MSearchSelect" src="search/mag_sel.png"
onmouseover="return searchBox.OnSearchSelectShow()"
onmouseout="return searchBox.OnSearchSelectHide()"
alt=""/>
<input type="text" id="MSearchField" value="Search" accesskey="S"
onfocus="searchBox.OnSearchFieldFocus(true)"
onblur="searchBox.OnSearchFieldFocus(false)"
onkeyup="searchBox.OnSearchFieldChange(event)"/>
</span><span class="right">
<a id="MSearchClose" href="javascript:searchBox.CloseResultsWindow()"><img id="MSearchCloseImg" border="0" src="search/close.png" alt=""/></a>
</span>
</div>
</td>
</tr>
</tbody>
</table>
</div>
<!-- end header part -->
<!-- Generated by Doxygen 1.8.4 -->
<script type="text/javascript">
var searchBox = new SearchBox("searchBox", "search",false,'Search');
</script>
</div><!-- top -->
<div id="side-nav" class="ui-resizable side-nav-resizable">
<div id="nav-tree">
<div id="nav-tree-contents">
<div id="nav-sync" class="sync"></div>
</div>
</div>
<div id="splitbar" style="-moz-user-select:none;"
class="ui-resizable-handle">
</div>
</div>
<script type="text/javascript">
$(document).ready(function(){initNavTree('group__grp__kmeans.html','');});
</script>
<div id="doc-content">
<!-- window showing the filter options -->
<div id="MSearchSelectWindow"
onmouseover="return searchBox.OnSearchSelectShow()"
onmouseout="return searchBox.OnSearchSelectHide()"
onkeydown="return searchBox.OnSearchSelectKey(event)">
<a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(0)"><span class="SelectionMark">&#160;</span>All</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(1)"><span class="SelectionMark">&#160;</span>Files</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(2)"><span class="SelectionMark">&#160;</span>Functions</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(3)"><span class="SelectionMark">&#160;</span>Variables</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(4)"><span class="SelectionMark">&#160;</span>Groups</a></div>
<!-- iframe showing the search results (closed by default) -->
<div id="MSearchResultsWindow">
<iframe src="javascript:void(0)" frameborder="0"
name="MSearchResults" id="MSearchResults">
</iframe>
</div>
<div class="header">
<div class="headertitle">
<div class="title">k-Means Clustering<div class="ingroups"><a class="el" href="group__grp__clustering.html">Clustering</a></div></div> </div>
</div><!--header-->
<div class="contents">
<dl class="section user"><dt>About</dt><dd></dd></dl>
<p>Clustering refers to the problem of partitioning a set of objects according to some problem-dependent measure of <em>similarity</em>. In the k-means variant, one is given \( n \) points \( x_1, \dots, x_n \in \mathbb R^d \), and the goal is to position \( k \) centroids \( c_1, \dots, c_k \in \mathbb R^d \) so that the sum of <em>distances</em> between each point and its closest centroid is minimized. Each centroid represents a cluster that consists of all points to which this centroid is closest. Formally, we wish to minimize the following objective function: </p>
<p class="formulaDsp">
\[ (c_1, \dots, c_k) \mapsto \sum_{i=1}^n \min_{j=1}^k \operatorname{dist}(x_i, c_j) \]
</p>
<p> In the most common case, \( \operatorname{dist} \) is the square of the Euclidean distance.</p>
<p>This problem is computationally difficult (NP-hard), yet the local-search heuristic proposed by Lloyd [4] performs reasonably well in practice. In fact, it is so ubiquitous today that it is often referred to as the <em>standard algorithm</em> or even just the <em>k-means algorithm</em> [1]. It works as follows:</p>
<ol type="1">
<li>Seed the \( k \) centroids (see below)</li>
<li>Repeat until convergence:<ol type="a">
<li>Assign each point to its closest centroid</li>
<li>Move each centroid to a position that minimizes the sum of distances in this cluster</li>
</ol>
</li>
<li>Convergence is achieved when no points change their assignments during step 2a.</li>
</ol>
<p>Since the objective function decreases in every step, this algorithm is guaranteed to converge to a local optimum.</p>
<dl class="section user"><dt>Implementation Notes</dt><dd></dd></dl>
<p>Data points and predefined centroids (if used) are expected to be stored row-wise, in a column of type <code><a class="el" href="group__grp__svec.html">SVEC</a></code> (or any type convertible to <code><a class="el" href="group__grp__svec.html">SVEC</a></code>, like <code>FLOAT[]</code> or <code>INTEGER[]</code>). Data points with non-finite values (NULL, NaN, infinity) in any component will be skipped during analysis.</p>
<p>The following methods are available for the centroid seeding:</p>
<ul>
<li><b>random selection</b>: Select \( k \) centroids randomly among the input points.</li>
<li><b>kmeans++</b> [2]: Start with a single centroid chosen randomly among the input points. Then iteratively choose new centroids from the input points until there is a total of \( k \) centroids. The probability for picking a particular point is proportional to its minimum distance to any existing centroid. <br/>
Intuitively, kmeans++ favors seedings where centroids are spread out over the whole range of the input points, while at the same time not being too susceptible to outliers [2].</li>
<li><b>user-specified set of initial centroids</b>: See below for a description of the expected format of the set of initial centroids.</li>
</ul>
<p>The following distance functions can be used (computation of barycenter/mean in parentheses):</p>
<ul>
<li><b><a class="el" href="linalg_8sql__in.html#aad193850e79c4b9d811ca9bc53e13476">dist_norm1</a></b>: 1-norm/Manhattan (element-wise median [Note that MADlib does not provide a median aggregate function for support and performance reasons.])</li>
<li><b><a class="el" href="linalg_8sql__in.html#aa58e51526edea6ea98db30b6f250adb4">dist_norm2</a></b>: 2-norm/Euclidean (element-wise mean)</li>
<li><b><a class="el" href="linalg_8sql__in.html#a00a08e69f27524f2096032214e15b668">squared_dist_norm2</a></b>: squared Euclidean distance (element-wise mean)</li>
<li><b><a class="el" href="linalg_8sql__in.html#a8c7b9281a72ff22caf06161701b27e84">dist_angle</a></b>: angle (element-wise mean of normalized points)</li>
<li><b><a class="el" href="linalg_8sql__in.html#afa13b4c6122b99422d666dedea136c18">dist_tanimoto</a></b>: tanimoto (element-wise mean of normalized points [5])</li>
<li><b>user defined function</b> with signature DOUBLE PRECISION[] x DOUBLE PRECISION[] -&gt; DOUBLE PRECISION</li>
</ul>
<p>The following aggregate functions for determining centroids can be used:</p>
<ul>
<li><b><a class="el" href="linalg_8sql__in.html#a1aa37f73fb1cd8d7d106aa518dd8c0b4">avg</a></b>: average</li>
<li><b><a class="el" href="linalg_8sql__in.html#a0b04663ca206f03e66aed5ea2b4cc461">normalized_avg</a></b>: normalized average</li>
</ul>
<p>The algorithm stops when one of the following conditions is met:</p>
<ul>
<li>The fraction of updated points is smaller than the convergence threshold (default: 0.001).</li>
<li>The algorithm reaches the maximum number of allowed iterations (default: 20).</li>
</ul>
<p>A popular method to assess the quality of the clustering is the <em>silhouette coefficient</em>, a simplified version of which is provided as part of the k-means module. Note that for large data sets, this computation is expensive.</p>
<dl class="section user"><dt>Input</dt><dd>The <b>source relation</b> is expected to be of the following form (or to be implicitly convertible into the following form): <pre>{TABLE|VIEW} <em>rel_source</em> (
...
<em>expr_points</em> FLOAT8[],
...
)</pre> where:<ul>
<li><em>expr_points</em> is the name of a column with point coordinates. Types such as <code>svec</code> or <code>INTEGER[]</code> are implicitly converted to <code>FLOAT8[]</code>.</li>
</ul>
</dd></dl>
<p>If kmeans is called with a set of initial centroids, the centroid relation is expected to be of the following form: </p>
<pre>{TABLE|VIEW} <em>rel_initial_centroids</em> (
...
<em>expr_centroid</em> DOUBLE PRECISION[],
...
)</pre><p> where:</p>
<ul>
<li><em>expr_centroid</em> is the name of a column with coordinates.</li>
</ul>
<dl class="section user"><dt>Usage</dt><dd>The k-means algorithm can be invoked in four possible ways:<ul>
<li>using <em>random</em> centroid seeding method for a provided \( k \): <pre>SELECT * FROM <a class="el" href="kmeans_8sql__in.html#a66ac1cab8811c4d842de1bc221886b53">kmeans_random</a>(
'<em>rel_source</em>', '<em>expr_point</em>', k,
[ '<em>fn_dist</em>', '<em>agg_centroid</em>',
<em>max_num_iterations</em>, <em>min_frac_reassigned</em> ]
);</pre></li>
<li>using <em>kmeans++</em> centroid seeding method for a provided \( k \): <pre>SELECT * FROM <a class="el" href="kmeans_8sql__in.html#a639178dacebca2a2114923038398d6bb">kmeanspp</a>(
'<em>rel_source</em>', '<em>expr_point</em>', k,
[ '<em>fn_dist</em>', '<em>agg_centroid</em>',
<em>max_num_iterations</em>, <em>min_frac_reassigned</em> ]
);</pre></li>
<li>with a provided centroid set: <pre>SELECT * FROM <a class="el" href="kmeans_8sql__in.html#afdae42b563f1f8bca3937dbbbacaa1c3">kmeans</a>(
'<em>rel_source</em>', '<em>expr_point</em>',
'<em>rel_initial_centroids</em>', '<em>expr_centroid</em>',
[ '<em>fn_dist</em>', '<em>agg_centroid</em>',
<em>max_num_iterations</em>, <em>min_frac_reassigned</em> ]
);</pre> ---------&mdash; OR ------------&mdash; <pre>SELECT * FROM <a class="el" href="kmeans_8sql__in.html#afdae42b563f1f8bca3937dbbbacaa1c3">kmeans</a>(
'<em>rel_source</em>', '<em>expr_point</em>',
initial_centroids,
[ '<em>fn_dist</em>', '<em>agg_centroid</em>',
<em>max_num_iterations</em>, <em>min_frac_reassigned</em> ]
);</pre> where:<ul>
<li><em>initial_centroids</em> is of type <code>DOUBLE PRECISION[][]</code>.</li>
</ul>
</li>
</ul>
</dd></dl>
<p>The output of the k-means module is a table that includes the final centroid positions (DOUBLE PRECISION[][]), the objective function, the fraction of reassigned points in the last iteration, and the number of total iterations: </p>
<pre>
centroids | objective_fn | frac_reassigned | num_iterations
----------------------------------+------------------+-----------------+----------------
...
</pre><dl class="section user"><dt>Examples</dt><dd><ol type="1">
<li>Prepare some input data. <div class="fragment"><div class="line">sql&gt; <a class="code" href="robust_8sql__in.html#ac9ebd21770ba37efb90e1ccee36fc103">SELECT</a> * FROM <span class="keyword">public</span>.km_sample LIMIT 5;</div>
<div class="line"> points</div>
<div class="line">-------------------------------------------</div>
<div class="line"> {1,1}:{15.8822241332382,105.945462542586}</div>
<div class="line"> {1,1}:{34.5065216883086,72.3126099305227}</div>
<div class="line"> {1,1}:{22.5074400822632,95.3209559689276}</div>
<div class="line"> {1,1}:{70.2589857042767,68.7395178806037}</div>
<div class="line"> {1,1}:{30.9844257542863,25.3213323024102}</div>
<div class="line">(5 rows)</div>
</div><!-- fragment --> Note: the example <em>points</em> is type <code><a class="el" href="group__grp__svec.html">SVEC</a></code>.</li>
<li>Run k-means clustering using kmeans++ for centroid seeding: <div class="fragment"><div class="line">sql&gt; <a class="code" href="robust_8sql__in.html#ac9ebd21770ba37efb90e1ccee36fc103">SELECT</a> * FROM madlib.kmeanspp(<span class="stringliteral">&#39;km_sample&#39;</span>, <span class="stringliteral">&#39;points&#39;</span>, 2, <span class="stringliteral">&#39;madlib.squared_dist_norm2&#39;</span>, <span class="stringliteral">&#39;madlib.avg&#39;</span>, 20, 0.001);</div>
<div class="line">);</div>
<div class="line"> centroids | objective_fn | frac_reassigned | num_iterations</div>
<div class="line">-------------------------------------------------------------------------+------------------+-----------------+----------------</div>
<div class="line"> {{68.01668579784,48.9667382972952},{28.1452167573446,84.5992507653263}} | 586729.010675982 | 0.001 | 5</div>
</div><!-- fragment --></li>
<li>Calculate the simplified silhouette coefficient: <div class="fragment"><div class="line">sql&gt; <a class="code" href="robust_8sql__in.html#ac9ebd21770ba37efb90e1ccee36fc103">SELECT</a> * from madlib.simple_silhouette(<span class="stringliteral">&#39;km_test_svec&#39;</span>,<span class="stringliteral">&#39;points&#39;</span>,</div>
<div class="line"> (select centroids from madlib.kmeanspp(<span class="stringliteral">&#39;km_test_svec&#39;</span>,<span class="stringliteral">&#39;points&#39;</span>,2,<span class="stringliteral">&#39;madlib.squared_dist_norm2&#39;</span>,<span class="stringliteral">&#39;madlib.avg&#39;</span>,20,0.001)),</div>
<div class="line"> <span class="stringliteral">&#39;madlib.dist_norm2&#39;</span>);</div>
<div class="line"> <a class="code" href="kmeans_8sql__in.html#a71e7675758c99acbe7785819b6a85a8f" title="Compute a simplified version of the silhouette coefficient. ">simple_silhouette</a></div>
<div class="line">-------------------</div>
<div class="line"> 0.611022970398174</div>
</div><!-- fragment --></li>
</ol>
</dd></dl>
<dl class="section user"><dt>Literature</dt><dd></dd></dl>
<p>[1] Wikipedia, K-means Clustering, <a href="http://en.wikipedia.org/wiki/K-means_clustering">http://en.wikipedia.org/wiki/K-means_clustering</a></p>
<p>[2] David Arthur, Sergei Vassilvitskii: k-means++: the advantages of careful seeding, Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA'07), pp. 1027-1035, <a href="http://www.stanford.edu/~darthur/kMeansPlusPlus.pdf">http://www.stanford.edu/~darthur/kMeansPlusPlus.pdf</a></p>
<p>[3] E. R. Hruschka, L. N. C. Silva, R. J. G. B. Campello: Clustering Gene-Expression Data: A Hybrid Approach that Iterates Between k-Means and Evolutionary Search. In: Studies in Computational Intelligence - Hybrid Evolutionary Algorithms. pp. 313-335. Springer. 2007.</p>
<p>[4] Lloyd, Stuart: Least squares quantization in PCM. Technical Note, Bell Laboratories. Published much later in: IEEE Transactions on Information Theory 28(2), pp. 128-137. 1982.</p>
<p>[5] Leisch, Friedrich: A Toolbox for K-Centroids Cluster Analysis. In: Computational Statistics and Data Analysis, 51(2). pp. 526-544. 2006.</p>
<dl class="section see"><dt>See Also</dt><dd>File <a class="el" href="kmeans_8sql__in.html" title="Set of functions for k-means clustering. ">kmeans.sql_in</a> documenting the SQL functions. </dd></dl>
</div><!-- contents -->
</div><!-- doc-content -->
<!-- start footer part -->
<div id="nav-path" class="navpath"><!-- id is needed for treeview function! -->
<ul>
<li class="footer">Generated on Thu Jan 9 2014 20:35:40 for MADlib by
<a href="http://www.doxygen.org/index.html">
<img class="footer" src="doxygen.png" alt="doxygen"/></a> 1.8.4 </li>
</ul>
</div>
</body>
</html>