blob: 6d6bacf262437816cc2b8ad7ef93edfdd3d67fae [file] [log] [blame]
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/xhtml;charset=UTF-8"/>
<meta http-equiv="X-UA-Compatible" content="IE=9"/>
<meta name="generator" content="Doxygen 1.8.4"/>
<title>MADlib: svdmf.sql_in Source File</title>
<link href="tabs.css" rel="stylesheet" type="text/css"/>
<script type="text/javascript" src="jquery.js"></script>
<script type="text/javascript" src="dynsections.js"></script>
<link href="navtree.css" rel="stylesheet" type="text/css"/>
<script type="text/javascript" src="resize.js"></script>
<script type="text/javascript" src="navtree.js"></script>
<script type="text/javascript">
$(document).ready(initResizable);
$(window).load(resizeHeight);
</script>
<link href="search/search.css" rel="stylesheet" type="text/css"/>
<script type="text/javascript" src="search/search.js"></script>
<script type="text/javascript">
$(document).ready(function() { searchBox.OnSelectItem(0); });
</script>
<script type="text/x-mathjax-config">
MathJax.Hub.Config({
extensions: ["tex2jax.js", "TeX/AMSmath.js", "TeX/AMSsymbols.js"],
jax: ["input/TeX","output/HTML-CSS"],
});
</script><script src="../mathjax/MathJax.js"></script>
<link href="doxygen.css" rel="stylesheet" type="text/css" />
</head>
<body>
<div id="top"><!-- do not remove this div, it is closed by doxygen! -->
<div id="titlearea">
<table cellspacing="0" cellpadding="0">
<tbody>
<tr style="height: 56px;">
<td style="padding-left: 0.5em;">
<div id="projectname">MADlib
&#160;<span id="projectnumber">0.5</span>
</div>
<div id="projectbrief">User Documentation</div>
</td>
</tr>
</tbody>
</table>
</div>
<!-- end header part -->
<!-- Generated by Doxygen 1.8.4 -->
<script type="text/javascript">
var searchBox = new SearchBox("searchBox", "search",false,'Search');
</script>
<div id="navrow1" class="tabs">
<ul class="tablist">
<li><a href="index.html"><span>Main&#160;Page</span></a></li>
<li><a href="modules.html"><span>Modules</span></a></li>
<li>
<div id="MSearchBox" class="MSearchBoxInactive">
<span class="left">
<img id="MSearchSelect" src="search/mag_sel.png"
onmouseover="return searchBox.OnSearchSelectShow()"
onmouseout="return searchBox.OnSearchSelectHide()"
alt=""/>
<input type="text" id="MSearchField" value="Search" accesskey="S"
onfocus="searchBox.OnSearchFieldFocus(true)"
onblur="searchBox.OnSearchFieldFocus(false)"
onkeyup="searchBox.OnSearchFieldChange(event)"/>
</span><span class="right">
<a id="MSearchClose" href="javascript:searchBox.CloseResultsWindow()"><img id="MSearchCloseImg" border="0" src="search/close.png" alt=""/></a>
</span>
</div>
</li>
</ul>
</div>
</div><!-- top -->
<div id="side-nav" class="ui-resizable side-nav-resizable">
<div id="nav-tree">
<div id="nav-tree-contents">
<div id="nav-sync" class="sync"></div>
</div>
</div>
<div id="splitbar" style="-moz-user-select:none;"
class="ui-resizable-handle">
</div>
</div>
<script type="text/javascript">
$(document).ready(function(){initNavTree('svdmf_8sql__in_source.html','');});
</script>
<div id="doc-content">
<!-- window showing the filter options -->
<div id="MSearchSelectWindow"
onmouseover="return searchBox.OnSearchSelectShow()"
onmouseout="return searchBox.OnSearchSelectHide()"
onkeydown="return searchBox.OnSearchSelectKey(event)">
<a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(0)"><span class="SelectionMark">&#160;</span>All</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(1)"><span class="SelectionMark">&#160;</span>Files</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(2)"><span class="SelectionMark">&#160;</span>Functions</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(3)"><span class="SelectionMark">&#160;</span>Groups</a></div>
<!-- iframe showing the search results (closed by default) -->
<div id="MSearchResultsWindow">
<iframe src="javascript:void(0)" frameborder="0"
name="MSearchResults" id="MSearchResults">
</iframe>
</div>
<div class="header">
<div class="headertitle">
<div class="title">svdmf.sql_in</div> </div>
</div><!--header-->
<div class="contents">
<a href="svdmf_8sql__in.html">Go to the documentation of this file.</a><div class="fragment"><div class="line"><a name="l00001"></a><span class="lineno"> 1</span>&#160;<span class="comment">/* ----------------------------------------------------------------------- */</span><span class="comment">/** </span></div>
<div class="line"><a name="l00002"></a><span class="lineno"> 2</span>&#160;<span class="comment"> *</span></div>
<div class="line"><a name="l00003"></a><span class="lineno"> 3</span>&#160;<span class="comment"> * @file svdmf.sql_in</span></div>
<div class="line"><a name="l00004"></a><span class="lineno"> 4</span>&#160;<span class="comment"> *</span></div>
<div class="line"><a name="l00005"></a><span class="lineno"> 5</span>&#160;<span class="comment"> * @brief SQL functions for SVD Matrix Factorization</span></div>
<div class="line"><a name="l00006"></a><span class="lineno"> 6</span>&#160;<span class="comment"> * @date January 2011</span></div>
<div class="line"><a name="l00007"></a><span class="lineno"> 7</span>&#160;<span class="comment"> *</span></div>
<div class="line"><a name="l00008"></a><span class="lineno"> 8</span>&#160;<span class="comment"> * @sa For a brief introduction to SVD Matrix Factorization, see the module</span></div>
<div class="line"><a name="l00009"></a><span class="lineno"> 9</span>&#160;<span class="comment"> * description \ref grp_svdmf.</span></div>
<div class="line"><a name="l00010"></a><span class="lineno"> 10</span>&#160;<span class="comment"> *</span></div>
<div class="line"><a name="l00011"></a><span class="lineno"> 11</span>&#160;<span class="comment"> */</span><span class="comment">/* ----------------------------------------------------------------------- */</span></div>
<div class="line"><a name="l00012"></a><span class="lineno"> 12</span>&#160;</div>
<div class="line"><a name="l00013"></a><span class="lineno"> 13</span>&#160;m4_include(`SQLCommon.m4<span class="stringliteral">&#39;)</span></div>
<div class="line"><a name="l00014"></a><span class="lineno"> 14</span>&#160;<span class="stringliteral"></span><span class="comment"></span></div>
<div class="line"><a name="l00015"></a><span class="lineno"> 15</span>&#160;<span class="comment">/**</span></div>
<div class="line"><a name="l00016"></a><span class="lineno"> 16</span>&#160;<span class="comment">@addtogroup grp_svdmf </span></div>
<div class="line"><a name="l00017"></a><span class="lineno"> 17</span>&#160;<span class="comment"></span></div>
<div class="line"><a name="l00018"></a><span class="lineno"> 18</span>&#160;<span class="comment">@about</span></div>
<div class="line"><a name="l00019"></a><span class="lineno"> 19</span>&#160;<span class="comment"></span></div>
<div class="line"><a name="l00020"></a><span class="lineno"> 20</span>&#160;<span class="comment">This module implements &quot;partial SVD decomposition&quot; method for representing a sparse matrix using a low-rank approximation.</span></div>
<div class="line"><a name="l00021"></a><span class="lineno"> 21</span>&#160;<span class="comment">Mathematically, this algorithm seeks to find matrices U and V that, for any given A, minimizes:\n</span></div>
<div class="line"><a name="l00022"></a><span class="lineno"> 22</span>&#160;<span class="comment">\f[ ||\boldsymbol A - \boldsymbol UV ||_2 </span></div>
<div class="line"><a name="l00023"></a><span class="lineno"> 23</span>&#160;<span class="comment">\f]</span></div>
<div class="line"><a name="l00024"></a><span class="lineno"> 24</span>&#160;<span class="comment">subject to \f$ rank(\boldsymbol UV) \leq k \f$, where \f$ ||\cdot||_2 \f$ denotes the Frobenius norm and \f$ k \leq rank(\boldsymbol A)\f$.</span></div>
<div class="line"><a name="l00025"></a><span class="lineno"> 25</span>&#160;<span class="comment">If A is \f$ m \times n \f$, then U will be \f$ m \times k \f$ and V will be \f$ k \times n \f$.</span></div>
<div class="line"><a name="l00026"></a><span class="lineno"> 26</span>&#160;<span class="comment"></span></div>
<div class="line"><a name="l00027"></a><span class="lineno"> 27</span>&#160;<span class="comment">This algorithm is not intended to do the full decomposition, or to be used as part of</span></div>
<div class="line"><a name="l00028"></a><span class="lineno"> 28</span>&#160;<span class="comment">inverse procedure. It effectively computes the SVD of a low-rank approximation of A (preferably sparse), with the singular values absorbed in U and V. </span></div>
<div class="line"><a name="l00029"></a><span class="lineno"> 29</span>&#160;<span class="comment">Code is based on the write-up as appears at [1], with some modifications.</span></div>
<div class="line"><a name="l00030"></a><span class="lineno"> 30</span>&#160;<span class="comment"></span></div>
<div class="line"><a name="l00031"></a><span class="lineno"> 31</span>&#160;<span class="comment"></span></div>
<div class="line"><a name="l00032"></a><span class="lineno"> 32</span>&#160;<span class="comment">@input</span></div>
<div class="line"><a name="l00033"></a><span class="lineno"> 33</span>&#160;<span class="comment">The &lt;b&gt;input matrix&lt;/b&gt; is expected to be of the following form:</span></div>
<div class="line"><a name="l00034"></a><span class="lineno"> 34</span>&#160;<span class="comment">&lt;pre&gt;{TABLE|VIEW} &lt;em&gt;input_table&lt;/em&gt; (</span></div>
<div class="line"><a name="l00035"></a><span class="lineno"> 35</span>&#160;<span class="comment"> &lt;em&gt;col_num&lt;/em&gt; INTEGER,</span></div>
<div class="line"><a name="l00036"></a><span class="lineno"> 36</span>&#160;<span class="comment"> &lt;em&gt;row_num&lt;/em&gt; INTEGER,</span></div>
<div class="line"><a name="l00037"></a><span class="lineno"> 37</span>&#160;<span class="comment"> &lt;em&gt;value&lt;/em&gt; FLOAT </span></div>
<div class="line"><a name="l00038"></a><span class="lineno"> 38</span>&#160;<span class="comment">)&lt;/pre&gt;</span></div>
<div class="line"><a name="l00039"></a><span class="lineno"> 39</span>&#160;<span class="comment"></span></div>
<div class="line"><a name="l00040"></a><span class="lineno"> 40</span>&#160;<span class="comment">Input is contained in a table where column number and row number for each cell</span></div>
<div class="line"><a name="l00041"></a><span class="lineno"> 41</span>&#160;<span class="comment">are sequential; that is to say that if the data was written as a matrix, those values would be the</span></div>
<div class="line"><a name="l00042"></a><span class="lineno"> 42</span>&#160;<span class="comment">actual row and column numbers and not some random identifiers. All rows and columns must be associated with a value.</span></div>
<div class="line"><a name="l00043"></a><span class="lineno"> 43</span>&#160;<span class="comment">There should not be any missing row, columns or values.</span></div>
<div class="line"><a name="l00044"></a><span class="lineno"> 44</span>&#160;<span class="comment"></span></div>
<div class="line"><a name="l00045"></a><span class="lineno"> 45</span>&#160;<span class="comment">@usage</span></div>
<div class="line"><a name="l00046"></a><span class="lineno"> 46</span>&#160;<span class="comment">The SVD function is called as follows:</span></div>
<div class="line"><a name="l00047"></a><span class="lineno"> 47</span>&#160;<span class="comment">&lt;pre&gt;SELECT \ref svdmf_run( &#39;&lt;em&gt;input_table&lt;/em&gt;&#39;, &#39;&lt;em&gt;col_name&lt;/em&gt;&#39;,</span></div>
<div class="line"><a name="l00048"></a><span class="lineno"> 48</span>&#160;<span class="comment"> &#39;&lt;em&gt;row_name&lt;/em&gt;&#39;, &#39;&lt;em&gt;value&lt;/em&gt;&#39;, &lt;em&gt;num_features&lt;/em&gt;);&lt;/pre&gt;</span></div>
<div class="line"><a name="l00049"></a><span class="lineno"> 49</span>&#160;<span class="comment">The function returns two tables \c matrix_u and \c matrix_v, which represent the matrices U and V in table format.</span></div>
<div class="line"><a name="l00050"></a><span class="lineno"> 50</span>&#160;<span class="comment"></span></div>
<div class="line"><a name="l00051"></a><span class="lineno"> 51</span>&#160;<span class="comment">@examp</span></div>
<div class="line"><a name="l00052"></a><span class="lineno"> 52</span>&#160;<span class="comment"></span></div>
<div class="line"><a name="l00053"></a><span class="lineno"> 53</span>&#160;<span class="comment">-# Prepare an input table/view:</span></div>
<div class="line"><a name="l00054"></a><span class="lineno"> 54</span>&#160;<span class="comment">\code</span></div>
<div class="line"><a name="l00055"></a><span class="lineno"> 55</span>&#160;<span class="comment">CREATE TABLE svd_test (</span></div>
<div class="line"><a name="l00056"></a><span class="lineno"> 56</span>&#160;<span class="comment"> col INT,</span></div>
<div class="line"><a name="l00057"></a><span class="lineno"> 57</span>&#160;<span class="comment"> row INT,</span></div>
<div class="line"><a name="l00058"></a><span class="lineno"> 58</span>&#160;<span class="comment"> val FLOAT</span></div>
<div class="line"><a name="l00059"></a><span class="lineno"> 59</span>&#160;<span class="comment">);</span></div>
<div class="line"><a name="l00060"></a><span class="lineno"> 60</span>&#160;<span class="comment">\endcode </span></div>
<div class="line"><a name="l00061"></a><span class="lineno"> 61</span>&#160;<span class="comment">-# Populate the input table with some data. e.g.:</span></div>
<div class="line"><a name="l00062"></a><span class="lineno"> 62</span>&#160;<span class="comment">\code</span></div>
<div class="line"><a name="l00063"></a><span class="lineno"> 63</span>&#160;<span class="comment">sql&gt; INSERT INTO svd_test SELECT (g.a%1000)+1, g.a/1000+1, random() FROM generate_series(1,1000) AS g(a);</span></div>
<div class="line"><a name="l00064"></a><span class="lineno"> 64</span>&#160;<span class="comment">\endcode </span></div>
<div class="line"><a name="l00065"></a><span class="lineno"> 65</span>&#160;<span class="comment">-# Call svdmf_run() stored procedure, e.g.: </span></div>
<div class="line"><a name="l00066"></a><span class="lineno"> 66</span>&#160;<span class="comment">\code</span></div>
<div class="line"><a name="l00067"></a><span class="lineno"> 67</span>&#160;<span class="comment">sql&gt; select madlib.svdmf_run( &#39;svd_test&#39;, &#39;col&#39;, &#39;row&#39;, &#39;val&#39;, 3);</span></div>
<div class="line"><a name="l00068"></a><span class="lineno"> 68</span>&#160;<span class="comment">\endcode</span></div>
<div class="line"><a name="l00069"></a><span class="lineno"> 69</span>&#160;<span class="comment">-# Sample Output:</span></div>
<div class="line"><a name="l00070"></a><span class="lineno"> 70</span>&#160;<span class="comment">\code</span></div>
<div class="line"><a name="l00071"></a><span class="lineno"> 71</span>&#160;<span class="comment">INFO: (&#39;Started svdmf_run() with parameters:&#39;,)</span></div>
<div class="line"><a name="l00072"></a><span class="lineno"> 72</span>&#160;<span class="comment">INFO: (&#39; * input_matrix = madlib_svdsparse_test.test&#39;,)</span></div>
<div class="line"><a name="l00073"></a><span class="lineno"> 73</span>&#160;<span class="comment">INFO: (&#39; * col_name = col_num&#39;,)</span></div>
<div class="line"><a name="l00074"></a><span class="lineno"> 74</span>&#160;<span class="comment">INFO: (&#39; * row_name = row_num&#39;,)</span></div>
<div class="line"><a name="l00075"></a><span class="lineno"> 75</span>&#160;<span class="comment">INFO: (&#39; * value = val&#39;,)</span></div>
<div class="line"><a name="l00076"></a><span class="lineno"> 76</span>&#160;<span class="comment">INFO: (&#39; * num_features = 3&#39;,)</span></div>
<div class="line"><a name="l00077"></a><span class="lineno"> 77</span>&#160;<span class="comment">INFO: (&#39;Copying the source data into a temporary table...&#39;,)</span></div>
<div class="line"><a name="l00078"></a><span class="lineno"> 78</span>&#160;<span class="comment">INFO: (&#39;Estimating feature: 1&#39;,)</span></div>
<div class="line"><a name="l00079"></a><span class="lineno"> 79</span>&#160;<span class="comment">INFO: (&#39;...Iteration 1: residual_error = 33345014611.1, step_size = 4.9997500125e-10, min_improvement = 1.0&#39;,)</span></div>
<div class="line"><a name="l00080"></a><span class="lineno"> 80</span>&#160;<span class="comment">INFO: (&#39;...Iteration 2: residual_error = 33345014557.6, step_size = 5.49972501375e-10, min_improvement = 1.0&#39;,)</span></div>
<div class="line"><a name="l00081"></a><span class="lineno"> 81</span>&#160;<span class="comment">INFO: (&#39;...Iteration 3: residual_error = 33345014054.3, step_size = 6.04969751512e-10, min_improvement = 1.0&#39;,)</span></div>
<div class="line"><a name="l00082"></a><span class="lineno"> 82</span>&#160;<span class="comment">...</span></div>
<div class="line"><a name="l00083"></a><span class="lineno"> 83</span>&#160;<span class="comment">INFO: (&#39;...Iteration 78: residual_error = 2.02512133868, step_size = 5.78105354457e-10, min_improvement = 1.0&#39;,)</span></div>
<div class="line"><a name="l00084"></a><span class="lineno"> 84</span>&#160;<span class="comment">INFO: (&#39;...Iteration 79: residual_error = 0.893810181282, step_size = 6.35915889903e-10, min_improvement = 1.0&#39;,)</span></div>
<div class="line"><a name="l00085"></a><span class="lineno"> 85</span>&#160;<span class="comment">INFO: (&#39;...Iteration 80: residual_error = 0.34496773222, step_size = 6.99507478893e-10, min_improvement = 1.0&#39;,)</span></div>
<div class="line"><a name="l00086"></a><span class="lineno"> 86</span>&#160;<span class="comment">INFO: (&#39;Swapping residual error matrix...&#39;,)</span></div>
<div class="line"><a name="l00087"></a><span class="lineno"> 87</span>&#160;<span class="comment"> svdmf_run </span></div>
<div class="line"><a name="l00088"></a><span class="lineno"> 88</span>&#160;<span class="comment">--------------------------------------------------------------------------------------------</span></div>
<div class="line"><a name="l00089"></a><span class="lineno"> 89</span>&#160;<span class="comment"> </span></div>
<div class="line"><a name="l00090"></a><span class="lineno"> 90</span>&#160;<span class="comment"> Finished SVD matrix factorisation for madlib_svdsparse_test.test (row_num, col_num, val). </span></div>
<div class="line"><a name="l00091"></a><span class="lineno"> 91</span>&#160;<span class="comment"> Results: </span></div>
<div class="line"><a name="l00092"></a><span class="lineno"> 92</span>&#160;<span class="comment"> * total error = 0.34496773222</span></div>
<div class="line"><a name="l00093"></a><span class="lineno"> 93</span>&#160;<span class="comment"> * number of estimated features = 1</span></div>
<div class="line"><a name="l00094"></a><span class="lineno"> 94</span>&#160;<span class="comment"> Output:</span></div>
<div class="line"><a name="l00095"></a><span class="lineno"> 95</span>&#160;<span class="comment"> * table : madlib.matrix_u</span></div>
<div class="line"><a name="l00096"></a><span class="lineno"> 96</span>&#160;<span class="comment"> * table : madlib.matrix_v</span></div>
<div class="line"><a name="l00097"></a><span class="lineno"> 97</span>&#160;<span class="comment"> Time elapsed: 4 minutes 47.86839 seconds.</span></div>
<div class="line"><a name="l00098"></a><span class="lineno"> 98</span>&#160;<span class="comment"></span></div>
<div class="line"><a name="l00099"></a><span class="lineno"> 99</span>&#160;<span class="comment">\endcode</span></div>
<div class="line"><a name="l00100"></a><span class="lineno"> 100</span>&#160;<span class="comment"></span></div>
<div class="line"><a name="l00101"></a><span class="lineno"> 101</span>&#160;<span class="comment">@literature</span></div>
<div class="line"><a name="l00102"></a><span class="lineno"> 102</span>&#160;<span class="comment"></span></div>
<div class="line"><a name="l00103"></a><span class="lineno"> 103</span>&#160;<span class="comment">[1] Simon Funk, Netflix Update: Try This at Home, December 11 2006,</span></div>
<div class="line"><a name="l00104"></a><span class="lineno"> 104</span>&#160;<span class="comment"> http://sifter.org/~simon/journal/20061211.html</span></div>
<div class="line"><a name="l00105"></a><span class="lineno"> 105</span>&#160;<span class="comment"></span></div>
<div class="line"><a name="l00106"></a><span class="lineno"> 106</span>&#160;<span class="comment">@sa File svdmf.sql_in documenting the SQL functions.</span></div>
<div class="line"><a name="l00107"></a><span class="lineno"> 107</span>&#160;<span class="comment"></span></div>
<div class="line"><a name="l00108"></a><span class="lineno"> 108</span>&#160;<span class="comment">@internal</span></div>
<div class="line"><a name="l00109"></a><span class="lineno"> 109</span>&#160;<span class="comment">@sa namespace svdmf (documenting the implementation in Python)</span></div>
<div class="line"><a name="l00110"></a><span class="lineno"> 110</span>&#160;<span class="comment">@endinternal </span></div>
<div class="line"><a name="l00111"></a><span class="lineno"> 111</span>&#160;<span class="comment"></span></div>
<div class="line"><a name="l00112"></a><span class="lineno"> 112</span>&#160;<span class="comment">*/</span></div>
<div class="line"><a name="l00113"></a><span class="lineno"> 113</span>&#160;<span class="comment"></span></div>
<div class="line"><a name="l00114"></a><span class="lineno"> 114</span>&#160;<span class="comment">/**</span></div>
<div class="line"><a name="l00115"></a><span class="lineno"> 115</span>&#160;<span class="comment"> * @brief Partial SVD decomposition of a sparse matrix into U and V components</span></div>
<div class="line"><a name="l00116"></a><span class="lineno"> 116</span>&#160;<span class="comment"> *</span></div>
<div class="line"><a name="l00117"></a><span class="lineno"> 117</span>&#160;<span class="comment"> * This function takes as input the table representation of a sparse matrix and</span></div>
<div class="line"><a name="l00118"></a><span class="lineno"> 118</span>&#160;<span class="comment"> * decomposes it into the specified set of most significant features of matrices</span></div>
<div class="line"><a name="l00119"></a><span class="lineno"> 119</span>&#160;<span class="comment"> * of U and V matrix. </span></div>
<div class="line"><a name="l00120"></a><span class="lineno"> 120</span>&#160;<span class="comment"> *</span></div>
<div class="line"><a name="l00121"></a><span class="lineno"> 121</span>&#160;<span class="comment"> * @param input_table Name of the table/view with the source data</span></div>
<div class="line"><a name="l00122"></a><span class="lineno"> 122</span>&#160;<span class="comment"> * @param col_name Name of the column containing cell column number</span></div>
<div class="line"><a name="l00123"></a><span class="lineno"> 123</span>&#160;<span class="comment"> * @param row_name Name of the column containing cell row number</span></div>
<div class="line"><a name="l00124"></a><span class="lineno"> 124</span>&#160;<span class="comment"> * @param value Name of the column containing cell value</span></div>
<div class="line"><a name="l00125"></a><span class="lineno"> 125</span>&#160;<span class="comment"> * @param num_features Rank of desired approximation</span></div>
<div class="line"><a name="l00126"></a><span class="lineno"> 126</span>&#160;<span class="comment"> * </span></div>
<div class="line"><a name="l00127"></a><span class="lineno"> 127</span>&#160;<span class="comment"> */</span></div>
<div class="line"><a name="l00128"></a><span class="lineno"> 128</span>&#160;CREATE OR REPLACE FUNCTION MADLIB_SCHEMA.svdmf_run(</div>
<div class="line"><a name="l00129"></a><span class="lineno"> 129</span>&#160; input_table TEXT, col_name TEXT, row_name TEXT, value TEXT, num_features INT</div>
<div class="line"><a name="l00130"></a><span class="lineno"> 130</span>&#160;)</div>
<div class="line"><a name="l00131"></a><span class="lineno"> 131</span>&#160;RETURNS TEXT</div>
<div class="line"><a name="l00132"></a><span class="lineno"> 132</span>&#160;AS $$</div>
<div class="line"><a name="l00133"></a><span class="lineno"> 133</span>&#160;</div>
<div class="line"><a name="l00134"></a><span class="lineno"> 134</span>&#160; PythonFunctionBodyOnly(`svd_mf&#39;, `svdmf<span class="stringliteral">&#39;)</span></div>
<div class="line"><a name="l00135"></a><span class="lineno"> 135</span>&#160;<span class="stringliteral"> </span></div>
<div class="line"><a name="l00136"></a><span class="lineno"> 136</span>&#160;<span class="stringliteral"> # schema_madlib comes from PythonFunctionBodyOnly</span></div>
<div class="line"><a name="l00137"></a><span class="lineno"> 137</span>&#160;<span class="stringliteral"> return svdmf.svdmf_run( schema_madlib, input_table, col_name, row_name, value, num_features);</span></div>
<div class="line"><a name="l00138"></a><span class="lineno"> 138</span>&#160;<span class="stringliteral"></span></div>
<div class="line"><a name="l00139"></a><span class="lineno"> 139</span>&#160;<span class="stringliteral">$$ LANGUAGE plpythonu;</span></div>
<div class="line"><a name="l00140"></a><span class="lineno"> 140</span>&#160;<span class="stringliteral"></span><span class="comment"></span></div>
<div class="line"><a name="l00141"></a><span class="lineno"> 141</span>&#160;<span class="comment">/**</span></div>
<div class="line"><a name="l00142"></a><span class="lineno"> 142</span>&#160;<span class="comment"> * @brief Partial SVD decomposition of a sparse matrix into U and V components</span></div>
<div class="line"><a name="l00143"></a><span class="lineno"> 143</span>&#160;<span class="comment"> *</span></div>
<div class="line"><a name="l00144"></a><span class="lineno"> 144</span>&#160;<span class="comment"> * This function takes as input the table representation of a sparse matrix and</span></div>
<div class="line"><a name="l00145"></a><span class="lineno"> 145</span>&#160;<span class="comment"> * decomposes it into the specified set of most significant features of matrices</span></div>
<div class="line"><a name="l00146"></a><span class="lineno"> 146</span>&#160;<span class="comment"> * of U and V matrix. </span></div>
<div class="line"><a name="l00147"></a><span class="lineno"> 147</span>&#160;<span class="comment"> *</span></div>
<div class="line"><a name="l00148"></a><span class="lineno"> 148</span>&#160;<span class="comment"> * @param input_table Name of the table/view with the source data</span></div>
<div class="line"><a name="l00149"></a><span class="lineno"> 149</span>&#160;<span class="comment"> * @param col_name Name of the column containing cell column number</span></div>
<div class="line"><a name="l00150"></a><span class="lineno"><a class="code" href="svdmf_8sql__in.html#a6cff34415cca23aa0a826cc08a6283f5"> 150</a></span>&#160;<span class="comment"> * @param row_name Name of the column containing cell row number</span></div>
<div class="line"><a name="l00151"></a><span class="lineno"> 151</span>&#160;<span class="comment"> * @param value Name of the column containing cell value</span></div>
<div class="line"><a name="l00152"></a><span class="lineno"> 152</span>&#160;<span class="comment"> * @param num_features Rank of desired approximation</span></div>
<div class="line"><a name="l00153"></a><span class="lineno"> 153</span>&#160;<span class="comment"> * @param num_iterations Maximum number if iterations to perform regardless of convergence</span></div>
<div class="line"><a name="l00154"></a><span class="lineno"> 154</span>&#160;<span class="comment"> * @param min_error Acceptable level of error in convergence.</span></div>
<div class="line"><a name="l00155"></a><span class="lineno"> 155</span>&#160;<span class="comment"> * </span></div>
<div class="line"><a name="l00156"></a><span class="lineno"> 156</span>&#160;<span class="comment"> */</span></div>
<div class="line"><a name="l00157"></a><span class="lineno"> 157</span>&#160;</div>
<div class="line"><a name="l00158"></a><span class="lineno"> 158</span>&#160;CREATE OR REPLACE FUNCTION MADLIB_SCHEMA.svdmf_run(</div>
<div class="line"><a name="l00159"></a><span class="lineno"> 159</span>&#160; input_table TEXT, col_name TEXT, row_name TEXT, value TEXT, num_features INT, num_iterations INT, min_error FLOAT</div>
<div class="line"><a name="l00160"></a><span class="lineno"> 160</span>&#160;)</div>
<div class="line"><a name="l00161"></a><span class="lineno"> 161</span>&#160;RETURNS TEXT</div>
<div class="line"><a name="l00162"></a><span class="lineno"> 162</span>&#160;AS $$</div>
<div class="line"><a name="l00163"></a><span class="lineno"> 163</span>&#160;</div>
<div class="line"><a name="l00164"></a><span class="lineno"> 164</span>&#160; PythonFunctionBodyOnly(`svd_mf&#39;, `svdmf<span class="stringliteral">&#39;)</span></div>
<div class="line"><a name="l00165"></a><span class="lineno"> 165</span>&#160;<span class="stringliteral"></span></div>
<div class="line"><a name="l00166"></a><span class="lineno"> 166</span>&#160;<span class="stringliteral"> # schema_madlib comes from PythonFunctionBodyOnly</span></div>
<div class="line"><a name="l00167"></a><span class="lineno"> 167</span>&#160;<span class="stringliteral"> return svdmf.svdmf_run_full( schema_madlib, input_table, col_name, row_name, value, num_features, num_iterations, min_error);</span></div>
<div class="line"><a name="l00168"></a><span class="lineno"> 168</span>&#160;<span class="stringliteral"></span></div>
<div class="line"><a name="l00169"></a><span class="lineno"> 169</span>&#160;<span class="stringliteral">$$ LANGUAGE plpythonu;</span></div>
</div><!-- fragment --></div><!-- contents -->
</div><!-- doc-content -->
<!-- start footer part -->
<div id="nav-path" class="navpath"><!-- id is needed for treeview function! -->
<ul>
<li class="navelem"><a class="el" href="dir_68267d1309a1af8e8297ef4c3efbcdba.html">src</a></li><li class="navelem"><a class="el" href="dir_efbcf68973d247bbf15f9eecae7f24e3.html">ports</a></li><li class="navelem"><a class="el" href="dir_a4a48839224ef8488facbffa8a397967.html">postgres</a></li><li class="navelem"><a class="el" href="dir_dc596537ad427a4d866006d1a3e1fe29.html">modules</a></li><li class="navelem"><a class="el" href="dir_40c4a35ef279220d890883d91e88ed32.html">svd_mf</a></li><li class="navelem"><a class="el" href="svdmf_8sql__in.html">svdmf.sql_in</a></li>
<li class="footer">Generated on Tue Sep 10 2013 13:36:14 for MADlib by
<a href="http://www.doxygen.org/index.html">
<img class="footer" src="doxygen.png" alt="doxygen"/></a> 1.8.4 </li>
</ul>
</div>
</body>
</html>