blob: 27c8eaf832120986c9421fcca71ded3f4a55fc7a [file] [log] [blame]
<!-- HTML header for doxygen 1.8.4-->
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/xhtml;charset=UTF-8"/>
<meta http-equiv="X-UA-Compatible" content="IE=9"/>
<meta name="generator" content="Doxygen 1.8.13"/>
<meta name="keywords" content="madlib,postgres,greenplum,machine learning,data mining,deep learning,ensemble methods,data science,market basket analysis,affinity analysis,pca,lda,regression,elastic net,huber white,proportional hazards,k-means,latent dirichlet allocation,bayes,support vector machines,svm"/>
<title>MADlib: Regression Models</title>
<link href="tabs.css" rel="stylesheet" type="text/css"/>
<script type="text/javascript" src="jquery.js"></script>
<script type="text/javascript" src="dynsections.js"></script>
<link href="navtree.css" rel="stylesheet" type="text/css"/>
<script type="text/javascript" src="resize.js"></script>
<script type="text/javascript" src="navtreedata.js"></script>
<script type="text/javascript" src="navtree.js"></script>
<script type="text/javascript">
$(document).ready(initResizable);
</script>
<link href="search/search.css" rel="stylesheet" type="text/css"/>
<script type="text/javascript" src="search/searchdata.js"></script>
<script type="text/javascript" src="search/search.js"></script>
<script type="text/javascript">
$(document).ready(function() { init_search(); });
</script>
<!-- hack in the navigation tree -->
<script type="text/javascript" src="eigen_navtree_hacks.js"></script>
<link href="doxygen.css" rel="stylesheet" type="text/css" />
<link href="madlib_extra.css" rel="stylesheet" type="text/css"/>
<!-- google analytics -->
<script>
(function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){
(i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o),
m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m)
})(window,document,'script','//www.google-analytics.com/analytics.js','ga');
ga('create', 'UA-45382226-1', 'madlib.incubator.apache.org');
ga('send', 'pageview');
</script>
</head>
<body>
<div id="top"><!-- do not remove this div, it is closed by doxygen! -->
<div id="titlearea">
<table cellspacing="0" cellpadding="0">
<tbody>
<tr style="height: 56px;">
<td id="projectlogo"><a href="http://madlib.incubator.apache.org"><img alt="Logo" src="madlib.png" height="50" style="padding-left:0.5em;" border="0"/ ></a></td>
<td style="padding-left: 0.5em;">
<div id="projectname">
<span id="projectnumber">1.11</span>
</div>
<div id="projectbrief">User Documentation for MADlib</div>
</td>
<td> <div id="MSearchBox" class="MSearchBoxInactive">
<span class="left">
<img id="MSearchSelect" src="search/mag_sel.png"
onmouseover="return searchBox.OnSearchSelectShow()"
onmouseout="return searchBox.OnSearchSelectHide()"
alt=""/>
<input type="text" id="MSearchField" value="Search" accesskey="S"
onfocus="searchBox.OnSearchFieldFocus(true)"
onblur="searchBox.OnSearchFieldFocus(false)"
onkeyup="searchBox.OnSearchFieldChange(event)"/>
</span><span class="right">
<a id="MSearchClose" href="javascript:searchBox.CloseResultsWindow()"><img id="MSearchCloseImg" border="0" src="search/close.png" alt=""/></a>
</span>
</div>
</td>
</tr>
</tbody>
</table>
</div>
<!-- end header part -->
<!-- Generated by Doxygen 1.8.13 -->
<script type="text/javascript">
var searchBox = new SearchBox("searchBox", "search",false,'Search');
</script>
</div><!-- top -->
<div id="side-nav" class="ui-resizable side-nav-resizable">
<div id="nav-tree">
<div id="nav-tree-contents">
<div id="nav-sync" class="sync"></div>
</div>
</div>
<div id="splitbar" style="-moz-user-select:none;"
class="ui-resizable-handle">
</div>
</div>
<script type="text/javascript">
$(document).ready(function(){initNavTree('group__grp__regml.html','');});
</script>
<div id="doc-content">
<!-- window showing the filter options -->
<div id="MSearchSelectWindow"
onmouseover="return searchBox.OnSearchSelectShow()"
onmouseout="return searchBox.OnSearchSelectHide()"
onkeydown="return searchBox.OnSearchSelectKey(event)">
</div>
<!-- iframe showing the search results (closed by default) -->
<div id="MSearchResultsWindow">
<iframe src="javascript:void(0)" frameborder="0"
name="MSearchResults" id="MSearchResults">
</iframe>
</div>
<div class="header">
<div class="summary">
<a href="#groups">Modules</a> </div>
<div class="headertitle">
<div class="title">Regression Models<div class="ingroups"><a class="el" href="group__grp__super.html">Supervised Learning</a></div></div> </div>
</div><!--header-->
<div class="contents">
<a name="details" id="details"></a><h2 class="groupheader">Detailed Description</h2>
<p>A collection of methods for modeling conditional expectation of a response variable. </p>
<table class="memberdecls">
<tr class="heading"><td colspan="2"><h2 class="groupheader"><a name="groups"></a>
Modules</h2></td></tr>
<tr class="memitem:group__grp__clustered__errors"><td class="memItemLeft" align="right" valign="top">&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="group__grp__clustered__errors.html">Clustered Variance</a></td></tr>
<tr class="memdesc:group__grp__clustered__errors"><td class="mdescLeft">&#160;</td><td class="mdescRight">Calculates clustered variance for linear, logistic, and multinomial logistic regression models, and Cox proportional hazards models. <br /></td></tr>
<tr class="separator:"><td class="memSeparator" colspan="2">&#160;</td></tr>
<tr class="memitem:group__grp__cox__prop__hazards"><td class="memItemLeft" align="right" valign="top">&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="group__grp__cox__prop__hazards.html">Cox-Proportional Hazards Regression</a></td></tr>
<tr class="memdesc:group__grp__cox__prop__hazards"><td class="mdescLeft">&#160;</td><td class="mdescRight">Models the relationship between one or more independent predictor variables and the amount of time before an event occurs. <br /></td></tr>
<tr class="separator:"><td class="memSeparator" colspan="2">&#160;</td></tr>
<tr class="memitem:group__grp__elasticnet"><td class="memItemLeft" align="right" valign="top">&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="group__grp__elasticnet.html">Elastic Net Regularization</a></td></tr>
<tr class="memdesc:group__grp__elasticnet"><td class="mdescLeft">&#160;</td><td class="mdescRight">Generates a regularized regression model for variable selection in linear and logistic regression problems, combining the L1 and L2 penalties of the lasso and ridge methods. <br /></td></tr>
<tr class="separator:"><td class="memSeparator" colspan="2">&#160;</td></tr>
<tr class="memitem:group__grp__glm"><td class="memItemLeft" align="right" valign="top">&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="group__grp__glm.html">Generalized Linear Models</a></td></tr>
<tr class="memdesc:group__grp__glm"><td class="mdescLeft">&#160;</td><td class="mdescRight">Estimate generalized linear model (GLM). GLM is a flexible generalization of ordinary linear regression that allows for response variables that have error distribution models other than a normal distribution. The GLM generalizes linear regression by allowing the linear model to be related to the response variable via a link function and by allowing the magnitude of the variance of each measurement to be a function of its predicted value. <br /></td></tr>
<tr class="separator:"><td class="memSeparator" colspan="2">&#160;</td></tr>
<tr class="memitem:group__grp__linreg"><td class="memItemLeft" align="right" valign="top">&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="group__grp__linreg.html">Linear Regression</a></td></tr>
<tr class="memdesc:group__grp__linreg"><td class="mdescLeft">&#160;</td><td class="mdescRight">Also called Ordinary Least Squares Regression, models linear relationship between a dependent variable and one or more independent variables. <br /></td></tr>
<tr class="separator:"><td class="memSeparator" colspan="2">&#160;</td></tr>
<tr class="memitem:group__grp__logreg"><td class="memItemLeft" align="right" valign="top">&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="group__grp__logreg.html">Logistic Regression</a></td></tr>
<tr class="memdesc:group__grp__logreg"><td class="mdescLeft">&#160;</td><td class="mdescRight">Models the relationship between one or more predictor variables and a binary categorical dependent variable by predicting the probability of the dependent variable using a logistic function. <br /></td></tr>
<tr class="separator:"><td class="memSeparator" colspan="2">&#160;</td></tr>
<tr class="memitem:group__grp__marginal"><td class="memItemLeft" align="right" valign="top">&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="group__grp__marginal.html">Marginal Effects</a></td></tr>
<tr class="memdesc:group__grp__marginal"><td class="mdescLeft">&#160;</td><td class="mdescRight">Calculates marginal effects for the coefficients in regression problems. <br /></td></tr>
<tr class="separator:"><td class="memSeparator" colspan="2">&#160;</td></tr>
<tr class="memitem:group__grp__multinom"><td class="memItemLeft" align="right" valign="top">&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="group__grp__multinom.html">Multinomial Regression</a></td></tr>
<tr class="memdesc:group__grp__multinom"><td class="mdescLeft">&#160;</td><td class="mdescRight">Multinomial regression is to model the conditional distribution of the multinomial response variable using a linear combination of predictors. <br /></td></tr>
<tr class="separator:"><td class="memSeparator" colspan="2">&#160;</td></tr>
<tr class="memitem:group__grp__ordinal"><td class="memItemLeft" align="right" valign="top">&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="group__grp__ordinal.html">Ordinal Regression</a></td></tr>
<tr class="memdesc:group__grp__ordinal"><td class="mdescLeft">&#160;</td><td class="mdescRight">Regression to model data with ordinal response variable. <br /></td></tr>
<tr class="separator:"><td class="memSeparator" colspan="2">&#160;</td></tr>
<tr class="memitem:group__grp__robust"><td class="memItemLeft" align="right" valign="top">&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="group__grp__robust.html">Robust Variance</a></td></tr>
<tr class="memdesc:group__grp__robust"><td class="mdescLeft">&#160;</td><td class="mdescRight">Calculates Huber-White variance estimates for linear, logistic, and multinomial regression models, and for Cox proportional hazards models. <br /></td></tr>
<tr class="separator:"><td class="memSeparator" colspan="2">&#160;</td></tr>
</table>
</div><!-- contents -->
</div><!-- doc-content -->
<!-- start footer part -->
<div id="nav-path" class="navpath"><!-- id is needed for treeview function! -->
<ul>
<li class="footer">Generated on Tue May 16 2017 13:24:38 for MADlib by
<a href="http://www.doxygen.org/index.html">
<img class="footer" src="doxygen.png" alt="doxygen"/></a> 1.8.13 </li>
</ul>
</div>
</body>
</html>