blob: 077979ef396df8a05de03f9b2abe920c63b53b7e [file] [log] [blame]
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/xhtml;charset=UTF-8"/>
<title>MADlib: Cox-Proportional Hazards Regression</title>
<link href="tabs.css" rel="stylesheet" type="text/css"/>
<link href="doxygen.css" rel="stylesheet" type="text/css" />
<link href="navtree.css" rel="stylesheet" type="text/css"/>
<script type="text/javascript" src="jquery.js"></script>
<script type="text/javascript" src="resize.js"></script>
<script type="text/javascript" src="navtree.js"></script>
<script type="text/javascript">
$(document).ready(initResizable);
</script>
<link href="search/search.css" rel="stylesheet" type="text/css"/>
<script type="text/javascript" src="search/search.js"></script>
<script type="text/javascript">
$(document).ready(function() { searchBox.OnSelectItem(0); });
</script>
<script src="../mathjax/MathJax.js">
MathJax.Hub.Config({
extensions: ["tex2jax.js", "TeX/AMSmath.js", "TeX/AMSsymbols.js"],
jax: ["input/TeX","output/HTML-CSS"],
});
</script>
</head>
<body>
<div id="top"><!-- do not remove this div! -->
<div id="titlearea">
<table cellspacing="0" cellpadding="0">
<tbody>
<tr style="height: 56px;">
<td style="padding-left: 0.5em;">
<div id="projectname">MADlib
&#160;<span id="projectnumber">0.6</span> <span style="font-size:10pt; font-style:italic"><a href="../latest/./group__grp__cox__prop__hazards.html"> A newer version is available</a></span>
</div>
<div id="projectbrief">User Documentation</div>
</td>
</tr>
</tbody>
</table>
</div>
<!-- Generated by Doxygen 1.7.5.1 -->
<script type="text/javascript">
var searchBox = new SearchBox("searchBox", "search",false,'Search');
</script>
<script type="text/javascript" src="dynsections.js"></script>
<div id="navrow1" class="tabs">
<ul class="tablist">
<li><a href="index.html"><span>Main&#160;Page</span></a></li>
<li><a href="modules.html"><span>Modules</span></a></li>
<li><a href="files.html"><span>Files</span></a></li>
<li>
<div id="MSearchBox" class="MSearchBoxInactive">
<span class="left">
<img id="MSearchSelect" src="search/mag_sel.png"
onmouseover="return searchBox.OnSearchSelectShow()"
onmouseout="return searchBox.OnSearchSelectHide()"
alt=""/>
<input type="text" id="MSearchField" value="Search" accesskey="S"
onfocus="searchBox.OnSearchFieldFocus(true)"
onblur="searchBox.OnSearchFieldFocus(false)"
onkeyup="searchBox.OnSearchFieldChange(event)"/>
</span><span class="right">
<a id="MSearchClose" href="javascript:searchBox.CloseResultsWindow()"><img id="MSearchCloseImg" border="0" src="search/close.png" alt=""/></a>
</span>
</div>
</li>
</ul>
</div>
</div>
<div id="side-nav" class="ui-resizable side-nav-resizable">
<div id="nav-tree">
<div id="nav-tree-contents">
</div>
</div>
<div id="splitbar" style="-moz-user-select:none;"
class="ui-resizable-handle">
</div>
</div>
<script type="text/javascript">
initNavTree('group__grp__cox__prop__hazards.html','');
</script>
<div id="doc-content">
<div class="header">
<div class="headertitle">
<div class="title">Cox-Proportional Hazards Regression</div> </div>
<div class="ingroups"><a class="el" href="group__grp__suplearn.html">Supervised Learning</a></div></div>
<div class="contents">
<div id="dynsection-0" onclick="return toggleVisibility(this)" class="dynheader closed" style="cursor:pointer;">
<img id="dynsection-0-trigger" src="closed.png" alt="+"/> Collaboration diagram for Cox-Proportional Hazards Regression:</div>
<div id="dynsection-0-summary" class="dynsummary" style="display:block;">
</div>
<div id="dynsection-0-content" class="dyncontent" style="display:none;">
<center><table><tr><td><div class="center"><iframe scrolling="no" frameborder="0" src="group__grp__cox__prop__hazards.svg" width="472" height="40"><p><b>This browser is not able to show SVG: try Firefox, Chrome, Safari, or Opera instead.</b></p></iframe>
</div>
</td></tr></table></center>
</div>
<dl class="user"><dt><b>About:</b></dt><dd>Proportional-Hazard models enable the comparison of various survival models. These survival models are functions describing the probability of an one-item event (prototypically, this event is death) with respect to time. The interval of time before death occurs is the survival time. Let T be a random variable representing the survival time, with a cumulative probability function P(t). Informally, P(t) is the probability that death has happened before time t.</dd></dl>
<p>Generally, applications start with a list of \( \boldsymbol n \) observations, each with \( \boldsymbol m \) covariates and a time of death. From this \( \boldsymbol n \times m \) matrix, we would like to derive the correlation between the covariates and the hazard function. This amounts to finding the parameters \( \boldsymbol \beta \) that best fit the model described below.</p>
<p>Let us define:</p>
<ul>
<li>\( \boldsymbol t \in \mathbf R^{m} \) denote the vector of observed dependent variables, with \( n \) rows.</li>
<li>\( X \in \mathbf R^{m} \) denote the design matrix with \( m \) columns and \( n \) rows, containing all observed vectors of independent variables \( \boldsymbol x_i \) as rows.</li>
<li>\( R(t_i) \) denote the set of observations still alive at time \( t_i \)</li>
</ul>
<p>Note that this model <b>does not</b> include a <b>constant term</b>, and the data cannot contain a column of 1s.</p>
<p>By definition, </p>
<p class="formulaDsp">
\[ P[T_k = t_i | \boldsymbol R(t_i)] = \frac{e^{\beta^T x_k} }{ \sum_{j \in R(t_i)} e^{\beta^T x_j}}. \,. \]
</p>
<p>The <b>partial likelihood </b>function can now be generated as the product of conditional probabilities: </p>
<p class="formulaDsp">
\[ \mathcal L = \prod_{i = 1}^n \left( \frac{e^{\beta^T x_i}}{ \sum_{j \in R(t_i)} e^{\beta^T x_j}} \right). \]
</p>
<p>The log-likelihood form of this equation is </p>
<p class="formulaDsp">
\[ L = \sum_{i = 1}^n \left[ \beta^T x_i - \log\left(\sum_{j \in R(t_i)} e^{\beta^T x_j }\right) \right]. \]
</p>
<p>Using this score function and Hessian matrix, the partial likelihood can be maximized using the <b> Newton-Raphson algorithm </b>.<b> Breslow's method </b> is used to resolved tied times of deaths. The time of death for two records are considered "equal" if they differ by less than 1.0e-6</p>
<p>The inverse of the Hessian matrix, evaluated at the estimate of \( \boldsymbol \beta \), can be used as an <b>approximate variance-covariance matrix </b> for the estimate, and used to produce approximate <b>standard errors</b> for the regression coefficients.</p>
<p class="formulaDsp">
\[ \mathit{se}(c_i) = \left( (H)^{-1} \right)_{ii} \,. \]
</p>
<p> The Wald z-statistic is </p>
<p class="formulaDsp">
\[ z_i = \frac{c_i}{\mathit{se}(c_i)} \,. \]
</p>
<p>The Wald \( p \)-value for coefficient \( i \) gives the probability (under the assumptions inherent in the Wald test) of seeing a value at least as extreme as the one observed, provided that the null hypothesis ( \( c_i = 0 \)) is true. Letting \( F \) denote the cumulative density function of a standard normal distribution, the Wald \( p \)-value for coefficient \( i \) is therefore </p>
<p class="formulaDsp">
\[ p_i = \Pr(|Z| \geq |z_i|) = 2 \cdot (1 - F( |z_i| )) \]
</p>
<p> where \( Z \) is a standard normally distributed random variable.</p>
<p>The condition number is computed as \( \kappa(H) \) during the iteration immediately <em>preceding</em> convergence (i.e., \( A \) is computed using the coefficients of the previous iteration). A large condition number (say, more than 1000) indicates the presence of significant multicollinearity.</p>
<dl class="user"><dt><b>Input:</b></dt><dd></dd></dl>
<p>The training data is expected to be of the following form:<br/>
</p>
<pre>{TABLE|VIEW} <em>sourceName</em> (
...
<em>dependentVariable</em> FLOAT8,
<em>independentVariables</em> FLOAT8[],
...
)</pre><p> Note: Dependent Variables refer to the time of death. There is no need to pre-sort the data. Additionally, all the data is assumed</p>
<dl class="user"><dt><b>Usage:</b></dt><dd><ul>
<li>Get vector of coefficients \( \boldsymbol \beta \) and all diagnostic statistics:<br/>
<pre>SELECT * FROM <a class="el" href="cox__prop__hazards_8sql__in.html#a9c04e1fd1353bb3cfb942b6251851179">cox_prop_hazards</a>(
'<em>sourceName</em>', '<em>dependentVariable</em>', '<em>independentVariables</em>'
[, <em>numberOfIterations</em> [, '<em>optimizer</em>' [, <em>precision</em> ] ] ]
);</pre> Output: Output: <pre>coef | log_likelihood | std_err | z_stats | p_values | condition_no | num_iterations
...
</pre></li>
<li>Get vector of coefficients \( \boldsymbol \beta \):<br/>
<pre>SELECT (<a class="el" href="cox__prop__hazards_8sql__in.html#a9c04e1fd1353bb3cfb942b6251851179">cox_prop_hazards</a>('<em>sourceName</em>', '<em>dependentVariable</em>', '<em>independentVariables</em>')).coef;</pre></li>
<li>Get a subset of the output columns, e.g., only the array of coefficients \( \boldsymbol \beta \), the log-likelihood of determination: <pre>SELECT coef, log_likelihood
FROM <a class="el" href="cox__prop__hazards_8sql__in.html#a9c04e1fd1353bb3cfb942b6251851179">cox_prop_hazards</a>('<em>sourceName</em>', '<em>dependentVariable</em>', '<em>independentVariables</em>');</pre></li>
</ul>
</dd></dl>
<dl class="user"><dt><b>Examples:</b></dt><dd></dd></dl>
<ol type="1">
<li>Create the sample data set: <div class="fragment"><pre class="fragment">
sql&gt; SELECT * FROM data;
val | time
------------|--------------
{0,1.95} | 35
{0,2.20} | 28
{1,1.45} | 32
{1,5.25} | 31
{1,0.38} | 21
...
</pre></div></li>
<li>Run the cox regression function: <div class="fragment"><pre class="fragment">
sql&gt; SELECT * FROM cox_prop_hazards('data', 'val', 'time', 100, 'newto', 0.001);
---------------|--------------------------------------------------------------
coef | {0.881089349817059,-0.0756817768938055}
log_likelihood | -4.46535157957394
std_err | {1.16954914708414,0.338426252282655}
z_stats | {0.753356711368689,-0.223628410729811}
p_values | {0.451235588326831,0.823046454908087}
condition_no | 12.1135391339082
num_iterations | 4
</pre></div></li>
</ol>
<dl class="user"><dt><b>Literature:</b></dt><dd></dd></dl>
<p>A somewhat random selection of nice write-ups, with valuable pointers into further literature:</p>
<p>[1] John Fox: Cox Proportional-Hazards Regression for Survival Data, Appendix to An R and S-PLUS companion to Applied Regression Feb 2012, <a href="http://cran.r-project.org/doc/contrib/Fox-Companion/appendix-cox-regression.pdf">http://cran.r-project.org/doc/contrib/Fox-Companion/appendix-cox-regression.pdf</a></p>
<p>[2] Stephen J Walters: What is a Cox model? <a href="http://www.medicine.ox.ac.uk/bandolier/painres/download/whatis/cox_model.pdf">http://www.medicine.ox.ac.uk/bandolier/painres/download/whatis/cox_model.pdf</a></p>
<dl class="note"><dt><b>Note:</b></dt><dd>Source and column names have to be passed as strings (due to limitations of the SQL syntax).</dd></dl>
<dl class="see"><dt><b>See also:</b></dt><dd>File <a class="el" href="cox__prop__hazards_8sql__in.html" title="SQL functions for cox proportional hazards.">cox_prop_hazards.sql_in</a> (documenting the SQL functions) </dd></dl>
</div>
</div>
<div id="nav-path" class="navpath">
<ul>
<!-- window showing the filter options -->
<div id="MSearchSelectWindow"
onmouseover="return searchBox.OnSearchSelectShow()"
onmouseout="return searchBox.OnSearchSelectHide()"
onkeydown="return searchBox.OnSearchSelectKey(event)">
<a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(0)"><span class="SelectionMark">&#160;</span>All</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(1)"><span class="SelectionMark">&#160;</span>Files</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(2)"><span class="SelectionMark">&#160;</span>Functions</a></div>
<!-- iframe showing the search results (closed by default) -->
<div id="MSearchResultsWindow">
<iframe src="javascript:void(0)" frameborder="0"
name="MSearchResults" id="MSearchResults">
</iframe>
</div>
<li class="footer">Generated on Tue Apr 2 2013 14:57:03 for MADlib by
<a href="http://www.doxygen.org/index.html">
<img class="footer" src="doxygen.png" alt="doxygen"/></a> 1.7.5.1 </li>
</ul>
</div>
</body>
</html>