blob: a59a61945120cbf0de37ac08ea83cc88cefc6e2d [file] [log] [blame]
using J2N.Numerics;
using Lucene.Net.Diagnostics;
using Lucene.Net.Support;
using System;
using System.Runtime.CompilerServices;
namespace Lucene.Net.Util.Packed
{
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/// <summary>
/// Utility class to buffer signed longs in memory, which is optimized for the
/// case where the sequence is monotonic, although it can encode any sequence of
/// arbitrary longs. It only supports appending.
/// <para/>
/// NOTE: This was MonotonicAppendingLongBuffer in Lucene.
/// <para/>
/// @lucene.internal
/// </summary>
public sealed class MonotonicAppendingInt64Buffer : AbstractAppendingInt64Buffer
{
[MethodImpl(MethodImplOptions.AggressiveInlining)]
internal static long ZigZagDecode(long n)
{
return (n.TripleShift(1) ^ -(n & 1));
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
internal static long ZigZagEncode(long n)
{
return (n >> 63) ^ (n << 1);
}
internal float[] averages;
internal long[] minValues;
/// <param name="initialPageCount"> The initial number of pages. </param>
/// <param name="pageSize"> The size of a single page. </param>
/// <param name="acceptableOverheadRatio"> An acceptable overhead ratio per value. </param>
public MonotonicAppendingInt64Buffer(int initialPageCount, int pageSize, float acceptableOverheadRatio)
: base(initialPageCount, pageSize, acceptableOverheadRatio)
{
averages = new float[values.Length];
minValues = new long[values.Length];
}
/// <summary>
/// Create an <see cref="MonotonicAppendingInt64Buffer"/> with initialPageCount=16,
/// pageSize=1024 and acceptableOverheadRatio=<see cref="PackedInt32s.DEFAULT"/>.
/// </summary>
public MonotonicAppendingInt64Buffer()
: this(16, 1024, PackedInt32s.DEFAULT)
{
}
/// <summary>
/// Create an <see cref="AppendingDeltaPackedInt64Buffer"/> with initialPageCount=16,
/// pageSize=1024.
/// </summary>
public MonotonicAppendingInt64Buffer(float acceptableOverheadRatio)
: this(16, 1024, acceptableOverheadRatio)
{
}
internal override long Get(int block, int element)
{
if (block == valuesOff)
{
return pending[element];
}
else
{
// LUCENENET NOTE: IMPORTANT: The cast to float is critical here for it to work in x86
long @base = minValues[block] + (long)(float)(averages[block] * (long)element);
if (values[block] == null)
{
return @base;
}
else
{
return @base + ZigZagDecode(values[block].Get(element));
}
}
}
internal override int Get(int block, int element, long[] arr, int off, int len)
{
if (block == valuesOff)
{
int sysCopyToRead = Math.Min(len, pendingOff - element);
Array.Copy(pending, element, arr, off, sysCopyToRead);
return sysCopyToRead;
}
else
{
if (values[block] == null)
{
int toFill = Math.Min(len, pending.Length - element);
for (int r = 0; r < toFill; r++, off++, element++)
{
// LUCENENET NOTE: IMPORTANT: The cast to float is critical here for it to work in x86
arr[off] = minValues[block] + (long)(float)(averages[block] * (long)element);
}
return toFill;
}
else
{
/* packed block */
int read = values[block].Get(element, arr, off, len);
for (int r = 0; r < read; r++, off++, element++)
{
// LUCENENET NOTE: IMPORTANT: The cast to float is critical here for it to work in x86
arr[off] = minValues[block] + (long)(float)(averages[block] * (long)element) + ZigZagDecode(arr[off]);
}
return read;
}
}
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
internal override void Grow(int newBlockCount)
{
base.Grow(newBlockCount);
this.averages = Arrays.CopyOf(averages, newBlockCount);
this.minValues = Arrays.CopyOf(minValues, newBlockCount);
}
internal override void PackPendingValues()
{
if (Debugging.AssertsEnabled) Debugging.Assert(pendingOff > 0);
minValues[valuesOff] = pending[0];
averages[valuesOff] = pendingOff == 1 ? 0 : (float)(pending[pendingOff - 1] - pending[0]) / (pendingOff - 1);
for (int i = 0; i < pendingOff; ++i)
{
// LUCENENET NOTE: IMPORTANT: The cast to float is critical here for it to work in x86
pending[i] = ZigZagEncode(pending[i] - minValues[valuesOff] - (long)(float)(averages[valuesOff] * (long)i));
}
long maxDelta = 0;
for (int i = 0; i < pendingOff; ++i)
{
if (pending[i] < 0)
{
maxDelta = -1;
break;
}
else
{
maxDelta = Math.Max(maxDelta, pending[i]);
}
}
if (maxDelta == 0)
{
values[valuesOff] = new PackedInt32s.NullReader(pendingOff);
}
else
{
int bitsRequired = maxDelta < 0 ? 64 : PackedInt32s.BitsRequired(maxDelta);
PackedInt32s.Mutable mutable = PackedInt32s.GetMutable(pendingOff, bitsRequired, acceptableOverheadRatio);
for (int i = 0; i < pendingOff; )
{
i += mutable.Set(i, pending, i, pendingOff - i);
}
values[valuesOff] = mutable;
}
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
internal override long BaseRamBytesUsed()
{
return base.BaseRamBytesUsed() + 2 * RamUsageEstimator.NUM_BYTES_OBJECT_REF; // 2 additional arrays
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public override long RamBytesUsed()
{
return base.RamBytesUsed() + RamUsageEstimator.SizeOf(averages) + RamUsageEstimator.SizeOf(minValues);
}
}
}