blob: 58e3b93824f1ff4001dff4aed924a6f8bd146856 [file] [log] [blame]
package org.apache.lucene.util;
/**
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
import java.util.Arrays;
import java.util.List;
import java.util.concurrent.atomic.AtomicLong;
import static org.apache.lucene.util.RamUsageEstimator.NUM_BYTES_OBJECT_REF;
/**
* Class that Posting and PostingVector use to write byte
* streams into shared fixed-size byte[] arrays. The idea
* is to allocate slices of increasing lengths For
* example, the first slice is 5 bytes, the next slice is
* 14, etc. We start by writing our bytes into the first
* 5 bytes. When we hit the end of the slice, we allocate
* the next slice and then write the address of the new
* slice into the last 4 bytes of the previous slice (the
* "forwarding address").
*
* Each slice is filled with 0's initially, and we mark
* the end with a non-zero byte. This way the methods
* that are writing into the slice don't need to record
* its length and instead allocate a new slice once they
* hit a non-zero byte.
*
* @lucene.internal
**/
public final class ByteBlockPool {
public final static int BYTE_BLOCK_SHIFT = 15;
public final static int BYTE_BLOCK_SIZE = 1 << BYTE_BLOCK_SHIFT;
public final static int BYTE_BLOCK_MASK = BYTE_BLOCK_SIZE - 1;
public abstract static class Allocator {
protected final int blockSize;
public Allocator(int blockSize) {
this.blockSize = blockSize;
}
public abstract void recycleByteBlocks(byte[][] blocks, int start, int end);
public void recycleByteBlocks(List<byte[]> blocks) {
final byte[][] b = blocks.toArray(new byte[blocks.size()][]);
recycleByteBlocks(b, 0, b.length);
}
public byte[] getByteBlock() {
return new byte[blockSize];
}
}
public static final class DirectAllocator extends Allocator {
public DirectAllocator() {
this(BYTE_BLOCK_SIZE);
}
public DirectAllocator(int blockSize) {
super(blockSize);
}
@Override
public void recycleByteBlocks(byte[][] blocks, int start, int end) {
}
}
public static class DirectTrackingAllocator extends Allocator {
private final AtomicLong bytesUsed;
public DirectTrackingAllocator(AtomicLong bytesUsed) {
this(BYTE_BLOCK_SIZE, bytesUsed);
}
public DirectTrackingAllocator(int blockSize, AtomicLong bytesUsed) {
super(blockSize);
this.bytesUsed = bytesUsed;
}
public byte[] getByteBlock() {
bytesUsed.addAndGet(blockSize);
return new byte[blockSize];
}
@Override
public void recycleByteBlocks(byte[][] blocks, int start, int end) {
bytesUsed.addAndGet(-((end-start)* blockSize));
for (int i = start; i < end; i++) {
blocks[i] = null;
}
}
};
public byte[][] buffers = new byte[10][];
int bufferUpto = -1; // Which buffer we are upto
public int byteUpto = BYTE_BLOCK_SIZE; // Where we are in head buffer
public byte[] buffer; // Current head buffer
public int byteOffset = -BYTE_BLOCK_SIZE; // Current head offset
private final Allocator allocator;
public ByteBlockPool(Allocator allocator) {
this.allocator = allocator;
}
public void dropBuffersAndReset() {
if (bufferUpto != -1) {
// Recycle all but the first buffer
allocator.recycleByteBlocks(buffers, 0, 1+bufferUpto);
// Re-use the first buffer
bufferUpto = -1;
byteUpto = BYTE_BLOCK_SIZE;
byteOffset = -BYTE_BLOCK_SIZE;
buffers = new byte[10][];
buffer = null;
}
}
public void reset() {
if (bufferUpto != -1) {
// We allocated at least one buffer
for(int i=0;i<bufferUpto;i++)
// Fully zero fill buffers that we fully used
Arrays.fill(buffers[i], (byte) 0);
// Partial zero fill the final buffer
Arrays.fill(buffers[bufferUpto], 0, byteUpto, (byte) 0);
if (bufferUpto > 0)
// Recycle all but the first buffer
allocator.recycleByteBlocks(buffers, 1, 1+bufferUpto);
// Re-use the first buffer
bufferUpto = 0;
byteUpto = 0;
byteOffset = 0;
buffer = buffers[0];
}
}
public void nextBuffer() {
if (1+bufferUpto == buffers.length) {
byte[][] newBuffers = new byte[ArrayUtil.oversize(buffers.length+1,
NUM_BYTES_OBJECT_REF)][];
System.arraycopy(buffers, 0, newBuffers, 0, buffers.length);
buffers = newBuffers;
}
buffer = buffers[1+bufferUpto] = allocator.getByteBlock();
bufferUpto++;
byteUpto = 0;
byteOffset += BYTE_BLOCK_SIZE;
}
public int newSlice(final int size) {
if (byteUpto > BYTE_BLOCK_SIZE-size)
nextBuffer();
final int upto = byteUpto;
byteUpto += size;
buffer[byteUpto-1] = 16;
return upto;
}
// Size of each slice. These arrays should be at most 16
// elements (index is encoded with 4 bits). First array
// is just a compact way to encode X+1 with a max. Second
// array is the length of each slice, ie first slice is 5
// bytes, next slice is 14 bytes, etc.
public final static int[] nextLevelArray = {1, 2, 3, 4, 5, 6, 7, 8, 9, 9};
public final static int[] levelSizeArray = {5, 14, 20, 30, 40, 40, 80, 80, 120, 200};
public final static int FIRST_LEVEL_SIZE = levelSizeArray[0];
public int allocSlice(final byte[] slice, final int upto) {
final int level = slice[upto] & 15;
final int newLevel = nextLevelArray[level];
final int newSize = levelSizeArray[newLevel];
// Maybe allocate another block
if (byteUpto > BYTE_BLOCK_SIZE-newSize)
nextBuffer();
final int newUpto = byteUpto;
final int offset = newUpto + byteOffset;
byteUpto += newSize;
// Copy forward the past 3 bytes (which we are about
// to overwrite with the forwarding address):
buffer[newUpto] = slice[upto-3];
buffer[newUpto+1] = slice[upto-2];
buffer[newUpto+2] = slice[upto-1];
// Write forwarding address at end of last slice:
slice[upto-3] = (byte) (offset >>> 24);
slice[upto-2] = (byte) (offset >>> 16);
slice[upto-1] = (byte) (offset >>> 8);
slice[upto] = (byte) offset;
// Write new level:
buffer[byteUpto-1] = (byte) (16|newLevel);
return newUpto+3;
}
// Fill in a BytesRef from term's length & bytes encoded in
// byte block
public final BytesRef setBytesRef(BytesRef term, int textStart) {
final byte[] bytes = term.bytes = buffers[textStart >> BYTE_BLOCK_SHIFT];
int pos = textStart & BYTE_BLOCK_MASK;
if ((bytes[pos] & 0x80) == 0) {
// length is 1 byte
term.length = bytes[pos];
term.offset = pos+1;
} else {
// length is 2 bytes
term.length = (bytes[pos]&0x7f) + ((bytes[pos+1]&0xff)<<7);
term.offset = pos+2;
}
assert term.length >= 0;
return term;
}
}