KUDU-3475: Update to the most recent sse2neon.h

ARM builds on Ubuntu 20.04 hit an error about the
redeclaration of vld1q_u8_x4 in sse2neon.h. This is
because Ubuntu 20.04 uses GCC 9.4, which has its own
definition of vld1q_u8_x4, and the preprocessor checks
in the current sse2neon.h don't account for this
correctly.

Newer versions of sse2neon.h have namespaced their
macros so that vld1q_u8_x4 is no longer used and
improved the checks for GCC versions. This updates
sse2neon.h to the latest available (commithash b7417bc).

sse2neon.h has a large number of lint issues related
to style (whitespace/braces, readability/casting) and
none look like real correctness issues, so this exempts
sse2neon.h from lint.

Testing:
 - Built Kudu on Ubuntu 20.04 ARM64 and Ubuntu 18.04 ARM64

Change-Id: Id156a0b2c3984f9cb1032fa7747d7f9ed76c1f8c
Reviewed-on: http://gerrit.cloudera.org:8080/19847
Tested-by: Kudu Jenkins
Reviewed-by: Alexey Serbin <alexey@apache.org>
Reviewed-by: Yingchun Lai <laiyingchun@apache.org>
diff --git a/build-support/lint.sh b/build-support/lint.sh
index 7f10f83..df5e0cd 100755
--- a/build-support/lint.sh
+++ b/build-support/lint.sh
@@ -38,13 +38,13 @@
 
 if $ONLY_CHANGED; then
   FILES=$(git diff --name-only $($ROOT/build-support/get-upstream-commit.sh)  \
-    | egrep  '\.(cc|h)$' | grep -v "gutil\|trace_event\|x509_check_host")
+    | egrep  '\.(cc|h)$' | grep -v "gutil\|trace_event\|x509_check_host\|sse2neon\.h")
   if [ -z "$FILES" ]; then
     echo No source files changed
     exit 0
   fi
 else
-  FILES=$(find $ROOT/src -name '*.cc' -or -name '*.h' | grep -v "\.pb\.\|\.service\.\|\.proxy\.\|\.krpc\.\|gutil\|trace_event\|kudu_export\.h\|x509_check_host")
+  FILES=$(find $ROOT/src -name '*.cc' -or -name '*.h' | grep -v "\.pb\.\|\.service\.\|\.proxy\.\|\.krpc\.\|gutil\|trace_event\|kudu_export\.h\|x509_check_host\|sse2neon\.h")
 fi
 
 cpplint_filter="+runtime/broken_libstdcpp_regex,-whitespace/comments,-readability/todo,-readability/inheritance,-build/header_guard,-build/include_order,-legal/copyright,-build/c++11,-readability/nolint"
diff --git a/src/kudu/util/sse2neon.h b/src/kudu/util/sse2neon.h
index 79534cd..efa63a4 100644
--- a/src/kudu/util/sse2neon.h
+++ b/src/kudu/util/sse2neon.h
@@ -4,8 +4,6 @@
 // This header file provides a simple API translation layer
 // between SSE intrinsics to their corresponding Arm/Aarch64 NEON versions
 //
-// This header file does not yet translate all of the SSE intrinsics.
-//
 // Contributors to this work are:
 //   John W. Ratcliff <jratcliffscarab@gmail.com>
 //   Brandon Rowlett <browlett@nvidia.com>
@@ -13,13 +11,24 @@
 //   Eric van Beurden <evanbeurden@nvidia.com>
 //   Alexander Potylitsin <apotylitsin@nvidia.com>
 //   Hasindu Gamaarachchi <hasindu2008@gmail.com>
-//   Jim Huang <jserv@biilabs.io>
-//   Mark Cheng <marktwtn@biilabs.io>
+//   Jim Huang <jserv@ccns.ncku.edu.tw>
+//   Mark Cheng <marktwtn@gmail.com>
 //   Malcolm James MacLeod <malcolm@gulden.com>
 //   Devin Hussey (easyaspi314) <husseydevin@gmail.com>
+//   Sebastian Pop <spop@amazon.com>
+//   Developer Ecosystem Engineering <DeveloperEcosystemEngineering@apple.com>
+//   Danila Kutenin <danilak@google.com>
+//   François Turban (JishinMaster) <francois.turban@gmail.com>
+//   Pei-Hsuan Hung <afcidk@gmail.com>
+//   Yang-Hao Yuan <yuanyanghau@gmail.com>
+//   Syoyo Fujita <syoyo@lighttransport.com>
+//   Brecht Van Lommel <brecht@blender.org>
+//   Jonathan Hue <jhue@adobe.com>
+//   Cuda Chen <clh960524@gmail.com>
+//   Aymen Qader <aymen.qader@arm.com>
 
 /*
- * The MIT license:
+ * sse2neon is freely redistributable under the MIT License.
  *
  * Permission is hereby granted, free of charge, to any person obtaining a copy
  * of this software and associated documentation files (the "Software"), to deal
@@ -40,30 +49,192 @@
  * SOFTWARE.
  */
 
-#if defined(__GNUC__) || defined(__clang__)
+/* Tunable configurations */
 
+/* Enable precise implementation of math operations
+ * This would slow down the computation a bit, but gives consistent result with
+ * x86 SSE. (e.g. would solve a hole or NaN pixel in the rendering result)
+ */
+/* _mm_min|max_ps|ss|pd|sd */
+#ifndef SSE2NEON_PRECISE_MINMAX
+#define SSE2NEON_PRECISE_MINMAX (0)
+#endif
+/* _mm_rcp_ps and _mm_div_ps */
+#ifndef SSE2NEON_PRECISE_DIV
+#define SSE2NEON_PRECISE_DIV (0)
+#endif
+/* _mm_sqrt_ps and _mm_rsqrt_ps */
+#ifndef SSE2NEON_PRECISE_SQRT
+#define SSE2NEON_PRECISE_SQRT (0)
+#endif
+/* _mm_dp_pd */
+#ifndef SSE2NEON_PRECISE_DP
+#define SSE2NEON_PRECISE_DP (0)
+#endif
+
+/* compiler specific definitions */
+#if defined(__GNUC__) || defined(__clang__)
 #pragma push_macro("FORCE_INLINE")
 #pragma push_macro("ALIGN_STRUCT")
 #define FORCE_INLINE static inline __attribute__((always_inline))
 #define ALIGN_STRUCT(x) __attribute__((aligned(x)))
-
-#else
-
-#error "Macro name collisions may happens with unknown compiler"
-#ifdef FORCE_INLINE
-#undef FORCE_INLINE
-#endif
+#define _sse2neon_likely(x) __builtin_expect(!!(x), 1)
+#define _sse2neon_unlikely(x) __builtin_expect(!!(x), 0)
+#else /* non-GNU / non-clang compilers */
+#warning "Macro name collisions may happen with unsupported compiler."
+#ifndef FORCE_INLINE
 #define FORCE_INLINE static inline
+#endif
 #ifndef ALIGN_STRUCT
 #define ALIGN_STRUCT(x) __declspec(align(x))
 #endif
+#define _sse2neon_likely(x) (x)
+#define _sse2neon_unlikely(x) (x)
+#endif
 
+/* C language does not allow initializing a variable with a function call. */
+#ifdef __cplusplus
+#define _sse2neon_const static const
+#else
+#define _sse2neon_const const
 #endif
 
 #include <stdint.h>
 #include <stdlib.h>
 
+#if defined(_WIN32)
+/* Definitions for _mm_{malloc,free} are provided by <malloc.h>
+ * from both MinGW-w64 and MSVC.
+ */
+#define SSE2NEON_ALLOC_DEFINED
+#endif
+
+/* If using MSVC */
+#ifdef _MSC_VER
+#include <intrin.h>
+#if (defined(_M_AMD64) || defined(__x86_64__)) || \
+    (defined(_M_ARM64) || defined(__arm64__))
+#define SSE2NEON_HAS_BITSCAN64
+#endif
+#endif
+
+/* Compiler barrier */
+#define SSE2NEON_BARRIER()                     \
+    do {                                       \
+        __asm__ __volatile__("" ::: "memory"); \
+        (void) 0;                              \
+    } while (0)
+
+/* Memory barriers
+ * __atomic_thread_fence does not include a compiler barrier; instead,
+ * the barrier is part of __atomic_load/__atomic_store's "volatile-like"
+ * semantics.
+ */
+#if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201112L)
+#include <stdatomic.h>
+#endif
+
+FORCE_INLINE void _sse2neon_smp_mb(void)
+{
+    SSE2NEON_BARRIER();
+#if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201112L) && \
+    !defined(__STDC_NO_ATOMICS__)
+    atomic_thread_fence(memory_order_seq_cst);
+#elif defined(__GNUC__) || defined(__clang__)
+    __atomic_thread_fence(__ATOMIC_SEQ_CST);
+#else
+    /* FIXME: MSVC support */
+#endif
+}
+
+/* Architecture-specific build options */
+/* FIXME: #pragma GCC push_options is only available on GCC */
+#if defined(__GNUC__)
+#if defined(__arm__) && __ARM_ARCH == 7
+/* According to ARM C Language Extensions Architecture specification,
+ * __ARM_NEON is defined to a value indicating the Advanced SIMD (NEON)
+ * architecture supported.
+ */
+#if !defined(__ARM_NEON) || !defined(__ARM_NEON__)
+#error "You must enable NEON instructions (e.g. -mfpu=neon) to use SSE2NEON."
+#endif
+#if !defined(__clang__)
+#pragma GCC push_options
+#pragma GCC target("fpu=neon")
+#endif
+#elif defined(__aarch64__)
+#if !defined(__clang__)
+#pragma GCC push_options
+#pragma GCC target("+simd")
+#endif
+#elif __ARM_ARCH == 8
+#if !defined(__ARM_NEON) || !defined(__ARM_NEON__)
+#error \
+    "You must enable NEON instructions (e.g. -mfpu=neon-fp-armv8) to use SSE2NEON."
+#endif
+#if !defined(__clang__)
+#pragma GCC push_options
+#endif
+#else
+#error "Unsupported target. Must be either ARMv7-A+NEON or ARMv8-A."
+#endif
+#endif
+
 #include <arm_neon.h>
+#if !defined(__aarch64__) && (__ARM_ARCH == 8)
+#if defined __has_include && __has_include(<arm_acle.h>)
+#include <arm_acle.h>
+#endif
+#endif
+
+/* Apple Silicon cache lines are double of what is commonly used by Intel, AMD
+ * and other Arm microarchtectures use.
+ * From sysctl -a on Apple M1:
+ * hw.cachelinesize: 128
+ */
+#if defined(__APPLE__) && (defined(__aarch64__) || defined(__arm64__))
+#define SSE2NEON_CACHELINE_SIZE 128
+#else
+#define SSE2NEON_CACHELINE_SIZE 64
+#endif
+
+/* Rounding functions require either Aarch64 instructions or libm failback */
+#if !defined(__aarch64__)
+#include <math.h>
+#endif
+
+/* On ARMv7, some registers, such as PMUSERENR and PMCCNTR, are read-only
+ * or even not accessible in user mode.
+ * To write or access to these registers in user mode,
+ * we have to perform syscall instead.
+ */
+#if !defined(__aarch64__)
+#include <sys/time.h>
+#endif
+
+/* "__has_builtin" can be used to query support for built-in functions
+ * provided by gcc/clang and other compilers that support it.
+ */
+#ifndef __has_builtin /* GCC prior to 10 or non-clang compilers */
+/* Compatibility with gcc <= 9 */
+#if defined(__GNUC__) && (__GNUC__ <= 9)
+#define __has_builtin(x) HAS##x
+#define HAS__builtin_popcount 1
+#define HAS__builtin_popcountll 1
+
+// __builtin_shuffle introduced in GCC 4.7.0
+#if (__GNUC__ >= 5) || ((__GNUC__ == 4) && (__GNUC_MINOR__ >= 7))
+#define HAS__builtin_shuffle 1
+#else
+#define HAS__builtin_shuffle 0
+#endif
+
+#define HAS__builtin_shufflevector 0
+#define HAS__builtin_nontemporal_store 0
+#else
+#define __has_builtin(x) 0
+#endif
+#endif
 
 /**
  * MACRO for shuffle parameter for _mm_shuffle_ps().
@@ -74,18 +245,87 @@
  * fp0 is the same for fp0 of result.
  */
 #define _MM_SHUFFLE(fp3, fp2, fp1, fp0) \
-  (((fp3) << 6) | ((fp2) << 4) | ((fp1) << 2) | ((fp0)))
+    (((fp3) << 6) | ((fp2) << 4) | ((fp1) << 2) | ((fp0)))
+
+#if __has_builtin(__builtin_shufflevector)
+#define _sse2neon_shuffle(type, a, b, ...) \
+    __builtin_shufflevector(a, b, __VA_ARGS__)
+#elif __has_builtin(__builtin_shuffle)
+#define _sse2neon_shuffle(type, a, b, ...) \
+    __extension__({                        \
+        type tmp = {__VA_ARGS__};          \
+        __builtin_shuffle(a, b, tmp);      \
+    })
+#endif
+
+#ifdef _sse2neon_shuffle
+#define vshuffle_s16(a, b, ...) _sse2neon_shuffle(int16x4_t, a, b, __VA_ARGS__)
+#define vshuffleq_s16(a, b, ...) _sse2neon_shuffle(int16x8_t, a, b, __VA_ARGS__)
+#define vshuffle_s32(a, b, ...) _sse2neon_shuffle(int32x2_t, a, b, __VA_ARGS__)
+#define vshuffleq_s32(a, b, ...) _sse2neon_shuffle(int32x4_t, a, b, __VA_ARGS__)
+#define vshuffle_s64(a, b, ...) _sse2neon_shuffle(int64x1_t, a, b, __VA_ARGS__)
+#define vshuffleq_s64(a, b, ...) _sse2neon_shuffle(int64x2_t, a, b, __VA_ARGS__)
+#endif
+
+/* Rounding mode macros. */
+#define _MM_FROUND_TO_NEAREST_INT 0x00
+#define _MM_FROUND_TO_NEG_INF 0x01
+#define _MM_FROUND_TO_POS_INF 0x02
+#define _MM_FROUND_TO_ZERO 0x03
+#define _MM_FROUND_CUR_DIRECTION 0x04
+#define _MM_FROUND_NO_EXC 0x08
+#define _MM_FROUND_RAISE_EXC 0x00
+#define _MM_FROUND_NINT (_MM_FROUND_TO_NEAREST_INT | _MM_FROUND_RAISE_EXC)
+#define _MM_FROUND_FLOOR (_MM_FROUND_TO_NEG_INF | _MM_FROUND_RAISE_EXC)
+#define _MM_FROUND_CEIL (_MM_FROUND_TO_POS_INF | _MM_FROUND_RAISE_EXC)
+#define _MM_FROUND_TRUNC (_MM_FROUND_TO_ZERO | _MM_FROUND_RAISE_EXC)
+#define _MM_FROUND_RINT (_MM_FROUND_CUR_DIRECTION | _MM_FROUND_RAISE_EXC)
+#define _MM_FROUND_NEARBYINT (_MM_FROUND_CUR_DIRECTION | _MM_FROUND_NO_EXC)
+#define _MM_ROUND_NEAREST 0x0000
+#define _MM_ROUND_DOWN 0x2000
+#define _MM_ROUND_UP 0x4000
+#define _MM_ROUND_TOWARD_ZERO 0x6000
+/* Flush zero mode macros. */
+#define _MM_FLUSH_ZERO_MASK 0x8000
+#define _MM_FLUSH_ZERO_ON 0x8000
+#define _MM_FLUSH_ZERO_OFF 0x0000
+/* Denormals are zeros mode macros. */
+#define _MM_DENORMALS_ZERO_MASK 0x0040
+#define _MM_DENORMALS_ZERO_ON 0x0040
+#define _MM_DENORMALS_ZERO_OFF 0x0000
 
 /* indicate immediate constant argument in a given range */
 #define __constrange(a, b) const
 
-typedef float32x2_t __m64;
-typedef float32x4_t __m128;
-typedef int64x2_t __m128i;
+/* A few intrinsics accept traditional data types like ints or floats, but
+ * most operate on data types that are specific to SSE.
+ * If a vector type ends in d, it contains doubles, and if it does not have
+ * a suffix, it contains floats. An integer vector type can contain any type
+ * of integer, from chars to shorts to unsigned long longs.
+ */
+typedef int64x1_t __m64;
+typedef float32x4_t __m128; /* 128-bit vector containing 4 floats */
+// On ARM 32-bit architecture, the float64x2_t is not supported.
+// The data type __m128d should be represented in a different way for related
+// intrinsic conversion.
+#if defined(__aarch64__)
+typedef float64x2_t __m128d; /* 128-bit vector containing 2 doubles */
+#else
+typedef float32x4_t __m128d;
+#endif
+typedef int64x2_t __m128i; /* 128-bit vector containing integers */
 
-// ******************************************
-// type-safe casting between types
-// ******************************************
+// __int64 is defined in the Intrinsics Guide which maps to different datatype
+// in different data model
+#if !(defined(_WIN32) || defined(_WIN64) || defined(__int64))
+#if (defined(__x86_64__) || defined(__i386__))
+#define __int64 long long
+#else
+#define __int64 int64_t
+#endif
+#endif
+
+/* type-safe casting between types */
 
 #define vreinterpretq_m128_f16(x) vreinterpretq_f32_f16(x)
 #define vreinterpretq_m128_f32(x) (x)
@@ -125,6 +365,9 @@
 #define vreinterpretq_m128i_u32(x) vreinterpretq_s64_u32(x)
 #define vreinterpretq_m128i_u64(x) vreinterpretq_s64_u64(x)
 
+#define vreinterpretq_f32_m128i(x) vreinterpretq_f32_s64(x)
+#define vreinterpretq_f64_m128i(x) vreinterpretq_f64_s64(x)
+
 #define vreinterpretq_s8_m128i(x) vreinterpretq_s8_s64(x)
 #define vreinterpretq_s16_m128i(x) vreinterpretq_s16_s64(x)
 #define vreinterpretq_s32_m128i(x) vreinterpretq_s32_s64(x)
@@ -135,11 +378,70 @@
 #define vreinterpretq_u32_m128i(x) vreinterpretq_u32_s64(x)
 #define vreinterpretq_u64_m128i(x) vreinterpretq_u64_s64(x)
 
+#define vreinterpret_m64_s8(x) vreinterpret_s64_s8(x)
+#define vreinterpret_m64_s16(x) vreinterpret_s64_s16(x)
+#define vreinterpret_m64_s32(x) vreinterpret_s64_s32(x)
+#define vreinterpret_m64_s64(x) (x)
+
+#define vreinterpret_m64_u8(x) vreinterpret_s64_u8(x)
+#define vreinterpret_m64_u16(x) vreinterpret_s64_u16(x)
+#define vreinterpret_m64_u32(x) vreinterpret_s64_u32(x)
+#define vreinterpret_m64_u64(x) vreinterpret_s64_u64(x)
+
+#define vreinterpret_m64_f16(x) vreinterpret_s64_f16(x)
+#define vreinterpret_m64_f32(x) vreinterpret_s64_f32(x)
+#define vreinterpret_m64_f64(x) vreinterpret_s64_f64(x)
+
+#define vreinterpret_u8_m64(x) vreinterpret_u8_s64(x)
+#define vreinterpret_u16_m64(x) vreinterpret_u16_s64(x)
+#define vreinterpret_u32_m64(x) vreinterpret_u32_s64(x)
+#define vreinterpret_u64_m64(x) vreinterpret_u64_s64(x)
+
+#define vreinterpret_s8_m64(x) vreinterpret_s8_s64(x)
+#define vreinterpret_s16_m64(x) vreinterpret_s16_s64(x)
+#define vreinterpret_s32_m64(x) vreinterpret_s32_s64(x)
+#define vreinterpret_s64_m64(x) (x)
+
+#define vreinterpret_f32_m64(x) vreinterpret_f32_s64(x)
+
+#if defined(__aarch64__)
+#define vreinterpretq_m128d_s32(x) vreinterpretq_f64_s32(x)
+#define vreinterpretq_m128d_s64(x) vreinterpretq_f64_s64(x)
+
+#define vreinterpretq_m128d_u64(x) vreinterpretq_f64_u64(x)
+
+#define vreinterpretq_m128d_f32(x) vreinterpretq_f64_f32(x)
+#define vreinterpretq_m128d_f64(x) (x)
+
+#define vreinterpretq_s64_m128d(x) vreinterpretq_s64_f64(x)
+
+#define vreinterpretq_u32_m128d(x) vreinterpretq_u32_f64(x)
+#define vreinterpretq_u64_m128d(x) vreinterpretq_u64_f64(x)
+
+#define vreinterpretq_f64_m128d(x) (x)
+#define vreinterpretq_f32_m128d(x) vreinterpretq_f32_f64(x)
+#else
+#define vreinterpretq_m128d_s32(x) vreinterpretq_f32_s32(x)
+#define vreinterpretq_m128d_s64(x) vreinterpretq_f32_s64(x)
+
+#define vreinterpretq_m128d_u32(x) vreinterpretq_f32_u32(x)
+#define vreinterpretq_m128d_u64(x) vreinterpretq_f32_u64(x)
+
+#define vreinterpretq_m128d_f32(x) (x)
+
+#define vreinterpretq_s64_m128d(x) vreinterpretq_s64_f32(x)
+
+#define vreinterpretq_u32_m128d(x) vreinterpretq_u32_f32(x)
+#define vreinterpretq_u64_m128d(x) vreinterpretq_u64_f32(x)
+
+#define vreinterpretq_f32_m128d(x) (x)
+#endif
+
 // A struct is defined in this header file called 'SIMDVec' which can be used
-// by applications which attempt to access the contents of an _m128 struct
+// by applications which attempt to access the contents of an __m128 struct
 // directly.  It is important to note that accessing the __m128 struct directly
 // is bad coding practice by Microsoft: @see:
-// https://msdn.microsoft.com/en-us/library/ayeb3ayc.aspx
+// https://learn.microsoft.com/en-us/cpp/cpp/m128
 //
 // However, some legacy source code may try to access the contents of an __m128
 // struct directly so the developer can use the SIMDVec as an alias for it.  Any
@@ -159,2901 +461,343 @@
 // that is used throughout the codebase to access the members instead of always
 // declaring this type of variable.
 typedef union ALIGN_STRUCT(16) SIMDVec {
-  float m128_f32[4];  // as floats - do not to use this.  Added for convenience.
-  int8_t m128_i8[16];    // as signed 8-bit integers.
-  int16_t m128_i16[8];   // as signed 16-bit integers.
-  int32_t m128_i32[4];   // as signed 32-bit integers.
-  int64_t m128_i64[2];   // as signed 64-bit integers.
-  uint8_t m128_u8[16];   // as unsigned 8-bit integers.
-  uint16_t m128_u16[8];  // as unsigned 16-bit integers.
-  uint32_t m128_u32[4];  // as unsigned 32-bit integers.
-  uint64_t m128_u64[2];  // as unsigned 64-bit integers.
+    float m128_f32[4];     // as floats - DON'T USE. Added for convenience.
+    int8_t m128_i8[16];    // as signed 8-bit integers.
+    int16_t m128_i16[8];   // as signed 16-bit integers.
+    int32_t m128_i32[4];   // as signed 32-bit integers.
+    int64_t m128_i64[2];   // as signed 64-bit integers.
+    uint8_t m128_u8[16];   // as unsigned 8-bit integers.
+    uint16_t m128_u16[8];  // as unsigned 16-bit integers.
+    uint32_t m128_u32[4];  // as unsigned 32-bit integers.
+    uint64_t m128_u64[2];  // as unsigned 64-bit integers.
 } SIMDVec;
 
 // casting using SIMDVec
-#define vreinterpretq_nth_u64_m128i(x, n) (((SIMDVec *)&x)->m128_u64[n]) //NOLINT
-#define vreinterpretq_nth_u32_m128i(x, n) (((SIMDVec *)&x)->m128_u32[n]) //NOLINT
+#define vreinterpretq_nth_u64_m128i(x, n) (((SIMDVec *) &x)->m128_u64[n])
+#define vreinterpretq_nth_u32_m128i(x, n) (((SIMDVec *) &x)->m128_u32[n])
+#define vreinterpretq_nth_u8_m128i(x, n) (((SIMDVec *) &x)->m128_u8[n])
 
-// ******************************************
-// Backwards compatibility for compilers with lack of specific type support
-// ******************************************
+/* SSE macros */
+#define _MM_GET_FLUSH_ZERO_MODE _sse2neon_mm_get_flush_zero_mode
+#define _MM_SET_FLUSH_ZERO_MODE _sse2neon_mm_set_flush_zero_mode
+#define _MM_GET_DENORMALS_ZERO_MODE _sse2neon_mm_get_denormals_zero_mode
+#define _MM_SET_DENORMALS_ZERO_MODE _sse2neon_mm_set_denormals_zero_mode
+
+// Function declaration
+// SSE
+FORCE_INLINE unsigned int _MM_GET_ROUNDING_MODE();
+FORCE_INLINE __m128 _mm_move_ss(__m128, __m128);
+FORCE_INLINE __m128 _mm_or_ps(__m128, __m128);
+FORCE_INLINE __m128 _mm_set_ps1(float);
+FORCE_INLINE __m128 _mm_setzero_ps(void);
+// SSE2
+FORCE_INLINE __m128i _mm_and_si128(__m128i, __m128i);
+FORCE_INLINE __m128i _mm_castps_si128(__m128);
+FORCE_INLINE __m128i _mm_cmpeq_epi32(__m128i, __m128i);
+FORCE_INLINE __m128i _mm_cvtps_epi32(__m128);
+FORCE_INLINE __m128d _mm_move_sd(__m128d, __m128d);
+FORCE_INLINE __m128i _mm_or_si128(__m128i, __m128i);
+FORCE_INLINE __m128i _mm_set_epi32(int, int, int, int);
+FORCE_INLINE __m128i _mm_set_epi64x(int64_t, int64_t);
+FORCE_INLINE __m128d _mm_set_pd(double, double);
+FORCE_INLINE __m128i _mm_set1_epi32(int);
+FORCE_INLINE __m128i _mm_setzero_si128();
+// SSE4.1
+FORCE_INLINE __m128d _mm_ceil_pd(__m128d);
+FORCE_INLINE __m128 _mm_ceil_ps(__m128);
+FORCE_INLINE __m128d _mm_floor_pd(__m128d);
+FORCE_INLINE __m128 _mm_floor_ps(__m128);
+FORCE_INLINE __m128d _mm_round_pd(__m128d, int);
+FORCE_INLINE __m128 _mm_round_ps(__m128, int);
+// SSE4.2
+FORCE_INLINE uint32_t _mm_crc32_u8(uint32_t, uint8_t);
+
+/* Backwards compatibility for compilers with lack of specific type support */
 
 // Older gcc does not define vld1q_u8_x4 type
-#if defined(__GNUC__) && !defined(__clang__)
-#if __GNUC__ <= 9
-FORCE_INLINE uint8x16x4_t vld1q_u8_x4(const uint8_t *p) {
-  uint8x16x4_t ret;
-  ret.val[0] = vld1q_u8(p + 0);
-  ret.val[1] = vld1q_u8(p + 16);
-  ret.val[2] = vld1q_u8(p + 32);
-  ret.val[3] = vld1q_u8(p + 48);
-  return ret;
+#if defined(__GNUC__) && !defined(__clang__) &&                        \
+    ((__GNUC__ <= 12 && defined(__arm__)) ||                           \
+     (__GNUC__ == 10 && __GNUC_MINOR__ < 3 && defined(__aarch64__)) || \
+     (__GNUC__ <= 9 && defined(__aarch64__)))
+FORCE_INLINE uint8x16x4_t _sse2neon_vld1q_u8_x4(const uint8_t *p)
+{
+    uint8x16x4_t ret;
+    ret.val[0] = vld1q_u8(p + 0);
+    ret.val[1] = vld1q_u8(p + 16);
+    ret.val[2] = vld1q_u8(p + 32);
+    ret.val[3] = vld1q_u8(p + 48);
+    return ret;
+}
+#else
+// Wraps vld1q_u8_x4
+FORCE_INLINE uint8x16x4_t _sse2neon_vld1q_u8_x4(const uint8_t *p)
+{
+    return vld1q_u8_x4(p);
 }
 #endif
+
+#if !defined(__aarch64__)
+/* emulate vaddv u8 variant */
+FORCE_INLINE uint8_t _sse2neon_vaddv_u8(uint8x8_t v8)
+{
+    const uint64x1_t v1 = vpaddl_u32(vpaddl_u16(vpaddl_u8(v8)));
+    return vget_lane_u8(vreinterpret_u8_u64(v1), 0);
+}
+#else
+// Wraps vaddv_u8
+FORCE_INLINE uint8_t _sse2neon_vaddv_u8(uint8x8_t v8)
+{
+    return vaddv_u8(v8);
+}
 #endif
 
-// ******************************************
-// Set/get methods
-// ******************************************
-
-// Loads one cache line of data from address p to a location closer to the
-// processor. https://msdn.microsoft.com/en-us/library/84szxsww(v=vs.100).aspx
-FORCE_INLINE void _mm_prefetch(const void *p, int i) {
-  (void)i;
-  __builtin_prefetch(p);
+#if !defined(__aarch64__)
+/* emulate vaddvq u8 variant */
+FORCE_INLINE uint8_t _sse2neon_vaddvq_u8(uint8x16_t a)
+{
+    uint8x8_t tmp = vpadd_u8(vget_low_u8(a), vget_high_u8(a));
+    uint8_t res = 0;
+    for (int i = 0; i < 8; ++i)
+        res += tmp[i];
+    return res;
 }
-
-// extracts the lower order floating point value from the parameter :
-// https://msdn.microsoft.com/en-us/library/bb514059%28v=vs.120%29.aspx?f=255&MSPPError=-2147217396
-FORCE_INLINE float _mm_cvtss_f32(__m128 a) {
-  return vgetq_lane_f32(vreinterpretq_f32_m128(a), 0);
+#else
+// Wraps vaddvq_u8
+FORCE_INLINE uint8_t _sse2neon_vaddvq_u8(uint8x16_t a)
+{
+    return vaddvq_u8(a);
 }
+#endif
 
-// Sets the 128-bit value to zero
-// https://msdn.microsoft.com/en-us/library/vstudio/ys7dw0kh(v=vs.100).aspx
-FORCE_INLINE __m128i _mm_setzero_si128(void) {
-  return vreinterpretq_m128i_s32(vdupq_n_s32(0));
+#if !defined(__aarch64__)
+/* emulate vaddvq u16 variant */
+FORCE_INLINE uint16_t _sse2neon_vaddvq_u16(uint16x8_t a)
+{
+    uint32x4_t m = vpaddlq_u16(a);
+    uint64x2_t n = vpaddlq_u32(m);
+    uint64x1_t o = vget_low_u64(n) + vget_high_u64(n);
+
+    return vget_lane_u32((uint32x2_t) o, 0);
 }
-
-// Clears the four single-precision, floating-point values.
-// https://msdn.microsoft.com/en-us/library/vstudio/tk1t2tbz(v=vs.100).aspx
-FORCE_INLINE __m128 _mm_setzero_ps(void) {
-  return vreinterpretq_m128_f32(vdupq_n_f32(0));
+#else
+// Wraps vaddvq_u16
+FORCE_INLINE uint16_t _sse2neon_vaddvq_u16(uint16x8_t a)
+{
+    return vaddvq_u16(a);
 }
+#endif
 
-// Sets the four single-precision, floating-point values to w.
-//
-//   r0 := r1 := r2 := r3 := w
-//
-// https://msdn.microsoft.com/en-us/library/vstudio/2x1se8ha(v=vs.100).aspx
-FORCE_INLINE __m128 _mm_set1_ps(float _w) {
-  return vreinterpretq_m128_f32(vdupq_n_f32(_w));
-}
+/* Function Naming Conventions
+ * The naming convention of SSE intrinsics is straightforward. A generic SSE
+ * intrinsic function is given as follows:
+ *   _mm_<name>_<data_type>
+ *
+ * The parts of this format are given as follows:
+ * 1. <name> describes the operation performed by the intrinsic
+ * 2. <data_type> identifies the data type of the function's primary arguments
+ *
+ * This last part, <data_type>, is a little complicated. It identifies the
+ * content of the input values, and can be set to any of the following values:
+ * + ps - vectors contain floats (ps stands for packed single-precision)
+ * + pd - vectors cantain doubles (pd stands for packed double-precision)
+ * + epi8/epi16/epi32/epi64 - vectors contain 8-bit/16-bit/32-bit/64-bit
+ *                            signed integers
+ * + epu8/epu16/epu32/epu64 - vectors contain 8-bit/16-bit/32-bit/64-bit
+ *                            unsigned integers
+ * + si128 - unspecified 128-bit vector or 256-bit vector
+ * + m128/m128i/m128d - identifies input vector types when they are different
+ *                      than the type of the returned vector
+ *
+ * For example, _mm_setzero_ps. The _mm implies that the function returns
+ * a 128-bit vector. The _ps at the end implies that the argument vectors
+ * contain floats.
+ *
+ * A complete example: Byte Shuffle - pshufb (_mm_shuffle_epi8)
+ *   // Set packed 16-bit integers. 128 bits, 8 short, per 16 bits
+ *   __m128i v_in = _mm_setr_epi16(1, 2, 3, 4, 5, 6, 7, 8);
+ *   // Set packed 8-bit integers
+ *   // 128 bits, 16 chars, per 8 bits
+ *   __m128i v_perm = _mm_setr_epi8(1, 0,  2,  3, 8, 9, 10, 11,
+ *                                  4, 5, 12, 13, 6, 7, 14, 15);
+ *   // Shuffle packed 8-bit integers
+ *   __m128i v_out = _mm_shuffle_epi8(v_in, v_perm); // pshufb
+ */
 
-// Sets the four single-precision, floating-point values to w.
-// https://msdn.microsoft.com/en-us/library/vstudio/2x1se8ha(v=vs.100).aspx
-FORCE_INLINE __m128 _mm_set_ps1(float _w) {
-  return vreinterpretq_m128_f32(vdupq_n_f32(_w));
-}
+/* Constants for use with _mm_prefetch. */
+enum _mm_hint {
+    _MM_HINT_NTA = 0, /* load data to L1 and L2 cache, mark it as NTA */
+    _MM_HINT_T0 = 1,  /* load data to L1 and L2 cache */
+    _MM_HINT_T1 = 2,  /* load data to L2 cache only */
+    _MM_HINT_T2 = 3,  /* load data to L2 cache only, mark it as NTA */
+};
 
-// Sets the four single-precision, floating-point values to the four inputs.
-// https://msdn.microsoft.com/en-us/library/vstudio/afh0zf75(v=vs.100).aspx
-FORCE_INLINE __m128 _mm_set_ps(float w, float z, float y, float x) {
-  float __attribute__((aligned(16))) data[4] = {x, y, z, w};
-  return vreinterpretq_m128_f32(vld1q_f32(data));
-}
-
-// Sets the four single-precision, floating-point values to the four inputs in
-// reverse order.
-// https://msdn.microsoft.com/en-us/library/vstudio/d2172ct3(v=vs.100).aspx
-FORCE_INLINE __m128 _mm_setr_ps(float w, float z, float y, float x) {
-  float __attribute__((aligned(16))) data[4] = {w, z, y, x};
-  return vreinterpretq_m128_f32(vld1q_f32(data));
-}
-
-// Sets the 8 signed 16-bit integer values in reverse order.
-//
-// Return Value
-//   r0 := w0
-//   r1 := w1
-//   ...
-//   r7 := w7
-FORCE_INLINE __m128i _mm_setr_epi16(short w0, short w1, short w2, short w3, //NOLINT
-                                    short w4, short w5, short w6, short w7) { //NOLINT
-  int16_t __attribute__((aligned(16)))
-  data[8] = {w0, w1, w2, w3, w4, w5, w6, w7};
-  return vreinterpretq_m128i_s16(vld1q_s16((int16_t *)data)); //NOLINT
-}
-
-// Sets the 4 signed 32-bit integer values in reverse order
-// https://technet.microsoft.com/en-us/library/security/27yb3ee5(v=vs.90).aspx
-FORCE_INLINE __m128i _mm_setr_epi32(int i3, int i2, int i1, int i0) {
-  int32_t __attribute__((aligned(16))) data[4] = {i3, i2, i1, i0};
-  return vreinterpretq_m128i_s32(vld1q_s32(data));
-}
-
-// Sets the 16 signed 8-bit integer values to b.
-//
-//   r0 := b
-//   r1 := b
-//   ...
-//   r15 := b
-//
-// https://msdn.microsoft.com/en-us/library/6e14xhyf(v=vs.100).aspx
-FORCE_INLINE __m128i _mm_set1_epi8(signed char w) {
-  return vreinterpretq_m128i_s8(vdupq_n_s8(w));
-}
-
-// Sets the 8 signed 16-bit integer values to w.
-//
-//   r0 := w
-//   r1 := w
-//   ...
-//   r7 := w
-//
-// https://msdn.microsoft.com/en-us/library/k0ya3x0e(v=vs.90).aspx
-FORCE_INLINE __m128i _mm_set1_epi16(short w) { //NOLINT
-  return vreinterpretq_m128i_s16(vdupq_n_s16(w));
-}
-
-// Sets the 16 signed 8-bit integer values.
-// https://msdn.microsoft.com/en-us/library/x0cx8zd3(v=vs.90).aspx
-FORCE_INLINE __m128i
-_mm_set_epi8(signed char b15, signed char b14, signed char b13, signed char b12,
-             signed char b11, signed char b10, signed char b9, signed char b8,
-             signed char b7, signed char b6, signed char b5, signed char b4,
-             signed char b3, signed char b2, signed char b1, signed char b0) {
-  int8_t __attribute__((aligned(16)))
-  data[16] = {(int8_t)b0,  (int8_t)b1,  (int8_t)b2,  (int8_t)b3,
-              (int8_t)b4,  (int8_t)b5,  (int8_t)b6,  (int8_t)b7,
-              (int8_t)b8,  (int8_t)b9,  (int8_t)b10, (int8_t)b11,
-              (int8_t)b12, (int8_t)b13, (int8_t)b14, (int8_t)b15};
-  return (__m128i)vld1q_s8(data);
-}
-
-// Sets the 8 signed 16-bit integer values.
-// https://msdn.microsoft.com/en-au/library/3e0fek84(v=vs.90).aspx
-FORCE_INLINE __m128i _mm_set_epi16(short i7, short i6, short i5, short i4, //NOLINT
-                                   short i3, short i2, short i1, short i0) { //NOLINT
-  int16_t __attribute__((aligned(16)))
-  data[8] = {i0, i1, i2, i3, i4, i5, i6, i7};
-  return vreinterpretq_m128i_s16(vld1q_s16(data));
-}
-
-// Sets the 16 signed 8-bit integer values in reverse order.
-// https://msdn.microsoft.com/en-us/library/2khb9c7k(v=vs.90).aspx
-FORCE_INLINE __m128i _mm_setr_epi8(
-    signed char b0, signed char b1, signed char b2, signed char b3,
-    signed char b4, signed char b5, signed char b6, signed char b7,
-    signed char b8, signed char b9, signed char b10, signed char b11,
-    signed char b12, signed char b13, signed char b14, signed char b15) {
-  int8_t __attribute__((aligned(16)))
-  data[16] = {(int8_t)b0,  (int8_t)b1,  (int8_t)b2,  (int8_t)b3,
-              (int8_t)b4,  (int8_t)b5,  (int8_t)b6,  (int8_t)b7,
-              (int8_t)b8,  (int8_t)b9,  (int8_t)b10, (int8_t)b11,
-              (int8_t)b12, (int8_t)b13, (int8_t)b14, (int8_t)b15};
-  return (__m128i)vld1q_s8(data);
-}
-
-// Sets the 4 signed 32-bit integer values to i.
-//
-//   r0 := i
-//   r1 := i
-//   r2 := i
-//   r3 := I
-//
-// https://msdn.microsoft.com/en-us/library/vstudio/h4xscxat(v=vs.100).aspx
-FORCE_INLINE __m128i _mm_set1_epi32(int _i) {
-  return vreinterpretq_m128i_s32(vdupq_n_s32(_i));
-}
-
-// Sets the 2 signed 64-bit integer values to i.
-// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/whtfzhzk(v=vs.100)
-FORCE_INLINE __m128i _mm_set1_epi64(int64_t _i) {
-  return vreinterpretq_m128i_s64(vdupq_n_s64(_i));
-}
-
-// Sets the 2 signed 64-bit integer values to i.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_set1_epi64x&expand=4961
-FORCE_INLINE __m128i _mm_set1_epi64x(int64_t _i) {
-  return vreinterpretq_m128i_s64(vdupq_n_s64(_i));
-}
-
-// Sets the 4 signed 32-bit integer values.
-// https://msdn.microsoft.com/en-us/library/vstudio/019beekt(v=vs.100).aspx
-FORCE_INLINE __m128i _mm_set_epi32(int i3, int i2, int i1, int i0) {
-  int32_t __attribute__((aligned(16))) data[4] = {i0, i1, i2, i3};
-  return vreinterpretq_m128i_s32(vld1q_s32(data));
-}
-
-// Returns the __m128i structure with its two 64-bit integer values
-// initialized to the values of the two 64-bit integers passed in.
-// https://msdn.microsoft.com/en-us/library/dk2sdw0h(v=vs.120).aspx
-FORCE_INLINE __m128i _mm_set_epi64x(int64_t i1, int64_t i2) {
-  int64_t __attribute__((aligned(16))) data[2] = {i2, i1};
-  return vreinterpretq_m128i_s64(vld1q_s64(data));
-}
-
-// Stores four single-precision, floating-point values.
-// https://msdn.microsoft.com/en-us/library/vstudio/s3h4ay6y(v=vs.100).aspx
-FORCE_INLINE void _mm_store_ps(float *p, __m128 a) {
-  vst1q_f32(p, vreinterpretq_f32_m128(a));
-}
-
-// Stores four single-precision, floating-point values.
-// https://msdn.microsoft.com/en-us/library/44e30x22(v=vs.100).aspx
-FORCE_INLINE void _mm_storeu_ps(float *p, __m128 a) {
-  vst1q_f32(p, vreinterpretq_f32_m128(a));
-}
-
-// Stores four 32-bit integer values as (as a __m128i value) at the address p.
-// https://msdn.microsoft.com/en-us/library/vstudio/edk11s13(v=vs.100).aspx
-FORCE_INLINE void _mm_store_si128(__m128i *p, __m128i a) {
-  vst1q_s32((int32_t *)p, vreinterpretq_s32_m128i(a)); //NOLINT
-}
-
-// Stores four 32-bit integer values as (as a __m128i value) at the address p.
-// https://msdn.microsoft.com/en-us/library/vstudio/edk11s13(v=vs.100).aspx
-FORCE_INLINE void _mm_storeu_si128(__m128i *p, __m128i a) {
-  vst1q_s32((int32_t *)p, vreinterpretq_s32_m128i(a)); //NOLINT
-}
-
-// Stores the lower single - precision, floating - point value.
-// https://msdn.microsoft.com/en-us/library/tzz10fbx(v=vs.100).aspx
-FORCE_INLINE void _mm_store_ss(float *p, __m128 a) {
-  vst1q_lane_f32(p, vreinterpretq_f32_m128(a), 0);
-}
-
-// Reads the lower 64 bits of b and stores them into the lower 64 bits of a.
-// https://msdn.microsoft.com/en-us/library/hhwf428f%28v=vs.90%29.aspx
-FORCE_INLINE void _mm_storel_epi64(__m128i *a, __m128i b) {
-  uint64x1_t hi = vget_high_u64(vreinterpretq_u64_m128i(*a));
-  uint64x1_t lo = vget_low_u64(vreinterpretq_u64_m128i(b));
-  *a = vreinterpretq_m128i_u64(vcombine_u64(lo, hi));
-}
-
-// Stores the lower two single-precision floating point values of a to the
-// address p.
-//
-//   *p0 := b0
-//   *p1 := b1
-//
-// https://msdn.microsoft.com/en-us/library/h54t98ks(v=vs.90).aspx
-FORCE_INLINE void _mm_storel_pi(__m64 *p, __m128 a) { *p = vget_low_f32(a); }
-
-// Loads a single single-precision, floating-point value, copying it into all
-// four words
-// https://msdn.microsoft.com/en-us/library/vstudio/5cdkf716(v=vs.100).aspx
-FORCE_INLINE __m128 _mm_load1_ps(const float *p) {
-  return vreinterpretq_m128_f32(vld1q_dup_f32(p));
-}
-#define _mm_load_ps1 _mm_load1_ps
-
-// Sets the lower two single-precision, floating-point values with 64
-// bits of data loaded from the address p; the upper two values are passed
-// through from a.
-//
-// Return Value
-//   r0 := *p0
-//   r1 := *p1
-//   r2 := a2
-//   r3 := a3
-//
-// https://msdn.microsoft.com/en-us/library/s57cyak2(v=vs.100).aspx
-FORCE_INLINE __m128 _mm_loadl_pi(__m128 a, __m64 const *b) {
-  return vreinterpretq_m128_f32(
-      vcombine_f32(vld1_f32((const float32_t *)b), vget_high_f32(a)));
-}
-
-// Loads four single-precision, floating-point values.
-// https://msdn.microsoft.com/en-us/library/vstudio/zzd50xxt(v=vs.100).aspx
-FORCE_INLINE __m128 _mm_load_ps(const float *p) {
-  return vreinterpretq_m128_f32(vld1q_f32(p));
-}
-
-// Loads four single-precision, floating-point values.
-// https://msdn.microsoft.com/en-us/library/x1b16s7z%28v=vs.90%29.aspx
-FORCE_INLINE __m128 _mm_loadu_ps(const float *p) {
-  // for neon, alignment doesn't matter, so _mm_load_ps and _mm_loadu_ps are
-  // equivalent for neon
-  return vreinterpretq_m128_f32(vld1q_f32(p));
-}
-
-// Loads an single - precision, floating - point value into the low word and
-// clears the upper three words.
-// https://msdn.microsoft.com/en-us/library/548bb9h4%28v=vs.90%29.aspx
-FORCE_INLINE __m128 _mm_load_ss(const float *p) {
-  return vreinterpretq_m128_f32(vsetq_lane_f32(*p, vdupq_n_f32(0), 0));
-}
-
-FORCE_INLINE __m128i _mm_loadl_epi64(__m128i const *p) {
-  /* Load the lower 64 bits of the value pointed to by p into the
-   * lower 64 bits of the result, zeroing the upper 64 bits of the result.
-   */
-  return vreinterpretq_m128i_s32(
-      vcombine_s32(vld1_s32((int32_t const *)p), vcreate_s32(0)));
-}
-
-// ******************************************
-// Logic/Binary operations
-// ******************************************
-
-// Compares for inequality.
-// https://msdn.microsoft.com/en-us/library/sf44thbx(v=vs.100).aspx
-FORCE_INLINE __m128 _mm_cmpneq_ps(__m128 a, __m128 b) {
-  return vreinterpretq_m128_u32(vmvnq_u32(
-      vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))));
-}
-
-// Computes the bitwise AND-NOT of the four single-precision, floating-point
-// values of a and b.
-//
-//   r0 := ~a0 & b0
-//   r1 := ~a1 & b1
-//   r2 := ~a2 & b2
-//   r3 := ~a3 & b3
-//
-// https://msdn.microsoft.com/en-us/library/vstudio/68h7wd02(v=vs.100).aspx
-FORCE_INLINE __m128 _mm_andnot_ps(__m128 a, __m128 b) {
-  return vreinterpretq_m128_s32(
-      vbicq_s32(vreinterpretq_s32_m128(b),
-                vreinterpretq_s32_m128(a)));  // *NOTE* argument swap
-}
-
-// Computes the bitwise AND of the 128-bit value in b and the bitwise NOT of the
-// 128-bit value in a.
-//
-//   r := (~a) & b
-//
-// https://msdn.microsoft.com/en-us/library/vstudio/1beaceh8(v=vs.100).aspx
-FORCE_INLINE __m128i _mm_andnot_si128(__m128i a, __m128i b) {
-  return vreinterpretq_m128i_s32(
-      vbicq_s32(vreinterpretq_s32_m128i(b),
-                vreinterpretq_s32_m128i(a)));  // *NOTE* argument swap
-}
-
-// Computes the bitwise AND of the 128-bit value in a and the 128-bit value in
-// b.
-//
-//   r := a & b
-//
-// https://msdn.microsoft.com/en-us/library/vstudio/6d1txsa8(v=vs.100).aspx
-FORCE_INLINE __m128i _mm_and_si128(__m128i a, __m128i b) {
-  return vreinterpretq_m128i_s32(
-      vandq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b)));
-}
-
-// Computes the bitwise AND of the four single-precision, floating-point values
-// of a and b.
-//
-//   r0 := a0 & b0
-//   r1 := a1 & b1
-//   r2 := a2 & b2
-//   r3 := a3 & b3
-//
-// https://msdn.microsoft.com/en-us/library/vstudio/73ck1xc5(v=vs.100).aspx
-FORCE_INLINE __m128 _mm_and_ps(__m128 a, __m128 b) {
-  return vreinterpretq_m128_s32(
-      vandq_s32(vreinterpretq_s32_m128(a), vreinterpretq_s32_m128(b)));
-}
-
-// Computes the bitwise OR of the four single-precision, floating-point values
-// of a and b.
-// https://msdn.microsoft.com/en-us/library/vstudio/7ctdsyy0(v=vs.100).aspx
-FORCE_INLINE __m128 _mm_or_ps(__m128 a, __m128 b) {
-  return vreinterpretq_m128_s32(
-      vorrq_s32(vreinterpretq_s32_m128(a), vreinterpretq_s32_m128(b)));
-}
-
-// Computes bitwise EXOR (exclusive-or) of the four single-precision,
-// floating-point values of a and b.
-// https://msdn.microsoft.com/en-us/library/ss6k3wk8(v=vs.100).aspx
-FORCE_INLINE __m128 _mm_xor_ps(__m128 a, __m128 b) {
-  return vreinterpretq_m128_s32(
-      veorq_s32(vreinterpretq_s32_m128(a), vreinterpretq_s32_m128(b)));
-}
-
-// Computes the bitwise OR of the 128-bit value in a and the 128-bit value in b.
-//
-//   r := a | b
-//
-// https://msdn.microsoft.com/en-us/library/vstudio/ew8ty0db(v=vs.100).aspx
-FORCE_INLINE __m128i _mm_or_si128(__m128i a, __m128i b) {
-  return vreinterpretq_m128i_s32(
-      vorrq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b)));
-}
-
-// Computes the bitwise XOR of the 128-bit value in a and the 128-bit value in
-// b.  https://msdn.microsoft.com/en-us/library/fzt08www(v=vs.100).aspx
-FORCE_INLINE __m128i _mm_xor_si128(__m128i a, __m128i b) {
-  return vreinterpretq_m128i_s32(
-      veorq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b)));
-}
-
-// Moves the upper two values of B into the lower two values of A.
-//
-//   r3 := a3
-//   r2 := a2
-//   r1 := b3
-//   r0 := b2
-FORCE_INLINE __m128 _mm_movehl_ps(__m128 __A, __m128 __B) {
-  float32x2_t a32 = vget_high_f32(vreinterpretq_f32_m128(__A));
-  float32x2_t b32 = vget_high_f32(vreinterpretq_f32_m128(__B));
-  return vreinterpretq_m128_f32(vcombine_f32(b32, a32));
-}
-
-// Moves the lower two values of B into the upper two values of A.
-//
-//   r3 := b1
-//   r2 := b0
-//   r1 := a1
-//   r0 := a0
-FORCE_INLINE __m128 _mm_movelh_ps(__m128 __A, __m128 __B) {
-  float32x2_t a10 = vget_low_f32(vreinterpretq_f32_m128(__A));
-  float32x2_t b10 = vget_low_f32(vreinterpretq_f32_m128(__B));
-  return vreinterpretq_m128_f32(vcombine_f32(a10, b10));
-}
-
-FORCE_INLINE __m128i _mm_abs_epi32(__m128i a) {
-  return vreinterpretq_m128i_s32(vabsq_s32(vreinterpretq_s32_m128i(a)));
-}
-
-FORCE_INLINE __m128i _mm_abs_epi16(__m128i a) {
-  return vreinterpretq_m128i_s16(vabsq_s16(vreinterpretq_s16_m128i(a)));
-}
-
-FORCE_INLINE __m128i _mm_abs_epi8(__m128i a) {
-  return vreinterpretq_m128i_s8(vabsq_s8(vreinterpretq_s8_m128i(a)));
-}
+// The bit field mapping to the FPCR(floating-point control register)
+typedef struct {
+    uint16_t res0;
+    uint8_t res1 : 6;
+    uint8_t bit22 : 1;
+    uint8_t bit23 : 1;
+    uint8_t bit24 : 1;
+    uint8_t res2 : 7;
+#if defined(__aarch64__)
+    uint32_t res3;
+#endif
+} fpcr_bitfield;
 
 // Takes the upper 64 bits of a and places it in the low end of the result
 // Takes the lower 64 bits of b and places it into the high end of the result.
-FORCE_INLINE __m128 _mm_shuffle_ps_1032(__m128 a, __m128 b) {
-  float32x2_t a32 = vget_high_f32(vreinterpretq_f32_m128(a));
-  float32x2_t b10 = vget_low_f32(vreinterpretq_f32_m128(b));
-  return vreinterpretq_m128_f32(vcombine_f32(a32, b10));
+FORCE_INLINE __m128 _mm_shuffle_ps_1032(__m128 a, __m128 b)
+{
+    float32x2_t a32 = vget_high_f32(vreinterpretq_f32_m128(a));
+    float32x2_t b10 = vget_low_f32(vreinterpretq_f32_m128(b));
+    return vreinterpretq_m128_f32(vcombine_f32(a32, b10));
 }
 
 // takes the lower two 32-bit values from a and swaps them and places in high
 // end of result takes the higher two 32 bit values from b and swaps them and
 // places in low end of result.
-FORCE_INLINE __m128 _mm_shuffle_ps_2301(__m128 a, __m128 b) {
-  float32x2_t a01 = vrev64_f32(vget_low_f32(vreinterpretq_f32_m128(a)));
-  float32x2_t b23 = vrev64_f32(vget_high_f32(vreinterpretq_f32_m128(b)));
-  return vreinterpretq_m128_f32(vcombine_f32(a01, b23));
+FORCE_INLINE __m128 _mm_shuffle_ps_2301(__m128 a, __m128 b)
+{
+    float32x2_t a01 = vrev64_f32(vget_low_f32(vreinterpretq_f32_m128(a)));
+    float32x2_t b23 = vrev64_f32(vget_high_f32(vreinterpretq_f32_m128(b)));
+    return vreinterpretq_m128_f32(vcombine_f32(a01, b23));
 }
 
-FORCE_INLINE __m128 _mm_shuffle_ps_0321(__m128 a, __m128 b) {
-  float32x2_t a21 = vget_high_f32(
-      vextq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a), 3));
-  float32x2_t b03 = vget_low_f32(
-      vextq_f32(vreinterpretq_f32_m128(b), vreinterpretq_f32_m128(b), 3));
-  return vreinterpretq_m128_f32(vcombine_f32(a21, b03));
+FORCE_INLINE __m128 _mm_shuffle_ps_0321(__m128 a, __m128 b)
+{
+    float32x2_t a21 = vget_high_f32(
+        vextq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a), 3));
+    float32x2_t b03 = vget_low_f32(
+        vextq_f32(vreinterpretq_f32_m128(b), vreinterpretq_f32_m128(b), 3));
+    return vreinterpretq_m128_f32(vcombine_f32(a21, b03));
 }
 
-FORCE_INLINE __m128 _mm_shuffle_ps_2103(__m128 a, __m128 b) {
-  float32x2_t a03 = vget_low_f32(
-      vextq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a), 3));
-  float32x2_t b21 = vget_high_f32(
-      vextq_f32(vreinterpretq_f32_m128(b), vreinterpretq_f32_m128(b), 3));
-  return vreinterpretq_m128_f32(vcombine_f32(a03, b21));
+FORCE_INLINE __m128 _mm_shuffle_ps_2103(__m128 a, __m128 b)
+{
+    float32x2_t a03 = vget_low_f32(
+        vextq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a), 3));
+    float32x2_t b21 = vget_high_f32(
+        vextq_f32(vreinterpretq_f32_m128(b), vreinterpretq_f32_m128(b), 3));
+    return vreinterpretq_m128_f32(vcombine_f32(a03, b21));
 }
 
-FORCE_INLINE __m128 _mm_shuffle_ps_1010(__m128 a, __m128 b) {
-  float32x2_t a10 = vget_low_f32(vreinterpretq_f32_m128(a));
-  float32x2_t b10 = vget_low_f32(vreinterpretq_f32_m128(b));
-  return vreinterpretq_m128_f32(vcombine_f32(a10, b10));
+FORCE_INLINE __m128 _mm_shuffle_ps_1010(__m128 a, __m128 b)
+{
+    float32x2_t a10 = vget_low_f32(vreinterpretq_f32_m128(a));
+    float32x2_t b10 = vget_low_f32(vreinterpretq_f32_m128(b));
+    return vreinterpretq_m128_f32(vcombine_f32(a10, b10));
 }
 
-FORCE_INLINE __m128 _mm_shuffle_ps_1001(__m128 a, __m128 b) {
-  float32x2_t a01 = vrev64_f32(vget_low_f32(vreinterpretq_f32_m128(a)));
-  float32x2_t b10 = vget_low_f32(vreinterpretq_f32_m128(b));
-  return vreinterpretq_m128_f32(vcombine_f32(a01, b10));
+FORCE_INLINE __m128 _mm_shuffle_ps_1001(__m128 a, __m128 b)
+{
+    float32x2_t a01 = vrev64_f32(vget_low_f32(vreinterpretq_f32_m128(a)));
+    float32x2_t b10 = vget_low_f32(vreinterpretq_f32_m128(b));
+    return vreinterpretq_m128_f32(vcombine_f32(a01, b10));
 }
 
-FORCE_INLINE __m128 _mm_shuffle_ps_0101(__m128 a, __m128 b) {
-  float32x2_t a01 = vrev64_f32(vget_low_f32(vreinterpretq_f32_m128(a)));
-  float32x2_t b01 = vrev64_f32(vget_low_f32(vreinterpretq_f32_m128(b)));
-  return vreinterpretq_m128_f32(vcombine_f32(a01, b01));
+FORCE_INLINE __m128 _mm_shuffle_ps_0101(__m128 a, __m128 b)
+{
+    float32x2_t a01 = vrev64_f32(vget_low_f32(vreinterpretq_f32_m128(a)));
+    float32x2_t b01 = vrev64_f32(vget_low_f32(vreinterpretq_f32_m128(b)));
+    return vreinterpretq_m128_f32(vcombine_f32(a01, b01));
 }
 
 // keeps the low 64 bits of b in the low and puts the high 64 bits of a in the
 // high
-FORCE_INLINE __m128 _mm_shuffle_ps_3210(__m128 a, __m128 b) {
-  float32x2_t a10 = vget_low_f32(vreinterpretq_f32_m128(a));
-  float32x2_t b32 = vget_high_f32(vreinterpretq_f32_m128(b));
-  return vreinterpretq_m128_f32(vcombine_f32(a10, b32));
+FORCE_INLINE __m128 _mm_shuffle_ps_3210(__m128 a, __m128 b)
+{
+    float32x2_t a10 = vget_low_f32(vreinterpretq_f32_m128(a));
+    float32x2_t b32 = vget_high_f32(vreinterpretq_f32_m128(b));
+    return vreinterpretq_m128_f32(vcombine_f32(a10, b32));
 }
 
-FORCE_INLINE __m128 _mm_shuffle_ps_0011(__m128 a, __m128 b) {
-  float32x2_t a11 = vdup_lane_f32(vget_low_f32(vreinterpretq_f32_m128(a)), 1);
-  float32x2_t b00 = vdup_lane_f32(vget_low_f32(vreinterpretq_f32_m128(b)), 0);
-  return vreinterpretq_m128_f32(vcombine_f32(a11, b00));
+FORCE_INLINE __m128 _mm_shuffle_ps_0011(__m128 a, __m128 b)
+{
+    float32x2_t a11 = vdup_lane_f32(vget_low_f32(vreinterpretq_f32_m128(a)), 1);
+    float32x2_t b00 = vdup_lane_f32(vget_low_f32(vreinterpretq_f32_m128(b)), 0);
+    return vreinterpretq_m128_f32(vcombine_f32(a11, b00));
 }
 
-FORCE_INLINE __m128 _mm_shuffle_ps_0022(__m128 a, __m128 b) {
-  float32x2_t a22 = vdup_lane_f32(vget_high_f32(vreinterpretq_f32_m128(a)), 0);
-  float32x2_t b00 = vdup_lane_f32(vget_low_f32(vreinterpretq_f32_m128(b)), 0);
-  return vreinterpretq_m128_f32(vcombine_f32(a22, b00));
+FORCE_INLINE __m128 _mm_shuffle_ps_0022(__m128 a, __m128 b)
+{
+    float32x2_t a22 =
+        vdup_lane_f32(vget_high_f32(vreinterpretq_f32_m128(a)), 0);
+    float32x2_t b00 = vdup_lane_f32(vget_low_f32(vreinterpretq_f32_m128(b)), 0);
+    return vreinterpretq_m128_f32(vcombine_f32(a22, b00));
 }
 
-FORCE_INLINE __m128 _mm_shuffle_ps_2200(__m128 a, __m128 b) {
-  float32x2_t a00 = vdup_lane_f32(vget_low_f32(vreinterpretq_f32_m128(a)), 0);
-  float32x2_t b22 = vdup_lane_f32(vget_high_f32(vreinterpretq_f32_m128(b)), 0);
-  return vreinterpretq_m128_f32(vcombine_f32(a00, b22));
+FORCE_INLINE __m128 _mm_shuffle_ps_2200(__m128 a, __m128 b)
+{
+    float32x2_t a00 = vdup_lane_f32(vget_low_f32(vreinterpretq_f32_m128(a)), 0);
+    float32x2_t b22 =
+        vdup_lane_f32(vget_high_f32(vreinterpretq_f32_m128(b)), 0);
+    return vreinterpretq_m128_f32(vcombine_f32(a00, b22));
 }
 
-FORCE_INLINE __m128 _mm_shuffle_ps_3202(__m128 a, __m128 b) {
-  float32_t a0 = vgetq_lane_f32(vreinterpretq_f32_m128(a), 0);
-  float32x2_t a22 = vdup_lane_f32(vget_high_f32(vreinterpretq_f32_m128(a)), 0);
-  float32x2_t a02 = vset_lane_f32(a0, a22, 1); /* TODO: use vzip ?*/
-  float32x2_t b32 = vget_high_f32(vreinterpretq_f32_m128(b));
-  return vreinterpretq_m128_f32(vcombine_f32(a02, b32));
+FORCE_INLINE __m128 _mm_shuffle_ps_3202(__m128 a, __m128 b)
+{
+    float32_t a0 = vgetq_lane_f32(vreinterpretq_f32_m128(a), 0);
+    float32x2_t a22 =
+        vdup_lane_f32(vget_high_f32(vreinterpretq_f32_m128(a)), 0);
+    float32x2_t a02 = vset_lane_f32(a0, a22, 1); /* TODO: use vzip ?*/
+    float32x2_t b32 = vget_high_f32(vreinterpretq_f32_m128(b));
+    return vreinterpretq_m128_f32(vcombine_f32(a02, b32));
 }
 
-FORCE_INLINE __m128 _mm_shuffle_ps_1133(__m128 a, __m128 b) {
-  float32x2_t a33 = vdup_lane_f32(vget_high_f32(vreinterpretq_f32_m128(a)), 1);
-  float32x2_t b11 = vdup_lane_f32(vget_low_f32(vreinterpretq_f32_m128(b)), 1);
-  return vreinterpretq_m128_f32(vcombine_f32(a33, b11));
+FORCE_INLINE __m128 _mm_shuffle_ps_1133(__m128 a, __m128 b)
+{
+    float32x2_t a33 =
+        vdup_lane_f32(vget_high_f32(vreinterpretq_f32_m128(a)), 1);
+    float32x2_t b11 = vdup_lane_f32(vget_low_f32(vreinterpretq_f32_m128(b)), 1);
+    return vreinterpretq_m128_f32(vcombine_f32(a33, b11));
 }
 
-FORCE_INLINE __m128 _mm_shuffle_ps_2010(__m128 a, __m128 b) {
-  float32x2_t a10 = vget_low_f32(vreinterpretq_f32_m128(a));
-  float32_t b2 = vgetq_lane_f32(vreinterpretq_f32_m128(b), 2);
-  float32x2_t b00 = vdup_lane_f32(vget_low_f32(vreinterpretq_f32_m128(b)), 0);
-  float32x2_t b20 = vset_lane_f32(b2, b00, 1);
-  return vreinterpretq_m128_f32(vcombine_f32(a10, b20));
+FORCE_INLINE __m128 _mm_shuffle_ps_2010(__m128 a, __m128 b)
+{
+    float32x2_t a10 = vget_low_f32(vreinterpretq_f32_m128(a));
+    float32_t b2 = vgetq_lane_f32(vreinterpretq_f32_m128(b), 2);
+    float32x2_t b00 = vdup_lane_f32(vget_low_f32(vreinterpretq_f32_m128(b)), 0);
+    float32x2_t b20 = vset_lane_f32(b2, b00, 1);
+    return vreinterpretq_m128_f32(vcombine_f32(a10, b20));
 }
 
-FORCE_INLINE __m128 _mm_shuffle_ps_2001(__m128 a, __m128 b) {
-  float32x2_t a01 = vrev64_f32(vget_low_f32(vreinterpretq_f32_m128(a)));
-  float32_t b2 = vgetq_lane_f32(b, 2);
-  float32x2_t b00 = vdup_lane_f32(vget_low_f32(vreinterpretq_f32_m128(b)), 0);
-  float32x2_t b20 = vset_lane_f32(b2, b00, 1);
-  return vreinterpretq_m128_f32(vcombine_f32(a01, b20));
+FORCE_INLINE __m128 _mm_shuffle_ps_2001(__m128 a, __m128 b)
+{
+    float32x2_t a01 = vrev64_f32(vget_low_f32(vreinterpretq_f32_m128(a)));
+    float32_t b2 = vgetq_lane_f32(b, 2);
+    float32x2_t b00 = vdup_lane_f32(vget_low_f32(vreinterpretq_f32_m128(b)), 0);
+    float32x2_t b20 = vset_lane_f32(b2, b00, 1);
+    return vreinterpretq_m128_f32(vcombine_f32(a01, b20));
 }
 
-FORCE_INLINE __m128 _mm_shuffle_ps_2032(__m128 a, __m128 b) {
-  float32x2_t a32 = vget_high_f32(vreinterpretq_f32_m128(a));
-  float32_t b2 = vgetq_lane_f32(b, 2);
-  float32x2_t b00 = vdup_lane_f32(vget_low_f32(vreinterpretq_f32_m128(b)), 0);
-  float32x2_t b20 = vset_lane_f32(b2, b00, 1);
-  return vreinterpretq_m128_f32(vcombine_f32(a32, b20));
+FORCE_INLINE __m128 _mm_shuffle_ps_2032(__m128 a, __m128 b)
+{
+    float32x2_t a32 = vget_high_f32(vreinterpretq_f32_m128(a));
+    float32_t b2 = vgetq_lane_f32(b, 2);
+    float32x2_t b00 = vdup_lane_f32(vget_low_f32(vreinterpretq_f32_m128(b)), 0);
+    float32x2_t b20 = vset_lane_f32(b2, b00, 1);
+    return vreinterpretq_m128_f32(vcombine_f32(a32, b20));
 }
 
-// NEON does not support a general purpose permute intrinsic
-// Selects four specific single-precision, floating-point values from a and b,
-// based on the mask i.
-// https://msdn.microsoft.com/en-us/library/vstudio/5f0858x0(v=vs.100).aspx
-#if 0 /* C version */
-FORCE_INLINE __m128 _mm_shuffle_ps_default(__m128 a,
-                                           __m128 b,
-                                           __constrange(0, 255) int imm) {
-    __m128 ret;
-    ret[0] = a[imm & 0x3];
-    ret[1] = a[(imm >> 2) & 0x3];
-    ret[2] = b[(imm >> 4) & 0x03];
-    ret[3] = b[(imm >> 6) & 0x03];
-    return ret;
+// Kahan summation for accurate summation of floating-point numbers.
+// http://blog.zachbjornson.com/2019/08/11/fast-float-summation.html
+FORCE_INLINE void _sse2neon_kadd_f32(float *sum, float *c, float y)
+{
+    y -= *c;
+    float t = *sum + y;
+    *c = (t - *sum) - y;
+    *sum = t;
 }
-#endif
-#define _mm_shuffle_ps_default(a, b, imm)                                    \
-  __extension__({                                                            \
-    float32x4_t ret;                                                         \
-    ret = vmovq_n_f32(vgetq_lane_f32(vreinterpretq_f32_m128(a), (imm)&0x3)); \
-    ret = vsetq_lane_f32(                                                    \
-        vgetq_lane_f32(vreinterpretq_f32_m128(a), ((imm) >> 2) & 0x3), ret,  \
-        1);                                                                  \
-    ret = vsetq_lane_f32(                                                    \
-        vgetq_lane_f32(vreinterpretq_f32_m128(b), ((imm) >> 4) & 0x3), ret,  \
-        2);                                                                  \
-    ret = vsetq_lane_f32(                                                    \
-        vgetq_lane_f32(vreinterpretq_f32_m128(b), ((imm) >> 6) & 0x3), ret,  \
-        3);                                                                  \
-    vreinterpretq_m128_f32(ret);                                             \
-  })
 
-// FORCE_INLINE __m128 _mm_shuffle_ps(__m128 a, __m128 b, __constrange(0,255)
-// int imm)
-#if defined(__clang__)
-#define _mm_shuffle_ps(a, b, imm)                            \
-  __extension__({                                            \
-    float32x4_t _input1 = vreinterpretq_f32_m128(a);         \
-    float32x4_t _input2 = vreinterpretq_f32_m128(b);         \
-    float32x4_t _shuf = __builtin_shufflevector(             \
-        _input1, _input2, (imm)&0x3, ((imm) >> 2) & 0x3,     \
-        (((imm) >> 4) & 0x3) + 4, (((imm) >> 6) & 0x3) + 4); \
-    vreinterpretq_m128_f32(_shuf);                           \
-  })
-#else  // generic
-#define _mm_shuffle_ps(a, b, imm)                      \
-  __extension__({                                      \
-    __m128 ret;                                        \
-    switch (imm) {                                     \
-      case _MM_SHUFFLE(1, 0, 3, 2):                    \
-        ret = _mm_shuffle_ps_1032((a), (b));           \
-        break;                                         \
-      case _MM_SHUFFLE(2, 3, 0, 1):                    \
-        ret = _mm_shuffle_ps_2301((a), (b));           \
-        break;                                         \
-      case _MM_SHUFFLE(0, 3, 2, 1):                    \
-        ret = _mm_shuffle_ps_0321((a), (b));           \
-        break;                                         \
-      case _MM_SHUFFLE(2, 1, 0, 3):                    \
-        ret = _mm_shuffle_ps_2103((a), (b));           \
-        break;                                         \
-      case _MM_SHUFFLE(1, 0, 1, 0):                    \
-        ret = _mm_movelh_ps((a), (b));                 \
-        break;                                         \
-      case _MM_SHUFFLE(1, 0, 0, 1):                    \
-        ret = _mm_shuffle_ps_1001((a), (b));           \
-        break;                                         \
-      case _MM_SHUFFLE(0, 1, 0, 1):                    \
-        ret = _mm_shuffle_ps_0101((a), (b));           \
-        break;                                         \
-      case _MM_SHUFFLE(3, 2, 1, 0):                    \
-        ret = _mm_shuffle_ps_3210((a), (b));           \
-        break;                                         \
-      case _MM_SHUFFLE(0, 0, 1, 1):                    \
-        ret = _mm_shuffle_ps_0011((a), (b));           \
-        break;                                         \
-      case _MM_SHUFFLE(0, 0, 2, 2):                    \
-        ret = _mm_shuffle_ps_0022((a), (b));           \
-        break;                                         \
-      case _MM_SHUFFLE(2, 2, 0, 0):                    \
-        ret = _mm_shuffle_ps_2200((a), (b));           \
-        break;                                         \
-      case _MM_SHUFFLE(3, 2, 0, 2):                    \
-        ret = _mm_shuffle_ps_3202((a), (b));           \
-        break;                                         \
-      case _MM_SHUFFLE(3, 2, 3, 2):                    \
-        ret = _mm_movehl_ps((b), (a));                 \
-        break;                                         \
-      case _MM_SHUFFLE(1, 1, 3, 3):                    \
-        ret = _mm_shuffle_ps_1133((a), (b));           \
-        break;                                         \
-      case _MM_SHUFFLE(2, 0, 1, 0):                    \
-        ret = _mm_shuffle_ps_2010((a), (b));           \
-        break;                                         \
-      case _MM_SHUFFLE(2, 0, 0, 1):                    \
-        ret = _mm_shuffle_ps_2001((a), (b));           \
-        break;                                         \
-      case _MM_SHUFFLE(2, 0, 3, 2):                    \
-        ret = _mm_shuffle_ps_2032((a), (b));           \
-        break;                                         \
-      default:                                         \
-        ret = _mm_shuffle_ps_default((a), (b), (imm)); \
-        break;                                         \
-    }                                                  \
-    ret;                                               \
-  })
-#endif  // not clang
-
-// Takes the upper 64 bits of a and places it in the low end of the result
-// Takes the lower 64 bits of a and places it into the high end of the result.
-FORCE_INLINE __m128i _mm_shuffle_epi_1032(__m128i a) {
-  int32x2_t a32 = vget_high_s32(vreinterpretq_s32_m128i(a));
-  int32x2_t a10 = vget_low_s32(vreinterpretq_s32_m128i(a));
-  return vreinterpretq_m128i_s32(vcombine_s32(a32, a10));
-}
-
-// takes the lower two 32-bit values from a and swaps them and places in low end
-// of result takes the higher two 32 bit values from a and swaps them and places
-// in high end of result.
-FORCE_INLINE __m128i _mm_shuffle_epi_2301(__m128i a) {
-  int32x2_t a01 = vrev64_s32(vget_low_s32(vreinterpretq_s32_m128i(a)));
-  int32x2_t a23 = vrev64_s32(vget_high_s32(vreinterpretq_s32_m128i(a)));
-  return vreinterpretq_m128i_s32(vcombine_s32(a01, a23));
-}
-
-// rotates the least significant 32 bits into the most signficant 32 bits, and
-// shifts the rest down
-FORCE_INLINE __m128i _mm_shuffle_epi_0321(__m128i a) {
-  return vreinterpretq_m128i_s32(
-      vextq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(a), 1));
-}
-
-// rotates the most significant 32 bits into the least signficant 32 bits, and
-// shifts the rest up
-FORCE_INLINE __m128i _mm_shuffle_epi_2103(__m128i a) {
-  return vreinterpretq_m128i_s32(
-      vextq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(a), 3));
-}
-
-// gets the lower 64 bits of a, and places it in the upper 64 bits
-// gets the lower 64 bits of a and places it in the lower 64 bits
-FORCE_INLINE __m128i _mm_shuffle_epi_1010(__m128i a) {
-  int32x2_t a10 = vget_low_s32(vreinterpretq_s32_m128i(a));
-  return vreinterpretq_m128i_s32(vcombine_s32(a10, a10));
-}
-
-// gets the lower 64 bits of a, swaps the 0 and 1 elements, and places it in the
-// lower 64 bits gets the lower 64 bits of a, and places it in the upper 64 bits
-FORCE_INLINE __m128i _mm_shuffle_epi_1001(__m128i a) {
-  int32x2_t a01 = vrev64_s32(vget_low_s32(vreinterpretq_s32_m128i(a)));
-  int32x2_t a10 = vget_low_s32(vreinterpretq_s32_m128i(a));
-  return vreinterpretq_m128i_s32(vcombine_s32(a01, a10));
-}
-
-// gets the lower 64 bits of a, swaps the 0 and 1 elements and places it in the
-// upper 64 bits gets the lower 64 bits of a, swaps the 0 and 1 elements, and
-// places it in the lower 64 bits
-FORCE_INLINE __m128i _mm_shuffle_epi_0101(__m128i a) {
-  int32x2_t a01 = vrev64_s32(vget_low_s32(vreinterpretq_s32_m128i(a)));
-  return vreinterpretq_m128i_s32(vcombine_s32(a01, a01));
-}
-
-FORCE_INLINE __m128i _mm_shuffle_epi_2211(__m128i a) {
-  int32x2_t a11 = vdup_lane_s32(vget_low_s32(vreinterpretq_s32_m128i(a)), 1);
-  int32x2_t a22 = vdup_lane_s32(vget_high_s32(vreinterpretq_s32_m128i(a)), 0);
-  return vreinterpretq_m128i_s32(vcombine_s32(a11, a22));
-}
-
-FORCE_INLINE __m128i _mm_shuffle_epi_0122(__m128i a) {
-  int32x2_t a22 = vdup_lane_s32(vget_high_s32(vreinterpretq_s32_m128i(a)), 0);
-  int32x2_t a01 = vrev64_s32(vget_low_s32(vreinterpretq_s32_m128i(a)));
-  return vreinterpretq_m128i_s32(vcombine_s32(a22, a01));
-}
-
-FORCE_INLINE __m128i _mm_shuffle_epi_3332(__m128i a) {
-  int32x2_t a32 = vget_high_s32(vreinterpretq_s32_m128i(a));
-  int32x2_t a33 = vdup_lane_s32(vget_high_s32(vreinterpretq_s32_m128i(a)), 1);
-  return vreinterpretq_m128i_s32(vcombine_s32(a32, a33));
-}
-
-// Shuffle packed 8-bit integers in a according to shuffle control mask in the
-// corresponding 8-bit element of b, and store the results in dst.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_shuffle_epi8&expand=5146
-FORCE_INLINE __m128i _mm_shuffle_epi8(__m128i a, __m128i b) {
-  int8x16_t tbl = vreinterpretq_s8_m128i(a);   // input a
-  uint8x16_t idx = vreinterpretq_u8_m128i(b);  // input b
-  uint8x16_t idx_masked =
-      vandq_u8(idx, vdupq_n_u8(0x8F));  // avoid using meaningless bits
-#if defined(__aarch64__)
-  return vreinterpretq_m128i_s8(vqtbl1q_s8(tbl, idx_masked));
-#elif defined(__GNUC__)
-
-  int8x16_t ret;
-  // %e and %f represent the even and odd D registers
-  // respectively.
-  __asm__(
-      "    vtbl.8  %e[ret], {%e[tbl], %f[tbl]}, %e[idx]\n"
-      "    vtbl.8  %f[ret], {%e[tbl], %f[tbl]}, %f[idx]\n"
-      : [ret] "=&w"(ret)
-      : [tbl] "w"(tbl), [idx] "w"(idx_masked));
-  return vreinterpretq_m128i_s8(ret);
-#else
-  // use this line if testing on aarch64
-  int8x8x2_t a_split = {vget_low_s8(tbl), vget_high_s8(tbl)};
-  return vreinterpretq_m128i_s8(
-      vcombine_s8(vtbl2_s8(a_split, vget_low_u8(idx_masked)),
-                  vtbl2_s8(a_split, vget_high_u8(idx_masked))));
-#endif
-}
-
-#if 0 /* C version */
-FORCE_INLINE __m128i _mm_shuffle_epi32_default(__m128i a,
-                                               __constrange(0, 255) int imm) {
-    __m128i ret;
-    ret[0] = a[imm & 0x3];
-    ret[1] = a[(imm >> 2) & 0x3];
-    ret[2] = a[(imm >> 4) & 0x03];
-    ret[3] = a[(imm >> 6) & 0x03];
-    return ret;
-}
-#endif
-#define _mm_shuffle_epi32_default(a, imm)                                     \
-  __extension__({                                                             \
-    int32x4_t ret;                                                            \
-    ret = vmovq_n_s32(vgetq_lane_s32(vreinterpretq_s32_m128i(a), (imm)&0x3)); \
-    ret = vsetq_lane_s32(                                                     \
-        vgetq_lane_s32(vreinterpretq_s32_m128i(a), ((imm) >> 2) & 0x3), ret,  \
-        1);                                                                   \
-    ret = vsetq_lane_s32(                                                     \
-        vgetq_lane_s32(vreinterpretq_s32_m128i(a), ((imm) >> 4) & 0x3), ret,  \
-        2);                                                                   \
-    ret = vsetq_lane_s32(                                                     \
-        vgetq_lane_s32(vreinterpretq_s32_m128i(a), ((imm) >> 6) & 0x3), ret,  \
-        3);                                                                   \
-    vreinterpretq_m128i_s32(ret);                                             \
-  })
-
-// FORCE_INLINE __m128i _mm_shuffle_epi32_splat(__m128i a, __constrange(0,255)
-// int imm)
-#if defined(__aarch64__)
-#define _mm_shuffle_epi32_splat(a, imm)                      \
-  __extension__({                                            \
-    vreinterpretq_m128i_s32(                                 \
-        vdupq_laneq_s32(vreinterpretq_s32_m128i(a), (imm))); \
-  })
-#else
-#define _mm_shuffle_epi32_splat(a, imm)                                  \
-  __extension__({                                                        \
-    vreinterpretq_m128i_s32(                                             \
-        vdupq_n_s32(vgetq_lane_s32(vreinterpretq_s32_m128i(a), (imm)))); \
-  })
-#endif
-
-// Shuffles the 4 signed or unsigned 32-bit integers in a as specified by imm.
-// https://msdn.microsoft.com/en-us/library/56f67xbk%28v=vs.90%29.aspx
-// FORCE_INLINE __m128i _mm_shuffle_epi32(__m128i a, __constrange(0,255) int
-// imm)
-#if defined(__clang__)
-#define _mm_shuffle_epi32(a, imm)                                              \
-  __extension__({                                                              \
-    int32x4_t _input = vreinterpretq_s32_m128i(a);                             \
-    int32x4_t _shuf =                                                          \
-        __builtin_shufflevector(_input, _input, (imm)&0x3, ((imm) >> 2) & 0x3, \
-                                ((imm) >> 4) & 0x3, ((imm) >> 6) & 0x3);       \
-    vreinterpretq_m128i_s32(_shuf);                                            \
-  })
-#else  // generic
-#define _mm_shuffle_epi32(a, imm)                    \
-  __extension__({                                    \
-    __m128i ret;                                     \
-    switch (imm) {                                   \
-      case _MM_SHUFFLE(1, 0, 3, 2):                  \
-        ret = _mm_shuffle_epi_1032((a));             \
-        break;                                       \
-      case _MM_SHUFFLE(2, 3, 0, 1):                  \
-        ret = _mm_shuffle_epi_2301((a));             \
-        break;                                       \
-      case _MM_SHUFFLE(0, 3, 2, 1):                  \
-        ret = _mm_shuffle_epi_0321((a));             \
-        break;                                       \
-      case _MM_SHUFFLE(2, 1, 0, 3):                  \
-        ret = _mm_shuffle_epi_2103((a));             \
-        break;                                       \
-      case _MM_SHUFFLE(1, 0, 1, 0):                  \
-        ret = _mm_shuffle_epi_1010((a));             \
-        break;                                       \
-      case _MM_SHUFFLE(1, 0, 0, 1):                  \
-        ret = _mm_shuffle_epi_1001((a));             \
-        break;                                       \
-      case _MM_SHUFFLE(0, 1, 0, 1):                  \
-        ret = _mm_shuffle_epi_0101((a));             \
-        break;                                       \
-      case _MM_SHUFFLE(2, 2, 1, 1):                  \
-        ret = _mm_shuffle_epi_2211((a));             \
-        break;                                       \
-      case _MM_SHUFFLE(0, 1, 2, 2):                  \
-        ret = _mm_shuffle_epi_0122((a));             \
-        break;                                       \
-      case _MM_SHUFFLE(3, 3, 3, 2):                  \
-        ret = _mm_shuffle_epi_3332((a));             \
-        break;                                       \
-      case _MM_SHUFFLE(0, 0, 0, 0):                  \
-        ret = _mm_shuffle_epi32_splat((a), 0);       \
-        break;                                       \
-      case _MM_SHUFFLE(1, 1, 1, 1):                  \
-        ret = _mm_shuffle_epi32_splat((a), 1);       \
-        break;                                       \
-      case _MM_SHUFFLE(2, 2, 2, 2):                  \
-        ret = _mm_shuffle_epi32_splat((a), 2);       \
-        break;                                       \
-      case _MM_SHUFFLE(3, 3, 3, 3):                  \
-        ret = _mm_shuffle_epi32_splat((a), 3);       \
-        break;                                       \
-      default:                                       \
-        ret = _mm_shuffle_epi32_default((a), (imm)); \
-        break;                                       \
-    }                                                \
-    ret;                                             \
-  })
-#endif  // not clang
-
-// Shuffles the lower 4 signed or unsigned 16-bit integers in a as specified
-// by imm.
-// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/y41dkk37(v=vs.100)
-// FORCE_INLINE __m128i _mm_shufflelo_epi16_function(__m128i a,
-// __constrange(0,255) int imm)
-
-#define _mm_shufflelo_epi16_function(a, imm)                                  \
-  __extension__({                                                             \
-    int16x8_t ret = vreinterpretq_s16_m128i(a);                               \
-    int16x4_t lowBits = vget_low_s16(ret);                                    \
-    ret = vsetq_lane_s16(vget_lane_s16(lowBits, (imm)&0x3), ret, 0);          \
-    ret = vsetq_lane_s16(vget_lane_s16(lowBits, ((imm) >> 2) & 0x3), ret, 1); \
-    ret = vsetq_lane_s16(vget_lane_s16(lowBits, ((imm) >> 4) & 0x3), ret, 2); \
-    ret = vsetq_lane_s16(vget_lane_s16(lowBits, ((imm) >> 6) & 0x3), ret, 3); \
-    vreinterpretq_m128i_s16(ret);                                             \
-  })
-
-// FORCE_INLINE __m128i _mm_shufflelo_epi16(__m128i a, __constrange(0,255) int
-// imm)
-#if defined(__clang__)
-#define _mm_shufflelo_epi16(a, imm)                              \
-  __extension__({                                                \
-    int16x8_t _input = vreinterpretq_s16_m128i(a);               \
-    int16x8_t _shuf = __builtin_shufflevector(                   \
-        _input, _input, ((imm)&0x3), (((imm) >> 2) & 0x3),       \
-        (((imm) >> 4) & 0x3), (((imm) >> 6) & 0x3), 4, 5, 6, 7); \
-    vreinterpretq_m128i_s16(_shuf);                              \
-  })
-#else  // generic
-#define _mm_shufflelo_epi16(a, imm) _mm_shufflelo_epi16_function((a), (imm))
-#endif
-
-// Shuffles the upper 4 signed or unsigned 16-bit integers in a as specified
-// by imm.
-// https://msdn.microsoft.com/en-us/library/13ywktbs(v=vs.100).aspx
-// FORCE_INLINE __m128i _mm_shufflehi_epi16_function(__m128i a,
-// __constrange(0,255) int imm)
-#define _mm_shufflehi_epi16_function(a, imm)                                   \
-  __extension__({                                                              \
-    int16x8_t ret = vreinterpretq_s16_m128i(a);                                \
-    int16x4_t highBits = vget_high_s16(ret);                                   \
-    ret = vsetq_lane_s16(vget_lane_s16(highBits, (imm)&0x3), ret, 4);          \
-    ret = vsetq_lane_s16(vget_lane_s16(highBits, ((imm) >> 2) & 0x3), ret, 5); \
-    ret = vsetq_lane_s16(vget_lane_s16(highBits, ((imm) >> 4) & 0x3), ret, 6); \
-    ret = vsetq_lane_s16(vget_lane_s16(highBits, ((imm) >> 6) & 0x3), ret, 7); \
-    vreinterpretq_m128i_s16(ret);                                              \
-  })
-
-// FORCE_INLINE __m128i _mm_shufflehi_epi16(__m128i a, __constrange(0,255) int
-// imm)
-#if defined(__clang__)
-#define _mm_shufflehi_epi16(a, imm)                                            \
-  __extension__({                                                              \
-    int16x8_t _input = vreinterpretq_s16_m128i(a);                             \
-    int16x8_t _shuf = __builtin_shufflevector(                                 \
-        _input, _input, 0, 1, 2, 3, ((imm)&0x3) + 4, (((imm) >> 2) & 0x3) + 4, \
-        (((imm) >> 4) & 0x3) + 4, (((imm) >> 6) & 0x3) + 4);                   \
-    vreinterpretq_m128i_s16(_shuf);                                            \
-  })
-#else  // generic
-#define _mm_shufflehi_epi16(a, imm) _mm_shufflehi_epi16_function((a), (imm))
-#endif
-
-// Blend packed 16-bit integers from a and b using control mask imm8, and store
-// the results in dst.
-//
-//   FOR j := 0 to 7
-//       i := j*16
-//       IF imm8[j]
-//           dst[i+15:i] := b[i+15:i]
-//       ELSE
-//           dst[i+15:i] := a[i+15:i]
-//       FI
-//   ENDFOR
-// FORCE_INLINE __m128i _mm_blend_epi16(__m128i a, __m128i b,
-// __constrange(0,255) int imm)
-#define _mm_blend_epi16(a, b, imm)                                    \
-  __extension__({                                                     \
-    const uint16_t _mask[8] = {((imm) & (1 << 0)) ? 0xFFFF : 0x0000,  \
-                               ((imm) & (1 << 1)) ? 0xFFFF : 0x0000,  \
-                               ((imm) & (1 << 2)) ? 0xFFFF : 0x0000,  \
-                               ((imm) & (1 << 3)) ? 0xFFFF : 0x0000,  \
-                               ((imm) & (1 << 4)) ? 0xFFFF : 0x0000,  \
-                               ((imm) & (1 << 5)) ? 0xFFFF : 0x0000,  \
-                               ((imm) & (1 << 6)) ? 0xFFFF : 0x0000,  \
-                               ((imm) & (1 << 7)) ? 0xFFFF : 0x0000}; \
-    uint16x8_t _mask_vec = vld1q_u16(_mask);                          \
-    uint16x8_t _a = vreinterpretq_u16_m128i(a);                       \
-    uint16x8_t _b = vreinterpretq_u16_m128i(b);                       \
-    vreinterpretq_m128i_u16(vbslq_u16(_mask_vec, _b, _a));            \
-  })
-
-// Blend packed 8-bit integers from a and b using mask, and store the results in
-// dst.
-//
-//   FOR j := 0 to 15
-//       i := j*8
-//       IF mask[i+7]
-//           dst[i+7:i] := b[i+7:i]
-//       ELSE
-//           dst[i+7:i] := a[i+7:i]
-//       FI
-//   ENDFOR
-FORCE_INLINE __m128i _mm_blendv_epi8(__m128i _a, __m128i _b, __m128i _mask) {
-  // Use a signed shift right to create a mask with the sign bit
-  uint8x16_t mask =
-      vreinterpretq_u8_s8(vshrq_n_s8(vreinterpretq_s8_m128i(_mask), 7));
-  uint8x16_t a = vreinterpretq_u8_m128i(_a);
-  uint8x16_t b = vreinterpretq_u8_m128i(_b);
-  return vreinterpretq_m128i_u8(vbslq_u8(mask, b, a));
-}
-
-/////////////////////////////////////
-// Shifts
-/////////////////////////////////////
-
-// Shifts the 4 signed 32-bit integers in a right by count bits while shifting
-// in the sign bit.
-//
-//   r0 := a0 >> count
-//   r1 := a1 >> count
-//   r2 := a2 >> count
-//   r3 := a3 >> count immediate
-FORCE_INLINE __m128i _mm_srai_epi32(__m128i a, int count) {
-  return (__m128i)vshlq_s32((int32x4_t)a, vdupq_n_s32(-count));
-}
-
-// Shifts the 8 signed 16-bit integers in a right by count bits while shifting
-// in the sign bit.
-//
-//   r0 := a0 >> count
-//   r1 := a1 >> count
-//   ...
-//   r7 := a7 >> count
-FORCE_INLINE __m128i _mm_srai_epi16(__m128i a, int count) {
-  return (__m128i)vshlq_s16((int16x8_t)a, vdupq_n_s16(-count));
-}
-
-// Shifts the 8 signed or unsigned 16-bit integers in a left by count bits while
-// shifting in zeros.
-//
-//   r0 := a0 << count
-//   r1 := a1 << count
-//   ...
-//   r7 := a7 << count
-//
-// https://msdn.microsoft.com/en-us/library/es73bcsy(v=vs.90).aspx
-#define _mm_slli_epi16(a, imm)                             \
-  __extension__({                                          \
-    __m128i ret;                                           \
-    if ((imm) <= 0) {                                      \
-      ret = a;                                             \
-    } else if ((imm) > 31) {                               \
-      ret = _mm_setzero_si128();                           \
-    } else {                                               \
-      ret = vreinterpretq_m128i_s16(                       \
-          vshlq_n_s16(vreinterpretq_s16_m128i(a), (imm))); \
-    }                                                      \
-    ret;                                                   \
-  })
-
-// Shifts the 4 signed or unsigned 32-bit integers in a left by count bits while
-// shifting in zeros. :
-// https://msdn.microsoft.com/en-us/library/z2k3bbtb%28v=vs.90%29.aspx
-// FORCE_INLINE __m128i _mm_slli_epi32(__m128i a, __constrange(0,255) int imm)
-#define _mm_slli_epi32(a, imm)                             \
-  __extension__({                                          \
-    __m128i ret;                                           \
-    if ((imm) <= 0) {                                      \
-      ret = a;                                             \
-    } else if ((imm) > 31) {                               \
-      ret = _mm_setzero_si128();                           \
-    } else {                                               \
-      ret = vreinterpretq_m128i_s32(                       \
-          vshlq_n_s32(vreinterpretq_s32_m128i(a), (imm))); \
-    }                                                      \
-    ret;                                                   \
-  })
-
-// Shift packed 64-bit integers in a left by imm8 while shifting in zeros, and
-// store the results in dst.
-#define _mm_slli_epi64(a, imm)                             \
-  __extension__({                                          \
-    __m128i ret;                                           \
-    if ((imm) <= 0) {                                      \
-      ret = a;                                             \
-    } else if ((imm) > 63) {                               \
-      ret = _mm_setzero_si128();                           \
-    } else {                                               \
-      ret = vreinterpretq_m128i_s64(                       \
-          vshlq_n_s64(vreinterpretq_s64_m128i(a), (imm))); \
-    }                                                      \
-    ret;                                                   \
-  })
-
-// Shifts the 8 signed or unsigned 16-bit integers in a right by count bits
-// while shifting in zeros.
-//
-//   r0 := srl(a0, count)
-//   r1 := srl(a1, count)
-//   ...
-//   r7 := srl(a7, count)
-//
-// https://msdn.microsoft.com/en-us/library/6tcwd38t(v=vs.90).aspx
-#define _mm_srli_epi16(a, imm)                             \
-  __extension__({                                          \
-    __m128i ret;                                           \
-    if ((imm) <= 0) {                                      \
-      ret = a;                                             \
-    } else if ((imm) > 31) {                               \
-      ret = _mm_setzero_si128();                           \
-    } else {                                               \
-      ret = vreinterpretq_m128i_u16(                       \
-          vshrq_n_u16(vreinterpretq_u16_m128i(a), (imm))); \
-    }                                                      \
-    ret;                                                   \
-  })
-
-// Shifts the 4 signed or unsigned 32-bit integers in a right by count bits
-// while shifting in zeros.
-// https://msdn.microsoft.com/en-us/library/w486zcfa(v=vs.100).aspx FORCE_INLINE
-// __m128i _mm_srli_epi32(__m128i a, __constrange(0,255) int imm)
-#define _mm_srli_epi32(a, imm)                             \
-  __extension__({                                          \
-    __m128i ret;                                           \
-    if ((imm) <= 0) {                                      \
-      ret = a;                                             \
-    } else if ((imm) > 31) {                               \
-      ret = _mm_setzero_si128();                           \
-    } else {                                               \
-      ret = vreinterpretq_m128i_u32(                       \
-          vshrq_n_u32(vreinterpretq_u32_m128i(a), (imm))); \
-    }                                                      \
-    ret;                                                   \
-  })
-
-// Shift packed 64-bit integers in a right by imm8 while shifting in zeros, and
-// store the results in dst.
-#define _mm_srli_epi64(a, imm)                             \
-  __extension__({                                          \
-    __m128i ret;                                           \
-    if ((imm) <= 0) {                                      \
-      ret = a;                                             \
-    } else if ((imm) > 63) {                               \
-      ret = _mm_setzero_si128();                           \
-    } else {                                               \
-      ret = vreinterpretq_m128i_u64(                       \
-          vshrq_n_u64(vreinterpretq_u64_m128i(a), (imm))); \
-    }                                                      \
-    ret;                                                   \
-  })
-
-// Shifts the 4 signed 32 - bit integers in a right by count bits while shifting
-// in the sign bit.
-// https://msdn.microsoft.com/en-us/library/z1939387(v=vs.100).aspx
-// FORCE_INLINE __m128i _mm_srai_epi32(__m128i a, __constrange(0,255) int imm)
-#define _mm_srai_epi32(a, imm)                             \
-  __extension__({                                          \
-    __m128i ret;                                           \
-    if ((imm) <= 0) {                                      \
-      ret = a;                                             \
-    } else if ((imm) > 31) {                               \
-      ret = vreinterpretq_m128i_s32(                       \
-          vshrq_n_s32(vreinterpretq_s32_m128i(a), 16));    \
-      ret = vreinterpretq_m128i_s32(                       \
-          vshrq_n_s32(vreinterpretq_s32_m128i(ret), 16));  \
-    } else {                                               \
-      ret = vreinterpretq_m128i_s32(                       \
-          vshrq_n_s32(vreinterpretq_s32_m128i(a), (imm))); \
-    }                                                      \
-    ret;                                                   \
-  })
-
-// Shifts the 128 - bit value in a right by imm bytes while shifting in
-// zeros.imm must be an immediate.
-//
-//   r := srl(a, imm*8)
-//
-// https://msdn.microsoft.com/en-us/library/305w28yz(v=vs.100).aspx
-// FORCE_INLINE _mm_srli_si128(__m128i a, __constrange(0,255) int imm)
-#define _mm_srli_si128(a, imm)                                        \
-  __extension__({                                                     \
-    __m128i ret;                                                      \
-    if ((imm) <= 0) {                                                 \
-      ret = a;                                                        \
-    } else if ((imm) > 15) {                                          \
-      ret = _mm_setzero_si128();                                      \
-    } else {                                                          \
-      ret = vreinterpretq_m128i_s8(                                   \
-          vextq_s8(vreinterpretq_s8_m128i(a), vdupq_n_s8(0), (imm))); \
-    }                                                                 \
-    ret;                                                              \
-  })
-
-// Shifts the 128-bit value in a left by imm bytes while shifting in zeros. imm
-// must be an immediate.
-//
-//   r := a << (imm * 8)
-//
-// https://msdn.microsoft.com/en-us/library/34d3k2kt(v=vs.100).aspx
-// FORCE_INLINE __m128i _mm_slli_si128(__m128i a, __constrange(0,255) int imm)
-#define _mm_slli_si128(a, imm)                                             \
-  __extension__({                                                          \
-    __m128i ret;                                                           \
-    if ((imm) <= 0) {                                                      \
-      ret = a;                                                             \
-    } else if ((imm) > 15) {                                               \
-      ret = _mm_setzero_si128();                                           \
-    } else {                                                               \
-      ret = vreinterpretq_m128i_s8(                                        \
-          vextq_s8(vdupq_n_s8(0), vreinterpretq_s8_m128i(a), 16 - (imm))); \
-    }                                                                      \
-    ret;                                                                   \
-  })
-
-// NEON does not provide a version of this function.
-// Creates a 16-bit mask from the most significant bits of the 16 signed or
-// unsigned 8-bit integers in a and zero extends the upper bits.
-// https://msdn.microsoft.com/en-us/library/vstudio/s090c8fk(v=vs.100).aspx
-FORCE_INLINE int _mm_movemask_epi8(__m128i a) {
-  // Use increasingly wide shifts+adds to collect the sign bits
-  // together.
-  // Since the widening shifts would be rather confusing to follow in little
-  // endian, everything will be illustrated in big endian order instead. This
-  // has a different result - the bits would actually be reversed on a big
-  // endian machine.
-
-  // Starting input (only half the elements are shown):
-  // 89 ff 1d c0 00 10 99 33
-  uint8x16_t input = vreinterpretq_u8_m128i(a);
-
-  // Shift out everything but the sign bits with an unsigned shift right.
-  //
-  // Bytes of the vector::
-  // 89 ff 1d c0 00 10 99 33
-  // \  \  \  \  \  \  \  \    high_bits = (uint16x4_t)(input >> 7)
-  //  |  |  |  |  |  |  |  |
-  // 01 01 00 01 00 00 01 00
-  //
-  // Bits of first important lane(s):
-  // 10001001 (89)
-  // \______
-  //        |
-  // 00000001 (01)
-  uint16x8_t high_bits = vreinterpretq_u16_u8(vshrq_n_u8(input, 7));
-
-  // Merge the even lanes together with a 16-bit unsigned shift right + add.
-  // 'xx' represents garbage data which will be ignored in the final result.
-  // In the important bytes, the add functions like a binary OR.
-  //
-  // 01 01 00 01 00 00 01 00
-  //  \_ |  \_ |  \_ |  \_ |   paired16 = (uint32x4_t)(input + (input >> 7))
-  //    \|    \|    \|    \|
-  // xx 03 xx 01 xx 00 xx 02
-  //
-  // 00000001 00000001 (01 01)
-  //        \_______ |
-  //                \|
-  // xxxxxxxx xxxxxx11 (xx 03)
-  uint32x4_t paired16 =
-      vreinterpretq_u32_u16(vsraq_n_u16(high_bits, high_bits, 7));
-
-  // Repeat with a wider 32-bit shift + add.
-  // xx 03 xx 01 xx 00 xx 02
-  //     \____ |     \____ |  paired32 = (uint64x1_t)(paired16 + (paired16 >>
-  //     14))
-  //          \|          \|
-  // xx xx xx 0d xx xx xx 02
-  //
-  // 00000011 00000001 (03 01)
-  //        \\_____ ||
-  //         '----.\||
-  // xxxxxxxx xxxx1101 (xx 0d)
-  uint64x2_t paired32 =
-      vreinterpretq_u64_u32(vsraq_n_u32(paired16, paired16, 14));
-
-  // Last, an even wider 64-bit shift + add to get our result in the low 8 bit
-  // lanes. xx xx xx 0d xx xx xx 02
-  //            \_________ |   paired64 = (uint8x8_t)(paired32 + (paired32 >>
-  //            28))
-  //                      \|
-  // xx xx xx xx xx xx xx d2
-  //
-  // 00001101 00000010 (0d 02)
-  //     \   \___ |  |
-  //      '---.  \|  |
-  // xxxxxxxx 11010010 (xx d2)
-  uint8x16_t paired64 =
-      vreinterpretq_u8_u64(vsraq_n_u64(paired32, paired32, 28));
-
-  // Extract the low 8 bits from each 64-bit lane with 2 8-bit extracts.
-  // xx xx xx xx xx xx xx d2
-  //                      ||  return paired64[0]
-  //                      d2
-  // Note: Little endian would return the correct value 4b (01001011) instead.
-  return vgetq_lane_u8(paired64, 0) | ((int)vgetq_lane_u8(paired64, 8) << 8); //NOLINT
-}
-
-// NEON does not provide this method
-// Creates a 4-bit mask from the most significant bits of the four
-// single-precision, floating-point values.
-// https://msdn.microsoft.com/en-us/library/vstudio/4490ys29(v=vs.100).aspx
-FORCE_INLINE int _mm_movemask_ps(__m128 a) {
-  // Uses the exact same method as _mm_movemask_epi8, see that for details
-  uint32x4_t input = vreinterpretq_u32_m128(a);
-  // Shift out everything but the sign bits with a 32-bit unsigned shift right.
-  uint64x2_t high_bits = vreinterpretq_u64_u32(vshrq_n_u32(input, 31));
-  // Merge the two pairs together with a 64-bit unsigned shift right + add.
-  uint8x16_t paired =
-      vreinterpretq_u8_u64(vsraq_n_u64(high_bits, high_bits, 31));
-  // Extract the result.
-  return vgetq_lane_u8(paired, 0) | (vgetq_lane_u8(paired, 8) << 2);
-}
-
-// Compute the bitwise AND of 128 bits (representing integer data) in a and
-// mask, and return 1 if the result is zero, otherwise return 0.
-// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_test_all_zeros&expand=5871
-FORCE_INLINE int _mm_test_all_zeros(__m128i a, __m128i mask) {
-  int64x2_t a_and_mask =
-      vandq_s64(vreinterpretq_s64_m128i(a), vreinterpretq_s64_m128i(mask));
-  return (vgetq_lane_s64(a_and_mask, 0) | vgetq_lane_s64(a_and_mask, 1)) ? 0
-                                                                         : 1;
-}
-
-// ******************************************
-// Math operations
-// ******************************************
-
-// Subtracts the four single-precision, floating-point values of a and b.
-//
-//   r0 := a0 - b0
-//   r1 := a1 - b1
-//   r2 := a2 - b2
-//   r3 := a3 - b3
-//
-// https://msdn.microsoft.com/en-us/library/vstudio/1zad2k61(v=vs.100).aspx
-FORCE_INLINE __m128 _mm_sub_ps(__m128 a, __m128 b) {
-  return vreinterpretq_m128_f32(
-      vsubq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
-}
-
-// Subtract 2 packed 64-bit integers in b from 2 packed 64-bit integers in a,
-// and store the results in dst.
-//    r0 := a0 - b0
-//    r1 := a1 - b1
-FORCE_INLINE __m128i _mm_sub_epi64(__m128i a, __m128i b) {
-  return vreinterpretq_m128i_s64(
-      vsubq_s64(vreinterpretq_s64_m128i(a), vreinterpretq_s64_m128i(b)));
-}
-
-// Subtracts the 4 signed or unsigned 32-bit integers of b from the 4 signed or
-// unsigned 32-bit integers of a.
-//
-//   r0 := a0 - b0
-//   r1 := a1 - b1
-//   r2 := a2 - b2
-//   r3 := a3 - b3
-//
-// https://msdn.microsoft.com/en-us/library/vstudio/fhh866h0(v=vs.100).aspx
-FORCE_INLINE __m128i _mm_sub_epi32(__m128i a, __m128i b) {
-  return vreinterpretq_m128i_s32(
-      vsubq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b)));
-}
-
-FORCE_INLINE __m128i _mm_sub_epi16(__m128i a, __m128i b) {
-  return vreinterpretq_m128i_s16(
-      vsubq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b)));
-}
-
-FORCE_INLINE __m128i _mm_sub_epi8(__m128i a, __m128i b) {
-  return vreinterpretq_m128i_s8(
-      vsubq_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b)));
-}
-
-// Subtracts the 8 unsigned 16-bit integers of bfrom the 8 unsigned 16-bit
-// integers of a and saturates..
-// https://technet.microsoft.com/en-us/subscriptions/index/f44y0s19(v=vs.90).aspx
-FORCE_INLINE __m128i _mm_subs_epu16(__m128i a, __m128i b) {
-  return vreinterpretq_m128i_u16(
-      vqsubq_u16(vreinterpretq_u16_m128i(a), vreinterpretq_u16_m128i(b)));
-}
-
-// Subtracts the 16 unsigned 8-bit integers of b from the 16 unsigned 8-bit
-// integers of a and saturates.
-//
-//   r0 := UnsignedSaturate(a0 - b0)
-//   r1 := UnsignedSaturate(a1 - b1)
-//   ...
-//   r15 := UnsignedSaturate(a15 - b15)
-//
-// https://technet.microsoft.com/en-us/subscriptions/yadkxc18(v=vs.90)
-FORCE_INLINE __m128i _mm_subs_epu8(__m128i a, __m128i b) {
-  return vreinterpretq_m128i_u8(
-      vqsubq_u8(vreinterpretq_u8_m128i(a), vreinterpretq_u8_m128i(b)));
-}
-
-// Subtracts the 8 signed 16-bit integers of b from the 8 signed 16-bit integers
-// of a and saturates.
-//
-//   r0 := SignedSaturate(a0 - b0)
-//   r1 := SignedSaturate(a1 - b1)
-//   ...
-//   r7 := SignedSaturate(a7 - b7)
-FORCE_INLINE __m128i _mm_subs_epi16(__m128i a, __m128i b) {
-  return vreinterpretq_m128i_s16(
-      vqsubq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b)));
-}
-
-FORCE_INLINE __m128i _mm_adds_epu16(__m128i a, __m128i b) {
-  return vreinterpretq_m128i_u16(
-      vqaddq_u16(vreinterpretq_u16_m128i(a), vreinterpretq_u16_m128i(b)));
-}
-
-// Negate packed 8-bit integers in a when the corresponding signed
-// 8-bit integer in b is negative, and store the results in dst.
-// Element in dst are zeroed out when the corresponding element
-// in b is zero.
-//
-//   for i in 0..15
-//     if b[i] < 0
-//       r[i] := -a[i]
-//     else if b[i] == 0
-//       r[i] := 0
-//     else
-//       r[i] := a[i]
-//     fi
-//   done
-FORCE_INLINE __m128i _mm_sign_epi8(__m128i _a, __m128i _b) {
-  int8x16_t a = vreinterpretq_s8_m128i(_a);
-  int8x16_t b = vreinterpretq_s8_m128i(_b);
-
-  int8x16_t zero = vdupq_n_s8(0);
-  // signed shift right: faster than vclt
-  // (b < 0) ? 0xFF : 0
-  uint8x16_t ltMask = vreinterpretq_u8_s8(vshrq_n_s8(b, 7));
-  // (b == 0) ? 0xFF : 0
-  int8x16_t zeroMask = vreinterpretq_s8_u8(vceqq_s8(b, zero));
-  // -a
-  int8x16_t neg = vnegq_s8(a);
-  // bitwise select either a or neg based on ltMask
-  int8x16_t masked = vbslq_s8(ltMask, a, neg);
-  // res = masked & (~zeroMask)
-  int8x16_t res = vbicq_s8(masked, zeroMask);
-  return vreinterpretq_m128i_s8(res);
-}
-
-// Negate packed 16-bit integers in a when the corresponding signed
-// 16-bit integer in b is negative, and store the results in dst.
-// Element in dst are zeroed out when the corresponding element
-// in b is zero.
-//
-//   for i in 0..7
-//     if b[i] < 0
-//       r[i] := -a[i]
-//     else if b[i] == 0
-//       r[i] := 0
-//     else
-//       r[i] := a[i]
-//     fi
-//   done
-FORCE_INLINE __m128i _mm_sign_epi16(__m128i _a, __m128i _b) {
-  int16x8_t a = vreinterpretq_s16_m128i(_a);
-  int16x8_t b = vreinterpretq_s16_m128i(_b);
-
-  int16x8_t zero = vdupq_n_s16(0);
-  // signed shift right: faster than vclt
-  // (b < 0) ? 0xFFFF : 0
-  uint16x8_t ltMask = vreinterpretq_u16_s16(vshrq_n_s16(b, 15));
-  // (b == 0) ? 0xFFFF : 0
-  int16x8_t zeroMask = vreinterpretq_s16_u16(vceqq_s16(b, zero));
-  // -a
-  int16x8_t neg = vnegq_s16(a);
-  // bitwise select either a or neg based on ltMask
-  int16x8_t masked = vbslq_s16(ltMask, a, neg);
-  // res = masked & (~zeroMask)
-  int16x8_t res = vbicq_s16(masked, zeroMask);
-  return vreinterpretq_m128i_s16(res);
-}
-
-// Negate packed 32-bit integers in a when the corresponding signed
-// 32-bit integer in b is negative, and store the results in dst.
-// Element in dst are zeroed out when the corresponding element
-// in b is zero.
-//
-//   for i in 0..3
-//     if b[i] < 0
-//       r[i] := -a[i]
-//     else if b[i] == 0
-//       r[i] := 0
-//     else
-//       r[i] := a[i]
-//     fi
-//   done
-FORCE_INLINE __m128i _mm_sign_epi32(__m128i _a, __m128i _b) {
-  int32x4_t a = vreinterpretq_s32_m128i(_a);
-  int32x4_t b = vreinterpretq_s32_m128i(_b);
-
-  int32x4_t zero = vdupq_n_s32(0);
-  // signed shift right: faster than vclt
-  // (b < 0) ? 0xFFFFFFFF : 0
-  uint32x4_t ltMask = vreinterpretq_u32_s32(vshrq_n_s32(b, 31));
-  // (b == 0) ? 0xFFFFFFFF : 0
-  int32x4_t zeroMask = vreinterpretq_s32_u32(vceqq_s32(b, zero));
-  // neg = -a
-  int32x4_t neg = vnegq_s32(a);
-  // bitwise select either a or neg based on ltMask
-  int32x4_t masked = vbslq_s32(ltMask, a, neg);
-  // res = masked & (~zeroMask)
-  int32x4_t res = vbicq_s32(masked, zeroMask);
-  return vreinterpretq_m128i_s32(res);
-}
-
-// Adds the four single-precision, floating-point values of a and b.
-//
-//   r0 := a0 + b0
-//   r1 := a1 + b1
-//   r2 := a2 + b2
-//   r3 := a3 + b3
-//
-// https://msdn.microsoft.com/en-us/library/vstudio/c9848chc(v=vs.100).aspx
-FORCE_INLINE __m128 _mm_add_ps(__m128 a, __m128 b) {
-  return vreinterpretq_m128_f32(
-      vaddq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
-}
-
-// adds the scalar single-precision floating point values of a and b.
-// https://msdn.microsoft.com/en-us/library/be94x2y6(v=vs.100).aspx
-FORCE_INLINE __m128 _mm_add_ss(__m128 a, __m128 b) {
-  float32_t b0 = vgetq_lane_f32(vreinterpretq_f32_m128(b), 0);
-  float32x4_t value = vsetq_lane_f32(b0, vdupq_n_f32(0), 0);
-  // the upper values in the result must be the remnants of <a>.
-  return vreinterpretq_m128_f32(vaddq_f32(a, value));
-}
-
-// Adds the 4 signed or unsigned 64-bit integers in a to the 4 signed or
-// unsigned 32-bit integers in b.
-// https://msdn.microsoft.com/en-us/library/vstudio/09xs4fkk(v=vs.100).aspx
-FORCE_INLINE __m128i _mm_add_epi64(__m128i a, __m128i b) {
-  return vreinterpretq_m128i_s64(
-      vaddq_s64(vreinterpretq_s64_m128i(a), vreinterpretq_s64_m128i(b)));
-}
-
-// Adds the 4 signed or unsigned 32-bit integers in a to the 4 signed or
-// unsigned 32-bit integers in b.
-//
-//   r0 := a0 + b0
-//   r1 := a1 + b1
-//   r2 := a2 + b2
-//   r3 := a3 + b3
-//
-// https://msdn.microsoft.com/en-us/library/vstudio/09xs4fkk(v=vs.100).aspx
-FORCE_INLINE __m128i _mm_add_epi32(__m128i a, __m128i b) {
-  return vreinterpretq_m128i_s32(
-      vaddq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b)));
-}
-
-// Adds the 8 signed or unsigned 16-bit integers in a to the 8 signed or
-// unsigned 16-bit integers in b.
-// https://msdn.microsoft.com/en-us/library/fceha5k4(v=vs.100).aspx
-FORCE_INLINE __m128i _mm_add_epi16(__m128i a, __m128i b) {
-  return vreinterpretq_m128i_s16(
-      vaddq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b)));
-}
-
-// Adds the 16 signed or unsigned 8-bit integers in a to the 16 signed or
-// unsigned 8-bit integers in b.
-// https://technet.microsoft.com/en-us/subscriptions/yc7tcyzs(v=vs.90)
-FORCE_INLINE __m128i _mm_add_epi8(__m128i a, __m128i b) {
-  return vreinterpretq_m128i_s8(
-      vaddq_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b)));
-}
-
-// Adds the 8 signed 16-bit integers in a to the 8 signed 16-bit integers in b
-// and saturates.
-//
-//   r0 := SignedSaturate(a0 + b0)
-//   r1 := SignedSaturate(a1 + b1)
-//   ...
-//   r7 := SignedSaturate(a7 + b7)
-//
-// https://msdn.microsoft.com/en-us/library/1a306ef8(v=vs.100).aspx
-FORCE_INLINE __m128i _mm_adds_epi16(__m128i a, __m128i b) {
-  return vreinterpretq_m128i_s16(
-      vqaddq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b)));
-}
-
-// Adds the 16 unsigned 8-bit integers in a to the 16 unsigned 8-bit integers in
-// b and saturates..
-// https://msdn.microsoft.com/en-us/library/9hahyddy(v=vs.100).aspx
-FORCE_INLINE __m128i _mm_adds_epu8(__m128i a, __m128i b) {
-  return vreinterpretq_m128i_u8(
-      vqaddq_u8(vreinterpretq_u8_m128i(a), vreinterpretq_u8_m128i(b)));
-}
-
-// Multiplies the 8 signed or unsigned 16-bit integers from a by the 8 signed or
-// unsigned 16-bit integers from b.
-//
-//   r0 := (a0 * b0)[15:0]
-//   r1 := (a1 * b1)[15:0]
-//   ...
-//   r7 := (a7 * b7)[15:0]
-//
-// https://msdn.microsoft.com/en-us/library/vstudio/9ks1472s(v=vs.100).aspx
-FORCE_INLINE __m128i _mm_mullo_epi16(__m128i a, __m128i b) {
-  return vreinterpretq_m128i_s16(
-      vmulq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b)));
-}
-
-// Multiplies the 4 signed or unsigned 32-bit integers from a by the 4 signed or
-// unsigned 32-bit integers from b.
-// https://msdn.microsoft.com/en-us/library/vstudio/bb531409(v=vs.100).aspx
-FORCE_INLINE __m128i _mm_mullo_epi32(__m128i a, __m128i b) {
-  return vreinterpretq_m128i_s32(
-      vmulq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b)));
-}
-
-// Multiplies the four single-precision, floating-point values of a and b.
-//
-//   r0 := a0 * b0
-//   r1 := a1 * b1
-//   r2 := a2 * b2
-//   r3 := a3 * b3
-//
-// https://msdn.microsoft.com/en-us/library/vstudio/22kbk6t9(v=vs.100).aspx
-FORCE_INLINE __m128 _mm_mul_ps(__m128 a, __m128 b) {
-  return vreinterpretq_m128_f32(
-      vmulq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
-}
-
-// Multiply the low unsigned 32-bit integers from each packed 64-bit element in
-// a and b, and store the unsigned 64-bit results in dst.
-//
-//   r0 :=  (a0 & 0xFFFFFFFF) * (b0 & 0xFFFFFFFF)
-//   r1 :=  (a2 & 0xFFFFFFFF) * (b2 & 0xFFFFFFFF)
-FORCE_INLINE __m128i _mm_mul_epu32(__m128i a, __m128i b) {
-  // vmull_u32 upcasts instead of masking, so we downcast.
-  uint32x2_t a_lo = vmovn_u64(vreinterpretq_u64_m128i(a));
-  uint32x2_t b_lo = vmovn_u64(vreinterpretq_u64_m128i(b));
-  return vreinterpretq_m128i_u64(vmull_u32(a_lo, b_lo));
-}
-
-// Multiply the low signed 32-bit integers from each packed 64-bit element in
-// a and b, and store the signed 64-bit results in dst.
-//
-//   r0 :=  (int64_t)(int32_t)a0 * (int64_t)(int32_t)b0
-//   r1 :=  (int64_t)(int32_t)a2 * (int64_t)(int32_t)b2
-FORCE_INLINE __m128i _mm_mul_epi32(__m128i a, __m128i b) {
-  // vmull_s32 upcasts instead of masking, so we downcast.
-  int32x2_t a_lo = vmovn_s64(vreinterpretq_s64_m128i(a));
-  int32x2_t b_lo = vmovn_s64(vreinterpretq_s64_m128i(b));
-  return vreinterpretq_m128i_s64(vmull_s32(a_lo, b_lo));
-}
-
-// Multiplies the 8 signed 16-bit integers from a by the 8 signed 16-bit
-// integers from b.
-//
-//   r0 := (a0 * b0) + (a1 * b1)
-//   r1 := (a2 * b2) + (a3 * b3)
-//   r2 := (a4 * b4) + (a5 * b5)
-//   r3 := (a6 * b6) + (a7 * b7)
-// https://msdn.microsoft.com/en-us/library/yht36sa6(v=vs.90).aspx
-FORCE_INLINE __m128i _mm_madd_epi16(__m128i a, __m128i b) {
-  int32x4_t low = vmull_s16(vget_low_s16(vreinterpretq_s16_m128i(a)),
-                            vget_low_s16(vreinterpretq_s16_m128i(b)));
-  int32x4_t high = vmull_s16(vget_high_s16(vreinterpretq_s16_m128i(a)),
-                             vget_high_s16(vreinterpretq_s16_m128i(b)));
-
-  int32x2_t low_sum = vpadd_s32(vget_low_s32(low), vget_high_s32(low));
-  int32x2_t high_sum = vpadd_s32(vget_low_s32(high), vget_high_s32(high));
-
-  return vreinterpretq_m128i_s32(vcombine_s32(low_sum, high_sum));
-}
-
-// Multiply packed signed 16-bit integers in a and b, producing intermediate
-// signed 32-bit integers. Shift right by 15 bits while rounding up, and store
-// the packed 16-bit integers in dst.
-//
-//   r0 := Round(((int32_t)a0 * (int32_t)b0) >> 15)
-//   r1 := Round(((int32_t)a1 * (int32_t)b1) >> 15)
-//   r2 := Round(((int32_t)a2 * (int32_t)b2) >> 15)
-//   ...
-//   r7 := Round(((int32_t)a7 * (int32_t)b7) >> 15)
-FORCE_INLINE __m128i _mm_mulhrs_epi16(__m128i a, __m128i b) {
-  // Has issues due to saturation
-  // return vreinterpretq_m128i_s16(vqrdmulhq_s16(a, b));
-
-  // Multiply
-  int32x4_t mul_lo = vmull_s16(vget_low_s16(vreinterpretq_s16_m128i(a)),
-                               vget_low_s16(vreinterpretq_s16_m128i(b)));
-  int32x4_t mul_hi = vmull_s16(vget_high_s16(vreinterpretq_s16_m128i(a)),
-                               vget_high_s16(vreinterpretq_s16_m128i(b)));
-
-  // Rounding narrowing shift right
-  // narrow = (int16_t)((mul + 16384) >> 15);
-  int16x4_t narrow_lo = vrshrn_n_s32(mul_lo, 15);
-  int16x4_t narrow_hi = vrshrn_n_s32(mul_hi, 15);
-
-  // Join together
-  return vreinterpretq_m128i_s16(vcombine_s16(narrow_lo, narrow_hi));
-}
-
-// Vertically multiply each unsigned 8-bit integer from a with the corresponding
-// signed 8-bit integer from b, producing intermediate signed 16-bit integers.
-// Horizontally add adjacent pairs of intermediate signed 16-bit integers,
-// and pack the saturated results in dst.
-//
-//   FOR j := 0 to 7
-//      i := j*16
-//      dst[i+15:i] := Saturate_To_Int16( a[i+15:i+8]*b[i+15:i+8] +
-//      a[i+7:i]*b[i+7:i] )
-//   ENDFOR
-FORCE_INLINE __m128i _mm_maddubs_epi16(__m128i _a, __m128i _b) {
-  // This would be much simpler if x86 would choose to zero extend OR sign
-  // extend, not both. This could probably be optimized better.
-  uint16x8_t a = vreinterpretq_u16_m128i(_a);
-  int16x8_t b = vreinterpretq_s16_m128i(_b);
-
-  // Zero extend a
-  int16x8_t a_odd = vreinterpretq_s16_u16(vshrq_n_u16(a, 8));
-  int16x8_t a_even = vreinterpretq_s16_u16(vbicq_u16(a, vdupq_n_u16(0xff00)));
-
-  // Sign extend by shifting left then shifting right.
-  int16x8_t b_even = vshrq_n_s16(vshlq_n_s16(b, 8), 8);
-  int16x8_t b_odd = vshrq_n_s16(b, 8);
-
-  // multiply
-  int16x8_t prod1 = vmulq_s16(a_even, b_even);
-  int16x8_t prod2 = vmulq_s16(a_odd, b_odd);
-
-  // saturated add
-  return vreinterpretq_m128i_s16(vqaddq_s16(prod1, prod2));
-}
-
-// Computes the absolute difference of the 16 unsigned 8-bit integers from a
-// and the 16 unsigned 8-bit integers from b.
-//
-// Return Value
-// Sums the upper 8 differences and lower 8 differences and packs the
-// resulting 2 unsigned 16-bit integers into the upper and lower 64-bit
-// elements.
-//
-//   r0 := abs(a0 - b0) + abs(a1 - b1) +...+ abs(a7 - b7)
-//   r1 := 0x0
-//   r2 := 0x0
-//   r3 := 0x0
-//   r4 := abs(a8 - b8) + abs(a9 - b9) +...+ abs(a15 - b15)
-//   r5 := 0x0
-//   r6 := 0x0
-//   r7 := 0x0
-FORCE_INLINE __m128i _mm_sad_epu8(__m128i a, __m128i b) {
-  uint16x8_t t = vpaddlq_u8(vabdq_u8((uint8x16_t)a, (uint8x16_t)b));
-  uint16_t r0 = t[0] + t[1] + t[2] + t[3];
-  uint16_t r4 = t[4] + t[5] + t[6] + t[7];
-  uint16x8_t r = vsetq_lane_u16(r0, vdupq_n_u16(0), 0);
-  return (__m128i)vsetq_lane_u16(r4, r, 4);
-}
-
-// Divides the four single-precision, floating-point values of a and b.
-//
-//   r0 := a0 / b0
-//   r1 := a1 / b1
-//   r2 := a2 / b2
-//   r3 := a3 / b3
-//
-// https://msdn.microsoft.com/en-us/library/edaw8147(v=vs.100).aspx
-FORCE_INLINE __m128 _mm_div_ps(__m128 a, __m128 b) {
-  float32x4_t recip0 = vrecpeq_f32(vreinterpretq_f32_m128(b));
-  float32x4_t recip1 =
-      vmulq_f32(recip0, vrecpsq_f32(recip0, vreinterpretq_f32_m128(b)));
-  return vreinterpretq_m128_f32(vmulq_f32(vreinterpretq_f32_m128(a), recip1));
-}
-
-// Divides the scalar single-precision floating point value of a by b.
-// https://msdn.microsoft.com/en-us/library/4y73xa49(v=vs.100).aspx
-FORCE_INLINE __m128 _mm_div_ss(__m128 a, __m128 b) {
-  float32_t value = vgetq_lane_f32(vreinterpretq_f32_m128(_mm_div_ps(a, b)), 0);
-  return vreinterpretq_m128_f32(
-      vsetq_lane_f32(value, vreinterpretq_f32_m128(a), 0));
-}
-
-// This version does additional iterations to improve accuracy.  Between 1 and 4
-// recommended. Computes the approximations of reciprocals of the four
-// single-precision, floating-point values of a.
-// https://msdn.microsoft.com/en-us/library/vstudio/796k1tty(v=vs.100).aspx
-FORCE_INLINE __m128 recipq_newton(__m128 in, int n) {
-  int i;
-  float32x4_t recip = vrecpeq_f32(vreinterpretq_f32_m128(in));
-  for (i = 0; i < n; ++i) {
-    recip = vmulq_f32(recip, vrecpsq_f32(recip, vreinterpretq_f32_m128(in)));
-  }
-  return vreinterpretq_m128_f32(recip);
-}
-
-// Computes the approximations of reciprocals of the four single-precision,
-// floating-point values of a.
-// https://msdn.microsoft.com/en-us/library/vstudio/796k1tty(v=vs.100).aspx
-FORCE_INLINE __m128 _mm_rcp_ps(__m128 in) {
-  float32x4_t recip = vrecpeq_f32(vreinterpretq_f32_m128(in));
-  recip = vmulq_f32(recip, vrecpsq_f32(recip, vreinterpretq_f32_m128(in)));
-  return vreinterpretq_m128_f32(recip);
-}
-
-// Computes the approximations of square roots of the four single-precision,
-// floating-point values of a. First computes reciprocal square roots and then
-// reciprocals of the four values.
-//
-//   r0 := sqrt(a0)
-//   r1 := sqrt(a1)
-//   r2 := sqrt(a2)
-//   r3 := sqrt(a3)
-//
-// https://msdn.microsoft.com/en-us/library/vstudio/8z67bwwk(v=vs.100).aspx
-FORCE_INLINE __m128 _mm_sqrt_ps(__m128 in) {
-  float32x4_t recipsq = vrsqrteq_f32(vreinterpretq_f32_m128(in));
-  float32x4_t sq = vrecpeq_f32(recipsq);
-  // ??? use step versions of both sqrt and recip for better accuracy?
-  return vreinterpretq_m128_f32(sq);
-}
-
-// Computes the approximation of the square root of the scalar single-precision
-// floating point value of in.
-// https://msdn.microsoft.com/en-us/library/ahfsc22d(v=vs.100).aspx
-FORCE_INLINE __m128 _mm_sqrt_ss(__m128 in) {
-  float32_t value = vgetq_lane_f32(vreinterpretq_f32_m128(_mm_sqrt_ps(in)), 0);
-  return vreinterpretq_m128_f32(
-      vsetq_lane_f32(value, vreinterpretq_f32_m128(in), 0));
-}
-
-// Computes the approximations of the reciprocal square roots of the four
-// single-precision floating point values of in.
-// https://msdn.microsoft.com/en-us/library/22hfsh53(v=vs.100).aspx
-FORCE_INLINE __m128 _mm_rsqrt_ps(__m128 in) {
-  return vreinterpretq_m128_f32(vrsqrteq_f32(vreinterpretq_f32_m128(in)));
-}
-
-// Computes the maximums of the four single-precision, floating-point values of
-// a and b.
-// https://msdn.microsoft.com/en-us/library/vstudio/ff5d607a(v=vs.100).aspx
-FORCE_INLINE __m128 _mm_max_ps(__m128 a, __m128 b) {
-  return vreinterpretq_m128_f32(
-      vmaxq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
-}
-
-// Computes the minima of the four single-precision, floating-point values of a
-// and b.
-// https://msdn.microsoft.com/en-us/library/vstudio/wh13kadz(v=vs.100).aspx
-FORCE_INLINE __m128 _mm_min_ps(__m128 a, __m128 b) {
-  return vreinterpretq_m128_f32(
-      vminq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
-}
-
-// Computes the maximum of the two lower scalar single-precision floating point
-// values of a and b.
-// https://msdn.microsoft.com/en-us/library/s6db5esz(v=vs.100).aspx
-FORCE_INLINE __m128 _mm_max_ss(__m128 a, __m128 b) {
-  float32_t value = vgetq_lane_f32(
-      vmaxq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)), 0);
-  return vreinterpretq_m128_f32(
-      vsetq_lane_f32(value, vreinterpretq_f32_m128(a), 0));
-}
-
-// Computes the minimum of the two lower scalar single-precision floating point
-// values of a and b.
-// https://msdn.microsoft.com/en-us/library/0a9y7xaa(v=vs.100).aspx
-FORCE_INLINE __m128 _mm_min_ss(__m128 a, __m128 b) {
-  float32_t value = vgetq_lane_f32(
-      vminq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)), 0);
-  return vreinterpretq_m128_f32(
-      vsetq_lane_f32(value, vreinterpretq_f32_m128(a), 0));
-}
-
-// Computes the pairwise maxima of the 16 unsigned 8-bit integers from a and the
-// 16 unsigned 8-bit integers from b.
-// https://msdn.microsoft.com/en-us/library/st6634za(v=vs.100).aspx
-FORCE_INLINE __m128i _mm_max_epu8(__m128i a, __m128i b) {
-  return vreinterpretq_m128i_u8(
-      vmaxq_u8(vreinterpretq_u8_m128i(a), vreinterpretq_u8_m128i(b)));
-}
-
-// Computes the pairwise minima of the 16 unsigned 8-bit integers from a and the
-// 16 unsigned 8-bit integers from b.
-// https://msdn.microsoft.com/ko-kr/library/17k8cf58(v=vs.100).aspxx
-FORCE_INLINE __m128i _mm_min_epu8(__m128i a, __m128i b) {
-  return vreinterpretq_m128i_u8(
-      vminq_u8(vreinterpretq_u8_m128i(a), vreinterpretq_u8_m128i(b)));
-}
-
-// Computes the pairwise minima of the 8 signed 16-bit integers from a and the 8
-// signed 16-bit integers from b.
-// https://msdn.microsoft.com/en-us/library/vstudio/6te997ew(v=vs.100).aspx
-FORCE_INLINE __m128i _mm_min_epi16(__m128i a, __m128i b) {
-  return vreinterpretq_m128i_s16(
-      vminq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b)));
-}
-
-// Computes the pairwise maxima of the 8 signed 16-bit integers from a and the 8
-// signed 16-bit integers from b.
-// https://msdn.microsoft.com/en-us/LIBRary/3x060h7c(v=vs.100).aspx
-FORCE_INLINE __m128i _mm_max_epi16(__m128i a, __m128i b) {
-  return vreinterpretq_m128i_s16(
-      vmaxq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b)));
-}
-
-// epi versions of min/max
-// Computes the pariwise maximums of the four signed 32-bit integer values of a
-// and b.
-//
-// A 128-bit parameter that can be defined with the following equations:
-//   r0 := (a0 > b0) ? a0 : b0
-//   r1 := (a1 > b1) ? a1 : b1
-//   r2 := (a2 > b2) ? a2 : b2
-//   r3 := (a3 > b3) ? a3 : b3
-//
-// https://msdn.microsoft.com/en-us/library/vstudio/bb514055(v=vs.100).aspx
-FORCE_INLINE __m128i _mm_max_epi32(__m128i a, __m128i b) {
-  return vreinterpretq_m128i_s32(
-      vmaxq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b)));
-}
-
-// Computes the pariwise minima of the four signed 32-bit integer values of a
-// and b.
-//
-// A 128-bit parameter that can be defined with the following equations:
-//   r0 := (a0 < b0) ? a0 : b0
-//   r1 := (a1 < b1) ? a1 : b1
-//   r2 := (a2 < b2) ? a2 : b2
-//   r3 := (a3 < b3) ? a3 : b3
-//
-// https://msdn.microsoft.com/en-us/library/vstudio/bb531476(v=vs.100).aspx
-FORCE_INLINE __m128i _mm_min_epi32(__m128i a, __m128i b) {
-  return vreinterpretq_m128i_s32(
-      vminq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b)));
-}
-
-// Multiplies the 8 signed 16-bit integers from a by the 8 signed 16-bit
-// integers from b.
-//
-//   r0 := (a0 * b0)[31:16]
-//   r1 := (a1 * b1)[31:16]
-//   ...
-//   r7 := (a7 * b7)[31:16]
-//
-// https://msdn.microsoft.com/en-us/library/vstudio/59hddw1d(v=vs.100).aspx
-FORCE_INLINE __m128i _mm_mulhi_epi16(__m128i a, __m128i b) {
-  /* FIXME: issue with large values because of result saturation */
-  // int16x8_t ret = vqdmulhq_s16(vreinterpretq_s16_m128i(a),
-  // vreinterpretq_s16_m128i(b)); /* =2*a*b */ return
-  // vreinterpretq_m128i_s16(vshrq_n_s16(ret, 1));
-  int16x4_t a3210 = vget_low_s16(vreinterpretq_s16_m128i(a));
-  int16x4_t b3210 = vget_low_s16(vreinterpretq_s16_m128i(b));
-  int32x4_t ab3210 = vmull_s16(a3210, b3210); /* 3333222211110000 */
-  int16x4_t a7654 = vget_high_s16(vreinterpretq_s16_m128i(a));
-  int16x4_t b7654 = vget_high_s16(vreinterpretq_s16_m128i(b));
-  int32x4_t ab7654 = vmull_s16(a7654, b7654); /* 7777666655554444 */
-  uint16x8x2_t r =
-      vuzpq_u16(vreinterpretq_u16_s32(ab3210), vreinterpretq_u16_s32(ab7654));
-  return vreinterpretq_m128i_u16(r.val[1]);
-}
-
-// Computes pairwise add of each argument as single-precision, floating-point
-// values a and b.
-// https://msdn.microsoft.com/en-us/library/yd9wecaa.aspx
-FORCE_INLINE __m128 _mm_hadd_ps(__m128 a, __m128 b) {
-#if defined(__aarch64__)
-  return vreinterpretq_m128_f32(vpaddq_f32(
-      vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));  // AArch64
-#else
-  float32x2_t a10 = vget_low_f32(vreinterpretq_f32_m128(a));
-  float32x2_t a32 = vget_high_f32(vreinterpretq_f32_m128(a));
-  float32x2_t b10 = vget_low_f32(vreinterpretq_f32_m128(b));
-  float32x2_t b32 = vget_high_f32(vreinterpretq_f32_m128(b));
-  return vreinterpretq_m128_f32(
-      vcombine_f32(vpadd_f32(a10, a32), vpadd_f32(b10, b32)));
-#endif
-}
-
-// Computes pairwise add of each argument as a 16-bit signed or unsigned integer
-// values a and b.
-FORCE_INLINE __m128i _mm_hadd_epi16(__m128i _a, __m128i _b) {
-  int16x8_t a = vreinterpretq_s16_m128i(_a);
-  int16x8_t b = vreinterpretq_s16_m128i(_b);
-  return vreinterpretq_m128i_s16(
-      vcombine_s16(vpadd_s16(vget_low_s16(a), vget_high_s16(a)),
-                   vpadd_s16(vget_low_s16(b), vget_high_s16(b))));
-}
-
-// Computes pairwise difference of each argument as a 16-bit signed or unsigned
-// integer values a and b.
-FORCE_INLINE __m128i _mm_hsub_epi16(__m128i _a, __m128i _b) {
-  int32x4_t a = vreinterpretq_s32_m128i(_a);
-  int32x4_t b = vreinterpretq_s32_m128i(_b);
-  // Interleave using vshrn/vmovn
-  // [a0|a2|a4|a6|b0|b2|b4|b6]
-  // [a1|a3|a5|a7|b1|b3|b5|b7]
-  int16x8_t ab0246 = vcombine_s16(vmovn_s32(a), vmovn_s32(b));
-  int16x8_t ab1357 = vcombine_s16(vshrn_n_s32(a, 16), vshrn_n_s32(b, 16));
-  // Subtract
-  return vreinterpretq_m128i_s16(vsubq_s16(ab0246, ab1357));
-}
-
-// Computes saturated pairwise sub of each argument as a 16-bit signed
-// integer values a and b.
-FORCE_INLINE __m128i _mm_hadds_epi16(__m128i _a, __m128i _b) {
-  int32x4_t a = vreinterpretq_s32_m128i(_a);
-  int32x4_t b = vreinterpretq_s32_m128i(_b);
-  // Interleave using vshrn/vmovn
-  // [a0|a2|a4|a6|b0|b2|b4|b6]
-  // [a1|a3|a5|a7|b1|b3|b5|b7]
-  int16x8_t ab0246 = vcombine_s16(vmovn_s32(a), vmovn_s32(b));
-  int16x8_t ab1357 = vcombine_s16(vshrn_n_s32(a, 16), vshrn_n_s32(b, 16));
-  // Saturated add
-  return vreinterpretq_m128i_s16(vqaddq_s16(ab0246, ab1357));
-}
-
-// Computes saturated pairwise difference of each argument as a 16-bit signed
-// integer values a and b.
-FORCE_INLINE __m128i _mm_hsubs_epi16(__m128i _a, __m128i _b) {
-  int32x4_t a = vreinterpretq_s32_m128i(_a);
-  int32x4_t b = vreinterpretq_s32_m128i(_b);
-  // Interleave using vshrn/vmovn
-  // [a0|a2|a4|a6|b0|b2|b4|b6]
-  // [a1|a3|a5|a7|b1|b3|b5|b7]
-  int16x8_t ab0246 = vcombine_s16(vmovn_s32(a), vmovn_s32(b));
-  int16x8_t ab1357 = vcombine_s16(vshrn_n_s32(a, 16), vshrn_n_s32(b, 16));
-  // Saturated subtract
-  return vreinterpretq_m128i_s16(vqsubq_s16(ab0246, ab1357));
-}
-
-// Computes pairwise add of each argument as a 32-bit signed or unsigned integer
-// values a and b.
-FORCE_INLINE __m128i _mm_hadd_epi32(__m128i _a, __m128i _b) {
-  int32x4_t a = vreinterpretq_s32_m128i(_a);
-  int32x4_t b = vreinterpretq_s32_m128i(_b);
-  return vreinterpretq_m128i_s32(
-      vcombine_s32(vpadd_s32(vget_low_s32(a), vget_high_s32(a)),
-                   vpadd_s32(vget_low_s32(b), vget_high_s32(b))));
-}
-
-// Computes pairwise difference of each argument as a 32-bit signed or unsigned
-// integer values a and b.
-FORCE_INLINE __m128i _mm_hsub_epi32(__m128i _a, __m128i _b) {
-  int64x2_t a = vreinterpretq_s64_m128i(_a);
-  int64x2_t b = vreinterpretq_s64_m128i(_b);
-  // Interleave using vshrn/vmovn
-  // [a0|a2|b0|b2]
-  // [a1|a2|b1|b3]
-  int32x4_t ab02 = vcombine_s32(vmovn_s64(a), vmovn_s64(b));
-  int32x4_t ab13 = vcombine_s32(vshrn_n_s64(a, 32), vshrn_n_s64(b, 32));
-  // Subtract
-  return vreinterpretq_m128i_s32(vsubq_s32(ab02, ab13));
-}
-
-// ******************************************
-// Compare operations
-// ******************************************
-
-// Compares for less than
-// https://msdn.microsoft.com/en-us/library/vstudio/f330yhc8(v=vs.100).aspx
-FORCE_INLINE __m128 _mm_cmplt_ps(__m128 a, __m128 b) {
-  return vreinterpretq_m128_u32(
-      vcltq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
-}
-
-// Compares for greater than.
-//
-//   r0 := (a0 > b0) ? 0xffffffff : 0x0
-//   r1 := (a1 > b1) ? 0xffffffff : 0x0
-//   r2 := (a2 > b2) ? 0xffffffff : 0x0
-//   r3 := (a3 > b3) ? 0xffffffff : 0x0
-//
-// https://msdn.microsoft.com/en-us/library/vstudio/11dy102s(v=vs.100).aspx
-FORCE_INLINE __m128 _mm_cmpgt_ps(__m128 a, __m128 b) {
-  return vreinterpretq_m128_u32(
-      vcgtq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
-}
-
-// Compares for greater than or equal.
-// https://msdn.microsoft.com/en-us/library/vstudio/fs813y2t(v=vs.100).aspx
-FORCE_INLINE __m128 _mm_cmpge_ps(__m128 a, __m128 b) {
-  return vreinterpretq_m128_u32(
-      vcgeq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
-}
-
-// Compares for less than or equal.
-//
-//   r0 := (a0 <= b0) ? 0xffffffff : 0x0
-//   r1 := (a1 <= b1) ? 0xffffffff : 0x0
-//   r2 := (a2 <= b2) ? 0xffffffff : 0x0
-//   r3 := (a3 <= b3) ? 0xffffffff : 0x0
-//
-// https://msdn.microsoft.com/en-us/library/vstudio/1s75w83z(v=vs.100).aspx
-FORCE_INLINE __m128 _mm_cmple_ps(__m128 a, __m128 b) {
-  return vreinterpretq_m128_u32(
-      vcleq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
-}
-
-// Compares for equality.
-// https://msdn.microsoft.com/en-us/library/vstudio/36aectz5(v=vs.100).aspx
-FORCE_INLINE __m128 _mm_cmpeq_ps(__m128 a, __m128 b) {
-  return vreinterpretq_m128_u32(
-      vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
-}
-
-// Compares the 16 signed or unsigned 8-bit integers in a and the 16 signed or
-// unsigned 8-bit integers in b for equality.
-// https://msdn.microsoft.com/en-us/library/windows/desktop/bz5xk21a(v=vs.90).aspx
-FORCE_INLINE __m128i _mm_cmpeq_epi8(__m128i a, __m128i b) {
-  return vreinterpretq_m128i_u8(
-      vceqq_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b)));
-}
-
-// Compares the 8 signed or unsigned 16-bit integers in a and the 8 signed or
-// unsigned 16-bit integers in b for equality.
-// https://msdn.microsoft.com/en-us/library/2ay060te(v=vs.100).aspx
-FORCE_INLINE __m128i _mm_cmpeq_epi16(__m128i a, __m128i b) {
-  return vreinterpretq_m128i_u16(
-      vceqq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b)));
-}
-
-// Compare packed 32-bit integers in a and b for equality, and store the results
-// in dst
-FORCE_INLINE __m128i _mm_cmpeq_epi32(__m128i a, __m128i b) {
-  return vreinterpretq_m128i_u32(
-      vceqq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b)));
-}
-
-// Compare packed 64-bit integers in a and b for equality, and store the results
-// in dst
-FORCE_INLINE __m128i _mm_cmpeq_epi64(__m128i a, __m128i b) {
-#if defined(__aarch64__)
-  return vreinterpretq_m128i_u64(
-      vceqq_u64(vreinterpretq_u64_m128i(a), vreinterpretq_u64_m128i(b)));
-#else
-  // ARMv7 lacks vceqq_u64
-  // (a == b) -> (a_lo == b_lo) && (a_hi == b_hi)
-  uint32x4_t cmp =
-      vceqq_u32(vreinterpretq_u32_m128i(a), vreinterpretq_u32_m128i(b));
-  uint32x4_t swapped = vrev64q_u32(cmp);
-  return vreinterpretq_m128i_u32(vandq_u32(cmp, swapped));
-#endif
-}
-
-// Compares the 16 signed 8-bit integers in a and the 16 signed 8-bit integers
-// in b for lesser than.
-// https://msdn.microsoft.com/en-us/library/windows/desktop/9s46csht(v=vs.90).aspx
-FORCE_INLINE __m128i _mm_cmplt_epi8(__m128i a, __m128i b) {
-  return vreinterpretq_m128i_u8(
-      vcltq_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b)));
-}
-
-// Compares the 16 signed 8-bit integers in a and the 16 signed 8-bit integers
-// in b for greater than.
-//
-//   r0 := (a0 > b0) ? 0xff : 0x0
-//   r1 := (a1 > b1) ? 0xff : 0x0
-//   ...
-//   r15 := (a15 > b15) ? 0xff : 0x0
-//
-// https://msdn.microsoft.com/zh-tw/library/wf45zt2b(v=vs.100).aspx
-FORCE_INLINE __m128i _mm_cmpgt_epi8(__m128i a, __m128i b) {
-  return vreinterpretq_m128i_u8(
-      vcgtq_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b)));
-}
-
-// Compares the 8 signed 16-bit integers in a and the 8 signed 16-bit integers
-// in b for greater than.
-//
-//   r0 := (a0 > b0) ? 0xffff : 0x0
-//   r1 := (a1 > b1) ? 0xffff : 0x0
-//   ...
-//   r7 := (a7 > b7) ? 0xffff : 0x0
-//
-// https://technet.microsoft.com/en-us/library/xd43yfsa(v=vs.100).aspx
-FORCE_INLINE __m128i _mm_cmpgt_epi16(__m128i a, __m128i b) {
-  return vreinterpretq_m128i_u16(
-      vcgtq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b)));
-}
-
-// Compares the 4 signed 32-bit integers in a and the 4 signed 32-bit integers
-// in b for less than.
-// https://msdn.microsoft.com/en-us/library/vstudio/4ak0bf5d(v=vs.100).aspx
-FORCE_INLINE __m128i _mm_cmplt_epi32(__m128i a, __m128i b) {
-  return vreinterpretq_m128i_u32(
-      vcltq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b)));
-}
-
-// Compares the 4 signed 32-bit integers in a and the 4 signed 32-bit integers
-// in b for greater than.
-// https://msdn.microsoft.com/en-us/library/vstudio/1s9f2z0y(v=vs.100).aspx
-FORCE_INLINE __m128i _mm_cmpgt_epi32(__m128i a, __m128i b) {
-  return vreinterpretq_m128i_u32(
-      vcgtq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b)));
-}
-
-// Compares the 2 signed 64-bit integers in a and the 2 signed 64-bit integers
-// in b for greater than.
-FORCE_INLINE __m128i _mm_cmpgt_epi64(__m128i a, __m128i b) {
-#if defined(__aarch64__)
-  return vreinterpretq_m128i_u64(
-      vcgtq_s64(vreinterpretq_s64_m128i(a), vreinterpretq_s64_m128i(b)));
-#else
-  // ARMv7 lacks vcgtq_s64.
-  // This is based off of Clang's SSE2 polyfill:
-  // (a > b) -> ((a_hi > b_hi) || (a_lo > b_lo && a_hi == b_hi))
-
-  // Mask the sign bit out since we need a signed AND an unsigned comparison
-  // and it is ugly to try and split them.
-  int32x4_t mask = vreinterpretq_s32_s64(vdupq_n_s64(0x80000000ull));
-  int32x4_t a_mask = veorq_s32(vreinterpretq_s32_m128i(a), mask);
-  int32x4_t b_mask = veorq_s32(vreinterpretq_s32_m128i(b), mask);
-  // Check if a > b
-  int64x2_t greater = vreinterpretq_s64_u32(vcgtq_s32(a_mask, b_mask));
-  // Copy upper mask to lower mask
-  // a_hi > b_hi
-  int64x2_t gt_hi = vshrq_n_s64(greater, 63);
-  // Copy lower mask to upper mask
-  // a_lo > b_lo
-  int64x2_t gt_lo = vsliq_n_s64(greater, greater, 32);
-  // Compare for equality
-  int64x2_t equal = vreinterpretq_s64_u32(vceqq_s32(a_mask, b_mask));
-  // Copy upper mask to lower mask
-  // a_hi == b_hi
-  int64x2_t eq_hi = vshrq_n_s64(equal, 63);
-  // a_hi > b_hi || (a_lo > b_lo && a_hi == b_hi)
-  int64x2_t ret = vorrq_s64(gt_hi, vandq_s64(gt_lo, eq_hi));
-  return vreinterpretq_m128i_s64(ret);
-#endif
-}
-// Compares the four 32-bit floats in a and b to check if any values are NaN.
-// Ordered compare between each value returns true for "orderable" and false for
-// "not orderable" (NaN).
-// https://msdn.microsoft.com/en-us/library/vstudio/0h9w00fx(v=vs.100).aspx see
-// also:
-// http://stackoverflow.com/questions/8627331/what-does-ordered-unordered-comparison-mean
-// http://stackoverflow.com/questions/29349621/neon-isnanval-intrinsics
-FORCE_INLINE __m128 _mm_cmpord_ps(__m128 a, __m128 b) {
-  // Note: NEON does not have ordered compare builtin
-  // Need to compare a eq a and b eq b to check for NaN
-  // Do AND of results to get final
-  uint32x4_t ceqaa =
-      vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a));
-  uint32x4_t ceqbb =
-      vceqq_f32(vreinterpretq_f32_m128(b), vreinterpretq_f32_m128(b));
-  return vreinterpretq_m128_u32(vandq_u32(ceqaa, ceqbb));
-}
-
-// Compares the lower single-precision floating point scalar values of a and b
-// using a less than operation. :
-// https://msdn.microsoft.com/en-us/library/2kwe606b(v=vs.90).aspx Important
-// note!! The documentation on MSDN is incorrect!  If either of the values is a
-// NAN the docs say you will get a one, but in fact, it will return a zero!!
-FORCE_INLINE int _mm_comilt_ss(__m128 a, __m128 b) {
-  uint32x4_t a_not_nan =
-      vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a));
-  uint32x4_t b_not_nan =
-      vceqq_f32(vreinterpretq_f32_m128(b), vreinterpretq_f32_m128(b));
-  uint32x4_t a_and_b_not_nan = vandq_u32(a_not_nan, b_not_nan);
-  uint32x4_t a_lt_b =
-      vcltq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b));
-  return (vgetq_lane_u32(vandq_u32(a_and_b_not_nan, a_lt_b), 0) != 0) ? 1 : 0;
-}
-
-// Compares the lower single-precision floating point scalar values of a and b
-// using a greater than operation. :
-// https://msdn.microsoft.com/en-us/library/b0738e0t(v=vs.100).aspx
-FORCE_INLINE int _mm_comigt_ss(__m128 a, __m128 b) {
-  // return vgetq_lane_u32(vcgtq_f32(vreinterpretq_f32_m128(a),
-  // vreinterpretq_f32_m128(b)), 0);
-  uint32x4_t a_not_nan =
-      vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a));
-  uint32x4_t b_not_nan =
-      vceqq_f32(vreinterpretq_f32_m128(b), vreinterpretq_f32_m128(b));
-  uint32x4_t a_and_b_not_nan = vandq_u32(a_not_nan, b_not_nan);
-  uint32x4_t a_gt_b =
-      vcgtq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b));
-  return (vgetq_lane_u32(vandq_u32(a_and_b_not_nan, a_gt_b), 0) != 0) ? 1 : 0;
-}
-
-// Compares the lower single-precision floating point scalar values of a and b
-// using a less than or equal operation. :
-// https://msdn.microsoft.com/en-us/library/1w4t7c57(v=vs.90).aspx
-FORCE_INLINE int _mm_comile_ss(__m128 a, __m128 b) {
-  // return vgetq_lane_u32(vcleq_f32(vreinterpretq_f32_m128(a),
-  // vreinterpretq_f32_m128(b)), 0);
-  uint32x4_t a_not_nan =
-      vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a));
-  uint32x4_t b_not_nan =
-      vceqq_f32(vreinterpretq_f32_m128(b), vreinterpretq_f32_m128(b));
-  uint32x4_t a_and_b_not_nan = vandq_u32(a_not_nan, b_not_nan);
-  uint32x4_t a_le_b =
-      vcleq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b));
-  return (vgetq_lane_u32(vandq_u32(a_and_b_not_nan, a_le_b), 0) != 0) ? 1 : 0;
-}
-
-// Compares the lower single-precision floating point scalar values of a and b
-// using a greater than or equal operation. :
-// https://msdn.microsoft.com/en-us/library/8t80des6(v=vs.100).aspx
-FORCE_INLINE int _mm_comige_ss(__m128 a, __m128 b) {
-  // return vgetq_lane_u32(vcgeq_f32(vreinterpretq_f32_m128(a),
-  // vreinterpretq_f32_m128(b)), 0);
-  uint32x4_t a_not_nan =
-      vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a));
-  uint32x4_t b_not_nan =
-      vceqq_f32(vreinterpretq_f32_m128(b), vreinterpretq_f32_m128(b));
-  uint32x4_t a_and_b_not_nan = vandq_u32(a_not_nan, b_not_nan);
-  uint32x4_t a_ge_b =
-      vcgeq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b));
-  return (vgetq_lane_u32(vandq_u32(a_and_b_not_nan, a_ge_b), 0) != 0) ? 1 : 0;
-}
-
-// Compares the lower single-precision floating point scalar values of a and b
-// using an equality operation. :
-// https://msdn.microsoft.com/en-us/library/93yx2h2b(v=vs.100).aspx
-FORCE_INLINE int _mm_comieq_ss(__m128 a, __m128 b) {
-  // return vgetq_lane_u32(vceqq_f32(vreinterpretq_f32_m128(a),
-  // vreinterpretq_f32_m128(b)), 0);
-  uint32x4_t a_not_nan =
-      vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a));
-  uint32x4_t b_not_nan =
-      vceqq_f32(vreinterpretq_f32_m128(b), vreinterpretq_f32_m128(b));
-  uint32x4_t a_and_b_not_nan = vandq_u32(a_not_nan, b_not_nan);
-  uint32x4_t a_eq_b =
-      vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b));
-  return (vgetq_lane_u32(vandq_u32(a_and_b_not_nan, a_eq_b), 0) != 0) ? 1 : 0;
-}
-
-// Compares the lower single-precision floating point scalar values of a and b
-// using an inequality operation. :
-// https://msdn.microsoft.com/en-us/library/bafh5e0a(v=vs.90).aspx
-FORCE_INLINE int _mm_comineq_ss(__m128 a, __m128 b) {
-  // return !vgetq_lane_u32(vceqq_f32(vreinterpretq_f32_m128(a),
-  // vreinterpretq_f32_m128(b)), 0);
-  uint32x4_t a_not_nan =
-      vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a));
-  uint32x4_t b_not_nan =
-      vceqq_f32(vreinterpretq_f32_m128(b), vreinterpretq_f32_m128(b));
-  uint32x4_t a_or_b_nan = vmvnq_u32(vandq_u32(a_not_nan, b_not_nan));
-  uint32x4_t a_neq_b = vmvnq_u32(
-      vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
-  return (vgetq_lane_u32(vorrq_u32(a_or_b_nan, a_neq_b), 0) != 0) ? 1 : 0;
-}
-
-// according to the documentation, these intrinsics behave the same as the
-// non-'u' versions.  We'll just alias them here.
-#define _mm_ucomilt_ss _mm_comilt_ss
-#define _mm_ucomile_ss _mm_comile_ss
-#define _mm_ucomigt_ss _mm_comigt_ss
-#define _mm_ucomige_ss _mm_comige_ss
-#define _mm_ucomieq_ss _mm_comieq_ss
-#define _mm_ucomineq_ss _mm_comineq_ss
-
-// ******************************************
-// Conversions
-// ******************************************
-
-// Converts the four single-precision, floating-point values of a to signed
-// 32-bit integer values using truncate.
-// https://msdn.microsoft.com/en-us/library/vstudio/1h005y6x(v=vs.100).aspx
-FORCE_INLINE __m128i _mm_cvttps_epi32(__m128 a) {
-  return vreinterpretq_m128i_s32(vcvtq_s32_f32(vreinterpretq_f32_m128(a)));
-}
-
-// Converts the four signed 32-bit integer values of a to single-precision,
-// floating-point values
-// https://msdn.microsoft.com/en-us/library/vstudio/36bwxcx5(v=vs.100).aspx
-FORCE_INLINE __m128 _mm_cvtepi32_ps(__m128i a) {
-  return vreinterpretq_m128_f32(vcvtq_f32_s32(vreinterpretq_s32_m128i(a)));
-}
-
-// Converts the four unsigned 8-bit integers in the lower 16 bits to four
-// unsigned 32-bit integers.
-FORCE_INLINE __m128i _mm_cvtepu8_epi16(__m128i a) {
-  uint8x16_t u8x16 = vreinterpretq_u8_m128i(a);    /* xxxx xxxx xxxx DCBA */
-  uint16x8_t u16x8 = vmovl_u8(vget_low_u8(u8x16)); /* 0x0x 0x0x 0D0C 0B0A */
-  return vreinterpretq_m128i_u16(u16x8);
-}
-
-// Converts the four unsigned 8-bit integers in the lower 32 bits to four
-// unsigned 32-bit integers.
-// https://msdn.microsoft.com/en-us/library/bb531467%28v=vs.100%29.aspx
-FORCE_INLINE __m128i _mm_cvtepu8_epi32(__m128i a) {
-  uint8x16_t u8x16 = vreinterpretq_u8_m128i(a);      /* xxxx xxxx xxxx DCBA */
-  uint16x8_t u16x8 = vmovl_u8(vget_low_u8(u8x16));   /* 0x0x 0x0x 0D0C 0B0A */
-  uint32x4_t u32x4 = vmovl_u16(vget_low_u16(u16x8)); /* 000D 000C 000B 000A */
-  return vreinterpretq_m128i_u32(u32x4);
-}
-
-// Converts the two unsigned 8-bit integers in the lower 16 bits to two
-// unsigned 64-bit integers.
-FORCE_INLINE __m128i _mm_cvtepu8_epi64(__m128i a) {
-  uint8x16_t u8x16 = vreinterpretq_u8_m128i(a);      /* xxxx xxxx xxxx xxBA */
-  uint16x8_t u16x8 = vmovl_u8(vget_low_u8(u8x16));   /* 0x0x 0x0x 0x0x 0B0A */
-  uint32x4_t u32x4 = vmovl_u16(vget_low_u16(u16x8)); /* 000x 000x 000B 000A */
-  uint64x2_t u64x2 = vmovl_u32(vget_low_u32(u32x4)); /* 0000 000B 0000 000A */
-  return vreinterpretq_m128i_u64(u64x2);
-}
-
-// Converts the four unsigned 8-bit integers in the lower 16 bits to four
-// unsigned 32-bit integers.
-FORCE_INLINE __m128i _mm_cvtepi8_epi16(__m128i a) {
-  int8x16_t s8x16 = vreinterpretq_s8_m128i(a);    /* xxxx xxxx xxxx DCBA */
-  int16x8_t s16x8 = vmovl_s8(vget_low_s8(s8x16)); /* 0x0x 0x0x 0D0C 0B0A */
-  return vreinterpretq_m128i_s16(s16x8);
-}
-
-// Converts the four unsigned 8-bit integers in the lower 32 bits to four
-// unsigned 32-bit integers.
-FORCE_INLINE __m128i _mm_cvtepi8_epi32(__m128i a) {
-  int8x16_t s8x16 = vreinterpretq_s8_m128i(a);      /* xxxx xxxx xxxx DCBA */
-  int16x8_t s16x8 = vmovl_s8(vget_low_s8(s8x16));   /* 0x0x 0x0x 0D0C 0B0A */
-  int32x4_t s32x4 = vmovl_s16(vget_low_s16(s16x8)); /* 000D 000C 000B 000A */
-  return vreinterpretq_m128i_s32(s32x4);
-}
-
-// Converts the two signed 8-bit integers in the lower 32 bits to four
-// signed 64-bit integers.
-FORCE_INLINE __m128i _mm_cvtepi8_epi64(__m128i a) {
-  int8x16_t s8x16 = vreinterpretq_s8_m128i(a);      /* xxxx xxxx xxxx xxBA */
-  int16x8_t s16x8 = vmovl_s8(vget_low_s8(s8x16));   /* 0x0x 0x0x 0x0x 0B0A */
-  int32x4_t s32x4 = vmovl_s16(vget_low_s16(s16x8)); /* 000x 000x 000B 000A */
-  int64x2_t s64x2 = vmovl_s32(vget_low_s32(s32x4)); /* 0000 000B 0000 000A */
-  return vreinterpretq_m128i_s64(s64x2);
-}
-
-// Converts the four signed 16-bit integers in the lower 64 bits to four signed
-// 32-bit integers.
-FORCE_INLINE __m128i _mm_cvtepi16_epi32(__m128i a) {
-  return vreinterpretq_m128i_s32(
-      vmovl_s16(vget_low_s16(vreinterpretq_s16_m128i(a))));
-}
-
-// Converts the two signed 16-bit integers in the lower 32 bits two signed
-// 32-bit integers.
-FORCE_INLINE __m128i _mm_cvtepi16_epi64(__m128i a) {
-  int16x8_t s16x8 = vreinterpretq_s16_m128i(a);     /* xxxx xxxx xxxx 0B0A */
-  int32x4_t s32x4 = vmovl_s16(vget_low_s16(s16x8)); /* 000x 000x 000B 000A */
-  int64x2_t s64x2 = vmovl_s32(vget_low_s32(s32x4)); /* 0000 000B 0000 000A */
-  return vreinterpretq_m128i_s64(s64x2);
-}
-
-// Converts the four unsigned 16-bit integers in the lower 64 bits to four
-// unsigned 32-bit integers.
-FORCE_INLINE __m128i _mm_cvtepu16_epi32(__m128i a) {
-  return vreinterpretq_m128i_u32(
-      vmovl_u16(vget_low_u16(vreinterpretq_u16_m128i(a))));
-}
-
-// Converts the two unsigned 16-bit integers in the lower 32 bits to two
-// unsigned 64-bit integers.
-FORCE_INLINE __m128i _mm_cvtepu16_epi64(__m128i a) {
-  uint16x8_t u16x8 = vreinterpretq_u16_m128i(a);     /* xxxx xxxx xxxx 0B0A */
-  uint32x4_t u32x4 = vmovl_u16(vget_low_u16(u16x8)); /* 000x 000x 000B 000A */
-  uint64x2_t u64x2 = vmovl_u32(vget_low_u32(u32x4)); /* 0000 000B 0000 000A */
-  return vreinterpretq_m128i_u64(u64x2);
-}
-
-// Converts the two unsigned 32-bit integers in the lower 64 bits to two
-// unsigned 64-bit integers.
-FORCE_INLINE __m128i _mm_cvtepu32_epi64(__m128i a) {
-  return vreinterpretq_m128i_u64(
-      vmovl_u32(vget_low_u32(vreinterpretq_u32_m128i(a))));
-}
-
-// Converts the two signed 32-bit integers in the lower 64 bits to two signed
-// 64-bit integers.
-FORCE_INLINE __m128i _mm_cvtepi32_epi64(__m128i a) {
-  return vreinterpretq_m128i_s64(
-      vmovl_s32(vget_low_s32(vreinterpretq_s32_m128i(a))));
-}
-
-// Converts the four single-precision, floating-point values of a to signed
-// 32-bit integer values.
-//
-//   r0 := (int) a0
-//   r1 := (int) a1
-//   r2 := (int) a2
-//   r3 := (int) a3
-//
-// https://msdn.microsoft.com/en-us/library/vstudio/xdc42k5e(v=vs.100).aspx
-// *NOTE*. The default rounding mode on SSE is 'round to even', which ArmV7-A
-// does not support! It is supported on ARMv8-A however.
-FORCE_INLINE __m128i _mm_cvtps_epi32(__m128 a) {
-#if defined(__aarch64__)
-  return vreinterpretq_m128i_s32(vcvtnq_s32_f32(a));
-#else
-  uint32x4_t signmask = vdupq_n_u32(0x80000000);
-  float32x4_t half = vbslq_f32(signmask, vreinterpretq_f32_m128(a),
-                               vdupq_n_f32(0.5f)); /* +/- 0.5 */
-  int32x4_t r_normal = vcvtq_s32_f32(vaddq_f32(
-      vreinterpretq_f32_m128(a), half)); /* round to integer: [a + 0.5]*/
-  int32x4_t r_trunc =
-      vcvtq_s32_f32(vreinterpretq_f32_m128(a)); /* truncate to integer: [a] */
-  int32x4_t plusone = vreinterpretq_s32_u32(
-      vshrq_n_u32(vreinterpretq_u32_s32(vnegq_s32(r_trunc)), 31)); /* 1 or 0 */
-  int32x4_t r_even = vbicq_s32(vaddq_s32(r_trunc, plusone),
-                               vdupq_n_s32(1)); /* ([a] + {0,1}) & ~1 */
-  float32x4_t delta =
-      vsubq_f32(vreinterpretq_f32_m128(a),
-                vcvtq_f32_s32(r_trunc)); /* compute delta: delta = (a - [a]) */
-  uint32x4_t is_delta_half = vceqq_f32(delta, half); /* delta == +/- 0.5 */
-  return vreinterpretq_m128i_s32(vbslq_s32(is_delta_half, r_even, r_normal));
-#endif
-}
-
-// Moves the least significant 32 bits of a to a 32-bit integer.
-// https://msdn.microsoft.com/en-us/library/5z7a9642%28v=vs.90%29.aspx
-FORCE_INLINE int _mm_cvtsi128_si32(__m128i a) {
-  return vgetq_lane_s32(vreinterpretq_s32_m128i(a), 0);
-}
-
-// Extracts the low order 64-bit integer from the parameter.
-// https://msdn.microsoft.com/en-us/library/bb531384(v=vs.120).aspx
-FORCE_INLINE uint64_t _mm_cvtsi128_si64(__m128i a) {
-  return vgetq_lane_s64(vreinterpretq_s64_m128i(a), 0);
-}
-
-// Moves 32-bit integer a to the least significant 32 bits of an __m128 object,
-// zero extending the upper bits.
-//
-//   r0 := a
-//   r1 := 0x0
-//   r2 := 0x0
-//   r3 := 0x0
-//
-// https://msdn.microsoft.com/en-us/library/ct3539ha%28v=vs.90%29.aspx
-FORCE_INLINE __m128i _mm_cvtsi32_si128(int a) {
-  return vreinterpretq_m128i_s32(vsetq_lane_s32(a, vdupq_n_s32(0), 0));
-}
-
-// Moves 64-bit integer a to the least significant 64 bits of an __m128 object,
-// zero extending the upper bits.
-//
-//   r0 := a
-//   r1 := 0x0
-FORCE_INLINE __m128i _mm_cvtsi64_si128(int64_t a) {
-  return vreinterpretq_m128i_s64(vsetq_lane_s64(a, vdupq_n_s64(0), 0));
-}
-
-// Applies a type cast to reinterpret four 32-bit floating point values passed
-// in as a 128-bit parameter as packed 32-bit integers.
-// https://msdn.microsoft.com/en-us/library/bb514099.aspx
-FORCE_INLINE __m128i _mm_castps_si128(__m128 a) {
-  return vreinterpretq_m128i_s32(vreinterpretq_s32_m128(a));
-}
-
-// Applies a type cast to reinterpret four 32-bit integers passed in as a
-// 128-bit parameter as packed 32-bit floating point values.
-// https://msdn.microsoft.com/en-us/library/bb514029.aspx
-FORCE_INLINE __m128 _mm_castsi128_ps(__m128i a) {
-  return vreinterpretq_m128_s32(vreinterpretq_s32_m128i(a));
-}
-
-// Loads 128-bit value. :
-// https://msdn.microsoft.com/en-us/library/atzzad1h(v=vs.80).aspx
-FORCE_INLINE __m128i _mm_load_si128(const __m128i *p) {
-  return vreinterpretq_m128i_s32(vld1q_s32((const int32_t *)p));
-}
-
-// Loads 128-bit value. :
-// https://msdn.microsoft.com/zh-cn/library/f4k12ae8(v=vs.90).aspx
-FORCE_INLINE __m128i _mm_loadu_si128(const __m128i *p) {
-  return vreinterpretq_m128i_s32(vld1q_s32((const int32_t *)p));
-}
-
-// _mm_lddqu_si128 functions the same as _mm_loadu_si128.
-#define _mm_lddqu_si128 _mm_loadu_si128
-
-// ******************************************
-// Miscellaneous Operations
-// ******************************************
-
-// Packs the 16 signed 16-bit integers from a and b into 8-bit integers and
-// saturates.
-// https://msdn.microsoft.com/en-us/library/k4y4f7w5%28v=vs.90%29.aspx
-FORCE_INLINE __m128i _mm_packs_epi16(__m128i a, __m128i b) {
-  return vreinterpretq_m128i_s8(
-      vcombine_s8(vqmovn_s16(vreinterpretq_s16_m128i(a)),
-                  vqmovn_s16(vreinterpretq_s16_m128i(b))));
-}
-
-// Packs the 16 signed 16 - bit integers from a and b into 8 - bit unsigned
-// integers and saturates.
-//
-//   r0 := UnsignedSaturate(a0)
-//   r1 := UnsignedSaturate(a1)
-//   ...
-//   r7 := UnsignedSaturate(a7)
-//   r8 := UnsignedSaturate(b0)
-//   r9 := UnsignedSaturate(b1)
-//   ...
-//   r15 := UnsignedSaturate(b7)
-//
-// https://msdn.microsoft.com/en-us/library/07ad1wx4(v=vs.100).aspx
-FORCE_INLINE __m128i _mm_packus_epi16(const __m128i a, const __m128i b) {
-  return vreinterpretq_m128i_u8(
-      vcombine_u8(vqmovun_s16(vreinterpretq_s16_m128i(a)),
-                  vqmovun_s16(vreinterpretq_s16_m128i(b))));
-}
-
-// Packs the 8 signed 32-bit integers from a and b into signed 16-bit integers
-// and saturates.
-//
-//   r0 := SignedSaturate(a0)
-//   r1 := SignedSaturate(a1)
-//   r2 := SignedSaturate(a2)
-//   r3 := SignedSaturate(a3)
-//   r4 := SignedSaturate(b0)
-//   r5 := SignedSaturate(b1)
-//   r6 := SignedSaturate(b2)
-//   r7 := SignedSaturate(b3)
-//
-// https://msdn.microsoft.com/en-us/library/393t56f9%28v=vs.90%29.aspx
-FORCE_INLINE __m128i _mm_packs_epi32(__m128i a, __m128i b) {
-  return vreinterpretq_m128i_s16(
-      vcombine_s16(vqmovn_s32(vreinterpretq_s32_m128i(a)),
-                   vqmovn_s32(vreinterpretq_s32_m128i(b))));
-}
-
-// Packs the 8 unsigned 32-bit integers from a and b into unsigned 16-bit
-// integers and saturates.
-//
-//   r0 := UnsignedSaturate(a0)
-//   r1 := UnsignedSaturate(a1)
-//   r2 := UnsignedSaturate(a2)
-//   r3 := UnsignedSaturate(a3)
-//   r4 := UnsignedSaturate(b0)
-//   r5 := UnsignedSaturate(b1)
-//   r6 := UnsignedSaturate(b2)
-//   r7 := UnsignedSaturate(b3)
-FORCE_INLINE __m128i _mm_packus_epi32(__m128i a, __m128i b) {
-  return vreinterpretq_m128i_u16(
-      vcombine_u16(vqmovn_u32(vreinterpretq_u32_m128i(a)),
-                   vqmovn_u32(vreinterpretq_u32_m128i(b))));
-}
-
-// Interleaves the lower 8 signed or unsigned 8-bit integers in a with the lower
-// 8 signed or unsigned 8-bit integers in b.
-//
-//   r0 := a0
-//   r1 := b0
-//   r2 := a1
-//   r3 := b1
-//   ...
-//   r14 := a7
-//   r15 := b7
-//
-// https://msdn.microsoft.com/en-us/library/xf7k860c%28v=vs.90%29.aspx
-FORCE_INLINE __m128i _mm_unpacklo_epi8(__m128i a, __m128i b) {
-#if defined(__aarch64__)
-  return vreinterpretq_m128i_s8(
-      vzip1q_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b)));
-#else
-  int8x8_t a1 = vreinterpret_s8_s16(vget_low_s16(vreinterpretq_s16_m128i(a)));
-  int8x8_t b1 = vreinterpret_s8_s16(vget_low_s16(vreinterpretq_s16_m128i(b)));
-  int8x8x2_t result = vzip_s8(a1, b1);
-  return vreinterpretq_m128i_s8(vcombine_s8(result.val[0], result.val[1]));
-#endif
-}
-
-// Interleaves the lower 4 signed or unsigned 16-bit integers in a with the
-// lower 4 signed or unsigned 16-bit integers in b.
-//
-//   r0 := a0
-//   r1 := b0
-//   r2 := a1
-//   r3 := b1
-//   r4 := a2
-//   r5 := b2
-//   r6 := a3
-//   r7 := b3
-//
-// https://msdn.microsoft.com/en-us/library/btxb17bw%28v=vs.90%29.aspx
-FORCE_INLINE __m128i _mm_unpacklo_epi16(__m128i a, __m128i b) {
-#if defined(__aarch64__)
-  return vreinterpretq_m128i_s16(
-      vzip1q_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b)));
-#else
-  int16x4_t a1 = vget_low_s16(vreinterpretq_s16_m128i(a));
-  int16x4_t b1 = vget_low_s16(vreinterpretq_s16_m128i(b));
-  int16x4x2_t result = vzip_s16(a1, b1);
-  return vreinterpretq_m128i_s16(vcombine_s16(result.val[0], result.val[1]));
-#endif
-}
-
-// Interleaves the lower 2 signed or unsigned 32 - bit integers in a with the
-// lower 2 signed or unsigned 32 - bit integers in b.
-//
-//   r0 := a0
-//   r1 := b0
-//   r2 := a1
-//   r3 := b1
-//
-// https://msdn.microsoft.com/en-us/library/x8atst9d(v=vs.100).aspx
-FORCE_INLINE __m128i _mm_unpacklo_epi32(__m128i a, __m128i b) {
-#if defined(__aarch64__)
-  return vreinterpretq_m128i_s32(
-      vzip1q_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b)));
-#else
-  int32x2_t a1 = vget_low_s32(vreinterpretq_s32_m128i(a));
-  int32x2_t b1 = vget_low_s32(vreinterpretq_s32_m128i(b));
-  int32x2x2_t result = vzip_s32(a1, b1);
-  return vreinterpretq_m128i_s32(vcombine_s32(result.val[0], result.val[1]));
-#endif
-}
-
-FORCE_INLINE __m128i _mm_unpacklo_epi64(__m128i a, __m128i b) {
-  int64x1_t a_l = vget_low_s64(vreinterpretq_s64_m128i(a));
-  int64x1_t b_l = vget_low_s64(vreinterpretq_s64_m128i(b));
-  return vreinterpretq_m128i_s64(vcombine_s64(a_l, b_l));
-}
-
-// Selects and interleaves the lower two single-precision, floating-point values
-// from a and b.
-//
-//   r0 := a0
-//   r1 := b0
-//   r2 := a1
-//   r3 := b1
-//
-// https://msdn.microsoft.com/en-us/library/25st103b%28v=vs.90%29.aspx
-FORCE_INLINE __m128 _mm_unpacklo_ps(__m128 a, __m128 b) {
-#if defined(__aarch64__)
-  return vreinterpretq_m128_f32(
-      vzip1q_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
-#else
-  float32x2_t a1 = vget_low_f32(vreinterpretq_f32_m128(a));
-  float32x2_t b1 = vget_low_f32(vreinterpretq_f32_m128(b));
-  float32x2x2_t result = vzip_f32(a1, b1);
-  return vreinterpretq_m128_f32(vcombine_f32(result.val[0], result.val[1]));
-#endif
-}
-
-// Selects and interleaves the upper two single-precision, floating-point values
-// from a and b.
-//
-//   r0 := a2
-//   r1 := b2
-//   r2 := a3
-//   r3 := b3
-//
-// https://msdn.microsoft.com/en-us/library/skccxx7d%28v=vs.90%29.aspx
-FORCE_INLINE __m128 _mm_unpackhi_ps(__m128 a, __m128 b) {
-#if defined(__aarch64__)
-  return vreinterpretq_m128_f32(
-      vzip2q_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
-#else
-  float32x2_t a1 = vget_high_f32(vreinterpretq_f32_m128(a));
-  float32x2_t b1 = vget_high_f32(vreinterpretq_f32_m128(b));
-  float32x2x2_t result = vzip_f32(a1, b1);
-  return vreinterpretq_m128_f32(vcombine_f32(result.val[0], result.val[1]));
-#endif
-}
-
-// Interleaves the upper 8 signed or unsigned 8-bit integers in a with the upper
-// 8 signed or unsigned 8-bit integers in b.
-//
-//   r0 := a8
-//   r1 := b8
-//   r2 := a9
-//   r3 := b9
-//   ...
-//   r14 := a15
-//   r15 := b15
-//
-// https://msdn.microsoft.com/en-us/library/t5h7783k(v=vs.100).aspx
-FORCE_INLINE __m128i _mm_unpackhi_epi8(__m128i a, __m128i b) {
-#if defined(__aarch64__)
-  return vreinterpretq_m128i_s8(
-      vzip2q_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b)));
-#else
-  int8x8_t a1 = vreinterpret_s8_s16(vget_high_s16(vreinterpretq_s16_m128i(a)));
-  int8x8_t b1 = vreinterpret_s8_s16(vget_high_s16(vreinterpretq_s16_m128i(b)));
-  int8x8x2_t result = vzip_s8(a1, b1);
-  return vreinterpretq_m128i_s8(vcombine_s8(result.val[0], result.val[1]));
-#endif
-}
-
-// Interleaves the upper 4 signed or unsigned 16-bit integers in a with the
-// upper 4 signed or unsigned 16-bit integers in b.
-//
-//   r0 := a4
-//   r1 := b4
-//   r2 := a5
-//   r3 := b5
-//   r4 := a6
-//   r5 := b6
-//   r6 := a7
-//   r7 := b7
-//
-// https://msdn.microsoft.com/en-us/library/03196cz7(v=vs.100).aspx
-FORCE_INLINE __m128i _mm_unpackhi_epi16(__m128i a, __m128i b) {
-#if defined(__aarch64__)
-  return vreinterpretq_m128i_s16(
-      vzip2q_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b)));
-#else
-  int16x4_t a1 = vget_high_s16(vreinterpretq_s16_m128i(a));
-  int16x4_t b1 = vget_high_s16(vreinterpretq_s16_m128i(b));
-  int16x4x2_t result = vzip_s16(a1, b1);
-  return vreinterpretq_m128i_s16(vcombine_s16(result.val[0], result.val[1]));
-#endif
-}
-
-// Interleaves the upper 2 signed or unsigned 32-bit integers in a with the
-// upper 2 signed or unsigned 32-bit integers in b.
-// https://msdn.microsoft.com/en-us/library/65sa7cbs(v=vs.100).aspx
-FORCE_INLINE __m128i _mm_unpackhi_epi32(__m128i a, __m128i b) {
-#if defined(__aarch64__)
-  return vreinterpretq_m128i_s32(
-      vzip2q_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b)));
-#else
-  int32x2_t a1 = vget_high_s32(vreinterpretq_s32_m128i(a));
-  int32x2_t b1 = vget_high_s32(vreinterpretq_s32_m128i(b));
-  int32x2x2_t result = vzip_s32(a1, b1);
-  return vreinterpretq_m128i_s32(vcombine_s32(result.val[0], result.val[1]));
-#endif
-}
-
-// Interleaves the upper signed or unsigned 64-bit integer in a with the
-// upper signed or unsigned 64-bit integer in b.
-//
-//   r0 := a1
-//   r1 := b1
-FORCE_INLINE __m128i _mm_unpackhi_epi64(__m128i a, __m128i b) {
-  int64x1_t a_h = vget_high_s64(vreinterpretq_s64_m128i(a));
-  int64x1_t b_h = vget_high_s64(vreinterpretq_s64_m128i(b));
-  return vreinterpretq_m128i_s64(vcombine_s64(a_h, b_h));
-}
-
-// shift to right
-// https://msdn.microsoft.com/en-us/library/bb514041(v=vs.120).aspx
-// http://blog.csdn.net/hemmingway/article/details/44828303
-// Clang requires a macro here, as it is extremely picky about c being a
-// literal.
-#define _mm_alignr_epi8(a, b, c) \
-  ((__m128i)vextq_s8((int8x16_t)(b), (int8x16_t)(a), (c)))
-
-// Extracts the selected signed or unsigned 8-bit integer from a and zero
-// extends.
-// FORCE_INLINE int _mm_extract_epi8(__m128i a, __constrange(0,16) int imm)
-#define _mm_extract_epi8(a, imm) vgetq_lane_u8(vreinterpretq_u8_m128i(a), (imm))
-
-// Inserts the least significant 8 bits of b into the selected 8-bit integer
-// of a.
-// FORCE_INLINE __m128i _mm_insert_epi8(__m128i a, const int b,
-// __constrange(0,16) int imm)
-#define _mm_insert_epi8(a, b, imm)                             \
-  __extension__({                                              \
-    vreinterpretq_m128i_s8(                                    \
-        vsetq_lane_s8((b), vreinterpretq_s8_m128i(a), (imm))); \
-  })
-
-// Extracts the selected signed or unsigned 16-bit integer from a and zero
-// extends.
-// https://msdn.microsoft.com/en-us/library/6dceta0c(v=vs.100).aspx
-// FORCE_INLINE int _mm_extract_epi16(__m128i a, __constrange(0,8) int imm)
-#define _mm_extract_epi16(a, imm) \
-  vgetq_lane_u16(vreinterpretq_u16_m128i(a), (imm))
-
-// Inserts the least significant 16 bits of b into the selected 16-bit integer
-// of a.
-// https://msdn.microsoft.com/en-us/library/kaze8hz1%28v=vs.100%29.aspx
-// FORCE_INLINE __m128i _mm_insert_epi16(__m128i a, const int b,
-// __constrange(0,8) int imm)
-#define _mm_insert_epi16(a, b, imm)                              \
-  __extension__({                                                \
-    vreinterpretq_m128i_s16(                                     \
-        vsetq_lane_s16((b), vreinterpretq_s16_m128i(a), (imm))); \
-  })
-
-// Extracts the selected signed or unsigned 32-bit integer from a and zero
-// extends.
-// FORCE_INLINE int _mm_extract_epi32(__m128i a, __constrange(0,4) int imm)
-#define _mm_extract_epi32(a, imm) \
-  vgetq_lane_s32(vreinterpretq_s32_m128i(a), (imm))
-
-// Inserts the least significant 32 bits of b into the selected 32-bit integer
-// of a.
-// FORCE_INLINE __m128i _mm_insert_epi32(__m128i a, const int b,
-// __constrange(0,4) int imm)
-#define _mm_insert_epi32(a, b, imm)                              \
-  __extension__({                                                \
-    vreinterpretq_m128i_s32(                                     \
-        vsetq_lane_s32((b), vreinterpretq_s32_m128i(a), (imm))); \
-  })
-
-// Extracts the selected signed or unsigned 64-bit integer from a and zero
-// extends.
-// FORCE_INLINE __int64 _mm_extract_epi64(__m128i a, __constrange(0,2) int imm)
-#define _mm_extract_epi64(a, imm) \
-  vgetq_lane_s64(vreinterpretq_s64_m128i(a), (imm))
-
-// Inserts the least significant 64 bits of b into the selected 64-bit integer
-// of a.
-// FORCE_INLINE __m128i _mm_insert_epi64(__m128i a, const __int64 b,
-// __constrange(0,2) int imm)
-#define _mm_insert_epi64(a, b, imm)                              \
-  __extension__({                                                \
-    vreinterpretq_m128i_s64(                                     \
-        vsetq_lane_s64((b), vreinterpretq_s64_m128i(a), (imm))); \
-  })
-
-// ******************************************
-// Crypto Extensions
-// ******************************************
-#if defined(__ARM_FEATURE_CRYPTO)
+#if defined(__ARM_FEATURE_CRYPTO) && \
+    (defined(__aarch64__) || __has_builtin(__builtin_arm_crypto_vmullp64))
 // Wraps vmull_p64
-FORCE_INLINE uint64x2_t _sse2neon_vmull_p64(uint64x1_t _a, uint64x1_t _b) {
-  poly64_t a = vget_lane_p64(vreinterpret_p64_u64(_a), 0);
-  poly64_t b = vget_lane_p64(vreinterpret_p64_u64(_b), 0);
-  return vreinterpretq_u64_p128(vmull_p64(a, b));
+FORCE_INLINE uint64x2_t _sse2neon_vmull_p64(uint64x1_t _a, uint64x1_t _b)
+{
+    poly64_t a = vget_lane_p64(vreinterpret_p64_u64(_a), 0);
+    poly64_t b = vget_lane_p64(vreinterpret_p64_u64(_b), 0);
+    return vreinterpretq_u64_p128(vmull_p64(a, b));
 }
-
 #else  // ARMv7 polyfill
 // ARMv7/some A64 lacks vmull_p64, but it has vmull_p8.
 //
@@ -3068,213 +812,8250 @@
 // from "Fast Software Polynomial Multiplication on ARM Processors Using the
 // NEON Engine" by Danilo Camara, Conrado Gouvea, Julio Lopez and Ricardo Dahab
 // (https://hal.inria.fr/hal-01506572)
-static uint64x2_t _sse2neon_vmull_p64(uint64x1_t _a, uint64x1_t _b) {
-  poly8x8_t a = vreinterpret_p8_u64(_a);
-  poly8x8_t b = vreinterpret_p8_u64(_b);
+static uint64x2_t _sse2neon_vmull_p64(uint64x1_t _a, uint64x1_t _b)
+{
+    poly8x8_t a = vreinterpret_p8_u64(_a);
+    poly8x8_t b = vreinterpret_p8_u64(_b);
 
-  // Masks
-  uint8x16_t k48_32 = vcombine_u8(vcreate_u8(0x0000ffffffffffff),
-                                  vcreate_u8(0x00000000ffffffff));
-  uint8x16_t k16_00 = vcombine_u8(vcreate_u8(0x000000000000ffff),
-                                  vcreate_u8(0x0000000000000000));
+    // Masks
+    uint8x16_t k48_32 = vcombine_u8(vcreate_u8(0x0000ffffffffffff),
+                                    vcreate_u8(0x00000000ffffffff));
+    uint8x16_t k16_00 = vcombine_u8(vcreate_u8(0x000000000000ffff),
+                                    vcreate_u8(0x0000000000000000));
 
-  // Do the multiplies, rotating with vext to get all combinations
-  uint8x16_t d = vreinterpretq_u8_p16(vmull_p8(a, b));  // D = A0 * B0
-  uint8x16_t e =
-      vreinterpretq_u8_p16(vmull_p8(a, vext_p8(b, b, 1)));  // E = A0 * B1
-  uint8x16_t f =
-      vreinterpretq_u8_p16(vmull_p8(vext_p8(a, a, 1), b));  // F = A1 * B0
-  uint8x16_t g =
-      vreinterpretq_u8_p16(vmull_p8(a, vext_p8(b, b, 2)));  // G = A0 * B2
-  uint8x16_t h =
-      vreinterpretq_u8_p16(vmull_p8(vext_p8(a, a, 2), b));  // H = A2 * B0
-  uint8x16_t i =
-      vreinterpretq_u8_p16(vmull_p8(a, vext_p8(b, b, 3)));  // I = A0 * B3
-  uint8x16_t j =
-      vreinterpretq_u8_p16(vmull_p8(vext_p8(a, a, 3), b));  // J = A3 * B0
-  uint8x16_t k =
-      vreinterpretq_u8_p16(vmull_p8(a, vext_p8(b, b, 4)));  // L = A0 * B4
+    // Do the multiplies, rotating with vext to get all combinations
+    uint8x16_t d = vreinterpretq_u8_p16(vmull_p8(a, b));  // D = A0 * B0
+    uint8x16_t e =
+        vreinterpretq_u8_p16(vmull_p8(a, vext_p8(b, b, 1)));  // E = A0 * B1
+    uint8x16_t f =
+        vreinterpretq_u8_p16(vmull_p8(vext_p8(a, a, 1), b));  // F = A1 * B0
+    uint8x16_t g =
+        vreinterpretq_u8_p16(vmull_p8(a, vext_p8(b, b, 2)));  // G = A0 * B2
+    uint8x16_t h =
+        vreinterpretq_u8_p16(vmull_p8(vext_p8(a, a, 2), b));  // H = A2 * B0
+    uint8x16_t i =
+        vreinterpretq_u8_p16(vmull_p8(a, vext_p8(b, b, 3)));  // I = A0 * B3
+    uint8x16_t j =
+        vreinterpretq_u8_p16(vmull_p8(vext_p8(a, a, 3), b));  // J = A3 * B0
+    uint8x16_t k =
+        vreinterpretq_u8_p16(vmull_p8(a, vext_p8(b, b, 4)));  // L = A0 * B4
 
-  // Add cross products
-  uint8x16_t l = veorq_u8(e, f);  // L = E + F
-  uint8x16_t m = veorq_u8(g, h);  // M = G + H
-  uint8x16_t n = veorq_u8(i, j);  // N = I + J
+    // Add cross products
+    uint8x16_t l = veorq_u8(e, f);  // L = E + F
+    uint8x16_t m = veorq_u8(g, h);  // M = G + H
+    uint8x16_t n = veorq_u8(i, j);  // N = I + J
 
-  // Interleave. Using vzip1 and vzip2 prevents Clang from emitting TBL
-  // instructions.
+    // Interleave. Using vzip1 and vzip2 prevents Clang from emitting TBL
+    // instructions.
 #if defined(__aarch64__)
-  uint8x16_t lm_p0 = vreinterpretq_u8_u64(
-      vzip1q_u64(vreinterpretq_u64_u8(l), vreinterpretq_u64_u8(m)));
-  uint8x16_t lm_p1 = vreinterpretq_u8_u64(
-      vzip2q_u64(vreinterpretq_u64_u8(l), vreinterpretq_u64_u8(m)));
-  uint8x16_t nk_p0 = vreinterpretq_u8_u64(
-      vzip1q_u64(vreinterpretq_u64_u8(n), vreinterpretq_u64_u8(k)));
-  uint8x16_t nk_p1 = vreinterpretq_u8_u64(
-      vzip2q_u64(vreinterpretq_u64_u8(n), vreinterpretq_u64_u8(k)));
+    uint8x16_t lm_p0 = vreinterpretq_u8_u64(
+        vzip1q_u64(vreinterpretq_u64_u8(l), vreinterpretq_u64_u8(m)));
+    uint8x16_t lm_p1 = vreinterpretq_u8_u64(
+        vzip2q_u64(vreinterpretq_u64_u8(l), vreinterpretq_u64_u8(m)));
+    uint8x16_t nk_p0 = vreinterpretq_u8_u64(
+        vzip1q_u64(vreinterpretq_u64_u8(n), vreinterpretq_u64_u8(k)));
+    uint8x16_t nk_p1 = vreinterpretq_u8_u64(
+        vzip2q_u64(vreinterpretq_u64_u8(n), vreinterpretq_u64_u8(k)));
 #else
-  uint8x16_t lm_p0 = vcombine_u8(vget_low_u8(l), vget_low_u8(m));
-  uint8x16_t lm_p1 = vcombine_u8(vget_high_u8(l), vget_high_u8(m));
-  uint8x16_t nk_p0 = vcombine_u8(vget_low_u8(n), vget_low_u8(k));
-  uint8x16_t nk_p1 = vcombine_u8(vget_high_u8(n), vget_high_u8(k));
+    uint8x16_t lm_p0 = vcombine_u8(vget_low_u8(l), vget_low_u8(m));
+    uint8x16_t lm_p1 = vcombine_u8(vget_high_u8(l), vget_high_u8(m));
+    uint8x16_t nk_p0 = vcombine_u8(vget_low_u8(n), vget_low_u8(k));
+    uint8x16_t nk_p1 = vcombine_u8(vget_high_u8(n), vget_high_u8(k));
 #endif
-  // t0 = (L) (P0 + P1) << 8
-  // t1 = (M) (P2 + P3) << 16
-  uint8x16_t t0t1_tmp = veorq_u8(lm_p0, lm_p1);
-  uint8x16_t t0t1_h = vandq_u8(lm_p1, k48_32);
-  uint8x16_t t0t1_l = veorq_u8(t0t1_tmp, t0t1_h);
+    // t0 = (L) (P0 + P1) << 8
+    // t1 = (M) (P2 + P3) << 16
+    uint8x16_t t0t1_tmp = veorq_u8(lm_p0, lm_p1);
+    uint8x16_t t0t1_h = vandq_u8(lm_p1, k48_32);
+    uint8x16_t t0t1_l = veorq_u8(t0t1_tmp, t0t1_h);
 
-  // t2 = (N) (P4 + P5) << 24
-  // t3 = (K) (P6 + P7) << 32
-  uint8x16_t t2t3_tmp = veorq_u8(nk_p0, nk_p1);
-  uint8x16_t t2t3_h = vandq_u8(nk_p1, k16_00);
-  uint8x16_t t2t3_l = veorq_u8(t2t3_tmp, t2t3_h);
+    // t2 = (N) (P4 + P5) << 24
+    // t3 = (K) (P6 + P7) << 32
+    uint8x16_t t2t3_tmp = veorq_u8(nk_p0, nk_p1);
+    uint8x16_t t2t3_h = vandq_u8(nk_p1, k16_00);
+    uint8x16_t t2t3_l = veorq_u8(t2t3_tmp, t2t3_h);
 
-  // De-interleave
+    // De-interleave
 #if defined(__aarch64__)
-  uint8x16_t t0 = vreinterpretq_u8_u64(
-      vuzp1q_u64(vreinterpretq_u64_u8(t0t1_l), vreinterpretq_u64_u8(t0t1_h)));
-  uint8x16_t t1 = vreinterpretq_u8_u64(
-      vuzp2q_u64(vreinterpretq_u64_u8(t0t1_l), vreinterpretq_u64_u8(t0t1_h)));
-  uint8x16_t t2 = vreinterpretq_u8_u64(
-      vuzp1q_u64(vreinterpretq_u64_u8(t2t3_l), vreinterpretq_u64_u8(t2t3_h)));
-  uint8x16_t t3 = vreinterpretq_u8_u64(
-      vuzp2q_u64(vreinterpretq_u64_u8(t2t3_l), vreinterpretq_u64_u8(t2t3_h)));
+    uint8x16_t t0 = vreinterpretq_u8_u64(
+        vuzp1q_u64(vreinterpretq_u64_u8(t0t1_l), vreinterpretq_u64_u8(t0t1_h)));
+    uint8x16_t t1 = vreinterpretq_u8_u64(
+        vuzp2q_u64(vreinterpretq_u64_u8(t0t1_l), vreinterpretq_u64_u8(t0t1_h)));
+    uint8x16_t t2 = vreinterpretq_u8_u64(
+        vuzp1q_u64(vreinterpretq_u64_u8(t2t3_l), vreinterpretq_u64_u8(t2t3_h)));
+    uint8x16_t t3 = vreinterpretq_u8_u64(
+        vuzp2q_u64(vreinterpretq_u64_u8(t2t3_l), vreinterpretq_u64_u8(t2t3_h)));
 #else
-  uint8x16_t t1 = vcombine_u8(vget_high_u8(t0t1_l), vget_high_u8(t0t1_h));
-  uint8x16_t t0 = vcombine_u8(vget_low_u8(t0t1_l), vget_low_u8(t0t1_h));
-  uint8x16_t t3 = vcombine_u8(vget_high_u8(t2t3_l), vget_high_u8(t2t3_h));
-  uint8x16_t t2 = vcombine_u8(vget_low_u8(t2t3_l), vget_low_u8(t2t3_h));
+    uint8x16_t t1 = vcombine_u8(vget_high_u8(t0t1_l), vget_high_u8(t0t1_h));
+    uint8x16_t t0 = vcombine_u8(vget_low_u8(t0t1_l), vget_low_u8(t0t1_h));
+    uint8x16_t t3 = vcombine_u8(vget_high_u8(t2t3_l), vget_high_u8(t2t3_h));
+    uint8x16_t t2 = vcombine_u8(vget_low_u8(t2t3_l), vget_low_u8(t2t3_h));
 #endif
-  // Shift the cross products
-  uint8x16_t t0_shift = vextq_u8(t0, t0, 15);  // t0 << 8
-  uint8x16_t t1_shift = vextq_u8(t1, t1, 14);  // t1 << 16
-  uint8x16_t t2_shift = vextq_u8(t2, t2, 13);  // t2 << 24
-  uint8x16_t t3_shift = vextq_u8(t3, t3, 12);  // t3 << 32
+    // Shift the cross products
+    uint8x16_t t0_shift = vextq_u8(t0, t0, 15);  // t0 << 8
+    uint8x16_t t1_shift = vextq_u8(t1, t1, 14);  // t1 << 16
+    uint8x16_t t2_shift = vextq_u8(t2, t2, 13);  // t2 << 24
+    uint8x16_t t3_shift = vextq_u8(t3, t3, 12);  // t3 << 32
 
-  // Accumulate the products
-  uint8x16_t cross1 = veorq_u8(t0_shift, t1_shift);
-  uint8x16_t cross2 = veorq_u8(t2_shift, t3_shift);
-  uint8x16_t mix = veorq_u8(d, cross1);
-  uint8x16_t r = veorq_u8(mix, cross2);
-  return vreinterpretq_u64_u8(r);
+    // Accumulate the products
+    uint8x16_t cross1 = veorq_u8(t0_shift, t1_shift);
+    uint8x16_t cross2 = veorq_u8(t2_shift, t3_shift);
+    uint8x16_t mix = veorq_u8(d, cross1);
+    uint8x16_t r = veorq_u8(mix, cross2);
+    return vreinterpretq_u64_u8(r);
 }
-
 #endif  // ARMv7 polyfill
-FORCE_INLINE __m128i _mm_clmulepi64_si128(__m128i _a, __m128i _b,
-                                          const int imm) {
-  uint64x2_t a = vreinterpretq_u64_m128i(_a);
-  uint64x2_t b = vreinterpretq_u64_m128i(_b);
-  switch (imm & 0x11) {
-    case 0x00:
-      return vreinterpretq_m128i_u64(
-          _sse2neon_vmull_p64(vget_low_u64(a), vget_low_u64(b)));
-    case 0x01:
-      return vreinterpretq_m128i_u64(
-          _sse2neon_vmull_p64(vget_high_u64(a), vget_low_u64(b)));
-    case 0x10:
-      return vreinterpretq_m128i_u64(
-          _sse2neon_vmull_p64(vget_low_u64(a), vget_high_u64(b)));
-    case 0x11:
-      return vreinterpretq_m128i_u64(
-          _sse2neon_vmull_p64(vget_high_u64(a), vget_high_u64(b)));
-    default:
-      abort();
-  }
+
+// C equivalent:
+//   __m128i _mm_shuffle_epi32_default(__m128i a,
+//                                     __constrange(0, 255) int imm) {
+//       __m128i ret;
+//       ret[0] = a[imm        & 0x3];   ret[1] = a[(imm >> 2) & 0x3];
+//       ret[2] = a[(imm >> 4) & 0x03];  ret[3] = a[(imm >> 6) & 0x03];
+//       return ret;
+//   }
+#define _mm_shuffle_epi32_default(a, imm)                                   \
+    __extension__({                                                         \
+        int32x4_t ret;                                                      \
+        ret = vmovq_n_s32(                                                  \
+            vgetq_lane_s32(vreinterpretq_s32_m128i(a), (imm) & (0x3)));     \
+        ret = vsetq_lane_s32(                                               \
+            vgetq_lane_s32(vreinterpretq_s32_m128i(a), ((imm) >> 2) & 0x3), \
+            ret, 1);                                                        \
+        ret = vsetq_lane_s32(                                               \
+            vgetq_lane_s32(vreinterpretq_s32_m128i(a), ((imm) >> 4) & 0x3), \
+            ret, 2);                                                        \
+        ret = vsetq_lane_s32(                                               \
+            vgetq_lane_s32(vreinterpretq_s32_m128i(a), ((imm) >> 6) & 0x3), \
+            ret, 3);                                                        \
+        vreinterpretq_m128i_s32(ret);                                       \
+    })
+
+// Takes the upper 64 bits of a and places it in the low end of the result
+// Takes the lower 64 bits of a and places it into the high end of the result.
+FORCE_INLINE __m128i _mm_shuffle_epi_1032(__m128i a)
+{
+    int32x2_t a32 = vget_high_s32(vreinterpretq_s32_m128i(a));
+    int32x2_t a10 = vget_low_s32(vreinterpretq_s32_m128i(a));
+    return vreinterpretq_m128i_s32(vcombine_s32(a32, a10));
 }
 
-#if !defined(__ARM_FEATURE_CRYPTO) && defined(__aarch64__)
-// In the absence of crypto extensions, implement aesenc using regular neon
+// takes the lower two 32-bit values from a and swaps them and places in low end
+// of result takes the higher two 32 bit values from a and swaps them and places
+// in high end of result.
+FORCE_INLINE __m128i _mm_shuffle_epi_2301(__m128i a)
+{
+    int32x2_t a01 = vrev64_s32(vget_low_s32(vreinterpretq_s32_m128i(a)));
+    int32x2_t a23 = vrev64_s32(vget_high_s32(vreinterpretq_s32_m128i(a)));
+    return vreinterpretq_m128i_s32(vcombine_s32(a01, a23));
+}
+
+// rotates the least significant 32 bits into the most significant 32 bits, and
+// shifts the rest down
+FORCE_INLINE __m128i _mm_shuffle_epi_0321(__m128i a)
+{
+    return vreinterpretq_m128i_s32(
+        vextq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(a), 1));
+}
+
+// rotates the most significant 32 bits into the least significant 32 bits, and
+// shifts the rest up
+FORCE_INLINE __m128i _mm_shuffle_epi_2103(__m128i a)
+{
+    return vreinterpretq_m128i_s32(
+        vextq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(a), 3));
+}
+
+// gets the lower 64 bits of a, and places it in the upper 64 bits
+// gets the lower 64 bits of a and places it in the lower 64 bits
+FORCE_INLINE __m128i _mm_shuffle_epi_1010(__m128i a)
+{
+    int32x2_t a10 = vget_low_s32(vreinterpretq_s32_m128i(a));
+    return vreinterpretq_m128i_s32(vcombine_s32(a10, a10));
+}
+
+// gets the lower 64 bits of a, swaps the 0 and 1 elements, and places it in the
+// lower 64 bits gets the lower 64 bits of a, and places it in the upper 64 bits
+FORCE_INLINE __m128i _mm_shuffle_epi_1001(__m128i a)
+{
+    int32x2_t a01 = vrev64_s32(vget_low_s32(vreinterpretq_s32_m128i(a)));
+    int32x2_t a10 = vget_low_s32(vreinterpretq_s32_m128i(a));
+    return vreinterpretq_m128i_s32(vcombine_s32(a01, a10));
+}
+
+// gets the lower 64 bits of a, swaps the 0 and 1 elements and places it in the
+// upper 64 bits gets the lower 64 bits of a, swaps the 0 and 1 elements, and
+// places it in the lower 64 bits
+FORCE_INLINE __m128i _mm_shuffle_epi_0101(__m128i a)
+{
+    int32x2_t a01 = vrev64_s32(vget_low_s32(vreinterpretq_s32_m128i(a)));
+    return vreinterpretq_m128i_s32(vcombine_s32(a01, a01));
+}
+
+FORCE_INLINE __m128i _mm_shuffle_epi_2211(__m128i a)
+{
+    int32x2_t a11 = vdup_lane_s32(vget_low_s32(vreinterpretq_s32_m128i(a)), 1);
+    int32x2_t a22 = vdup_lane_s32(vget_high_s32(vreinterpretq_s32_m128i(a)), 0);
+    return vreinterpretq_m128i_s32(vcombine_s32(a11, a22));
+}
+
+FORCE_INLINE __m128i _mm_shuffle_epi_0122(__m128i a)
+{
+    int32x2_t a22 = vdup_lane_s32(vget_high_s32(vreinterpretq_s32_m128i(a)), 0);
+    int32x2_t a01 = vrev64_s32(vget_low_s32(vreinterpretq_s32_m128i(a)));
+    return vreinterpretq_m128i_s32(vcombine_s32(a22, a01));
+}
+
+FORCE_INLINE __m128i _mm_shuffle_epi_3332(__m128i a)
+{
+    int32x2_t a32 = vget_high_s32(vreinterpretq_s32_m128i(a));
+    int32x2_t a33 = vdup_lane_s32(vget_high_s32(vreinterpretq_s32_m128i(a)), 1);
+    return vreinterpretq_m128i_s32(vcombine_s32(a32, a33));
+}
+
+// FORCE_INLINE __m128i _mm_shuffle_epi32_splat(__m128i a, __constrange(0,255)
+// int imm)
+#if defined(__aarch64__)
+#define _mm_shuffle_epi32_splat(a, imm)                          \
+    __extension__({                                              \
+        vreinterpretq_m128i_s32(                                 \
+            vdupq_laneq_s32(vreinterpretq_s32_m128i(a), (imm))); \
+    })
+#else
+#define _mm_shuffle_epi32_splat(a, imm)                                      \
+    __extension__({                                                          \
+        vreinterpretq_m128i_s32(                                             \
+            vdupq_n_s32(vgetq_lane_s32(vreinterpretq_s32_m128i(a), (imm)))); \
+    })
+#endif
+
+// NEON does not support a general purpose permute intrinsic.
+// Shuffle single-precision (32-bit) floating-point elements in a using the
+// control in imm8, and store the results in dst.
+//
+// C equivalent:
+//   __m128 _mm_shuffle_ps_default(__m128 a, __m128 b,
+//                                 __constrange(0, 255) int imm) {
+//       __m128 ret;
+//       ret[0] = a[imm        & 0x3];   ret[1] = a[(imm >> 2) & 0x3];
+//       ret[2] = b[(imm >> 4) & 0x03];  ret[3] = b[(imm >> 6) & 0x03];
+//       return ret;
+//   }
+//
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_shuffle_ps
+#define _mm_shuffle_ps_default(a, b, imm)                                  \
+    __extension__({                                                        \
+        float32x4_t ret;                                                   \
+        ret = vmovq_n_f32(                                                 \
+            vgetq_lane_f32(vreinterpretq_f32_m128(a), (imm) & (0x3)));     \
+        ret = vsetq_lane_f32(                                              \
+            vgetq_lane_f32(vreinterpretq_f32_m128(a), ((imm) >> 2) & 0x3), \
+            ret, 1);                                                       \
+        ret = vsetq_lane_f32(                                              \
+            vgetq_lane_f32(vreinterpretq_f32_m128(b), ((imm) >> 4) & 0x3), \
+            ret, 2);                                                       \
+        ret = vsetq_lane_f32(                                              \
+            vgetq_lane_f32(vreinterpretq_f32_m128(b), ((imm) >> 6) & 0x3), \
+            ret, 3);                                                       \
+        vreinterpretq_m128_f32(ret);                                       \
+    })
+
+// Shuffle 16-bit integers in the low 64 bits of a using the control in imm8.
+// Store the results in the low 64 bits of dst, with the high 64 bits being
+// copied from from a to dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_shufflelo_epi16
+#define _mm_shufflelo_epi16_function(a, imm)                                  \
+    __extension__({                                                           \
+        int16x8_t ret = vreinterpretq_s16_m128i(a);                           \
+        int16x4_t lowBits = vget_low_s16(ret);                                \
+        ret = vsetq_lane_s16(vget_lane_s16(lowBits, (imm) & (0x3)), ret, 0);  \
+        ret = vsetq_lane_s16(vget_lane_s16(lowBits, ((imm) >> 2) & 0x3), ret, \
+                             1);                                              \
+        ret = vsetq_lane_s16(vget_lane_s16(lowBits, ((imm) >> 4) & 0x3), ret, \
+                             2);                                              \
+        ret = vsetq_lane_s16(vget_lane_s16(lowBits, ((imm) >> 6) & 0x3), ret, \
+                             3);                                              \
+        vreinterpretq_m128i_s16(ret);                                         \
+    })
+
+// Shuffle 16-bit integers in the high 64 bits of a using the control in imm8.
+// Store the results in the high 64 bits of dst, with the low 64 bits being
+// copied from from a to dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_shufflehi_epi16
+#define _mm_shufflehi_epi16_function(a, imm)                                   \
+    __extension__({                                                            \
+        int16x8_t ret = vreinterpretq_s16_m128i(a);                            \
+        int16x4_t highBits = vget_high_s16(ret);                               \
+        ret = vsetq_lane_s16(vget_lane_s16(highBits, (imm) & (0x3)), ret, 4);  \
+        ret = vsetq_lane_s16(vget_lane_s16(highBits, ((imm) >> 2) & 0x3), ret, \
+                             5);                                               \
+        ret = vsetq_lane_s16(vget_lane_s16(highBits, ((imm) >> 4) & 0x3), ret, \
+                             6);                                               \
+        ret = vsetq_lane_s16(vget_lane_s16(highBits, ((imm) >> 6) & 0x3), ret, \
+                             7);                                               \
+        vreinterpretq_m128i_s16(ret);                                          \
+    })
+
+/* MMX */
+
+//_mm_empty is a no-op on arm
+FORCE_INLINE void _mm_empty(void) {}
+
+/* SSE */
+
+// Add packed single-precision (32-bit) floating-point elements in a and b, and
+// store the results in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_add_ps
+FORCE_INLINE __m128 _mm_add_ps(__m128 a, __m128 b)
+{
+    return vreinterpretq_m128_f32(
+        vaddq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
+}
+
+// Add the lower single-precision (32-bit) floating-point element in a and b,
+// store the result in the lower element of dst, and copy the upper 3 packed
+// elements from a to the upper elements of dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_add_ss
+FORCE_INLINE __m128 _mm_add_ss(__m128 a, __m128 b)
+{
+    float32_t b0 = vgetq_lane_f32(vreinterpretq_f32_m128(b), 0);
+    float32x4_t value = vsetq_lane_f32(b0, vdupq_n_f32(0), 0);
+    // the upper values in the result must be the remnants of <a>.
+    return vreinterpretq_m128_f32(vaddq_f32(a, value));
+}
+
+// Compute the bitwise AND of packed single-precision (32-bit) floating-point
+// elements in a and b, and store the results in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_and_ps
+FORCE_INLINE __m128 _mm_and_ps(__m128 a, __m128 b)
+{
+    return vreinterpretq_m128_s32(
+        vandq_s32(vreinterpretq_s32_m128(a), vreinterpretq_s32_m128(b)));
+}
+
+// Compute the bitwise NOT of packed single-precision (32-bit) floating-point
+// elements in a and then AND with b, and store the results in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_andnot_ps
+FORCE_INLINE __m128 _mm_andnot_ps(__m128 a, __m128 b)
+{
+    return vreinterpretq_m128_s32(
+        vbicq_s32(vreinterpretq_s32_m128(b),
+                  vreinterpretq_s32_m128(a)));  // *NOTE* argument swap
+}
+
+// Average packed unsigned 16-bit integers in a and b, and store the results in
+// dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_avg_pu16
+FORCE_INLINE __m64 _mm_avg_pu16(__m64 a, __m64 b)
+{
+    return vreinterpret_m64_u16(
+        vrhadd_u16(vreinterpret_u16_m64(a), vreinterpret_u16_m64(b)));
+}
+
+// Average packed unsigned 8-bit integers in a and b, and store the results in
+// dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_avg_pu8
+FORCE_INLINE __m64 _mm_avg_pu8(__m64 a, __m64 b)
+{
+    return vreinterpret_m64_u8(
+        vrhadd_u8(vreinterpret_u8_m64(a), vreinterpret_u8_m64(b)));
+}
+
+// Compare packed single-precision (32-bit) floating-point elements in a and b
+// for equality, and store the results in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpeq_ps
+FORCE_INLINE __m128 _mm_cmpeq_ps(__m128 a, __m128 b)
+{
+    return vreinterpretq_m128_u32(
+        vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
+}
+
+// Compare the lower single-precision (32-bit) floating-point elements in a and
+// b for equality, store the result in the lower element of dst, and copy the
+// upper 3 packed elements from a to the upper elements of dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpeq_ss
+FORCE_INLINE __m128 _mm_cmpeq_ss(__m128 a, __m128 b)
+{
+    return _mm_move_ss(a, _mm_cmpeq_ps(a, b));
+}
+
+// Compare packed single-precision (32-bit) floating-point elements in a and b
+// for greater-than-or-equal, and store the results in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpge_ps
+FORCE_INLINE __m128 _mm_cmpge_ps(__m128 a, __m128 b)
+{
+    return vreinterpretq_m128_u32(
+        vcgeq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
+}
+
+// Compare the lower single-precision (32-bit) floating-point elements in a and
+// b for greater-than-or-equal, store the result in the lower element of dst,
+// and copy the upper 3 packed elements from a to the upper elements of dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpge_ss
+FORCE_INLINE __m128 _mm_cmpge_ss(__m128 a, __m128 b)
+{
+    return _mm_move_ss(a, _mm_cmpge_ps(a, b));
+}
+
+// Compare packed single-precision (32-bit) floating-point elements in a and b
+// for greater-than, and store the results in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpgt_ps
+FORCE_INLINE __m128 _mm_cmpgt_ps(__m128 a, __m128 b)
+{
+    return vreinterpretq_m128_u32(
+        vcgtq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
+}
+
+// Compare the lower single-precision (32-bit) floating-point elements in a and
+// b for greater-than, store the result in the lower element of dst, and copy
+// the upper 3 packed elements from a to the upper elements of dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpgt_ss
+FORCE_INLINE __m128 _mm_cmpgt_ss(__m128 a, __m128 b)
+{
+    return _mm_move_ss(a, _mm_cmpgt_ps(a, b));
+}
+
+// Compare packed single-precision (32-bit) floating-point elements in a and b
+// for less-than-or-equal, and store the results in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmple_ps
+FORCE_INLINE __m128 _mm_cmple_ps(__m128 a, __m128 b)
+{
+    return vreinterpretq_m128_u32(
+        vcleq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
+}
+
+// Compare the lower single-precision (32-bit) floating-point elements in a and
+// b for less-than-or-equal, store the result in the lower element of dst, and
+// copy the upper 3 packed elements from a to the upper elements of dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmple_ss
+FORCE_INLINE __m128 _mm_cmple_ss(__m128 a, __m128 b)
+{
+    return _mm_move_ss(a, _mm_cmple_ps(a, b));
+}
+
+// Compare packed single-precision (32-bit) floating-point elements in a and b
+// for less-than, and store the results in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmplt_ps
+FORCE_INLINE __m128 _mm_cmplt_ps(__m128 a, __m128 b)
+{
+    return vreinterpretq_m128_u32(
+        vcltq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
+}
+
+// Compare the lower single-precision (32-bit) floating-point elements in a and
+// b for less-than, store the result in the lower element of dst, and copy the
+// upper 3 packed elements from a to the upper elements of dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmplt_ss
+FORCE_INLINE __m128 _mm_cmplt_ss(__m128 a, __m128 b)
+{
+    return _mm_move_ss(a, _mm_cmplt_ps(a, b));
+}
+
+// Compare packed single-precision (32-bit) floating-point elements in a and b
+// for not-equal, and store the results in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpneq_ps
+FORCE_INLINE __m128 _mm_cmpneq_ps(__m128 a, __m128 b)
+{
+    return vreinterpretq_m128_u32(vmvnq_u32(
+        vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))));
+}
+
+// Compare the lower single-precision (32-bit) floating-point elements in a and
+// b for not-equal, store the result in the lower element of dst, and copy the
+// upper 3 packed elements from a to the upper elements of dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpneq_ss
+FORCE_INLINE __m128 _mm_cmpneq_ss(__m128 a, __m128 b)
+{
+    return _mm_move_ss(a, _mm_cmpneq_ps(a, b));
+}
+
+// Compare packed single-precision (32-bit) floating-point elements in a and b
+// for not-greater-than-or-equal, and store the results in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpnge_ps
+FORCE_INLINE __m128 _mm_cmpnge_ps(__m128 a, __m128 b)
+{
+    return vreinterpretq_m128_u32(vmvnq_u32(
+        vcgeq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))));
+}
+
+// Compare the lower single-precision (32-bit) floating-point elements in a and
+// b for not-greater-than-or-equal, store the result in the lower element of
+// dst, and copy the upper 3 packed elements from a to the upper elements of
+// dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpnge_ss
+FORCE_INLINE __m128 _mm_cmpnge_ss(__m128 a, __m128 b)
+{
+    return _mm_move_ss(a, _mm_cmpnge_ps(a, b));
+}
+
+// Compare packed single-precision (32-bit) floating-point elements in a and b
+// for not-greater-than, and store the results in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpngt_ps
+FORCE_INLINE __m128 _mm_cmpngt_ps(__m128 a, __m128 b)
+{
+    return vreinterpretq_m128_u32(vmvnq_u32(
+        vcgtq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))));
+}
+
+// Compare the lower single-precision (32-bit) floating-point elements in a and
+// b for not-greater-than, store the result in the lower element of dst, and
+// copy the upper 3 packed elements from a to the upper elements of dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpngt_ss
+FORCE_INLINE __m128 _mm_cmpngt_ss(__m128 a, __m128 b)
+{
+    return _mm_move_ss(a, _mm_cmpngt_ps(a, b));
+}
+
+// Compare packed single-precision (32-bit) floating-point elements in a and b
+// for not-less-than-or-equal, and store the results in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpnle_ps
+FORCE_INLINE __m128 _mm_cmpnle_ps(__m128 a, __m128 b)
+{
+    return vreinterpretq_m128_u32(vmvnq_u32(
+        vcleq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))));
+}
+
+// Compare the lower single-precision (32-bit) floating-point elements in a and
+// b for not-less-than-or-equal, store the result in the lower element of dst,
+// and copy the upper 3 packed elements from a to the upper elements of dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpnle_ss
+FORCE_INLINE __m128 _mm_cmpnle_ss(__m128 a, __m128 b)
+{
+    return _mm_move_ss(a, _mm_cmpnle_ps(a, b));
+}
+
+// Compare packed single-precision (32-bit) floating-point elements in a and b
+// for not-less-than, and store the results in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpnlt_ps
+FORCE_INLINE __m128 _mm_cmpnlt_ps(__m128 a, __m128 b)
+{
+    return vreinterpretq_m128_u32(vmvnq_u32(
+        vcltq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))));
+}
+
+// Compare the lower single-precision (32-bit) floating-point elements in a and
+// b for not-less-than, store the result in the lower element of dst, and copy
+// the upper 3 packed elements from a to the upper elements of dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpnlt_ss
+FORCE_INLINE __m128 _mm_cmpnlt_ss(__m128 a, __m128 b)
+{
+    return _mm_move_ss(a, _mm_cmpnlt_ps(a, b));
+}
+
+// Compare packed single-precision (32-bit) floating-point elements in a and b
+// to see if neither is NaN, and store the results in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpord_ps
+//
+// See also:
+// http://stackoverflow.com/questions/8627331/what-does-ordered-unordered-comparison-mean
+// http://stackoverflow.com/questions/29349621/neon-isnanval-intrinsics
+FORCE_INLINE __m128 _mm_cmpord_ps(__m128 a, __m128 b)
+{
+    // Note: NEON does not have ordered compare builtin
+    // Need to compare a eq a and b eq b to check for NaN
+    // Do AND of results to get final
+    uint32x4_t ceqaa =
+        vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a));
+    uint32x4_t ceqbb =
+        vceqq_f32(vreinterpretq_f32_m128(b), vreinterpretq_f32_m128(b));
+    return vreinterpretq_m128_u32(vandq_u32(ceqaa, ceqbb));
+}
+
+// Compare the lower single-precision (32-bit) floating-point elements in a and
+// b to see if neither is NaN, store the result in the lower element of dst, and
+// copy the upper 3 packed elements from a to the upper elements of dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpord_ss
+FORCE_INLINE __m128 _mm_cmpord_ss(__m128 a, __m128 b)
+{
+    return _mm_move_ss(a, _mm_cmpord_ps(a, b));
+}
+
+// Compare packed single-precision (32-bit) floating-point elements in a and b
+// to see if either is NaN, and store the results in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpunord_ps
+FORCE_INLINE __m128 _mm_cmpunord_ps(__m128 a, __m128 b)
+{
+    uint32x4_t f32a =
+        vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a));
+    uint32x4_t f32b =
+        vceqq_f32(vreinterpretq_f32_m128(b), vreinterpretq_f32_m128(b));
+    return vreinterpretq_m128_u32(vmvnq_u32(vandq_u32(f32a, f32b)));
+}
+
+// Compare the lower single-precision (32-bit) floating-point elements in a and
+// b to see if either is NaN, store the result in the lower element of dst, and
+// copy the upper 3 packed elements from a to the upper elements of dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpunord_ss
+FORCE_INLINE __m128 _mm_cmpunord_ss(__m128 a, __m128 b)
+{
+    return _mm_move_ss(a, _mm_cmpunord_ps(a, b));
+}
+
+// Compare the lower single-precision (32-bit) floating-point element in a and b
+// for equality, and return the boolean result (0 or 1).
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_comieq_ss
+FORCE_INLINE int _mm_comieq_ss(__m128 a, __m128 b)
+{
+    uint32x4_t a_eq_b =
+        vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b));
+    return vgetq_lane_u32(a_eq_b, 0) & 0x1;
+}
+
+// Compare the lower single-precision (32-bit) floating-point element in a and b
+// for greater-than-or-equal, and return the boolean result (0 or 1).
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_comige_ss
+FORCE_INLINE int _mm_comige_ss(__m128 a, __m128 b)
+{
+    uint32x4_t a_ge_b =
+        vcgeq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b));
+    return vgetq_lane_u32(a_ge_b, 0) & 0x1;
+}
+
+// Compare the lower single-precision (32-bit) floating-point element in a and b
+// for greater-than, and return the boolean result (0 or 1).
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_comigt_ss
+FORCE_INLINE int _mm_comigt_ss(__m128 a, __m128 b)
+{
+    uint32x4_t a_gt_b =
+        vcgtq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b));
+    return vgetq_lane_u32(a_gt_b, 0) & 0x1;
+}
+
+// Compare the lower single-precision (32-bit) floating-point element in a and b
+// for less-than-or-equal, and return the boolean result (0 or 1).
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_comile_ss
+FORCE_INLINE int _mm_comile_ss(__m128 a, __m128 b)
+{
+    uint32x4_t a_le_b =
+        vcleq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b));
+    return vgetq_lane_u32(a_le_b, 0) & 0x1;
+}
+
+// Compare the lower single-precision (32-bit) floating-point element in a and b
+// for less-than, and return the boolean result (0 or 1).
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_comilt_ss
+FORCE_INLINE int _mm_comilt_ss(__m128 a, __m128 b)
+{
+    uint32x4_t a_lt_b =
+        vcltq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b));
+    return vgetq_lane_u32(a_lt_b, 0) & 0x1;
+}
+
+// Compare the lower single-precision (32-bit) floating-point element in a and b
+// for not-equal, and return the boolean result (0 or 1).
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_comineq_ss
+FORCE_INLINE int _mm_comineq_ss(__m128 a, __m128 b)
+{
+    return !_mm_comieq_ss(a, b);
+}
+
+// Convert packed signed 32-bit integers in b to packed single-precision
+// (32-bit) floating-point elements, store the results in the lower 2 elements
+// of dst, and copy the upper 2 packed elements from a to the upper elements of
+// dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvt_pi2ps
+FORCE_INLINE __m128 _mm_cvt_pi2ps(__m128 a, __m64 b)
+{
+    return vreinterpretq_m128_f32(
+        vcombine_f32(vcvt_f32_s32(vreinterpret_s32_m64(b)),
+                     vget_high_f32(vreinterpretq_f32_m128(a))));
+}
+
+// Convert packed single-precision (32-bit) floating-point elements in a to
+// packed 32-bit integers, and store the results in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvt_ps2pi
+FORCE_INLINE __m64 _mm_cvt_ps2pi(__m128 a)
+{
+#if defined(__aarch64__) || defined(__ARM_FEATURE_DIRECTED_ROUNDING)
+    return vreinterpret_m64_s32(
+        vget_low_s32(vcvtnq_s32_f32(vrndiq_f32(vreinterpretq_f32_m128(a)))));
+#else
+    return vreinterpret_m64_s32(vcvt_s32_f32(vget_low_f32(
+        vreinterpretq_f32_m128(_mm_round_ps(a, _MM_FROUND_CUR_DIRECTION)))));
+#endif
+}
+
+// Convert the signed 32-bit integer b to a single-precision (32-bit)
+// floating-point element, store the result in the lower element of dst, and
+// copy the upper 3 packed elements from a to the upper elements of dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvt_si2ss
+FORCE_INLINE __m128 _mm_cvt_si2ss(__m128 a, int b)
+{
+    return vreinterpretq_m128_f32(
+        vsetq_lane_f32((float) b, vreinterpretq_f32_m128(a), 0));
+}
+
+// Convert the lower single-precision (32-bit) floating-point element in a to a
+// 32-bit integer, and store the result in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvt_ss2si
+FORCE_INLINE int _mm_cvt_ss2si(__m128 a)
+{
+#if defined(__aarch64__) || defined(__ARM_FEATURE_DIRECTED_ROUNDING)
+    return vgetq_lane_s32(vcvtnq_s32_f32(vrndiq_f32(vreinterpretq_f32_m128(a))),
+                          0);
+#else
+    float32_t data = vgetq_lane_f32(
+        vreinterpretq_f32_m128(_mm_round_ps(a, _MM_FROUND_CUR_DIRECTION)), 0);
+    return (int32_t) data;
+#endif
+}
+
+// Convert packed 16-bit integers in a to packed single-precision (32-bit)
+// floating-point elements, and store the results in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtpi16_ps
+FORCE_INLINE __m128 _mm_cvtpi16_ps(__m64 a)
+{
+    return vreinterpretq_m128_f32(
+        vcvtq_f32_s32(vmovl_s16(vreinterpret_s16_m64(a))));
+}
+
+// Convert packed 32-bit integers in b to packed single-precision (32-bit)
+// floating-point elements, store the results in the lower 2 elements of dst,
+// and copy the upper 2 packed elements from a to the upper elements of dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtpi32_ps
+FORCE_INLINE __m128 _mm_cvtpi32_ps(__m128 a, __m64 b)
+{
+    return vreinterpretq_m128_f32(
+        vcombine_f32(vcvt_f32_s32(vreinterpret_s32_m64(b)),
+                     vget_high_f32(vreinterpretq_f32_m128(a))));
+}
+
+// Convert packed signed 32-bit integers in a to packed single-precision
+// (32-bit) floating-point elements, store the results in the lower 2 elements
+// of dst, then convert the packed signed 32-bit integers in b to
+// single-precision (32-bit) floating-point element, and store the results in
+// the upper 2 elements of dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtpi32x2_ps
+FORCE_INLINE __m128 _mm_cvtpi32x2_ps(__m64 a, __m64 b)
+{
+    return vreinterpretq_m128_f32(vcvtq_f32_s32(
+        vcombine_s32(vreinterpret_s32_m64(a), vreinterpret_s32_m64(b))));
+}
+
+// Convert the lower packed 8-bit integers in a to packed single-precision
+// (32-bit) floating-point elements, and store the results in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtpi8_ps
+FORCE_INLINE __m128 _mm_cvtpi8_ps(__m64 a)
+{
+    return vreinterpretq_m128_f32(vcvtq_f32_s32(
+        vmovl_s16(vget_low_s16(vmovl_s8(vreinterpret_s8_m64(a))))));
+}
+
+// Convert packed single-precision (32-bit) floating-point elements in a to
+// packed 16-bit integers, and store the results in dst. Note: this intrinsic
+// will generate 0x7FFF, rather than 0x8000, for input values between 0x7FFF and
+// 0x7FFFFFFF.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtps_pi16
+FORCE_INLINE __m64 _mm_cvtps_pi16(__m128 a)
+{
+    return vreinterpret_m64_s16(
+        vqmovn_s32(vreinterpretq_s32_m128i(_mm_cvtps_epi32(a))));
+}
+
+// Convert packed single-precision (32-bit) floating-point elements in a to
+// packed 32-bit integers, and store the results in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtps_pi32
+#define _mm_cvtps_pi32(a) _mm_cvt_ps2pi(a)
+
+// Convert packed single-precision (32-bit) floating-point elements in a to
+// packed 8-bit integers, and store the results in lower 4 elements of dst.
+// Note: this intrinsic will generate 0x7F, rather than 0x80, for input values
+// between 0x7F and 0x7FFFFFFF.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtps_pi8
+FORCE_INLINE __m64 _mm_cvtps_pi8(__m128 a)
+{
+    return vreinterpret_m64_s8(vqmovn_s16(
+        vcombine_s16(vreinterpret_s16_m64(_mm_cvtps_pi16(a)), vdup_n_s16(0))));
+}
+
+// Convert packed unsigned 16-bit integers in a to packed single-precision
+// (32-bit) floating-point elements, and store the results in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtpu16_ps
+FORCE_INLINE __m128 _mm_cvtpu16_ps(__m64 a)
+{
+    return vreinterpretq_m128_f32(
+        vcvtq_f32_u32(vmovl_u16(vreinterpret_u16_m64(a))));
+}
+
+// Convert the lower packed unsigned 8-bit integers in a to packed
+// single-precision (32-bit) floating-point elements, and store the results in
+// dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtpu8_ps
+FORCE_INLINE __m128 _mm_cvtpu8_ps(__m64 a)
+{
+    return vreinterpretq_m128_f32(vcvtq_f32_u32(
+        vmovl_u16(vget_low_u16(vmovl_u8(vreinterpret_u8_m64(a))))));
+}
+
+// Convert the signed 32-bit integer b to a single-precision (32-bit)
+// floating-point element, store the result in the lower element of dst, and
+// copy the upper 3 packed elements from a to the upper elements of dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsi32_ss
+#define _mm_cvtsi32_ss(a, b) _mm_cvt_si2ss(a, b)
+
+// Convert the signed 64-bit integer b to a single-precision (32-bit)
+// floating-point element, store the result in the lower element of dst, and
+// copy the upper 3 packed elements from a to the upper elements of dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsi64_ss
+FORCE_INLINE __m128 _mm_cvtsi64_ss(__m128 a, int64_t b)
+{
+    return vreinterpretq_m128_f32(
+        vsetq_lane_f32((float) b, vreinterpretq_f32_m128(a), 0));
+}
+
+// Copy the lower single-precision (32-bit) floating-point element of a to dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtss_f32
+FORCE_INLINE float _mm_cvtss_f32(__m128 a)
+{
+    return vgetq_lane_f32(vreinterpretq_f32_m128(a), 0);
+}
+
+// Convert the lower single-precision (32-bit) floating-point element in a to a
+// 32-bit integer, and store the result in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtss_si32
+#define _mm_cvtss_si32(a) _mm_cvt_ss2si(a)
+
+// Convert the lower single-precision (32-bit) floating-point element in a to a
+// 64-bit integer, and store the result in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtss_si64
+FORCE_INLINE int64_t _mm_cvtss_si64(__m128 a)
+{
+#if defined(__aarch64__) || defined(__ARM_FEATURE_DIRECTED_ROUNDING)
+    return (int64_t) vgetq_lane_f32(vrndiq_f32(vreinterpretq_f32_m128(a)), 0);
+#else
+    float32_t data = vgetq_lane_f32(
+        vreinterpretq_f32_m128(_mm_round_ps(a, _MM_FROUND_CUR_DIRECTION)), 0);
+    return (int64_t) data;
+#endif
+}
+
+// Convert packed single-precision (32-bit) floating-point elements in a to
+// packed 32-bit integers with truncation, and store the results in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtt_ps2pi
+FORCE_INLINE __m64 _mm_cvtt_ps2pi(__m128 a)
+{
+    return vreinterpret_m64_s32(
+        vget_low_s32(vcvtq_s32_f32(vreinterpretq_f32_m128(a))));
+}
+
+// Convert the lower single-precision (32-bit) floating-point element in a to a
+// 32-bit integer with truncation, and store the result in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtt_ss2si
+FORCE_INLINE int _mm_cvtt_ss2si(__m128 a)
+{
+    return vgetq_lane_s32(vcvtq_s32_f32(vreinterpretq_f32_m128(a)), 0);
+}
+
+// Convert packed single-precision (32-bit) floating-point elements in a to
+// packed 32-bit integers with truncation, and store the results in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvttps_pi32
+#define _mm_cvttps_pi32(a) _mm_cvtt_ps2pi(a)
+
+// Convert the lower single-precision (32-bit) floating-point element in a to a
+// 32-bit integer with truncation, and store the result in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvttss_si32
+#define _mm_cvttss_si32(a) _mm_cvtt_ss2si(a)
+
+// Convert the lower single-precision (32-bit) floating-point element in a to a
+// 64-bit integer with truncation, and store the result in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvttss_si64
+FORCE_INLINE int64_t _mm_cvttss_si64(__m128 a)
+{
+    return (int64_t) vgetq_lane_f32(vreinterpretq_f32_m128(a), 0);
+}
+
+// Divide packed single-precision (32-bit) floating-point elements in a by
+// packed elements in b, and store the results in dst.
+// Due to ARMv7-A NEON's lack of a precise division intrinsic, we implement
+// division by multiplying a by b's reciprocal before using the Newton-Raphson
+// method to approximate the results.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_div_ps
+FORCE_INLINE __m128 _mm_div_ps(__m128 a, __m128 b)
+{
+#if defined(__aarch64__)
+    return vreinterpretq_m128_f32(
+        vdivq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
+#else
+    float32x4_t recip = vrecpeq_f32(vreinterpretq_f32_m128(b));
+    recip = vmulq_f32(recip, vrecpsq_f32(recip, vreinterpretq_f32_m128(b)));
+    // Additional Netwon-Raphson iteration for accuracy
+    recip = vmulq_f32(recip, vrecpsq_f32(recip, vreinterpretq_f32_m128(b)));
+    return vreinterpretq_m128_f32(vmulq_f32(vreinterpretq_f32_m128(a), recip));
+#endif
+}
+
+// Divide the lower single-precision (32-bit) floating-point element in a by the
+// lower single-precision (32-bit) floating-point element in b, store the result
+// in the lower element of dst, and copy the upper 3 packed elements from a to
+// the upper elements of dst.
+// Warning: ARMv7-A does not produce the same result compared to Intel and not
+// IEEE-compliant.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_div_ss
+FORCE_INLINE __m128 _mm_div_ss(__m128 a, __m128 b)
+{
+    float32_t value =
+        vgetq_lane_f32(vreinterpretq_f32_m128(_mm_div_ps(a, b)), 0);
+    return vreinterpretq_m128_f32(
+        vsetq_lane_f32(value, vreinterpretq_f32_m128(a), 0));
+}
+
+// Extract a 16-bit integer from a, selected with imm8, and store the result in
+// the lower element of dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_extract_pi16
+#define _mm_extract_pi16(a, imm) \
+    (int32_t) vget_lane_u16(vreinterpret_u16_m64(a), (imm))
+
+// Free aligned memory that was allocated with _mm_malloc.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_free
+#if !defined(SSE2NEON_ALLOC_DEFINED)
+FORCE_INLINE void _mm_free(void *addr)
+{
+    free(addr);
+}
+#endif
+
+// Macro: Get the flush zero bits from the MXCSR control and status register.
+// The flush zero may contain any of the following flags: _MM_FLUSH_ZERO_ON or
+// _MM_FLUSH_ZERO_OFF
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_MM_GET_FLUSH_ZERO_MODE
+FORCE_INLINE unsigned int _sse2neon_mm_get_flush_zero_mode()
+{
+    union {
+        fpcr_bitfield field;
+#if defined(__aarch64__)
+        uint64_t value;
+#else
+        uint32_t value;
+#endif
+    } r;
+
+#if defined(__aarch64__)
+    __asm__ __volatile__("mrs %0, FPCR" : "=r"(r.value)); /* read */
+#else
+    __asm__ __volatile__("vmrs %0, FPSCR" : "=r"(r.value)); /* read */
+#endif
+
+    return r.field.bit24 ? _MM_FLUSH_ZERO_ON : _MM_FLUSH_ZERO_OFF;
+}
+
+// Macro: Get the rounding mode bits from the MXCSR control and status register.
+// The rounding mode may contain any of the following flags: _MM_ROUND_NEAREST,
+// _MM_ROUND_DOWN, _MM_ROUND_UP, _MM_ROUND_TOWARD_ZERO
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_MM_GET_ROUNDING_MODE
+FORCE_INLINE unsigned int _MM_GET_ROUNDING_MODE()
+{
+    union {
+        fpcr_bitfield field;
+#if defined(__aarch64__)
+        uint64_t value;
+#else
+        uint32_t value;
+#endif
+    } r;
+
+#if defined(__aarch64__)
+    __asm__ __volatile__("mrs %0, FPCR" : "=r"(r.value)); /* read */
+#else
+    __asm__ __volatile__("vmrs %0, FPSCR" : "=r"(r.value)); /* read */
+#endif
+
+    if (r.field.bit22) {
+        return r.field.bit23 ? _MM_ROUND_TOWARD_ZERO : _MM_ROUND_UP;
+    } else {
+        return r.field.bit23 ? _MM_ROUND_DOWN : _MM_ROUND_NEAREST;
+    }
+}
+
+// Copy a to dst, and insert the 16-bit integer i into dst at the location
+// specified by imm8.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_insert_pi16
+#define _mm_insert_pi16(a, b, imm)                               \
+    __extension__({                                              \
+        vreinterpret_m64_s16(                                    \
+            vset_lane_s16((b), vreinterpret_s16_m64(a), (imm))); \
+    })
+
+// Load 128-bits (composed of 4 packed single-precision (32-bit) floating-point
+// elements) from memory into dst. mem_addr must be aligned on a 16-byte
+// boundary or a general-protection exception may be generated.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_load_ps
+FORCE_INLINE __m128 _mm_load_ps(const float *p)
+{
+    return vreinterpretq_m128_f32(vld1q_f32(p));
+}
+
+// Load a single-precision (32-bit) floating-point element from memory into all
+// elements of dst.
+//
+//   dst[31:0] := MEM[mem_addr+31:mem_addr]
+//   dst[63:32] := MEM[mem_addr+31:mem_addr]
+//   dst[95:64] := MEM[mem_addr+31:mem_addr]
+//   dst[127:96] := MEM[mem_addr+31:mem_addr]
+//
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_load_ps1
+#define _mm_load_ps1 _mm_load1_ps
+
+// Load a single-precision (32-bit) floating-point element from memory into the
+// lower of dst, and zero the upper 3 elements. mem_addr does not need to be
+// aligned on any particular boundary.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_load_ss
+FORCE_INLINE __m128 _mm_load_ss(const float *p)
+{
+    return vreinterpretq_m128_f32(vsetq_lane_f32(*p, vdupq_n_f32(0), 0));
+}
+
+// Load a single-precision (32-bit) floating-point element from memory into all
+// elements of dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_load1_ps
+FORCE_INLINE __m128 _mm_load1_ps(const float *p)
+{
+    return vreinterpretq_m128_f32(vld1q_dup_f32(p));
+}
+
+// Load 2 single-precision (32-bit) floating-point elements from memory into the
+// upper 2 elements of dst, and copy the lower 2 elements from a to dst.
+// mem_addr does not need to be aligned on any particular boundary.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_loadh_pi
+FORCE_INLINE __m128 _mm_loadh_pi(__m128 a, __m64 const *p)
+{
+    return vreinterpretq_m128_f32(
+        vcombine_f32(vget_low_f32(a), vld1_f32((const float32_t *) p)));
+}
+
+// Load 2 single-precision (32-bit) floating-point elements from memory into the
+// lower 2 elements of dst, and copy the upper 2 elements from a to dst.
+// mem_addr does not need to be aligned on any particular boundary.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_loadl_pi
+FORCE_INLINE __m128 _mm_loadl_pi(__m128 a, __m64 const *p)
+{
+    return vreinterpretq_m128_f32(
+        vcombine_f32(vld1_f32((const float32_t *) p), vget_high_f32(a)));
+}
+
+// Load 4 single-precision (32-bit) floating-point elements from memory into dst
+// in reverse order. mem_addr must be aligned on a 16-byte boundary or a
+// general-protection exception may be generated.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_loadr_ps
+FORCE_INLINE __m128 _mm_loadr_ps(const float *p)
+{
+    float32x4_t v = vrev64q_f32(vld1q_f32(p));
+    return vreinterpretq_m128_f32(vextq_f32(v, v, 2));
+}
+
+// Load 128-bits (composed of 4 packed single-precision (32-bit) floating-point
+// elements) from memory into dst. mem_addr does not need to be aligned on any
+// particular boundary.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_loadu_ps
+FORCE_INLINE __m128 _mm_loadu_ps(const float *p)
+{
+    // for neon, alignment doesn't matter, so _mm_load_ps and _mm_loadu_ps are
+    // equivalent for neon
+    return vreinterpretq_m128_f32(vld1q_f32(p));
+}
+
+// Load unaligned 16-bit integer from memory into the first element of dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_loadu_si16
+FORCE_INLINE __m128i _mm_loadu_si16(const void *p)
+{
+    return vreinterpretq_m128i_s16(
+        vsetq_lane_s16(*(const int16_t *) p, vdupq_n_s16(0), 0));
+}
+
+// Load unaligned 64-bit integer from memory into the first element of dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_loadu_si64
+FORCE_INLINE __m128i _mm_loadu_si64(const void *p)
+{
+    return vreinterpretq_m128i_s64(
+        vcombine_s64(vld1_s64((const int64_t *) p), vdup_n_s64(0)));
+}
+
+// Allocate size bytes of memory, aligned to the alignment specified in align,
+// and return a pointer to the allocated memory. _mm_free should be used to free
+// memory that is allocated with _mm_malloc.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_malloc
+#if !defined(SSE2NEON_ALLOC_DEFINED)
+FORCE_INLINE void *_mm_malloc(size_t size, size_t align)
+{
+    void *ptr;
+    if (align == 1)
+        return malloc(size);
+    if (align == 2 || (sizeof(void *) == 8 && align == 4))
+        align = sizeof(void *);
+    if (!posix_memalign(&ptr, align, size))
+        return ptr;
+    return NULL;
+}
+#endif
+
+// Conditionally store 8-bit integer elements from a into memory using mask
+// (elements are not stored when the highest bit is not set in the corresponding
+// element) and a non-temporal memory hint.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_maskmove_si64
+FORCE_INLINE void _mm_maskmove_si64(__m64 a, __m64 mask, char *mem_addr)
+{
+    int8x8_t shr_mask = vshr_n_s8(vreinterpret_s8_m64(mask), 7);
+    __m128 b = _mm_load_ps((const float *) mem_addr);
+    int8x8_t masked =
+        vbsl_s8(vreinterpret_u8_s8(shr_mask), vreinterpret_s8_m64(a),
+                vreinterpret_s8_u64(vget_low_u64(vreinterpretq_u64_m128(b))));
+    vst1_s8((int8_t *) mem_addr, masked);
+}
+
+// Conditionally store 8-bit integer elements from a into memory using mask
+// (elements are not stored when the highest bit is not set in the corresponding
+// element) and a non-temporal memory hint.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_m_maskmovq
+#define _m_maskmovq(a, mask, mem_addr) _mm_maskmove_si64(a, mask, mem_addr)
+
+// Compare packed signed 16-bit integers in a and b, and store packed maximum
+// values in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_max_pi16
+FORCE_INLINE __m64 _mm_max_pi16(__m64 a, __m64 b)
+{
+    return vreinterpret_m64_s16(
+        vmax_s16(vreinterpret_s16_m64(a), vreinterpret_s16_m64(b)));
+}
+
+// Compare packed single-precision (32-bit) floating-point elements in a and b,
+// and store packed maximum values in dst. dst does not follow the IEEE Standard
+// for Floating-Point Arithmetic (IEEE 754) maximum value when inputs are NaN or
+// signed-zero values.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_max_ps
+FORCE_INLINE __m128 _mm_max_ps(__m128 a, __m128 b)
+{
+#if SSE2NEON_PRECISE_MINMAX
+    float32x4_t _a = vreinterpretq_f32_m128(a);
+    float32x4_t _b = vreinterpretq_f32_m128(b);
+    return vreinterpretq_m128_f32(vbslq_f32(vcgtq_f32(_a, _b), _a, _b));
+#else
+    return vreinterpretq_m128_f32(
+        vmaxq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
+#endif
+}
+
+// Compare packed unsigned 8-bit integers in a and b, and store packed maximum
+// values in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_max_pu8
+FORCE_INLINE __m64 _mm_max_pu8(__m64 a, __m64 b)
+{
+    return vreinterpret_m64_u8(
+        vmax_u8(vreinterpret_u8_m64(a), vreinterpret_u8_m64(b)));
+}
+
+// Compare the lower single-precision (32-bit) floating-point elements in a and
+// b, store the maximum value in the lower element of dst, and copy the upper 3
+// packed elements from a to the upper element of dst. dst does not follow the
+// IEEE Standard for Floating-Point Arithmetic (IEEE 754) maximum value when
+// inputs are NaN or signed-zero values.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_max_ss
+FORCE_INLINE __m128 _mm_max_ss(__m128 a, __m128 b)
+{
+    float32_t value = vgetq_lane_f32(_mm_max_ps(a, b), 0);
+    return vreinterpretq_m128_f32(
+        vsetq_lane_f32(value, vreinterpretq_f32_m128(a), 0));
+}
+
+// Compare packed signed 16-bit integers in a and b, and store packed minimum
+// values in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_min_pi16
+FORCE_INLINE __m64 _mm_min_pi16(__m64 a, __m64 b)
+{
+    return vreinterpret_m64_s16(
+        vmin_s16(vreinterpret_s16_m64(a), vreinterpret_s16_m64(b)));
+}
+
+// Compare packed single-precision (32-bit) floating-point elements in a and b,
+// and store packed minimum values in dst. dst does not follow the IEEE Standard
+// for Floating-Point Arithmetic (IEEE 754) minimum value when inputs are NaN or
+// signed-zero values.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_min_ps
+FORCE_INLINE __m128 _mm_min_ps(__m128 a, __m128 b)
+{
+#if SSE2NEON_PRECISE_MINMAX
+    float32x4_t _a = vreinterpretq_f32_m128(a);
+    float32x4_t _b = vreinterpretq_f32_m128(b);
+    return vreinterpretq_m128_f32(vbslq_f32(vcltq_f32(_a, _b), _a, _b));
+#else
+    return vreinterpretq_m128_f32(
+        vminq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
+#endif
+}
+
+// Compare packed unsigned 8-bit integers in a and b, and store packed minimum
+// values in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_min_pu8
+FORCE_INLINE __m64 _mm_min_pu8(__m64 a, __m64 b)
+{
+    return vreinterpret_m64_u8(
+        vmin_u8(vreinterpret_u8_m64(a), vreinterpret_u8_m64(b)));
+}
+
+// Compare the lower single-precision (32-bit) floating-point elements in a and
+// b, store the minimum value in the lower element of dst, and copy the upper 3
+// packed elements from a to the upper element of dst. dst does not follow the
+// IEEE Standard for Floating-Point Arithmetic (IEEE 754) minimum value when
+// inputs are NaN or signed-zero values.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_min_ss
+FORCE_INLINE __m128 _mm_min_ss(__m128 a, __m128 b)
+{
+    float32_t value = vgetq_lane_f32(_mm_min_ps(a, b), 0);
+    return vreinterpretq_m128_f32(
+        vsetq_lane_f32(value, vreinterpretq_f32_m128(a), 0));
+}
+
+// Move the lower single-precision (32-bit) floating-point element from b to the
+// lower element of dst, and copy the upper 3 packed elements from a to the
+// upper elements of dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_move_ss
+FORCE_INLINE __m128 _mm_move_ss(__m128 a, __m128 b)
+{
+    return vreinterpretq_m128_f32(
+        vsetq_lane_f32(vgetq_lane_f32(vreinterpretq_f32_m128(b), 0),
+                       vreinterpretq_f32_m128(a), 0));
+}
+
+// Move the upper 2 single-precision (32-bit) floating-point elements from b to
+// the lower 2 elements of dst, and copy the upper 2 elements from a to the
+// upper 2 elements of dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_movehl_ps
+FORCE_INLINE __m128 _mm_movehl_ps(__m128 a, __m128 b)
+{
+#if defined(aarch64__)
+    return vreinterpretq_m128_u64(
+        vzip2q_u64(vreinterpretq_u64_m128(b), vreinterpretq_u64_m128(a)));
+#else
+    float32x2_t a32 = vget_high_f32(vreinterpretq_f32_m128(a));
+    float32x2_t b32 = vget_high_f32(vreinterpretq_f32_m128(b));
+    return vreinterpretq_m128_f32(vcombine_f32(b32, a32));
+#endif
+}
+
+// Move the lower 2 single-precision (32-bit) floating-point elements from b to
+// the upper 2 elements of dst, and copy the lower 2 elements from a to the
+// lower 2 elements of dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_movelh_ps
+FORCE_INLINE __m128 _mm_movelh_ps(__m128 __A, __m128 __B)
+{
+    float32x2_t a10 = vget_low_f32(vreinterpretq_f32_m128(__A));
+    float32x2_t b10 = vget_low_f32(vreinterpretq_f32_m128(__B));
+    return vreinterpretq_m128_f32(vcombine_f32(a10, b10));
+}
+
+// Create mask from the most significant bit of each 8-bit element in a, and
+// store the result in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_movemask_pi8
+FORCE_INLINE int _mm_movemask_pi8(__m64 a)
+{
+    uint8x8_t input = vreinterpret_u8_m64(a);
+#if defined(__aarch64__)
+    static const int8x8_t shift = {0, 1, 2, 3, 4, 5, 6, 7};
+    uint8x8_t tmp = vshr_n_u8(input, 7);
+    return vaddv_u8(vshl_u8(tmp, shift));
+#else
+    // Refer the implementation of `_mm_movemask_epi8`
+    uint16x4_t high_bits = vreinterpret_u16_u8(vshr_n_u8(input, 7));
+    uint32x2_t paired16 =
+        vreinterpret_u32_u16(vsra_n_u16(high_bits, high_bits, 7));
+    uint8x8_t paired32 =
+        vreinterpret_u8_u32(vsra_n_u32(paired16, paired16, 14));
+    return vget_lane_u8(paired32, 0) | ((int) vget_lane_u8(paired32, 4) << 4);
+#endif
+}
+
+// Set each bit of mask dst based on the most significant bit of the
+// corresponding packed single-precision (32-bit) floating-point element in a.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_movemask_ps
+FORCE_INLINE int _mm_movemask_ps(__m128 a)
+{
+    uint32x4_t input = vreinterpretq_u32_m128(a);
+#if defined(__aarch64__)
+    static const int32x4_t shift = {0, 1, 2, 3};
+    uint32x4_t tmp = vshrq_n_u32(input, 31);
+    return vaddvq_u32(vshlq_u32(tmp, shift));
+#else
+    // Uses the exact same method as _mm_movemask_epi8, see that for details.
+    // Shift out everything but the sign bits with a 32-bit unsigned shift
+    // right.
+    uint64x2_t high_bits = vreinterpretq_u64_u32(vshrq_n_u32(input, 31));
+    // Merge the two pairs together with a 64-bit unsigned shift right + add.
+    uint8x16_t paired =
+        vreinterpretq_u8_u64(vsraq_n_u64(high_bits, high_bits, 31));
+    // Extract the result.
+    return vgetq_lane_u8(paired, 0) | (vgetq_lane_u8(paired, 8) << 2);
+#endif
+}
+
+// Multiply packed single-precision (32-bit) floating-point elements in a and b,
+// and store the results in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mul_ps
+FORCE_INLINE __m128 _mm_mul_ps(__m128 a, __m128 b)
+{
+    return vreinterpretq_m128_f32(
+        vmulq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
+}
+
+// Multiply the lower single-precision (32-bit) floating-point element in a and
+// b, store the result in the lower element of dst, and copy the upper 3 packed
+// elements from a to the upper elements of dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mul_ss
+FORCE_INLINE __m128 _mm_mul_ss(__m128 a, __m128 b)
+{
+    return _mm_move_ss(a, _mm_mul_ps(a, b));
+}
+
+// Multiply the packed unsigned 16-bit integers in a and b, producing
+// intermediate 32-bit integers, and store the high 16 bits of the intermediate
+// integers in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mulhi_pu16
+FORCE_INLINE __m64 _mm_mulhi_pu16(__m64 a, __m64 b)
+{
+    return vreinterpret_m64_u16(vshrn_n_u32(
+        vmull_u16(vreinterpret_u16_m64(a), vreinterpret_u16_m64(b)), 16));
+}
+
+// Compute the bitwise OR of packed single-precision (32-bit) floating-point
+// elements in a and b, and store the results in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_or_ps
+FORCE_INLINE __m128 _mm_or_ps(__m128 a, __m128 b)
+{
+    return vreinterpretq_m128_s32(
+        vorrq_s32(vreinterpretq_s32_m128(a), vreinterpretq_s32_m128(b)));
+}
+
+// Average packed unsigned 8-bit integers in a and b, and store the results in
+// dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_m_pavgb
+#define _m_pavgb(a, b) _mm_avg_pu8(a, b)
+
+// Average packed unsigned 16-bit integers in a and b, and store the results in
+// dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_m_pavgw
+#define _m_pavgw(a, b) _mm_avg_pu16(a, b)
+
+// Extract a 16-bit integer from a, selected with imm8, and store the result in
+// the lower element of dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_m_pextrw
+#define _m_pextrw(a, imm) _mm_extract_pi16(a, imm)
+
+// Copy a to dst, and insert the 16-bit integer i into dst at the location
+// specified by imm8.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=m_pinsrw
+#define _m_pinsrw(a, i, imm) _mm_insert_pi16(a, i, imm)
+
+// Compare packed signed 16-bit integers in a and b, and store packed maximum
+// values in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_m_pmaxsw
+#define _m_pmaxsw(a, b) _mm_max_pi16(a, b)
+
+// Compare packed unsigned 8-bit integers in a and b, and store packed maximum
+// values in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_m_pmaxub
+#define _m_pmaxub(a, b) _mm_max_pu8(a, b)
+
+// Compare packed signed 16-bit integers in a and b, and store packed minimum
+// values in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_m_pminsw
+#define _m_pminsw(a, b) _mm_min_pi16(a, b)
+
+// Compare packed unsigned 8-bit integers in a and b, and store packed minimum
+// values in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_m_pminub
+#define _m_pminub(a, b) _mm_min_pu8(a, b)
+
+// Create mask from the most significant bit of each 8-bit element in a, and
+// store the result in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_m_pmovmskb
+#define _m_pmovmskb(a) _mm_movemask_pi8(a)
+
+// Multiply the packed unsigned 16-bit integers in a and b, producing
+// intermediate 32-bit integers, and store the high 16 bits of the intermediate
+// integers in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_m_pmulhuw
+#define _m_pmulhuw(a, b) _mm_mulhi_pu16(a, b)
+
+// Fetch the line of data from memory that contains address p to a location in
+// the cache heirarchy specified by the locality hint i.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_prefetch
+FORCE_INLINE void _mm_prefetch(char const *p, int i)
+{
+    switch (i) {
+    case _MM_HINT_NTA:
+        __builtin_prefetch(p, 0, 0);
+        break;
+    case _MM_HINT_T0:
+        __builtin_prefetch(p, 0, 3);
+        break;
+    case _MM_HINT_T1:
+        __builtin_prefetch(p, 0, 2);
+        break;
+    case _MM_HINT_T2:
+        __builtin_prefetch(p, 0, 1);
+        break;
+    }
+}
+
+// Compute the absolute differences of packed unsigned 8-bit integers in a and
+// b, then horizontally sum each consecutive 8 differences to produce four
+// unsigned 16-bit integers, and pack these unsigned 16-bit integers in the low
+// 16 bits of dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=m_psadbw
+#define _m_psadbw(a, b) _mm_sad_pu8(a, b)
+
+// Shuffle 16-bit integers in a using the control in imm8, and store the results
+// in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_m_pshufw
+#define _m_pshufw(a, imm) _mm_shuffle_pi16(a, imm)
+
+// Compute the approximate reciprocal of packed single-precision (32-bit)
+// floating-point elements in a, and store the results in dst. The maximum
+// relative error for this approximation is less than 1.5*2^-12.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_rcp_ps
+FORCE_INLINE __m128 _mm_rcp_ps(__m128 in)
+{
+    float32x4_t recip = vrecpeq_f32(vreinterpretq_f32_m128(in));
+    recip = vmulq_f32(recip, vrecpsq_f32(recip, vreinterpretq_f32_m128(in)));
+    return vreinterpretq_m128_f32(recip);
+}
+
+// Compute the approximate reciprocal of the lower single-precision (32-bit)
+// floating-point element in a, store the result in the lower element of dst,
+// and copy the upper 3 packed elements from a to the upper elements of dst. The
+// maximum relative error for this approximation is less than 1.5*2^-12.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_rcp_ss
+FORCE_INLINE __m128 _mm_rcp_ss(__m128 a)
+{
+    return _mm_move_ss(a, _mm_rcp_ps(a));
+}
+
+// Compute the approximate reciprocal square root of packed single-precision
+// (32-bit) floating-point elements in a, and store the results in dst. The
+// maximum relative error for this approximation is less than 1.5*2^-12.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_rsqrt_ps
+FORCE_INLINE __m128 _mm_rsqrt_ps(__m128 in)
+{
+    float32x4_t out = vrsqrteq_f32(vreinterpretq_f32_m128(in));
+    out = vmulq_f32(
+        out, vrsqrtsq_f32(vmulq_f32(vreinterpretq_f32_m128(in), out), out));
+    return vreinterpretq_m128_f32(out);
+}
+
+// Compute the approximate reciprocal square root of the lower single-precision
+// (32-bit) floating-point element in a, store the result in the lower element
+// of dst, and copy the upper 3 packed elements from a to the upper elements of
+// dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_rsqrt_ss
+FORCE_INLINE __m128 _mm_rsqrt_ss(__m128 in)
+{
+    return vsetq_lane_f32(vgetq_lane_f32(_mm_rsqrt_ps(in), 0), in, 0);
+}
+
+// Compute the absolute differences of packed unsigned 8-bit integers in a and
+// b, then horizontally sum each consecutive 8 differences to produce four
+// unsigned 16-bit integers, and pack these unsigned 16-bit integers in the low
+// 16 bits of dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sad_pu8
+FORCE_INLINE __m64 _mm_sad_pu8(__m64 a, __m64 b)
+{
+    uint64x1_t t = vpaddl_u32(vpaddl_u16(
+        vpaddl_u8(vabd_u8(vreinterpret_u8_m64(a), vreinterpret_u8_m64(b)))));
+    return vreinterpret_m64_u16(
+        vset_lane_u16(vget_lane_u64(t, 0), vdup_n_u16(0), 0));
+}
+
+// Macro: Set the flush zero bits of the MXCSR control and status register to
+// the value in unsigned 32-bit integer a. The flush zero may contain any of the
+// following flags: _MM_FLUSH_ZERO_ON or _MM_FLUSH_ZERO_OFF
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_MM_SET_FLUSH_ZERO_MODE
+FORCE_INLINE void _sse2neon_mm_set_flush_zero_mode(unsigned int flag)
+{
+    // AArch32 Advanced SIMD arithmetic always uses the Flush-to-zero setting,
+    // regardless of the value of the FZ bit.
+    union {
+        fpcr_bitfield field;
+#if defined(__aarch64__)
+        uint64_t value;
+#else
+        uint32_t value;
+#endif
+    } r;
+
+#if defined(__aarch64__)
+    __asm__ __volatile__("mrs %0, FPCR" : "=r"(r.value)); /* read */
+#else
+    __asm__ __volatile__("vmrs %0, FPSCR" : "=r"(r.value)); /* read */
+#endif
+
+    r.field.bit24 = (flag & _MM_FLUSH_ZERO_MASK) == _MM_FLUSH_ZERO_ON;
+
+#if defined(__aarch64__)
+    __asm__ __volatile__("msr FPCR, %0" ::"r"(r)); /* write */
+#else
+    __asm__ __volatile__("vmsr FPSCR, %0" ::"r"(r));        /* write */
+#endif
+}
+
+// Set packed single-precision (32-bit) floating-point elements in dst with the
+// supplied values.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set_ps
+FORCE_INLINE __m128 _mm_set_ps(float w, float z, float y, float x)
+{
+    float ALIGN_STRUCT(16) data[4] = {x, y, z, w};
+    return vreinterpretq_m128_f32(vld1q_f32(data));
+}
+
+// Broadcast single-precision (32-bit) floating-point value a to all elements of
+// dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set_ps1
+FORCE_INLINE __m128 _mm_set_ps1(float _w)
+{
+    return vreinterpretq_m128_f32(vdupq_n_f32(_w));
+}
+
+// Macro: Set the rounding mode bits of the MXCSR control and status register to
+// the value in unsigned 32-bit integer a. The rounding mode may contain any of
+// the following flags: _MM_ROUND_NEAREST, _MM_ROUND_DOWN, _MM_ROUND_UP,
+// _MM_ROUND_TOWARD_ZERO
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_MM_SET_ROUNDING_MODE
+FORCE_INLINE void _MM_SET_ROUNDING_MODE(int rounding)
+{
+    union {
+        fpcr_bitfield field;
+#if defined(__aarch64__)
+        uint64_t value;
+#else
+        uint32_t value;
+#endif
+    } r;
+
+#if defined(__aarch64__)
+    __asm__ __volatile__("mrs %0, FPCR" : "=r"(r.value)); /* read */
+#else
+    __asm__ __volatile__("vmrs %0, FPSCR" : "=r"(r.value)); /* read */
+#endif
+
+    switch (rounding) {
+    case _MM_ROUND_TOWARD_ZERO:
+        r.field.bit22 = 1;
+        r.field.bit23 = 1;
+        break;
+    case _MM_ROUND_DOWN:
+        r.field.bit22 = 0;
+        r.field.bit23 = 1;
+        break;
+    case _MM_ROUND_UP:
+        r.field.bit22 = 1;
+        r.field.bit23 = 0;
+        break;
+    default:  //_MM_ROUND_NEAREST
+        r.field.bit22 = 0;
+        r.field.bit23 = 0;
+    }
+
+#if defined(__aarch64__)
+    __asm__ __volatile__("msr FPCR, %0" ::"r"(r)); /* write */
+#else
+    __asm__ __volatile__("vmsr FPSCR, %0" ::"r"(r));        /* write */
+#endif
+}
+
+// Copy single-precision (32-bit) floating-point element a to the lower element
+// of dst, and zero the upper 3 elements.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set_ss
+FORCE_INLINE __m128 _mm_set_ss(float a)
+{
+    return vreinterpretq_m128_f32(vsetq_lane_f32(a, vdupq_n_f32(0), 0));
+}
+
+// Broadcast single-precision (32-bit) floating-point value a to all elements of
+// dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set1_ps
+FORCE_INLINE __m128 _mm_set1_ps(float _w)
+{
+    return vreinterpretq_m128_f32(vdupq_n_f32(_w));
+}
+
+// Set the MXCSR control and status register with the value in unsigned 32-bit
+// integer a.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_setcsr
+// FIXME: _mm_setcsr() implementation supports changing the rounding mode only.
+FORCE_INLINE void _mm_setcsr(unsigned int a)
+{
+    _MM_SET_ROUNDING_MODE(a);
+}
+
+// Get the unsigned 32-bit value of the MXCSR control and status register.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_getcsr
+// FIXME: _mm_getcsr() implementation supports reading the rounding mode only.
+FORCE_INLINE unsigned int _mm_getcsr()
+{
+    return _MM_GET_ROUNDING_MODE();
+}
+
+// Set packed single-precision (32-bit) floating-point elements in dst with the
+// supplied values in reverse order.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_setr_ps
+FORCE_INLINE __m128 _mm_setr_ps(float w, float z, float y, float x)
+{
+    float ALIGN_STRUCT(16) data[4] = {w, z, y, x};
+    return vreinterpretq_m128_f32(vld1q_f32(data));
+}
+
+// Return vector of type __m128 with all elements set to zero.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_setzero_ps
+FORCE_INLINE __m128 _mm_setzero_ps(void)
+{
+    return vreinterpretq_m128_f32(vdupq_n_f32(0));
+}
+
+// Shuffle 16-bit integers in a using the control in imm8, and store the results
+// in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_shuffle_pi16
+#ifdef _sse2neon_shuffle
+#define _mm_shuffle_pi16(a, imm)                                           \
+    __extension__({                                                        \
+        vreinterpret_m64_s16(vshuffle_s16(                                 \
+            vreinterpret_s16_m64(a), vreinterpret_s16_m64(a), (imm & 0x3), \
+            ((imm >> 2) & 0x3), ((imm >> 4) & 0x3), ((imm >> 6) & 0x3)));  \
+    })
+#else
+#define _mm_shuffle_pi16(a, imm)                                               \
+    __extension__({                                                            \
+        int16x4_t ret;                                                         \
+        ret =                                                                  \
+            vmov_n_s16(vget_lane_s16(vreinterpret_s16_m64(a), (imm) & (0x3))); \
+        ret = vset_lane_s16(                                                   \
+            vget_lane_s16(vreinterpret_s16_m64(a), ((imm) >> 2) & 0x3), ret,   \
+            1);                                                                \
+        ret = vset_lane_s16(                                                   \
+            vget_lane_s16(vreinterpret_s16_m64(a), ((imm) >> 4) & 0x3), ret,   \
+            2);                                                                \
+        ret = vset_lane_s16(                                                   \
+            vget_lane_s16(vreinterpret_s16_m64(a), ((imm) >> 6) & 0x3), ret,   \
+            3);                                                                \
+        vreinterpret_m64_s16(ret);                                             \
+    })
+#endif
+
+// Perform a serializing operation on all store-to-memory instructions that were
+// issued prior to this instruction. Guarantees that every store instruction
+// that precedes, in program order, is globally visible before any store
+// instruction which follows the fence in program order.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sfence
+FORCE_INLINE void _mm_sfence(void)
+{
+    _sse2neon_smp_mb();
+}
+
+// Perform a serializing operation on all load-from-memory and store-to-memory
+// instructions that were issued prior to this instruction. Guarantees that
+// every memory access that precedes, in program order, the memory fence
+// instruction is globally visible before any memory instruction which follows
+// the fence in program order.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mfence
+FORCE_INLINE void _mm_mfence(void)
+{
+    _sse2neon_smp_mb();
+}
+
+// Perform a serializing operation on all load-from-memory instructions that
+// were issued prior to this instruction. Guarantees that every load instruction
+// that precedes, in program order, is globally visible before any load
+// instruction which follows the fence in program order.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_lfence
+FORCE_INLINE void _mm_lfence(void)
+{
+    _sse2neon_smp_mb();
+}
+
+// FORCE_INLINE __m128 _mm_shuffle_ps(__m128 a, __m128 b, __constrange(0,255)
+// int imm)
+#ifdef _sse2neon_shuffle
+#define _mm_shuffle_ps(a, b, imm)                                              \
+    __extension__({                                                            \
+        float32x4_t _input1 = vreinterpretq_f32_m128(a);                       \
+        float32x4_t _input2 = vreinterpretq_f32_m128(b);                       \
+        float32x4_t _shuf =                                                    \
+            vshuffleq_s32(_input1, _input2, (imm) & (0x3), ((imm) >> 2) & 0x3, \
+                          (((imm) >> 4) & 0x3) + 4, (((imm) >> 6) & 0x3) + 4); \
+        vreinterpretq_m128_f32(_shuf);                                         \
+    })
+#else  // generic
+#define _mm_shuffle_ps(a, b, imm)                          \
+    __extension__({                                        \
+        __m128 ret;                                        \
+        switch (imm) {                                     \
+        case _MM_SHUFFLE(1, 0, 3, 2):                      \
+            ret = _mm_shuffle_ps_1032((a), (b));           \
+            break;                                         \
+        case _MM_SHUFFLE(2, 3, 0, 1):                      \
+            ret = _mm_shuffle_ps_2301((a), (b));           \
+            break;                                         \
+        case _MM_SHUFFLE(0, 3, 2, 1):                      \
+            ret = _mm_shuffle_ps_0321((a), (b));           \
+            break;                                         \
+        case _MM_SHUFFLE(2, 1, 0, 3):                      \
+            ret = _mm_shuffle_ps_2103((a), (b));           \
+            break;                                         \
+        case _MM_SHUFFLE(1, 0, 1, 0):                      \
+            ret = _mm_movelh_ps((a), (b));                 \
+            break;                                         \
+        case _MM_SHUFFLE(1, 0, 0, 1):                      \
+            ret = _mm_shuffle_ps_1001((a), (b));           \
+            break;                                         \
+        case _MM_SHUFFLE(0, 1, 0, 1):                      \
+            ret = _mm_shuffle_ps_0101((a), (b));           \
+            break;                                         \
+        case _MM_SHUFFLE(3, 2, 1, 0):                      \
+            ret = _mm_shuffle_ps_3210((a), (b));           \
+            break;                                         \
+        case _MM_SHUFFLE(0, 0, 1, 1):                      \
+            ret = _mm_shuffle_ps_0011((a), (b));           \
+            break;                                         \
+        case _MM_SHUFFLE(0, 0, 2, 2):                      \
+            ret = _mm_shuffle_ps_0022((a), (b));           \
+            break;                                         \
+        case _MM_SHUFFLE(2, 2, 0, 0):                      \
+            ret = _mm_shuffle_ps_2200((a), (b));           \
+            break;                                         \
+        case _MM_SHUFFLE(3, 2, 0, 2):                      \
+            ret = _mm_shuffle_ps_3202((a), (b));           \
+            break;                                         \
+        case _MM_SHUFFLE(3, 2, 3, 2):                      \
+            ret = _mm_movehl_ps((b), (a));                 \
+            break;                                         \
+        case _MM_SHUFFLE(1, 1, 3, 3):                      \
+            ret = _mm_shuffle_ps_1133((a), (b));           \
+            break;                                         \
+        case _MM_SHUFFLE(2, 0, 1, 0):                      \
+            ret = _mm_shuffle_ps_2010((a), (b));           \
+            break;                                         \
+        case _MM_SHUFFLE(2, 0, 0, 1):                      \
+            ret = _mm_shuffle_ps_2001((a), (b));           \
+            break;                                         \
+        case _MM_SHUFFLE(2, 0, 3, 2):                      \
+            ret = _mm_shuffle_ps_2032((a), (b));           \
+            break;                                         \
+        default:                                           \
+            ret = _mm_shuffle_ps_default((a), (b), (imm)); \
+            break;                                         \
+        }                                                  \
+        ret;                                               \
+    })
+#endif
+
+// Compute the square root of packed single-precision (32-bit) floating-point
+// elements in a, and store the results in dst.
+// Due to ARMv7-A NEON's lack of a precise square root intrinsic, we implement
+// square root by multiplying input in with its reciprocal square root before
+// using the Newton-Raphson method to approximate the results.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sqrt_ps
+FORCE_INLINE __m128 _mm_sqrt_ps(__m128 in)
+{
+#if defined(__aarch64__)
+    return vreinterpretq_m128_f32(vsqrtq_f32(vreinterpretq_f32_m128(in)));
+#else
+    float32x4_t recip = vrsqrteq_f32(vreinterpretq_f32_m128(in));
+
+    // Test for vrsqrteq_f32(0) -> positive infinity case.
+    // Change to zero, so that s * 1/sqrt(s) result is zero too.
+    const uint32x4_t pos_inf = vdupq_n_u32(0x7F800000);
+    const uint32x4_t div_by_zero =
+        vceqq_u32(pos_inf, vreinterpretq_u32_f32(recip));
+    recip = vreinterpretq_f32_u32(
+        vandq_u32(vmvnq_u32(div_by_zero), vreinterpretq_u32_f32(recip)));
+
+    recip = vmulq_f32(
+        vrsqrtsq_f32(vmulq_f32(recip, recip), vreinterpretq_f32_m128(in)),
+        recip);
+    // Additional Netwon-Raphson iteration for accuracy
+    recip = vmulq_f32(
+        vrsqrtsq_f32(vmulq_f32(recip, recip), vreinterpretq_f32_m128(in)),
+        recip);
+
+    // sqrt(s) = s * 1/sqrt(s)
+    return vreinterpretq_m128_f32(vmulq_f32(vreinterpretq_f32_m128(in), recip));
+#endif
+}
+
+// Compute the square root of the lower single-precision (32-bit) floating-point
+// element in a, store the result in the lower element of dst, and copy the
+// upper 3 packed elements from a to the upper elements of dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sqrt_ss
+FORCE_INLINE __m128 _mm_sqrt_ss(__m128 in)
+{
+    float32_t value =
+        vgetq_lane_f32(vreinterpretq_f32_m128(_mm_sqrt_ps(in)), 0);
+    return vreinterpretq_m128_f32(
+        vsetq_lane_f32(value, vreinterpretq_f32_m128(in), 0));
+}
+
+// Store 128-bits (composed of 4 packed single-precision (32-bit) floating-point
+// elements) from a into memory. mem_addr must be aligned on a 16-byte boundary
+// or a general-protection exception may be generated.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_store_ps
+FORCE_INLINE void _mm_store_ps(float *p, __m128 a)
+{
+    vst1q_f32(p, vreinterpretq_f32_m128(a));
+}
+
+// Store the lower single-precision (32-bit) floating-point element from a into
+// 4 contiguous elements in memory. mem_addr must be aligned on a 16-byte
+// boundary or a general-protection exception may be generated.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_store_ps1
+FORCE_INLINE void _mm_store_ps1(float *p, __m128 a)
+{
+    float32_t a0 = vgetq_lane_f32(vreinterpretq_f32_m128(a), 0);
+    vst1q_f32(p, vdupq_n_f32(a0));
+}
+
+// Store the lower single-precision (32-bit) floating-point element from a into
+// memory. mem_addr does not need to be aligned on any particular boundary.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_store_ss
+FORCE_INLINE void _mm_store_ss(float *p, __m128 a)
+{
+    vst1q_lane_f32(p, vreinterpretq_f32_m128(a), 0);
+}
+
+// Store the lower single-precision (32-bit) floating-point element from a into
+// 4 contiguous elements in memory. mem_addr must be aligned on a 16-byte
+// boundary or a general-protection exception may be generated.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_store1_ps
+#define _mm_store1_ps _mm_store_ps1
+
+// Store the upper 2 single-precision (32-bit) floating-point elements from a
+// into memory.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_storeh_pi
+FORCE_INLINE void _mm_storeh_pi(__m64 *p, __m128 a)
+{
+    *p = vreinterpret_m64_f32(vget_high_f32(a));
+}
+
+// Store the lower 2 single-precision (32-bit) floating-point elements from a
+// into memory.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_storel_pi
+FORCE_INLINE void _mm_storel_pi(__m64 *p, __m128 a)
+{
+    *p = vreinterpret_m64_f32(vget_low_f32(a));
+}
+
+// Store 4 single-precision (32-bit) floating-point elements from a into memory
+// in reverse order. mem_addr must be aligned on a 16-byte boundary or a
+// general-protection exception may be generated.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_storer_ps
+FORCE_INLINE void _mm_storer_ps(float *p, __m128 a)
+{
+    float32x4_t tmp = vrev64q_f32(vreinterpretq_f32_m128(a));
+    float32x4_t rev = vextq_f32(tmp, tmp, 2);
+    vst1q_f32(p, rev);
+}
+
+// Store 128-bits (composed of 4 packed single-precision (32-bit) floating-point
+// elements) from a into memory. mem_addr does not need to be aligned on any
+// particular boundary.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_storeu_ps
+FORCE_INLINE void _mm_storeu_ps(float *p, __m128 a)
+{
+    vst1q_f32(p, vreinterpretq_f32_m128(a));
+}
+
+// Stores 16-bits of integer data a at the address p.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_storeu_si16
+FORCE_INLINE void _mm_storeu_si16(void *p, __m128i a)
+{
+    vst1q_lane_s16((int16_t *) p, vreinterpretq_s16_m128i(a), 0);
+}
+
+// Stores 64-bits of integer data a at the address p.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_storeu_si64
+FORCE_INLINE void _mm_storeu_si64(void *p, __m128i a)
+{
+    vst1q_lane_s64((int64_t *) p, vreinterpretq_s64_m128i(a), 0);
+}
+
+// Store 64-bits of integer data from a into memory using a non-temporal memory
+// hint.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_stream_pi
+FORCE_INLINE void _mm_stream_pi(__m64 *p, __m64 a)
+{
+    vst1_s64((int64_t *) p, vreinterpret_s64_m64(a));
+}
+
+// Store 128-bits (composed of 4 packed single-precision (32-bit) floating-
+// point elements) from a into memory using a non-temporal memory hint.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_stream_ps
+FORCE_INLINE void _mm_stream_ps(float *p, __m128 a)
+{
+#if __has_builtin(__builtin_nontemporal_store)
+    __builtin_nontemporal_store(a, (float32x4_t *) p);
+#else
+    vst1q_f32(p, vreinterpretq_f32_m128(a));
+#endif
+}
+
+// Subtract packed single-precision (32-bit) floating-point elements in b from
+// packed single-precision (32-bit) floating-point elements in a, and store the
+// results in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sub_ps
+FORCE_INLINE __m128 _mm_sub_ps(__m128 a, __m128 b)
+{
+    return vreinterpretq_m128_f32(
+        vsubq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
+}
+
+// Subtract the lower single-precision (32-bit) floating-point element in b from
+// the lower single-precision (32-bit) floating-point element in a, store the
+// result in the lower element of dst, and copy the upper 3 packed elements from
+// a to the upper elements of dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sub_ss
+FORCE_INLINE __m128 _mm_sub_ss(__m128 a, __m128 b)
+{
+    return _mm_move_ss(a, _mm_sub_ps(a, b));
+}
+
+// Macro: Transpose the 4x4 matrix formed by the 4 rows of single-precision
+// (32-bit) floating-point elements in row0, row1, row2, and row3, and store the
+// transposed matrix in these vectors (row0 now contains column 0, etc.).
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=MM_TRANSPOSE4_PS
+#define _MM_TRANSPOSE4_PS(row0, row1, row2, row3)         \
+    do {                                                  \
+        float32x4x2_t ROW01 = vtrnq_f32(row0, row1);      \
+        float32x4x2_t ROW23 = vtrnq_f32(row2, row3);      \
+        row0 = vcombine_f32(vget_low_f32(ROW01.val[0]),   \
+                            vget_low_f32(ROW23.val[0]));  \
+        row1 = vcombine_f32(vget_low_f32(ROW01.val[1]),   \
+                            vget_low_f32(ROW23.val[1]));  \
+        row2 = vcombine_f32(vget_high_f32(ROW01.val[0]),  \
+                            vget_high_f32(ROW23.val[0])); \
+        row3 = vcombine_f32(vget_high_f32(ROW01.val[1]),  \
+                            vget_high_f32(ROW23.val[1])); \
+    } while (0)
+
+// according to the documentation, these intrinsics behave the same as the
+// non-'u' versions.  We'll just alias them here.
+#define _mm_ucomieq_ss _mm_comieq_ss
+#define _mm_ucomige_ss _mm_comige_ss
+#define _mm_ucomigt_ss _mm_comigt_ss
+#define _mm_ucomile_ss _mm_comile_ss
+#define _mm_ucomilt_ss _mm_comilt_ss
+#define _mm_ucomineq_ss _mm_comineq_ss
+
+// Return vector of type __m128i with undefined elements.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=mm_undefined_si128
+FORCE_INLINE __m128i _mm_undefined_si128(void)
+{
+#if defined(__GNUC__) || defined(__clang__)
+#pragma GCC diagnostic push
+#pragma GCC diagnostic ignored "-Wuninitialized"
+#endif
+    __m128i a;
+    return a;
+#if defined(__GNUC__) || defined(__clang__)
+#pragma GCC diagnostic pop
+#endif
+}
+
+// Return vector of type __m128 with undefined elements.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_undefined_ps
+FORCE_INLINE __m128 _mm_undefined_ps(void)
+{
+#if defined(__GNUC__) || defined(__clang__)
+#pragma GCC diagnostic push
+#pragma GCC diagnostic ignored "-Wuninitialized"
+#endif
+    __m128 a;
+    return a;
+#if defined(__GNUC__) || defined(__clang__)
+#pragma GCC diagnostic pop
+#endif
+}
+
+// Unpack and interleave single-precision (32-bit) floating-point elements from
+// the high half a and b, and store the results in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_unpackhi_ps
+FORCE_INLINE __m128 _mm_unpackhi_ps(__m128 a, __m128 b)
+{
+#if defined(__aarch64__)
+    return vreinterpretq_m128_f32(
+        vzip2q_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
+#else
+    float32x2_t a1 = vget_high_f32(vreinterpretq_f32_m128(a));
+    float32x2_t b1 = vget_high_f32(vreinterpretq_f32_m128(b));
+    float32x2x2_t result = vzip_f32(a1, b1);
+    return vreinterpretq_m128_f32(vcombine_f32(result.val[0], result.val[1]));
+#endif
+}
+
+// Unpack and interleave single-precision (32-bit) floating-point elements from
+// the low half of a and b, and store the results in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_unpacklo_ps
+FORCE_INLINE __m128 _mm_unpacklo_ps(__m128 a, __m128 b)
+{
+#if defined(__aarch64__)
+    return vreinterpretq_m128_f32(
+        vzip1q_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
+#else
+    float32x2_t a1 = vget_low_f32(vreinterpretq_f32_m128(a));
+    float32x2_t b1 = vget_low_f32(vreinterpretq_f32_m128(b));
+    float32x2x2_t result = vzip_f32(a1, b1);
+    return vreinterpretq_m128_f32(vcombine_f32(result.val[0], result.val[1]));
+#endif
+}
+
+// Compute the bitwise XOR of packed single-precision (32-bit) floating-point
+// elements in a and b, and store the results in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_xor_ps
+FORCE_INLINE __m128 _mm_xor_ps(__m128 a, __m128 b)
+{
+    return vreinterpretq_m128_s32(
+        veorq_s32(vreinterpretq_s32_m128(a), vreinterpretq_s32_m128(b)));
+}
+
+/* SSE2 */
+
+// Add packed 16-bit integers in a and b, and store the results in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_add_epi16
+FORCE_INLINE __m128i _mm_add_epi16(__m128i a, __m128i b)
+{
+    return vreinterpretq_m128i_s16(
+        vaddq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b)));
+}
+
+// Add packed 32-bit integers in a and b, and store the results in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_add_epi32
+FORCE_INLINE __m128i _mm_add_epi32(__m128i a, __m128i b)
+{
+    return vreinterpretq_m128i_s32(
+        vaddq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b)));
+}
+
+// Add packed 64-bit integers in a and b, and store the results in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_add_epi64
+FORCE_INLINE __m128i _mm_add_epi64(__m128i a, __m128i b)
+{
+    return vreinterpretq_m128i_s64(
+        vaddq_s64(vreinterpretq_s64_m128i(a), vreinterpretq_s64_m128i(b)));
+}
+
+// Add packed 8-bit integers in a and b, and store the results in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_add_epi8
+FORCE_INLINE __m128i _mm_add_epi8(__m128i a, __m128i b)
+{
+    return vreinterpretq_m128i_s8(
+        vaddq_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b)));
+}
+
+// Add packed double-precision (64-bit) floating-point elements in a and b, and
+// store the results in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_add_pd
+FORCE_INLINE __m128d _mm_add_pd(__m128d a, __m128d b)
+{
+#if defined(__aarch64__)
+    return vreinterpretq_m128d_f64(
+        vaddq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)));
+#else
+    double *da = (double *) &a;
+    double *db = (double *) &b;
+    double c[2];
+    c[0] = da[0] + db[0];
+    c[1] = da[1] + db[1];
+    return vld1q_f32((float32_t *) c);
+#endif
+}
+
+// Add the lower double-precision (64-bit) floating-point element in a and b,
+// store the result in the lower element of dst, and copy the upper element from
+// a to the upper element of dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_add_sd
+FORCE_INLINE __m128d _mm_add_sd(__m128d a, __m128d b)
+{
+#if defined(__aarch64__)
+    return _mm_move_sd(a, _mm_add_pd(a, b));
+#else
+    double *da = (double *) &a;
+    double *db = (double *) &b;
+    double c[2];
+    c[0] = da[0] + db[0];
+    c[1] = da[1];
+    return vld1q_f32((float32_t *) c);
+#endif
+}
+
+// Add 64-bit integers a and b, and store the result in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_add_si64
+FORCE_INLINE __m64 _mm_add_si64(__m64 a, __m64 b)
+{
+    return vreinterpret_m64_s64(
+        vadd_s64(vreinterpret_s64_m64(a), vreinterpret_s64_m64(b)));
+}
+
+// Add packed signed 16-bit integers in a and b using saturation, and store the
+// results in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_adds_epi16
+FORCE_INLINE __m128i _mm_adds_epi16(__m128i a, __m128i b)
+{
+    return vreinterpretq_m128i_s16(
+        vqaddq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b)));
+}
+
+// Add packed signed 8-bit integers in a and b using saturation, and store the
+// results in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_adds_epi8
+FORCE_INLINE __m128i _mm_adds_epi8(__m128i a, __m128i b)
+{
+    return vreinterpretq_m128i_s8(
+        vqaddq_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b)));
+}
+
+// Add packed unsigned 16-bit integers in a and b using saturation, and store
+// the results in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_adds_epu16
+FORCE_INLINE __m128i _mm_adds_epu16(__m128i a, __m128i b)
+{
+    return vreinterpretq_m128i_u16(
+        vqaddq_u16(vreinterpretq_u16_m128i(a), vreinterpretq_u16_m128i(b)));
+}
+
+// Add packed unsigned 8-bit integers in a and b using saturation, and store the
+// results in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_adds_epu8
+FORCE_INLINE __m128i _mm_adds_epu8(__m128i a, __m128i b)
+{
+    return vreinterpretq_m128i_u8(
+        vqaddq_u8(vreinterpretq_u8_m128i(a), vreinterpretq_u8_m128i(b)));
+}
+
+// Compute the bitwise AND of packed double-precision (64-bit) floating-point
+// elements in a and b, and store the results in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_and_pd
+FORCE_INLINE __m128d _mm_and_pd(__m128d a, __m128d b)
+{
+    return vreinterpretq_m128d_s64(
+        vandq_s64(vreinterpretq_s64_m128d(a), vreinterpretq_s64_m128d(b)));
+}
+
+// Compute the bitwise AND of 128 bits (representing integer data) in a and b,
+// and store the result in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_and_si128
+FORCE_INLINE __m128i _mm_and_si128(__m128i a, __m128i b)
+{
+    return vreinterpretq_m128i_s32(
+        vandq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b)));
+}
+
+// Compute the bitwise NOT of packed double-precision (64-bit) floating-point
+// elements in a and then AND with b, and store the results in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_andnot_pd
+FORCE_INLINE __m128d _mm_andnot_pd(__m128d a, __m128d b)
+{
+    // *NOTE* argument swap
+    return vreinterpretq_m128d_s64(
+        vbicq_s64(vreinterpretq_s64_m128d(b), vreinterpretq_s64_m128d(a)));
+}
+
+// Compute the bitwise NOT of 128 bits (representing integer data) in a and then
+// AND with b, and store the result in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_andnot_si128
+FORCE_INLINE __m128i _mm_andnot_si128(__m128i a, __m128i b)
+{
+    return vreinterpretq_m128i_s32(
+        vbicq_s32(vreinterpretq_s32_m128i(b),
+                  vreinterpretq_s32_m128i(a)));  // *NOTE* argument swap
+}
+
+// Average packed unsigned 16-bit integers in a and b, and store the results in
+// dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_avg_epu16
+FORCE_INLINE __m128i _mm_avg_epu16(__m128i a, __m128i b)
+{
+    return (__m128i) vrhaddq_u16(vreinterpretq_u16_m128i(a),
+                                 vreinterpretq_u16_m128i(b));
+}
+
+// Average packed unsigned 8-bit integers in a and b, and store the results in
+// dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_avg_epu8
+FORCE_INLINE __m128i _mm_avg_epu8(__m128i a, __m128i b)
+{
+    return vreinterpretq_m128i_u8(
+        vrhaddq_u8(vreinterpretq_u8_m128i(a), vreinterpretq_u8_m128i(b)));
+}
+
+// Shift a left by imm8 bytes while shifting in zeros, and store the results in
+// dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_bslli_si128
+#define _mm_bslli_si128(a, imm) _mm_slli_si128(a, imm)
+
+// Shift a right by imm8 bytes while shifting in zeros, and store the results in
+// dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_bsrli_si128
+#define _mm_bsrli_si128(a, imm) _mm_srli_si128(a, imm)
+
+// Cast vector of type __m128d to type __m128. This intrinsic is only used for
+// compilation and does not generate any instructions, thus it has zero latency.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_castpd_ps
+FORCE_INLINE __m128 _mm_castpd_ps(__m128d a)
+{
+    return vreinterpretq_m128_s64(vreinterpretq_s64_m128d(a));
+}
+
+// Cast vector of type __m128d to type __m128i. This intrinsic is only used for
+// compilation and does not generate any instructions, thus it has zero latency.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_castpd_si128
+FORCE_INLINE __m128i _mm_castpd_si128(__m128d a)
+{
+    return vreinterpretq_m128i_s64(vreinterpretq_s64_m128d(a));
+}
+
+// Cast vector of type __m128 to type __m128d. This intrinsic is only used for
+// compilation and does not generate any instructions, thus it has zero latency.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_castps_pd
+FORCE_INLINE __m128d _mm_castps_pd(__m128 a)
+{
+    return vreinterpretq_m128d_s32(vreinterpretq_s32_m128(a));
+}
+
+// Cast vector of type __m128 to type __m128i. This intrinsic is only used for
+// compilation and does not generate any instructions, thus it has zero latency.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_castps_si128
+FORCE_INLINE __m128i _mm_castps_si128(__m128 a)
+{
+    return vreinterpretq_m128i_s32(vreinterpretq_s32_m128(a));
+}
+
+// Cast vector of type __m128i to type __m128d. This intrinsic is only used for
+// compilation and does not generate any instructions, thus it has zero latency.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_castsi128_pd
+FORCE_INLINE __m128d _mm_castsi128_pd(__m128i a)
+{
+#if defined(__aarch64__)
+    return vreinterpretq_m128d_f64(vreinterpretq_f64_m128i(a));
+#else
+    return vreinterpretq_m128d_f32(vreinterpretq_f32_m128i(a));
+#endif
+}
+
+// Cast vector of type __m128i to type __m128. This intrinsic is only used for
+// compilation and does not generate any instructions, thus it has zero latency.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_castsi128_ps
+FORCE_INLINE __m128 _mm_castsi128_ps(__m128i a)
+{
+    return vreinterpretq_m128_s32(vreinterpretq_s32_m128i(a));
+}
+
+// Invalidate and flush the cache line that contains p from all levels of the
+// cache hierarchy.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_clflush
+#if defined(__APPLE__)
+#include <libkern/OSCacheControl.h>
+#endif
+FORCE_INLINE void _mm_clflush(void const *p)
+{
+    (void) p;
+
+    /* sys_icache_invalidate is supported since macOS 10.5.
+     * However, it does not work on non-jailbroken iOS devices, although the
+     * compilation is successful.
+     */
+#if defined(__APPLE__)
+    sys_icache_invalidate((void *) (uintptr_t) p, SSE2NEON_CACHELINE_SIZE);
+#elif defined(__GNUC__) || defined(__clang__)
+    uintptr_t ptr = (uintptr_t) p;
+    __builtin___clear_cache((char *) ptr,
+                            (char *) ptr + SSE2NEON_CACHELINE_SIZE);
+#else
+    /* FIXME: MSVC support */
+#endif
+}
+
+// Compare packed 16-bit integers in a and b for equality, and store the results
+// in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpeq_epi16
+FORCE_INLINE __m128i _mm_cmpeq_epi16(__m128i a, __m128i b)
+{
+    return vreinterpretq_m128i_u16(
+        vceqq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b)));
+}
+
+// Compare packed 32-bit integers in a and b for equality, and store the results
+// in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpeq_epi32
+FORCE_INLINE __m128i _mm_cmpeq_epi32(__m128i a, __m128i b)
+{
+    return vreinterpretq_m128i_u32(
+        vceqq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b)));
+}
+
+// Compare packed 8-bit integers in a and b for equality, and store the results
+// in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpeq_epi8
+FORCE_INLINE __m128i _mm_cmpeq_epi8(__m128i a, __m128i b)
+{
+    return vreinterpretq_m128i_u8(
+        vceqq_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b)));
+}
+
+// Compare packed double-precision (64-bit) floating-point elements in a and b
+// for equality, and store the results in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpeq_pd
+FORCE_INLINE __m128d _mm_cmpeq_pd(__m128d a, __m128d b)
+{
+#if defined(__aarch64__)
+    return vreinterpretq_m128d_u64(
+        vceqq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)));
+#else
+    // (a == b) -> (a_lo == b_lo) && (a_hi == b_hi)
+    uint32x4_t cmp =
+        vceqq_u32(vreinterpretq_u32_m128d(a), vreinterpretq_u32_m128d(b));
+    uint32x4_t swapped = vrev64q_u32(cmp);
+    return vreinterpretq_m128d_u32(vandq_u32(cmp, swapped));
+#endif
+}
+
+// Compare the lower double-precision (64-bit) floating-point elements in a and
+// b for equality, store the result in the lower element of dst, and copy the
+// upper element from a to the upper element of dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpeq_sd
+FORCE_INLINE __m128d _mm_cmpeq_sd(__m128d a, __m128d b)
+{
+    return _mm_move_sd(a, _mm_cmpeq_pd(a, b));
+}
+
+// Compare packed double-precision (64-bit) floating-point elements in a and b
+// for greater-than-or-equal, and store the results in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpge_pd
+FORCE_INLINE __m128d _mm_cmpge_pd(__m128d a, __m128d b)
+{
+#if defined(__aarch64__)
+    return vreinterpretq_m128d_u64(
+        vcgeq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)));
+#else
+    uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a));
+    uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a));
+    uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b));
+    uint64_t b1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(b));
+    uint64_t d[2];
+    d[0] = (*(double *) &a0) >= (*(double *) &b0) ? ~UINT64_C(0) : UINT64_C(0);
+    d[1] = (*(double *) &a1) >= (*(double *) &b1) ? ~UINT64_C(0) : UINT64_C(0);
+
+    return vreinterpretq_m128d_u64(vld1q_u64(d));
+#endif
+}
+
+// Compare the lower double-precision (64-bit) floating-point elements in a and
+// b for greater-than-or-equal, store the result in the lower element of dst,
+// and copy the upper element from a to the upper element of dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpge_sd
+FORCE_INLINE __m128d _mm_cmpge_sd(__m128d a, __m128d b)
+{
+#if defined(__aarch64__)
+    return _mm_move_sd(a, _mm_cmpge_pd(a, b));
+#else
+    // expand "_mm_cmpge_pd()" to reduce unnecessary operations
+    uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a));
+    uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a));
+    uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b));
+    uint64_t d[2];
+    d[0] = (*(double *) &a0) >= (*(double *) &b0) ? ~UINT64_C(0) : UINT64_C(0);
+    d[1] = a1;
+
+    return vreinterpretq_m128d_u64(vld1q_u64(d));
+#endif
+}
+
+// Compare packed signed 16-bit integers in a and b for greater-than, and store
+// the results in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpgt_epi16
+FORCE_INLINE __m128i _mm_cmpgt_epi16(__m128i a, __m128i b)
+{
+    return vreinterpretq_m128i_u16(
+        vcgtq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b)));
+}
+
+// Compare packed signed 32-bit integers in a and b for greater-than, and store
+// the results in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpgt_epi32
+FORCE_INLINE __m128i _mm_cmpgt_epi32(__m128i a, __m128i b)
+{
+    return vreinterpretq_m128i_u32(
+        vcgtq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b)));
+}
+
+// Compare packed signed 8-bit integers in a and b for greater-than, and store
+// the results in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpgt_epi8
+FORCE_INLINE __m128i _mm_cmpgt_epi8(__m128i a, __m128i b)
+{
+    return vreinterpretq_m128i_u8(
+        vcgtq_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b)));
+}
+
+// Compare packed double-precision (64-bit) floating-point elements in a and b
+// for greater-than, and store the results in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpgt_pd
+FORCE_INLINE __m128d _mm_cmpgt_pd(__m128d a, __m128d b)
+{
+#if defined(__aarch64__)
+    return vreinterpretq_m128d_u64(
+        vcgtq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)));
+#else
+    uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a));
+    uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a));
+    uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b));
+    uint64_t b1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(b));
+    uint64_t d[2];
+    d[0] = (*(double *) &a0) > (*(double *) &b0) ? ~UINT64_C(0) : UINT64_C(0);
+    d[1] = (*(double *) &a1) > (*(double *) &b1) ? ~UINT64_C(0) : UINT64_C(0);
+
+    return vreinterpretq_m128d_u64(vld1q_u64(d));
+#endif
+}
+
+// Compare the lower double-precision (64-bit) floating-point elements in a and
+// b for greater-than, store the result in the lower element of dst, and copy
+// the upper element from a to the upper element of dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpgt_sd
+FORCE_INLINE __m128d _mm_cmpgt_sd(__m128d a, __m128d b)
+{
+#if defined(__aarch64__)
+    return _mm_move_sd(a, _mm_cmpgt_pd(a, b));
+#else
+    // expand "_mm_cmpge_pd()" to reduce unnecessary operations
+    uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a));
+    uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a));
+    uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b));
+    uint64_t d[2];
+    d[0] = (*(double *) &a0) > (*(double *) &b0) ? ~UINT64_C(0) : UINT64_C(0);
+    d[1] = a1;
+
+    return vreinterpretq_m128d_u64(vld1q_u64(d));
+#endif
+}
+
+// Compare packed double-precision (64-bit) floating-point elements in a and b
+// for less-than-or-equal, and store the results in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmple_pd
+FORCE_INLINE __m128d _mm_cmple_pd(__m128d a, __m128d b)
+{
+#if defined(__aarch64__)
+    return vreinterpretq_m128d_u64(
+        vcleq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)));
+#else
+    uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a));
+    uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a));
+    uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b));
+    uint64_t b1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(b));
+    uint64_t d[2];
+    d[0] = (*(double *) &a0) <= (*(double *) &b0) ? ~UINT64_C(0) : UINT64_C(0);
+    d[1] = (*(double *) &a1) <= (*(double *) &b1) ? ~UINT64_C(0) : UINT64_C(0);
+
+    return vreinterpretq_m128d_u64(vld1q_u64(d));
+#endif
+}
+
+// Compare the lower double-precision (64-bit) floating-point elements in a and
+// b for less-than-or-equal, store the result in the lower element of dst, and
+// copy the upper element from a to the upper element of dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmple_sd
+FORCE_INLINE __m128d _mm_cmple_sd(__m128d a, __m128d b)
+{
+#if defined(__aarch64__)
+    return _mm_move_sd(a, _mm_cmple_pd(a, b));
+#else
+    // expand "_mm_cmpge_pd()" to reduce unnecessary operations
+    uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a));
+    uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a));
+    uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b));
+    uint64_t d[2];
+    d[0] = (*(double *) &a0) <= (*(double *) &b0) ? ~UINT64_C(0) : UINT64_C(0);
+    d[1] = a1;
+
+    return vreinterpretq_m128d_u64(vld1q_u64(d));
+#endif
+}
+
+// Compare packed signed 16-bit integers in a and b for less-than, and store the
+// results in dst. Note: This intrinsic emits the pcmpgtw instruction with the
+// order of the operands switched.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmplt_epi16
+FORCE_INLINE __m128i _mm_cmplt_epi16(__m128i a, __m128i b)
+{
+    return vreinterpretq_m128i_u16(
+        vcltq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b)));
+}
+
+// Compare packed signed 32-bit integers in a and b for less-than, and store the
+// results in dst. Note: This intrinsic emits the pcmpgtd instruction with the
+// order of the operands switched.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmplt_epi32
+FORCE_INLINE __m128i _mm_cmplt_epi32(__m128i a, __m128i b)
+{
+    return vreinterpretq_m128i_u32(
+        vcltq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b)));
+}
+
+// Compare packed signed 8-bit integers in a and b for less-than, and store the
+// results in dst. Note: This intrinsic emits the pcmpgtb instruction with the
+// order of the operands switched.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmplt_epi8
+FORCE_INLINE __m128i _mm_cmplt_epi8(__m128i a, __m128i b)
+{
+    return vreinterpretq_m128i_u8(
+        vcltq_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b)));
+}
+
+// Compare packed double-precision (64-bit) floating-point elements in a and b
+// for less-than, and store the results in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmplt_pd
+FORCE_INLINE __m128d _mm_cmplt_pd(__m128d a, __m128d b)
+{
+#if defined(__aarch64__)
+    return vreinterpretq_m128d_u64(
+        vcltq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)));
+#else
+    uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a));
+    uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a));
+    uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b));
+    uint64_t b1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(b));
+    uint64_t d[2];
+    d[0] = (*(double *) &a0) < (*(double *) &b0) ? ~UINT64_C(0) : UINT64_C(0);
+    d[1] = (*(double *) &a1) < (*(double *) &b1) ? ~UINT64_C(0) : UINT64_C(0);
+
+    return vreinterpretq_m128d_u64(vld1q_u64(d));
+#endif
+}
+
+// Compare the lower double-precision (64-bit) floating-point elements in a and
+// b for less-than, store the result in the lower element of dst, and copy the
+// upper element from a to the upper element of dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmplt_sd
+FORCE_INLINE __m128d _mm_cmplt_sd(__m128d a, __m128d b)
+{
+#if defined(__aarch64__)
+    return _mm_move_sd(a, _mm_cmplt_pd(a, b));
+#else
+    uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a));
+    uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a));
+    uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b));
+    uint64_t d[2];
+    d[0] = (*(double *) &a0) < (*(double *) &b0) ? ~UINT64_C(0) : UINT64_C(0);
+    d[1] = a1;
+
+    return vreinterpretq_m128d_u64(vld1q_u64(d));
+#endif
+}
+
+// Compare packed double-precision (64-bit) floating-point elements in a and b
+// for not-equal, and store the results in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpneq_pd
+FORCE_INLINE __m128d _mm_cmpneq_pd(__m128d a, __m128d b)
+{
+#if defined(__aarch64__)
+    return vreinterpretq_m128d_s32(vmvnq_s32(vreinterpretq_s32_u64(
+        vceqq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)))));
+#else
+    // (a == b) -> (a_lo == b_lo) && (a_hi == b_hi)
+    uint32x4_t cmp =
+        vceqq_u32(vreinterpretq_u32_m128d(a), vreinterpretq_u32_m128d(b));
+    uint32x4_t swapped = vrev64q_u32(cmp);
+    return vreinterpretq_m128d_u32(vmvnq_u32(vandq_u32(cmp, swapped)));
+#endif
+}
+
+// Compare the lower double-precision (64-bit) floating-point elements in a and
+// b for not-equal, store the result in the lower element of dst, and copy the
+// upper element from a to the upper element of dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpneq_sd
+FORCE_INLINE __m128d _mm_cmpneq_sd(__m128d a, __m128d b)
+{
+    return _mm_move_sd(a, _mm_cmpneq_pd(a, b));
+}
+
+// Compare packed double-precision (64-bit) floating-point elements in a and b
+// for not-greater-than-or-equal, and store the results in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpnge_pd
+FORCE_INLINE __m128d _mm_cmpnge_pd(__m128d a, __m128d b)
+{
+#if defined(__aarch64__)
+    return vreinterpretq_m128d_u64(veorq_u64(
+        vcgeq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)),
+        vdupq_n_u64(UINT64_MAX)));
+#else
+    uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a));
+    uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a));
+    uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b));
+    uint64_t b1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(b));
+    uint64_t d[2];
+    d[0] =
+        !((*(double *) &a0) >= (*(double *) &b0)) ? ~UINT64_C(0) : UINT64_C(0);
+    d[1] =
+        !((*(double *) &a1) >= (*(double *) &b1)) ? ~UINT64_C(0) : UINT64_C(0);
+
+    return vreinterpretq_m128d_u64(vld1q_u64(d));
+#endif
+}
+
+// Compare the lower double-precision (64-bit) floating-point elements in a and
+// b for not-greater-than-or-equal, store the result in the lower element of
+// dst, and copy the upper element from a to the upper element of dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpnge_sd
+FORCE_INLINE __m128d _mm_cmpnge_sd(__m128d a, __m128d b)
+{
+    return _mm_move_sd(a, _mm_cmpnge_pd(a, b));
+}
+
+// Compare packed double-precision (64-bit) floating-point elements in a and b
+// for not-greater-than, and store the results in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_cmpngt_pd
+FORCE_INLINE __m128d _mm_cmpngt_pd(__m128d a, __m128d b)
+{
+#if defined(__aarch64__)
+    return vreinterpretq_m128d_u64(veorq_u64(
+        vcgtq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)),
+        vdupq_n_u64(UINT64_MAX)));
+#else
+    uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a));
+    uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a));
+    uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b));
+    uint64_t b1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(b));
+    uint64_t d[2];
+    d[0] =
+        !((*(double *) &a0) > (*(double *) &b0)) ? ~UINT64_C(0) : UINT64_C(0);
+    d[1] =
+        !((*(double *) &a1) > (*(double *) &b1)) ? ~UINT64_C(0) : UINT64_C(0);
+
+    return vreinterpretq_m128d_u64(vld1q_u64(d));
+#endif
+}
+
+// Compare the lower double-precision (64-bit) floating-point elements in a and
+// b for not-greater-than, store the result in the lower element of dst, and
+// copy the upper element from a to the upper element of dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpngt_sd
+FORCE_INLINE __m128d _mm_cmpngt_sd(__m128d a, __m128d b)
+{
+    return _mm_move_sd(a, _mm_cmpngt_pd(a, b));
+}
+
+// Compare packed double-precision (64-bit) floating-point elements in a and b
+// for not-less-than-or-equal, and store the results in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpnle_pd
+FORCE_INLINE __m128d _mm_cmpnle_pd(__m128d a, __m128d b)
+{
+#if defined(__aarch64__)
+    return vreinterpretq_m128d_u64(veorq_u64(
+        vcleq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)),
+        vdupq_n_u64(UINT64_MAX)));
+#else
+    uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a));
+    uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a));
+    uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b));
+    uint64_t b1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(b));
+    uint64_t d[2];
+    d[0] =
+        !((*(double *) &a0) <= (*(double *) &b0)) ? ~UINT64_C(0) : UINT64_C(0);
+    d[1] =
+        !((*(double *) &a1) <= (*(double *) &b1)) ? ~UINT64_C(0) : UINT64_C(0);
+
+    return vreinterpretq_m128d_u64(vld1q_u64(d));
+#endif
+}
+
+// Compare the lower double-precision (64-bit) floating-point elements in a and
+// b for not-less-than-or-equal, store the result in the lower element of dst,
+// and copy the upper element from a to the upper element of dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpnle_sd
+FORCE_INLINE __m128d _mm_cmpnle_sd(__m128d a, __m128d b)
+{
+    return _mm_move_sd(a, _mm_cmpnle_pd(a, b));
+}
+
+// Compare packed double-precision (64-bit) floating-point elements in a and b
+// for not-less-than, and store the results in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpnlt_pd
+FORCE_INLINE __m128d _mm_cmpnlt_pd(__m128d a, __m128d b)
+{
+#if defined(__aarch64__)
+    return vreinterpretq_m128d_u64(veorq_u64(
+        vcltq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)),
+        vdupq_n_u64(UINT64_MAX)));
+#else
+    uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a));
+    uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a));
+    uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b));
+    uint64_t b1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(b));
+    uint64_t d[2];
+    d[0] =
+        !((*(double *) &a0) < (*(double *) &b0)) ? ~UINT64_C(0) : UINT64_C(0);
+    d[1] =
+        !((*(double *) &a1) < (*(double *) &b1)) ? ~UINT64_C(0) : UINT64_C(0);
+
+    return vreinterpretq_m128d_u64(vld1q_u64(d));
+#endif
+}
+
+// Compare the lower double-precision (64-bit) floating-point elements in a and
+// b for not-less-than, store the result in the lower element of dst, and copy
+// the upper element from a to the upper element of dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpnlt_sd
+FORCE_INLINE __m128d _mm_cmpnlt_sd(__m128d a, __m128d b)
+{
+    return _mm_move_sd(a, _mm_cmpnlt_pd(a, b));
+}
+
+// Compare packed double-precision (64-bit) floating-point elements in a and b
+// to see if neither is NaN, and store the results in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpord_pd
+FORCE_INLINE __m128d _mm_cmpord_pd(__m128d a, __m128d b)
+{
+#if defined(__aarch64__)
+    // Excluding NaNs, any two floating point numbers can be compared.
+    uint64x2_t not_nan_a =
+        vceqq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(a));
+    uint64x2_t not_nan_b =
+        vceqq_f64(vreinterpretq_f64_m128d(b), vreinterpretq_f64_m128d(b));
+    return vreinterpretq_m128d_u64(vandq_u64(not_nan_a, not_nan_b));
+#else
+    uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a));
+    uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a));
+    uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b));
+    uint64_t b1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(b));
+    uint64_t d[2];
+    d[0] = ((*(double *) &a0) == (*(double *) &a0) &&
+            (*(double *) &b0) == (*(double *) &b0))
+               ? ~UINT64_C(0)
+               : UINT64_C(0);
+    d[1] = ((*(double *) &a1) == (*(double *) &a1) &&
+            (*(double *) &b1) == (*(double *) &b1))
+               ? ~UINT64_C(0)
+               : UINT64_C(0);
+
+    return vreinterpretq_m128d_u64(vld1q_u64(d));
+#endif
+}
+
+// Compare the lower double-precision (64-bit) floating-point elements in a and
+// b to see if neither is NaN, store the result in the lower element of dst, and
+// copy the upper element from a to the upper element of dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpord_sd
+FORCE_INLINE __m128d _mm_cmpord_sd(__m128d a, __m128d b)
+{
+#if defined(__aarch64__)
+    return _mm_move_sd(a, _mm_cmpord_pd(a, b));
+#else
+    uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a));
+    uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b));
+    uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a));
+    uint64_t d[2];
+    d[0] = ((*(double *) &a0) == (*(double *) &a0) &&
+            (*(double *) &b0) == (*(double *) &b0))
+               ? ~UINT64_C(0)
+               : UINT64_C(0);
+    d[1] = a1;
+
+    return vreinterpretq_m128d_u64(vld1q_u64(d));
+#endif
+}
+
+// Compare packed double-precision (64-bit) floating-point elements in a and b
+// to see if either is NaN, and store the results in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpunord_pd
+FORCE_INLINE __m128d _mm_cmpunord_pd(__m128d a, __m128d b)
+{
+#if defined(__aarch64__)
+    // Two NaNs are not equal in comparison operation.
+    uint64x2_t not_nan_a =
+        vceqq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(a));
+    uint64x2_t not_nan_b =
+        vceqq_f64(vreinterpretq_f64_m128d(b), vreinterpretq_f64_m128d(b));
+    return vreinterpretq_m128d_s32(
+        vmvnq_s32(vreinterpretq_s32_u64(vandq_u64(not_nan_a, not_nan_b))));
+#else
+    uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a));
+    uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a));
+    uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b));
+    uint64_t b1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(b));
+    uint64_t d[2];
+    d[0] = ((*(double *) &a0) == (*(double *) &a0) &&
+            (*(double *) &b0) == (*(double *) &b0))
+               ? UINT64_C(0)
+               : ~UINT64_C(0);
+    d[1] = ((*(double *) &a1) == (*(double *) &a1) &&
+            (*(double *) &b1) == (*(double *) &b1))
+               ? UINT64_C(0)
+               : ~UINT64_C(0);
+
+    return vreinterpretq_m128d_u64(vld1q_u64(d));
+#endif
+}
+
+// Compare the lower double-precision (64-bit) floating-point elements in a and
+// b to see if either is NaN, store the result in the lower element of dst, and
+// copy the upper element from a to the upper element of dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpunord_sd
+FORCE_INLINE __m128d _mm_cmpunord_sd(__m128d a, __m128d b)
+{
+#if defined(__aarch64__)
+    return _mm_move_sd(a, _mm_cmpunord_pd(a, b));
+#else
+    uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a));
+    uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b));
+    uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a));
+    uint64_t d[2];
+    d[0] = ((*(double *) &a0) == (*(double *) &a0) &&
+            (*(double *) &b0) == (*(double *) &b0))
+               ? UINT64_C(0)
+               : ~UINT64_C(0);
+    d[1] = a1;
+
+    return vreinterpretq_m128d_u64(vld1q_u64(d));
+#endif
+}
+
+// Compare the lower double-precision (64-bit) floating-point element in a and b
+// for greater-than-or-equal, and return the boolean result (0 or 1).
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_comige_sd
+FORCE_INLINE int _mm_comige_sd(__m128d a, __m128d b)
+{
+#if defined(__aarch64__)
+    return vgetq_lane_u64(vcgeq_f64(a, b), 0) & 0x1;
+#else
+    uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a));
+    uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b));
+
+    return (*(double *) &a0 >= *(double *) &b0);
+#endif
+}
+
+// Compare the lower double-precision (64-bit) floating-point element in a and b
+// for greater-than, and return the boolean result (0 or 1).
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_comigt_sd
+FORCE_INLINE int _mm_comigt_sd(__m128d a, __m128d b)
+{
+#if defined(__aarch64__)
+    return vgetq_lane_u64(vcgtq_f64(a, b), 0) & 0x1;
+#else
+    uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a));
+    uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b));
+
+    return (*(double *) &a0 > *(double *) &b0);
+#endif
+}
+
+// Compare the lower double-precision (64-bit) floating-point element in a and b
+// for less-than-or-equal, and return the boolean result (0 or 1).
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_comile_sd
+FORCE_INLINE int _mm_comile_sd(__m128d a, __m128d b)
+{
+#if defined(__aarch64__)
+    return vgetq_lane_u64(vcleq_f64(a, b), 0) & 0x1;
+#else
+    uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a));
+    uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b));
+
+    return (*(double *) &a0 <= *(double *) &b0);
+#endif
+}
+
+// Compare the lower double-precision (64-bit) floating-point element in a and b
+// for less-than, and return the boolean result (0 or 1).
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_comilt_sd
+FORCE_INLINE int _mm_comilt_sd(__m128d a, __m128d b)
+{
+#if defined(__aarch64__)
+    return vgetq_lane_u64(vcltq_f64(a, b), 0) & 0x1;
+#else
+    uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a));
+    uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b));
+
+    return (*(double *) &a0 < *(double *) &b0);
+#endif
+}
+
+// Compare the lower double-precision (64-bit) floating-point element in a and b
+// for equality, and return the boolean result (0 or 1).
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_comieq_sd
+FORCE_INLINE int _mm_comieq_sd(__m128d a, __m128d b)
+{
+#if defined(__aarch64__)
+    return vgetq_lane_u64(vceqq_f64(a, b), 0) & 0x1;
+#else
+    uint32x4_t a_not_nan =
+        vceqq_u32(vreinterpretq_u32_m128d(a), vreinterpretq_u32_m128d(a));
+    uint32x4_t b_not_nan =
+        vceqq_u32(vreinterpretq_u32_m128d(b), vreinterpretq_u32_m128d(b));
+    uint32x4_t a_and_b_not_nan = vandq_u32(a_not_nan, b_not_nan);
+    uint32x4_t a_eq_b =
+        vceqq_u32(vreinterpretq_u32_m128d(a), vreinterpretq_u32_m128d(b));
+    uint64x2_t and_results = vandq_u64(vreinterpretq_u64_u32(a_and_b_not_nan),
+                                       vreinterpretq_u64_u32(a_eq_b));
+    return vgetq_lane_u64(and_results, 0) & 0x1;
+#endif
+}
+
+// Compare the lower double-precision (64-bit) floating-point element in a and b
+// for not-equal, and return the boolean result (0 or 1).
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_comineq_sd
+FORCE_INLINE int _mm_comineq_sd(__m128d a, __m128d b)
+{
+    return !_mm_comieq_sd(a, b);
+}
+
+// Convert packed signed 32-bit integers in a to packed double-precision
+// (64-bit) floating-point elements, and store the results in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtepi32_pd
+FORCE_INLINE __m128d _mm_cvtepi32_pd(__m128i a)
+{
+#if defined(__aarch64__)
+    return vreinterpretq_m128d_f64(
+        vcvtq_f64_s64(vmovl_s32(vget_low_s32(vreinterpretq_s32_m128i(a)))));
+#else
+    double a0 = (double) vgetq_lane_s32(vreinterpretq_s32_m128i(a), 0);
+    double a1 = (double) vgetq_lane_s32(vreinterpretq_s32_m128i(a), 1);
+    return _mm_set_pd(a1, a0);
+#endif
+}
+
+// Convert packed signed 32-bit integers in a to packed single-precision
+// (32-bit) floating-point elements, and store the results in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtepi32_ps
+FORCE_INLINE __m128 _mm_cvtepi32_ps(__m128i a)
+{
+    return vreinterpretq_m128_f32(vcvtq_f32_s32(vreinterpretq_s32_m128i(a)));
+}
+
+// Convert packed double-precision (64-bit) floating-point elements in a to
+// packed 32-bit integers, and store the results in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtpd_epi32
+FORCE_INLINE __m128i _mm_cvtpd_epi32(__m128d a)
+{
+// vrnd32xq_f64 not supported on clang
+#if defined(__ARM_FEATURE_FRINT) && !defined(__clang__)
+    float64x2_t rounded = vrnd32xq_f64(vreinterpretq_f64_m128d(a));
+    int64x2_t integers = vcvtq_s64_f64(rounded);
+    return vreinterpretq_m128i_s32(
+        vcombine_s32(vmovn_s64(integers), vdup_n_s32(0)));
+#else
+    __m128d rnd = _mm_round_pd(a, _MM_FROUND_CUR_DIRECTION);
+    double d0 = ((double *) &rnd)[0];
+    double d1 = ((double *) &rnd)[1];
+    return _mm_set_epi32(0, 0, (int32_t) d1, (int32_t) d0);
+#endif
+}
+
+// Convert packed double-precision (64-bit) floating-point elements in a to
+// packed 32-bit integers, and store the results in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtpd_pi32
+FORCE_INLINE __m64 _mm_cvtpd_pi32(__m128d a)
+{
+    __m128d rnd = _mm_round_pd(a, _MM_FROUND_CUR_DIRECTION);
+    double d0 = ((double *) &rnd)[0];
+    double d1 = ((double *) &rnd)[1];
+    int32_t ALIGN_STRUCT(16) data[2] = {(int32_t) d0, (int32_t) d1};
+    return vreinterpret_m64_s32(vld1_s32(data));
+}
+
+// Convert packed double-precision (64-bit) floating-point elements in a to
+// packed single-precision (32-bit) floating-point elements, and store the
+// results in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtpd_ps
+FORCE_INLINE __m128 _mm_cvtpd_ps(__m128d a)
+{
+#if defined(__aarch64__)
+    float32x2_t tmp = vcvt_f32_f64(vreinterpretq_f64_m128d(a));
+    return vreinterpretq_m128_f32(vcombine_f32(tmp, vdup_n_f32(0)));
+#else
+    float a0 = (float) ((double *) &a)[0];
+    float a1 = (float) ((double *) &a)[1];
+    return _mm_set_ps(0, 0, a1, a0);
+#endif
+}
+
+// Convert packed signed 32-bit integers in a to packed double-precision
+// (64-bit) floating-point elements, and store the results in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtpi32_pd
+FORCE_INLINE __m128d _mm_cvtpi32_pd(__m64 a)
+{
+#if defined(__aarch64__)
+    return vreinterpretq_m128d_f64(
+        vcvtq_f64_s64(vmovl_s32(vreinterpret_s32_m64(a))));
+#else
+    double a0 = (double) vget_lane_s32(vreinterpret_s32_m64(a), 0);
+    double a1 = (double) vget_lane_s32(vreinterpret_s32_m64(a), 1);
+    return _mm_set_pd(a1, a0);
+#endif
+}
+
+// Convert packed single-precision (32-bit) floating-point elements in a to
+// packed 32-bit integers, and store the results in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtps_epi32
+// *NOTE*. The default rounding mode on SSE is 'round to even', which ARMv7-A
+// does not support! It is supported on ARMv8-A however.
+FORCE_INLINE __m128i _mm_cvtps_epi32(__m128 a)
+{
+#if defined(__ARM_FEATURE_FRINT)
+    return vreinterpretq_m128i_s32(vcvtq_s32_f32(vrnd32xq_f32(a)));
+#elif defined(__aarch64__) || defined(__ARM_FEATURE_DIRECTED_ROUNDING)
+    switch (_MM_GET_ROUNDING_MODE()) {
+    case _MM_ROUND_NEAREST:
+        return vreinterpretq_m128i_s32(vcvtnq_s32_f32(a));
+    case _MM_ROUND_DOWN:
+        return vreinterpretq_m128i_s32(vcvtmq_s32_f32(a));
+    case _MM_ROUND_UP:
+        return vreinterpretq_m128i_s32(vcvtpq_s32_f32(a));
+    default:  // _MM_ROUND_TOWARD_ZERO
+        return vreinterpretq_m128i_s32(vcvtq_s32_f32(a));
+    }
+#else
+    float *f = (float *) &a;
+    switch (_MM_GET_ROUNDING_MODE()) {
+    case _MM_ROUND_NEAREST: {
+        uint32x4_t signmask = vdupq_n_u32(0x80000000);
+        float32x4_t half = vbslq_f32(signmask, vreinterpretq_f32_m128(a),
+                                     vdupq_n_f32(0.5f)); /* +/- 0.5 */
+        int32x4_t r_normal = vcvtq_s32_f32(vaddq_f32(
+            vreinterpretq_f32_m128(a), half)); /* round to integer: [a + 0.5]*/
+        int32x4_t r_trunc = vcvtq_s32_f32(
+            vreinterpretq_f32_m128(a)); /* truncate to integer: [a] */
+        int32x4_t plusone = vreinterpretq_s32_u32(vshrq_n_u32(
+            vreinterpretq_u32_s32(vnegq_s32(r_trunc)), 31)); /* 1 or 0 */
+        int32x4_t r_even = vbicq_s32(vaddq_s32(r_trunc, plusone),
+                                     vdupq_n_s32(1)); /* ([a] + {0,1}) & ~1 */
+        float32x4_t delta = vsubq_f32(
+            vreinterpretq_f32_m128(a),
+            vcvtq_f32_s32(r_trunc)); /* compute delta: delta = (a - [a]) */
+        uint32x4_t is_delta_half =
+            vceqq_f32(delta, half); /* delta == +/- 0.5 */
+        return vreinterpretq_m128i_s32(
+            vbslq_s32(is_delta_half, r_even, r_normal));
+    }
+    case _MM_ROUND_DOWN:
+        return _mm_set_epi32(floorf(f[3]), floorf(f[2]), floorf(f[1]),
+                             floorf(f[0]));
+    case _MM_ROUND_UP:
+        return _mm_set_epi32(ceilf(f[3]), ceilf(f[2]), ceilf(f[1]),
+                             ceilf(f[0]));
+    default:  // _MM_ROUND_TOWARD_ZERO
+        return _mm_set_epi32((int32_t) f[3], (int32_t) f[2], (int32_t) f[1],
+                             (int32_t) f[0]);
+    }
+#endif
+}
+
+// Convert packed single-precision (32-bit) floating-point elements in a to
+// packed double-precision (64-bit) floating-point elements, and store the
+// results in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtps_pd
+FORCE_INLINE __m128d _mm_cvtps_pd(__m128 a)
+{
+#if defined(__aarch64__)
+    return vreinterpretq_m128d_f64(
+        vcvt_f64_f32(vget_low_f32(vreinterpretq_f32_m128(a))));
+#else
+    double a0 = (double) vgetq_lane_f32(vreinterpretq_f32_m128(a), 0);
+    double a1 = (double) vgetq_lane_f32(vreinterpretq_f32_m128(a), 1);
+    return _mm_set_pd(a1, a0);
+#endif
+}
+
+// Copy the lower double-precision (64-bit) floating-point element of a to dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsd_f64
+FORCE_INLINE double _mm_cvtsd_f64(__m128d a)
+{
+#if defined(__aarch64__)
+    return (double) vgetq_lane_f64(vreinterpretq_f64_m128d(a), 0);
+#else
+    return ((double *) &a)[0];
+#endif
+}
+
+// Convert the lower double-precision (64-bit) floating-point element in a to a
+// 32-bit integer, and store the result in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsd_si32
+FORCE_INLINE int32_t _mm_cvtsd_si32(__m128d a)
+{
+#if defined(__aarch64__)
+    return (int32_t) vgetq_lane_f64(vrndiq_f64(vreinterpretq_f64_m128d(a)), 0);
+#else
+    __m128d rnd = _mm_round_pd(a, _MM_FROUND_CUR_DIRECTION);
+    double ret = ((double *) &rnd)[0];
+    return (int32_t) ret;
+#endif
+}
+
+// Convert the lower double-precision (64-bit) floating-point element in a to a
+// 64-bit integer, and store the result in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsd_si64
+FORCE_INLINE int64_t _mm_cvtsd_si64(__m128d a)
+{
+#if defined(__aarch64__)
+    return (int64_t) vgetq_lane_f64(vrndiq_f64(vreinterpretq_f64_m128d(a)), 0);
+#else
+    __m128d rnd = _mm_round_pd(a, _MM_FROUND_CUR_DIRECTION);
+    double ret = ((double *) &rnd)[0];
+    return (int64_t) ret;
+#endif
+}
+
+// Convert the lower double-precision (64-bit) floating-point element in a to a
+// 64-bit integer, and store the result in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsd_si64x
+#define _mm_cvtsd_si64x _mm_cvtsd_si64
+
+// Convert the lower double-precision (64-bit) floating-point element in b to a
+// single-precision (32-bit) floating-point element, store the result in the
+// lower element of dst, and copy the upper 3 packed elements from a to the
+// upper elements of dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsd_ss
+FORCE_INLINE __m128 _mm_cvtsd_ss(__m128 a, __m128d b)
+{
+#if defined(__aarch64__)
+    return vreinterpretq_m128_f32(vsetq_lane_f32(
+        vget_lane_f32(vcvt_f32_f64(vreinterpretq_f64_m128d(b)), 0),
+        vreinterpretq_f32_m128(a), 0));
+#else
+    return vreinterpretq_m128_f32(vsetq_lane_f32((float) ((double *) &b)[0],
+                                                 vreinterpretq_f32_m128(a), 0));
+#endif
+}
+
+// Copy the lower 32-bit integer in a to dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsi128_si32
+FORCE_INLINE int _mm_cvtsi128_si32(__m128i a)
+{
+    return vgetq_lane_s32(vreinterpretq_s32_m128i(a), 0);
+}
+
+// Copy the lower 64-bit integer in a to dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsi128_si64
+FORCE_INLINE int64_t _mm_cvtsi128_si64(__m128i a)
+{
+    return vgetq_lane_s64(vreinterpretq_s64_m128i(a), 0);
+}
+
+// Copy the lower 64-bit integer in a to dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsi128_si64x
+#define _mm_cvtsi128_si64x(a) _mm_cvtsi128_si64(a)
+
+// Convert the signed 32-bit integer b to a double-precision (64-bit)
+// floating-point element, store the result in the lower element of dst, and
+// copy the upper element from a to the upper element of dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsi32_sd
+FORCE_INLINE __m128d _mm_cvtsi32_sd(__m128d a, int32_t b)
+{
+#if defined(__aarch64__)
+    return vreinterpretq_m128d_f64(
+        vsetq_lane_f64((double) b, vreinterpretq_f64_m128d(a), 0));
+#else
+    double bf = (double) b;
+    return vreinterpretq_m128d_s64(
+        vsetq_lane_s64(*(int64_t *) &bf, vreinterpretq_s64_m128d(a), 0));
+#endif
+}
+
+// Copy the lower 64-bit integer in a to dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsi128_si64x
+#define _mm_cvtsi128_si64x(a) _mm_cvtsi128_si64(a)
+
+// Copy 32-bit integer a to the lower elements of dst, and zero the upper
+// elements of dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsi32_si128
+FORCE_INLINE __m128i _mm_cvtsi32_si128(int a)
+{
+    return vreinterpretq_m128i_s32(vsetq_lane_s32(a, vdupq_n_s32(0), 0));
+}
+
+// Convert the signed 64-bit integer b to a double-precision (64-bit)
+// floating-point element, store the result in the lower element of dst, and
+// copy the upper element from a to the upper element of dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsi64_sd
+FORCE_INLINE __m128d _mm_cvtsi64_sd(__m128d a, int64_t b)
+{
+#if defined(__aarch64__)
+    return vreinterpretq_m128d_f64(
+        vsetq_lane_f64((double) b, vreinterpretq_f64_m128d(a), 0));
+#else
+    double bf = (double) b;
+    return vreinterpretq_m128d_s64(
+        vsetq_lane_s64(*(int64_t *) &bf, vreinterpretq_s64_m128d(a), 0));
+#endif
+}
+
+// Copy 64-bit integer a to the lower element of dst, and zero the upper
+// element.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsi64_si128
+FORCE_INLINE __m128i _mm_cvtsi64_si128(int64_t a)
+{
+    return vreinterpretq_m128i_s64(vsetq_lane_s64(a, vdupq_n_s64(0), 0));
+}
+
+// Copy 64-bit integer a to the lower element of dst, and zero the upper
+// element.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsi64x_si128
+#define _mm_cvtsi64x_si128(a) _mm_cvtsi64_si128(a)
+
+// Convert the signed 64-bit integer b to a double-precision (64-bit)
+// floating-point element, store the result in the lower element of dst, and
+// copy the upper element from a to the upper element of dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsi64x_sd
+#define _mm_cvtsi64x_sd(a, b) _mm_cvtsi64_sd(a, b)
+
+// Convert the lower single-precision (32-bit) floating-point element in b to a
+// double-precision (64-bit) floating-point element, store the result in the
+// lower element of dst, and copy the upper element from a to the upper element
+// of dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtss_sd
+FORCE_INLINE __m128d _mm_cvtss_sd(__m128d a, __m128 b)
+{
+    double d = (double) vgetq_lane_f32(vreinterpretq_f32_m128(b), 0);
+#if defined(__aarch64__)
+    return vreinterpretq_m128d_f64(
+        vsetq_lane_f64(d, vreinterpretq_f64_m128d(a), 0));
+#else
+    return vreinterpretq_m128d_s64(
+        vsetq_lane_s64(*(int64_t *) &d, vreinterpretq_s64_m128d(a), 0));
+#endif
+}
+
+// Convert packed double-precision (64-bit) floating-point elements in a to
+// packed 32-bit integers with truncation, and store the results in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvttpd_epi32
+FORCE_INLINE __m128i _mm_cvttpd_epi32(__m128d a)
+{
+    double a0 = ((double *) &a)[0];
+    double a1 = ((double *) &a)[1];
+    return _mm_set_epi32(0, 0, (int32_t) a1, (int32_t) a0);
+}
+
+// Convert packed double-precision (64-bit) floating-point elements in a to
+// packed 32-bit integers with truncation, and store the results in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvttpd_pi32
+FORCE_INLINE __m64 _mm_cvttpd_pi32(__m128d a)
+{
+    double a0 = ((double *) &a)[0];
+    double a1 = ((double *) &a)[1];
+    int32_t ALIGN_STRUCT(16) data[2] = {(int32_t) a0, (int32_t) a1};
+    return vreinterpret_m64_s32(vld1_s32(data));
+}
+
+// Convert packed single-precision (32-bit) floating-point elements in a to
+// packed 32-bit integers with truncation, and store the results in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvttps_epi32
+FORCE_INLINE __m128i _mm_cvttps_epi32(__m128 a)
+{
+    return vreinterpretq_m128i_s32(vcvtq_s32_f32(vreinterpretq_f32_m128(a)));
+}
+
+// Convert the lower double-precision (64-bit) floating-point element in a to a
+// 32-bit integer with truncation, and store the result in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvttsd_si32
+FORCE_INLINE int32_t _mm_cvttsd_si32(__m128d a)
+{
+    double ret = *((double *) &a);
+    return (int32_t) ret;
+}
+
+// Convert the lower double-precision (64-bit) floating-point element in a to a
+// 64-bit integer with truncation, and store the result in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvttsd_si64
+FORCE_INLINE int64_t _mm_cvttsd_si64(__m128d a)
+{
+#if defined(__aarch64__)
+    return vgetq_lane_s64(vcvtq_s64_f64(vreinterpretq_f64_m128d(a)), 0);
+#else
+    double ret = *((double *) &a);
+    return (int64_t) ret;
+#endif
+}
+
+// Convert the lower double-precision (64-bit) floating-point element in a to a
+// 64-bit integer with truncation, and store the result in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvttsd_si64x
+#define _mm_cvttsd_si64x(a) _mm_cvttsd_si64(a)
+
+// Divide packed double-precision (64-bit) floating-point elements in a by
+// packed elements in b, and store the results in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_div_pd
+FORCE_INLINE __m128d _mm_div_pd(__m128d a, __m128d b)
+{
+#if defined(__aarch64__)
+    return vreinterpretq_m128d_f64(
+        vdivq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)));
+#else
+    double *da = (double *) &a;
+    double *db = (double *) &b;
+    double c[2];
+    c[0] = da[0] / db[0];
+    c[1] = da[1] / db[1];
+    return vld1q_f32((float32_t *) c);
+#endif
+}
+
+// Divide the lower double-precision (64-bit) floating-point element in a by the
+// lower double-precision (64-bit) floating-point element in b, store the result
+// in the lower element of dst, and copy the upper element from a to the upper
+// element of dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_div_sd
+FORCE_INLINE __m128d _mm_div_sd(__m128d a, __m128d b)
+{
+#if defined(__aarch64__)
+    float64x2_t tmp =
+        vdivq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b));
+    return vreinterpretq_m128d_f64(
+        vsetq_lane_f64(vgetq_lane_f64(vreinterpretq_f64_m128d(a), 1), tmp, 1));
+#else
+    return _mm_move_sd(a, _mm_div_pd(a, b));
+#endif
+}
+
+// Extract a 16-bit integer from a, selected with imm8, and store the result in
+// the lower element of dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_extract_epi16
+// FORCE_INLINE int _mm_extract_epi16(__m128i a, __constrange(0,8) int imm)
+#define _mm_extract_epi16(a, imm) \
+    vgetq_lane_u16(vreinterpretq_u16_m128i(a), (imm))
+
+// Copy a to dst, and insert the 16-bit integer i into dst at the location
+// specified by imm8.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_insert_epi16
+// FORCE_INLINE __m128i _mm_insert_epi16(__m128i a, int b,
+//                                       __constrange(0,8) int imm)
+#define _mm_insert_epi16(a, b, imm)                                  \
+    __extension__({                                                  \
+        vreinterpretq_m128i_s16(                                     \
+            vsetq_lane_s16((b), vreinterpretq_s16_m128i(a), (imm))); \
+    })
+
+// Load 128-bits (composed of 2 packed double-precision (64-bit) floating-point
+// elements) from memory into dst. mem_addr must be aligned on a 16-byte
+// boundary or a general-protection exception may be generated.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_load_pd
+FORCE_INLINE __m128d _mm_load_pd(const double *p)
+{
+#if defined(__aarch64__)
+    return vreinterpretq_m128d_f64(vld1q_f64(p));
+#else
+    const float *fp = (const float *) p;
+    float ALIGN_STRUCT(16) data[4] = {fp[0], fp[1], fp[2], fp[3]};
+    return vreinterpretq_m128d_f32(vld1q_f32(data));
+#endif
+}
+
+// Load a double-precision (64-bit) floating-point element from memory into both
+// elements of dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_load_pd1
+#define _mm_load_pd1 _mm_load1_pd
+
+// Load a double-precision (64-bit) floating-point element from memory into the
+// lower of dst, and zero the upper element. mem_addr does not need to be
+// aligned on any particular boundary.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_load_sd
+FORCE_INLINE __m128d _mm_load_sd(const double *p)
+{
+#if defined(__aarch64__)
+    return vreinterpretq_m128d_f64(vsetq_lane_f64(*p, vdupq_n_f64(0), 0));
+#else
+    const float *fp = (const float *) p;
+    float ALIGN_STRUCT(16) data[4] = {fp[0], fp[1], 0, 0};
+    return vreinterpretq_m128d_f32(vld1q_f32(data));
+#endif
+}
+
+// Load 128-bits of integer data from memory into dst. mem_addr must be aligned
+// on a 16-byte boundary or a general-protection exception may be generated.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_load_si128
+FORCE_INLINE __m128i _mm_load_si128(const __m128i *p)
+{
+    return vreinterpretq_m128i_s32(vld1q_s32((const int32_t *) p));
+}
+
+// Load a double-precision (64-bit) floating-point element from memory into both
+// elements of dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_load1_pd
+FORCE_INLINE __m128d _mm_load1_pd(const double *p)
+{
+#if defined(__aarch64__)
+    return vreinterpretq_m128d_f64(vld1q_dup_f64(p));
+#else
+    return vreinterpretq_m128d_s64(vdupq_n_s64(*(const int64_t *) p));
+#endif
+}
+
+// Load a double-precision (64-bit) floating-point element from memory into the
+// upper element of dst, and copy the lower element from a to dst. mem_addr does
+// not need to be aligned on any particular boundary.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_loadh_pd
+FORCE_INLINE __m128d _mm_loadh_pd(__m128d a, const double *p)
+{
+#if defined(__aarch64__)
+    return vreinterpretq_m128d_f64(
+        vcombine_f64(vget_low_f64(vreinterpretq_f64_m128d(a)), vld1_f64(p)));
+#else
+    return vreinterpretq_m128d_f32(vcombine_f32(
+        vget_low_f32(vreinterpretq_f32_m128d(a)), vld1_f32((const float *) p)));
+#endif
+}
+
+// Load 64-bit integer from memory into the first element of dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_loadl_epi64
+FORCE_INLINE __m128i _mm_loadl_epi64(__m128i const *p)
+{
+    /* Load the lower 64 bits of the value pointed to by p into the
+     * lower 64 bits of the result, zeroing the upper 64 bits of the result.
+     */
+    return vreinterpretq_m128i_s32(
+        vcombine_s32(vld1_s32((int32_t const *) p), vcreate_s32(0)));
+}
+
+// Load a double-precision (64-bit) floating-point element from memory into the
+// lower element of dst, and copy the upper element from a to dst. mem_addr does
+// not need to be aligned on any particular boundary.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_loadl_pd
+FORCE_INLINE __m128d _mm_loadl_pd(__m128d a, const double *p)
+{
+#if defined(__aarch64__)
+    return vreinterpretq_m128d_f64(
+        vcombine_f64(vld1_f64(p), vget_high_f64(vreinterpretq_f64_m128d(a))));
+#else
+    return vreinterpretq_m128d_f32(
+        vcombine_f32(vld1_f32((const float *) p),
+                     vget_high_f32(vreinterpretq_f32_m128d(a))));
+#endif
+}
+
+// Load 2 double-precision (64-bit) floating-point elements from memory into dst
+// in reverse order. mem_addr must be aligned on a 16-byte boundary or a
+// general-protection exception may be generated.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_loadr_pd
+FORCE_INLINE __m128d _mm_loadr_pd(const double *p)
+{
+#if defined(__aarch64__)
+    float64x2_t v = vld1q_f64(p);
+    return vreinterpretq_m128d_f64(vextq_f64(v, v, 1));
+#else
+    int64x2_t v = vld1q_s64((const int64_t *) p);
+    return vreinterpretq_m128d_s64(vextq_s64(v, v, 1));
+#endif
+}
+
+// Loads two double-precision from unaligned memory, floating-point values.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_loadu_pd
+FORCE_INLINE __m128d _mm_loadu_pd(const double *p)
+{
+    return _mm_load_pd(p);
+}
+
+// Load 128-bits of integer data from memory into dst. mem_addr does not need to
+// be aligned on any particular boundary.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_loadu_si128
+FORCE_INLINE __m128i _mm_loadu_si128(const __m128i *p)
+{
+    return vreinterpretq_m128i_s32(vld1q_s32((const int32_t *) p));
+}
+
+// Load unaligned 32-bit integer from memory into the first element of dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_loadu_si32
+FORCE_INLINE __m128i _mm_loadu_si32(const void *p)
+{
+    return vreinterpretq_m128i_s32(
+        vsetq_lane_s32(*(const int32_t *) p, vdupq_n_s32(0), 0));
+}
+
+// Multiply packed signed 16-bit integers in a and b, producing intermediate
+// signed 32-bit integers. Horizontally add adjacent pairs of intermediate
+// 32-bit integers, and pack the results in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_madd_epi16
+FORCE_INLINE __m128i _mm_madd_epi16(__m128i a, __m128i b)
+{
+    int32x4_t low = vmull_s16(vget_low_s16(vreinterpretq_s16_m128i(a)),
+                              vget_low_s16(vreinterpretq_s16_m128i(b)));
+#if defined(__aarch64__)
+    int32x4_t high =
+        vmull_high_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b));
+
+    return vreinterpretq_m128i_s32(vpaddq_s32(low, high));
+#else
+    int32x4_t high = vmull_s16(vget_high_s16(vreinterpretq_s16_m128i(a)),
+                               vget_high_s16(vreinterpretq_s16_m128i(b)));
+
+    int32x2_t low_sum = vpadd_s32(vget_low_s32(low), vget_high_s32(low));
+    int32x2_t high_sum = vpadd_s32(vget_low_s32(high), vget_high_s32(high));
+
+    return vreinterpretq_m128i_s32(vcombine_s32(low_sum, high_sum));
+#endif
+}
+
+// Conditionally store 8-bit integer elements from a into memory using mask
+// (elements are not stored when the highest bit is not set in the corresponding
+// element) and a non-temporal memory hint. mem_addr does not need to be aligned
+// on any particular boundary.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_maskmoveu_si128
+FORCE_INLINE void _mm_maskmoveu_si128(__m128i a, __m128i mask, char *mem_addr)
+{
+    int8x16_t shr_mask = vshrq_n_s8(vreinterpretq_s8_m128i(mask), 7);
+    __m128 b = _mm_load_ps((const float *) mem_addr);
+    int8x16_t masked =
+        vbslq_s8(vreinterpretq_u8_s8(shr_mask), vreinterpretq_s8_m128i(a),
+                 vreinterpretq_s8_m128(b));
+    vst1q_s8((int8_t *) mem_addr, masked);
+}
+
+// Compare packed signed 16-bit integers in a and b, and store packed maximum
+// values in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_max_epi16
+FORCE_INLINE __m128i _mm_max_epi16(__m128i a, __m128i b)
+{
+    return vreinterpretq_m128i_s16(
+        vmaxq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b)));
+}
+
+// Compare packed unsigned 8-bit integers in a and b, and store packed maximum
+// values in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_max_epu8
+FORCE_INLINE __m128i _mm_max_epu8(__m128i a, __m128i b)
+{
+    return vreinterpretq_m128i_u8(
+        vmaxq_u8(vreinterpretq_u8_m128i(a), vreinterpretq_u8_m128i(b)));
+}
+
+// Compare packed double-precision (64-bit) floating-point elements in a and b,
+// and store packed maximum values in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_max_pd
+FORCE_INLINE __m128d _mm_max_pd(__m128d a, __m128d b)
+{
+#if defined(__aarch64__)
+#if SSE2NEON_PRECISE_MINMAX
+    float64x2_t _a = vreinterpretq_f64_m128d(a);
+    float64x2_t _b = vreinterpretq_f64_m128d(b);
+    return vreinterpretq_m128d_f64(vbslq_f64(vcgtq_f64(_a, _b), _a, _b));
+#else
+    return vreinterpretq_m128d_f64(
+        vmaxq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)));
+#endif
+#else
+    uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a));
+    uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a));
+    uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b));
+    uint64_t b1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(b));
+    uint64_t d[2];
+    d[0] = (*(double *) &a0) > (*(double *) &b0) ? a0 : b0;
+    d[1] = (*(double *) &a1) > (*(double *) &b1) ? a1 : b1;
+
+    return vreinterpretq_m128d_u64(vld1q_u64(d));
+#endif
+}
+
+// Compare the lower double-precision (64-bit) floating-point elements in a and
+// b, store the maximum value in the lower element of dst, and copy the upper
+// element from a to the upper element of dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_max_sd
+FORCE_INLINE __m128d _mm_max_sd(__m128d a, __m128d b)
+{
+#if defined(__aarch64__)
+    return _mm_move_sd(a, _mm_max_pd(a, b));
+#else
+    double *da = (double *) &a;
+    double *db = (double *) &b;
+    double c[2] = {da[0] > db[0] ? da[0] : db[0], da[1]};
+    return vreinterpretq_m128d_f32(vld1q_f32((float32_t *) c));
+#endif
+}
+
+// Compare packed signed 16-bit integers in a and b, and store packed minimum
+// values in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_min_epi16
+FORCE_INLINE __m128i _mm_min_epi16(__m128i a, __m128i b)
+{
+    return vreinterpretq_m128i_s16(
+        vminq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b)));
+}
+
+// Compare packed unsigned 8-bit integers in a and b, and store packed minimum
+// values in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_min_epu8
+FORCE_INLINE __m128i _mm_min_epu8(__m128i a, __m128i b)
+{
+    return vreinterpretq_m128i_u8(
+        vminq_u8(vreinterpretq_u8_m128i(a), vreinterpretq_u8_m128i(b)));
+}
+
+// Compare packed double-precision (64-bit) floating-point elements in a and b,
+// and store packed minimum values in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_min_pd
+FORCE_INLINE __m128d _mm_min_pd(__m128d a, __m128d b)
+{
+#if defined(__aarch64__)
+#if SSE2NEON_PRECISE_MINMAX
+    float64x2_t _a = vreinterpretq_f64_m128d(a);
+    float64x2_t _b = vreinterpretq_f64_m128d(b);
+    return vreinterpretq_m128d_f64(vbslq_f64(vcltq_f64(_a, _b), _a, _b));
+#else
+    return vreinterpretq_m128d_f64(
+        vminq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)));
+#endif
+#else
+    uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a));
+    uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a));
+    uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b));
+    uint64_t b1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(b));
+    uint64_t d[2];
+    d[0] = (*(double *) &a0) < (*(double *) &b0) ? a0 : b0;
+    d[1] = (*(double *) &a1) < (*(double *) &b1) ? a1 : b1;
+    return vreinterpretq_m128d_u64(vld1q_u64(d));
+#endif
+}
+
+// Compare the lower double-precision (64-bit) floating-point elements in a and
+// b, store the minimum value in the lower element of dst, and copy the upper
+// element from a to the upper element of dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_min_sd
+FORCE_INLINE __m128d _mm_min_sd(__m128d a, __m128d b)
+{
+#if defined(__aarch64__)
+    return _mm_move_sd(a, _mm_min_pd(a, b));
+#else
+    double *da = (double *) &a;
+    double *db = (double *) &b;
+    double c[2] = {da[0] < db[0] ? da[0] : db[0], da[1]};
+    return vreinterpretq_m128d_f32(vld1q_f32((float32_t *) c));
+#endif
+}
+
+// Copy the lower 64-bit integer in a to the lower element of dst, and zero the
+// upper element.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_move_epi64
+FORCE_INLINE __m128i _mm_move_epi64(__m128i a)
+{
+    return vreinterpretq_m128i_s64(
+        vsetq_lane_s64(0, vreinterpretq_s64_m128i(a), 1));
+}
+
+// Move the lower double-precision (64-bit) floating-point element from b to the
+// lower element of dst, and copy the upper element from a to the upper element
+// of dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_move_sd
+FORCE_INLINE __m128d _mm_move_sd(__m128d a, __m128d b)
+{
+    return vreinterpretq_m128d_f32(
+        vcombine_f32(vget_low_f32(vreinterpretq_f32_m128d(b)),
+                     vget_high_f32(vreinterpretq_f32_m128d(a))));
+}
+
+// Create mask from the most significant bit of each 8-bit element in a, and
+// store the result in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_movemask_epi8
+FORCE_INLINE int _mm_movemask_epi8(__m128i a)
+{
+    // Use increasingly wide shifts+adds to collect the sign bits
+    // together.
+    // Since the widening shifts would be rather confusing to follow in little
+    // endian, everything will be illustrated in big endian order instead. This
+    // has a different result - the bits would actually be reversed on a big
+    // endian machine.
+
+    // Starting input (only half the elements are shown):
+    // 89 ff 1d c0 00 10 99 33
+    uint8x16_t input = vreinterpretq_u8_m128i(a);
+
+    // Shift out everything but the sign bits with an unsigned shift right.
+    //
+    // Bytes of the vector::
+    // 89 ff 1d c0 00 10 99 33
+    // \  \  \  \  \  \  \  \    high_bits = (uint16x4_t)(input >> 7)
+    //  |  |  |  |  |  |  |  |
+    // 01 01 00 01 00 00 01 00
+    //
+    // Bits of first important lane(s):
+    // 10001001 (89)
+    // \______
+    //        |
+    // 00000001 (01)
+    uint16x8_t high_bits = vreinterpretq_u16_u8(vshrq_n_u8(input, 7));
+
+    // Merge the even lanes together with a 16-bit unsigned shift right + add.
+    // 'xx' represents garbage data which will be ignored in the final result.
+    // In the important bytes, the add functions like a binary OR.
+    //
+    // 01 01 00 01 00 00 01 00
+    //  \_ |  \_ |  \_ |  \_ |   paired16 = (uint32x4_t)(input + (input >> 7))
+    //    \|    \|    \|    \|
+    // xx 03 xx 01 xx 00 xx 02
+    //
+    // 00000001 00000001 (01 01)
+    //        \_______ |
+    //                \|
+    // xxxxxxxx xxxxxx11 (xx 03)
+    uint32x4_t paired16 =
+        vreinterpretq_u32_u16(vsraq_n_u16(high_bits, high_bits, 7));
+
+    // Repeat with a wider 32-bit shift + add.
+    // xx 03 xx 01 xx 00 xx 02
+    //     \____ |     \____ |  paired32 = (uint64x1_t)(paired16 + (paired16 >>
+    //     14))
+    //          \|          \|
+    // xx xx xx 0d xx xx xx 02
+    //
+    // 00000011 00000001 (03 01)
+    //        \\_____ ||
+    //         '----.\||
+    // xxxxxxxx xxxx1101 (xx 0d)
+    uint64x2_t paired32 =
+        vreinterpretq_u64_u32(vsraq_n_u32(paired16, paired16, 14));
+
+    // Last, an even wider 64-bit shift + add to get our result in the low 8 bit
+    // lanes. xx xx xx 0d xx xx xx 02
+    //            \_________ |   paired64 = (uint8x8_t)(paired32 + (paired32 >>
+    //            28))
+    //                      \|
+    // xx xx xx xx xx xx xx d2
+    //
+    // 00001101 00000010 (0d 02)
+    //     \   \___ |  |
+    //      '---.  \|  |
+    // xxxxxxxx 11010010 (xx d2)
+    uint8x16_t paired64 =
+        vreinterpretq_u8_u64(vsraq_n_u64(paired32, paired32, 28));
+
+    // Extract the low 8 bits from each 64-bit lane with 2 8-bit extracts.
+    // xx xx xx xx xx xx xx d2
+    //                      ||  return paired64[0]
+    //                      d2
+    // Note: Little endian would return the correct value 4b (01001011) instead.
+    return vgetq_lane_u8(paired64, 0) | ((int) vgetq_lane_u8(paired64, 8) << 8);
+}
+
+// Set each bit of mask dst based on the most significant bit of the
+// corresponding packed double-precision (64-bit) floating-point element in a.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_movemask_pd
+FORCE_INLINE int _mm_movemask_pd(__m128d a)
+{
+    uint64x2_t input = vreinterpretq_u64_m128d(a);
+    uint64x2_t high_bits = vshrq_n_u64(input, 63);
+    return vgetq_lane_u64(high_bits, 0) | (vgetq_lane_u64(high_bits, 1) << 1);
+}
+
+// Copy the lower 64-bit integer in a to dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_movepi64_pi64
+FORCE_INLINE __m64 _mm_movepi64_pi64(__m128i a)
+{
+    return vreinterpret_m64_s64(vget_low_s64(vreinterpretq_s64_m128i(a)));
+}
+
+// Copy the 64-bit integer a to the lower element of dst, and zero the upper
+// element.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_movpi64_epi64
+FORCE_INLINE __m128i _mm_movpi64_epi64(__m64 a)
+{
+    return vreinterpretq_m128i_s64(
+        vcombine_s64(vreinterpret_s64_m64(a), vdup_n_s64(0)));
+}
+
+// Multiply the low unsigned 32-bit integers from each packed 64-bit element in
+// a and b, and store the unsigned 64-bit results in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mul_epu32
+FORCE_INLINE __m128i _mm_mul_epu32(__m128i a, __m128i b)
+{
+    // vmull_u32 upcasts instead of masking, so we downcast.
+    uint32x2_t a_lo = vmovn_u64(vreinterpretq_u64_m128i(a));
+    uint32x2_t b_lo = vmovn_u64(vreinterpretq_u64_m128i(b));
+    return vreinterpretq_m128i_u64(vmull_u32(a_lo, b_lo));
+}
+
+// Multiply packed double-precision (64-bit) floating-point elements in a and b,
+// and store the results in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mul_pd
+FORCE_INLINE __m128d _mm_mul_pd(__m128d a, __m128d b)
+{
+#if defined(__aarch64__)
+    return vreinterpretq_m128d_f64(
+        vmulq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)));
+#else
+    double *da = (double *) &a;
+    double *db = (double *) &b;
+    double c[2];
+    c[0] = da[0] * db[0];
+    c[1] = da[1] * db[1];
+    return vld1q_f32((float32_t *) c);
+#endif
+}
+
+// Multiply the lower double-precision (64-bit) floating-point element in a and
+// b, store the result in the lower element of dst, and copy the upper element
+// from a to the upper element of dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=mm_mul_sd
+FORCE_INLINE __m128d _mm_mul_sd(__m128d a, __m128d b)
+{
+    return _mm_move_sd(a, _mm_mul_pd(a, b));
+}
+
+// Multiply the low unsigned 32-bit integers from a and b, and store the
+// unsigned 64-bit result in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mul_su32
+FORCE_INLINE __m64 _mm_mul_su32(__m64 a, __m64 b)
+{
+    return vreinterpret_m64_u64(vget_low_u64(
+        vmull_u32(vreinterpret_u32_m64(a), vreinterpret_u32_m64(b))));
+}
+
+// Multiply the packed signed 16-bit integers in a and b, producing intermediate
+// 32-bit integers, and store the high 16 bits of the intermediate integers in
+// dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mulhi_epi16
+FORCE_INLINE __m128i _mm_mulhi_epi16(__m128i a, __m128i b)
+{
+    /* FIXME: issue with large values because of result saturation */
+    // int16x8_t ret = vqdmulhq_s16(vreinterpretq_s16_m128i(a),
+    // vreinterpretq_s16_m128i(b)); /* =2*a*b */ return
+    // vreinterpretq_m128i_s16(vshrq_n_s16(ret, 1));
+    int16x4_t a3210 = vget_low_s16(vreinterpretq_s16_m128i(a));
+    int16x4_t b3210 = vget_low_s16(vreinterpretq_s16_m128i(b));
+    int32x4_t ab3210 = vmull_s16(a3210, b3210); /* 3333222211110000 */
+    int16x4_t a7654 = vget_high_s16(vreinterpretq_s16_m128i(a));
+    int16x4_t b7654 = vget_high_s16(vreinterpretq_s16_m128i(b));
+    int32x4_t ab7654 = vmull_s16(a7654, b7654); /* 7777666655554444 */
+    uint16x8x2_t r =
+        vuzpq_u16(vreinterpretq_u16_s32(ab3210), vreinterpretq_u16_s32(ab7654));
+    return vreinterpretq_m128i_u16(r.val[1]);
+}
+
+// Multiply the packed unsigned 16-bit integers in a and b, producing
+// intermediate 32-bit integers, and store the high 16 bits of the intermediate
+// integers in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mulhi_epu16
+FORCE_INLINE __m128i _mm_mulhi_epu16(__m128i a, __m128i b)
+{
+    uint16x4_t a3210 = vget_low_u16(vreinterpretq_u16_m128i(a));
+    uint16x4_t b3210 = vget_low_u16(vreinterpretq_u16_m128i(b));
+    uint32x4_t ab3210 = vmull_u16(a3210, b3210);
+#if defined(__aarch64__)
+    uint32x4_t ab7654 =
+        vmull_high_u16(vreinterpretq_u16_m128i(a), vreinterpretq_u16_m128i(b));
+    uint16x8_t r = vuzp2q_u16(vreinterpretq_u16_u32(ab3210),
+                              vreinterpretq_u16_u32(ab7654));
+    return vreinterpretq_m128i_u16(r);
+#else
+    uint16x4_t a7654 = vget_high_u16(vreinterpretq_u16_m128i(a));
+    uint16x4_t b7654 = vget_high_u16(vreinterpretq_u16_m128i(b));
+    uint32x4_t ab7654 = vmull_u16(a7654, b7654);
+    uint16x8x2_t r =
+        vuzpq_u16(vreinterpretq_u16_u32(ab3210), vreinterpretq_u16_u32(ab7654));
+    return vreinterpretq_m128i_u16(r.val[1]);
+#endif
+}
+
+// Multiply the packed 16-bit integers in a and b, producing intermediate 32-bit
+// integers, and store the low 16 bits of the intermediate integers in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mullo_epi16
+FORCE_INLINE __m128i _mm_mullo_epi16(__m128i a, __m128i b)
+{
+    return vreinterpretq_m128i_s16(
+        vmulq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b)));
+}
+
+// Compute the bitwise OR of packed double-precision (64-bit) floating-point
+// elements in a and b, and store the results in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=mm_or_pd
+FORCE_INLINE __m128d _mm_or_pd(__m128d a, __m128d b)
+{
+    return vreinterpretq_m128d_s64(
+        vorrq_s64(vreinterpretq_s64_m128d(a), vreinterpretq_s64_m128d(b)));
+}
+
+// Compute the bitwise OR of 128 bits (representing integer data) in a and b,
+// and store the result in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_or_si128
+FORCE_INLINE __m128i _mm_or_si128(__m128i a, __m128i b)
+{
+    return vreinterpretq_m128i_s32(
+        vorrq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b)));
+}
+
+// Convert packed signed 16-bit integers from a and b to packed 8-bit integers
+// using signed saturation, and store the results in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_packs_epi16
+FORCE_INLINE __m128i _mm_packs_epi16(__m128i a, __m128i b)
+{
+    return vreinterpretq_m128i_s8(
+        vcombine_s8(vqmovn_s16(vreinterpretq_s16_m128i(a)),
+                    vqmovn_s16(vreinterpretq_s16_m128i(b))));
+}
+
+// Convert packed signed 32-bit integers from a and b to packed 16-bit integers
+// using signed saturation, and store the results in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_packs_epi32
+FORCE_INLINE __m128i _mm_packs_epi32(__m128i a, __m128i b)
+{
+    return vreinterpretq_m128i_s16(
+        vcombine_s16(vqmovn_s32(vreinterpretq_s32_m128i(a)),
+                     vqmovn_s32(vreinterpretq_s32_m128i(b))));
+}
+
+// Convert packed signed 16-bit integers from a and b to packed 8-bit integers
+// using unsigned saturation, and store the results in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_packus_epi16
+FORCE_INLINE __m128i _mm_packus_epi16(const __m128i a, const __m128i b)
+{
+    return vreinterpretq_m128i_u8(
+        vcombine_u8(vqmovun_s16(vreinterpretq_s16_m128i(a)),
+                    vqmovun_s16(vreinterpretq_s16_m128i(b))));
+}
+
+// Pause the processor. This is typically used in spin-wait loops and depending
+// on the x86 processor typical values are in the 40-100 cycle range. The
+// 'yield' instruction isn't a good fit because it's effectively a nop on most
+// Arm cores. Experience with several databases has shown has shown an 'isb' is
+// a reasonable approximation.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_pause
+FORCE_INLINE void _mm_pause()
+{
+    __asm__ __volatile__("isb\n");
+}
+
+// Compute the absolute differences of packed unsigned 8-bit integers in a and
+// b, then horizontally sum each consecutive 8 differences to produce two
+// unsigned 16-bit integers, and pack these unsigned 16-bit integers in the low
+// 16 bits of 64-bit elements in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sad_epu8
+FORCE_INLINE __m128i _mm_sad_epu8(__m128i a, __m128i b)
+{
+    uint16x8_t t = vpaddlq_u8(vabdq_u8((uint8x16_t) a, (uint8x16_t) b));
+    return vreinterpretq_m128i_u64(vpaddlq_u32(vpaddlq_u16(t)));
+}
+
+// Set packed 16-bit integers in dst with the supplied values.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set_epi16
+FORCE_INLINE __m128i _mm_set_epi16(short i7,
+                                   short i6,
+                                   short i5,
+                                   short i4,
+                                   short i3,
+                                   short i2,
+                                   short i1,
+                                   short i0)
+{
+    int16_t ALIGN_STRUCT(16) data[8] = {i0, i1, i2, i3, i4, i5, i6, i7};
+    return vreinterpretq_m128i_s16(vld1q_s16(data));
+}
+
+// Set packed 32-bit integers in dst with the supplied values.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set_epi32
+FORCE_INLINE __m128i _mm_set_epi32(int i3, int i2, int i1, int i0)
+{
+    int32_t ALIGN_STRUCT(16) data[4] = {i0, i1, i2, i3};
+    return vreinterpretq_m128i_s32(vld1q_s32(data));
+}
+
+// Set packed 64-bit integers in dst with the supplied values.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set_epi64
+FORCE_INLINE __m128i _mm_set_epi64(__m64 i1, __m64 i2)
+{
+    return _mm_set_epi64x((int64_t) i1, (int64_t) i2);
+}
+
+// Set packed 64-bit integers in dst with the supplied values.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set_epi64x
+FORCE_INLINE __m128i _mm_set_epi64x(int64_t i1, int64_t i2)
+{
+    return vreinterpretq_m128i_s64(
+        vcombine_s64(vcreate_s64(i2), vcreate_s64(i1)));
+}
+
+// Set packed 8-bit integers in dst with the supplied values.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set_epi8
+FORCE_INLINE __m128i _mm_set_epi8(signed char b15,
+                                  signed char b14,
+                                  signed char b13,
+                                  signed char b12,
+                                  signed char b11,
+                                  signed char b10,
+                                  signed char b9,
+                                  signed char b8,
+                                  signed char b7,
+                                  signed char b6,
+                                  signed char b5,
+                                  signed char b4,
+                                  signed char b3,
+                                  signed char b2,
+                                  signed char b1,
+                                  signed char b0)
+{
+    int8_t ALIGN_STRUCT(16)
+        data[16] = {(int8_t) b0,  (int8_t) b1,  (int8_t) b2,  (int8_t) b3,
+                    (int8_t) b4,  (int8_t) b5,  (int8_t) b6,  (int8_t) b7,
+                    (int8_t) b8,  (int8_t) b9,  (int8_t) b10, (int8_t) b11,
+                    (int8_t) b12, (int8_t) b13, (int8_t) b14, (int8_t) b15};
+    return (__m128i) vld1q_s8(data);
+}
+
+// Set packed double-precision (64-bit) floating-point elements in dst with the
+// supplied values.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set_pd
+FORCE_INLINE __m128d _mm_set_pd(double e1, double e0)
+{
+    double ALIGN_STRUCT(16) data[2] = {e0, e1};
+#if defined(__aarch64__)
+    return vreinterpretq_m128d_f64(vld1q_f64((float64_t *) data));
+#else
+    return vreinterpretq_m128d_f32(vld1q_f32((float32_t *) data));
+#endif
+}
+
+// Broadcast double-precision (64-bit) floating-point value a to all elements of
+// dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set_pd1
+#define _mm_set_pd1 _mm_set1_pd
+
+// Copy double-precision (64-bit) floating-point element a to the lower element
+// of dst, and zero the upper element.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set_sd
+FORCE_INLINE __m128d _mm_set_sd(double a)
+{
+#if defined(__aarch64__)
+    return vreinterpretq_m128d_f64(vsetq_lane_f64(a, vdupq_n_f64(0), 0));
+#else
+    return _mm_set_pd(0, a);
+#endif
+}
+
+// Broadcast 16-bit integer a to all all elements of dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set1_epi16
+FORCE_INLINE __m128i _mm_set1_epi16(short w)
+{
+    return vreinterpretq_m128i_s16(vdupq_n_s16(w));
+}
+
+// Broadcast 32-bit integer a to all elements of dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set1_epi32
+FORCE_INLINE __m128i _mm_set1_epi32(int _i)
+{
+    return vreinterpretq_m128i_s32(vdupq_n_s32(_i));
+}
+
+// Broadcast 64-bit integer a to all elements of dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set1_epi64
+FORCE_INLINE __m128i _mm_set1_epi64(__m64 _i)
+{
+    return vreinterpretq_m128i_s64(vdupq_n_s64((int64_t) _i));
+}
+
+// Broadcast 64-bit integer a to all elements of dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set1_epi64x
+FORCE_INLINE __m128i _mm_set1_epi64x(int64_t _i)
+{
+    return vreinterpretq_m128i_s64(vdupq_n_s64(_i));
+}
+
+// Broadcast 8-bit integer a to all elements of dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set1_epi8
+FORCE_INLINE __m128i _mm_set1_epi8(signed char w)
+{
+    return vreinterpretq_m128i_s8(vdupq_n_s8(w));
+}
+
+// Broadcast double-precision (64-bit) floating-point value a to all elements of
+// dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set1_pd
+FORCE_INLINE __m128d _mm_set1_pd(double d)
+{
+#if defined(__aarch64__)
+    return vreinterpretq_m128d_f64(vdupq_n_f64(d));
+#else
+    return vreinterpretq_m128d_s64(vdupq_n_s64(*(int64_t *) &d));
+#endif
+}
+
+// Set packed 16-bit integers in dst with the supplied values in reverse order.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_setr_epi16
+FORCE_INLINE __m128i _mm_setr_epi16(short w0,
+                                    short w1,
+                                    short w2,
+                                    short w3,
+                                    short w4,
+                                    short w5,
+                                    short w6,
+                                    short w7)
+{
+    int16_t ALIGN_STRUCT(16) data[8] = {w0, w1, w2, w3, w4, w5, w6, w7};
+    return vreinterpretq_m128i_s16(vld1q_s16((int16_t *) data));
+}
+
+// Set packed 32-bit integers in dst with the supplied values in reverse order.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_setr_epi32
+FORCE_INLINE __m128i _mm_setr_epi32(int i3, int i2, int i1, int i0)
+{
+    int32_t ALIGN_STRUCT(16) data[4] = {i3, i2, i1, i0};
+    return vreinterpretq_m128i_s32(vld1q_s32(data));
+}
+
+// Set packed 64-bit integers in dst with the supplied values in reverse order.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_setr_epi64
+FORCE_INLINE __m128i _mm_setr_epi64(__m64 e1, __m64 e0)
+{
+    return vreinterpretq_m128i_s64(vcombine_s64(e1, e0));
+}
+
+// Set packed 8-bit integers in dst with the supplied values in reverse order.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_setr_epi8
+FORCE_INLINE __m128i _mm_setr_epi8(signed char b0,
+                                   signed char b1,
+                                   signed char b2,
+                                   signed char b3,
+                                   signed char b4,
+                                   signed char b5,
+                                   signed char b6,
+                                   signed char b7,
+                                   signed char b8,
+                                   signed char b9,
+                                   signed char b10,
+                                   signed char b11,
+                                   signed char b12,
+                                   signed char b13,
+                                   signed char b14,
+                                   signed char b15)
+{
+    int8_t ALIGN_STRUCT(16)
+        data[16] = {(int8_t) b0,  (int8_t) b1,  (int8_t) b2,  (int8_t) b3,
+                    (int8_t) b4,  (int8_t) b5,  (int8_t) b6,  (int8_t) b7,
+                    (int8_t) b8,  (int8_t) b9,  (int8_t) b10, (int8_t) b11,
+                    (int8_t) b12, (int8_t) b13, (int8_t) b14, (int8_t) b15};
+    return (__m128i) vld1q_s8(data);
+}
+
+// Set packed double-precision (64-bit) floating-point elements in dst with the
+// supplied values in reverse order.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_setr_pd
+FORCE_INLINE __m128d _mm_setr_pd(double e1, double e0)
+{
+    return _mm_set_pd(e0, e1);
+}
+
+// Return vector of type __m128d with all elements set to zero.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_setzero_pd
+FORCE_INLINE __m128d _mm_setzero_pd(void)
+{
+#if defined(__aarch64__)
+    return vreinterpretq_m128d_f64(vdupq_n_f64(0));
+#else
+    return vreinterpretq_m128d_f32(vdupq_n_f32(0));
+#endif
+}
+
+// Return vector of type __m128i with all elements set to zero.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_setzero_si128
+FORCE_INLINE __m128i _mm_setzero_si128(void)
+{
+    return vreinterpretq_m128i_s32(vdupq_n_s32(0));
+}
+
+// Shuffle 32-bit integers in a using the control in imm8, and store the results
+// in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_shuffle_epi32
+// FORCE_INLINE __m128i _mm_shuffle_epi32(__m128i a,
+//                                        __constrange(0,255) int imm)
+#ifdef _sse2neon_shuffle
+#define _mm_shuffle_epi32(a, imm)                                            \
+    __extension__({                                                          \
+        int32x4_t _input = vreinterpretq_s32_m128i(a);                       \
+        int32x4_t _shuf =                                                    \
+            vshuffleq_s32(_input, _input, (imm) & (0x3), ((imm) >> 2) & 0x3, \
+                          ((imm) >> 4) & 0x3, ((imm) >> 6) & 0x3);           \
+        vreinterpretq_m128i_s32(_shuf);                                      \
+    })
+#else  // generic
+#define _mm_shuffle_epi32(a, imm)                        \
+    __extension__({                                      \
+        __m128i ret;                                     \
+        switch (imm) {                                   \
+        case _MM_SHUFFLE(1, 0, 3, 2):                    \
+            ret = _mm_shuffle_epi_1032((a));             \
+            break;                                       \
+        case _MM_SHUFFLE(2, 3, 0, 1):                    \
+            ret = _mm_shuffle_epi_2301((a));             \
+            break;                                       \
+        case _MM_SHUFFLE(0, 3, 2, 1):                    \
+            ret = _mm_shuffle_epi_0321((a));             \
+            break;                                       \
+        case _MM_SHUFFLE(2, 1, 0, 3):                    \
+            ret = _mm_shuffle_epi_2103((a));             \
+            break;                                       \
+        case _MM_SHUFFLE(1, 0, 1, 0):                    \
+            ret = _mm_shuffle_epi_1010((a));             \
+            break;                                       \
+        case _MM_SHUFFLE(1, 0, 0, 1):                    \
+            ret = _mm_shuffle_epi_1001((a));             \
+            break;                                       \
+        case _MM_SHUFFLE(0, 1, 0, 1):                    \
+            ret = _mm_shuffle_epi_0101((a));             \
+            break;                                       \
+        case _MM_SHUFFLE(2, 2, 1, 1):                    \
+            ret = _mm_shuffle_epi_2211((a));             \
+            break;                                       \
+        case _MM_SHUFFLE(0, 1, 2, 2):                    \
+            ret = _mm_shuffle_epi_0122((a));             \
+            break;                                       \
+        case _MM_SHUFFLE(3, 3, 3, 2):                    \
+            ret = _mm_shuffle_epi_3332((a));             \
+            break;                                       \
+        case _MM_SHUFFLE(0, 0, 0, 0):                    \
+            ret = _mm_shuffle_epi32_splat((a), 0);       \
+            break;                                       \
+        case _MM_SHUFFLE(1, 1, 1, 1):                    \
+            ret = _mm_shuffle_epi32_splat((a), 1);       \
+            break;                                       \
+        case _MM_SHUFFLE(2, 2, 2, 2):                    \
+            ret = _mm_shuffle_epi32_splat((a), 2);       \
+            break;                                       \
+        case _MM_SHUFFLE(3, 3, 3, 3):                    \
+            ret = _mm_shuffle_epi32_splat((a), 3);       \
+            break;                                       \
+        default:                                         \
+            ret = _mm_shuffle_epi32_default((a), (imm)); \
+            break;                                       \
+        }                                                \
+        ret;                                             \
+    })
+#endif
+
+// Shuffle double-precision (64-bit) floating-point elements using the control
+// in imm8, and store the results in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_shuffle_pd
+#ifdef _sse2neon_shuffle
+#define _mm_shuffle_pd(a, b, imm8)                                            \
+    vreinterpretq_m128d_s64(                                                  \
+        vshuffleq_s64(vreinterpretq_s64_m128d(a), vreinterpretq_s64_m128d(b), \
+                      imm8 & 0x1, ((imm8 & 0x2) >> 1) + 2))
+#else
+#define _mm_shuffle_pd(a, b, imm8)                                     \
+    _mm_castsi128_pd(_mm_set_epi64x(                                   \
+        vgetq_lane_s64(vreinterpretq_s64_m128d(b), (imm8 & 0x2) >> 1), \
+        vgetq_lane_s64(vreinterpretq_s64_m128d(a), imm8 & 0x1)))
+#endif
+
+// FORCE_INLINE __m128i _mm_shufflehi_epi16(__m128i a,
+//                                          __constrange(0,255) int imm)
+#ifdef _sse2neon_shuffle
+#define _mm_shufflehi_epi16(a, imm)                                           \
+    __extension__({                                                           \
+        int16x8_t _input = vreinterpretq_s16_m128i(a);                        \
+        int16x8_t _shuf =                                                     \
+            vshuffleq_s16(_input, _input, 0, 1, 2, 3, ((imm) & (0x3)) + 4,    \
+                          (((imm) >> 2) & 0x3) + 4, (((imm) >> 4) & 0x3) + 4, \
+                          (((imm) >> 6) & 0x3) + 4);                          \
+        vreinterpretq_m128i_s16(_shuf);                                       \
+    })
+#else  // generic
+#define _mm_shufflehi_epi16(a, imm) _mm_shufflehi_epi16_function((a), (imm))
+#endif
+
+// FORCE_INLINE __m128i _mm_shufflelo_epi16(__m128i a,
+//                                          __constrange(0,255) int imm)
+#ifdef _sse2neon_shuffle
+#define _mm_shufflelo_epi16(a, imm)                                  \
+    __extension__({                                                  \
+        int16x8_t _input = vreinterpretq_s16_m128i(a);               \
+        int16x8_t _shuf = vshuffleq_s16(                             \
+            _input, _input, ((imm) & (0x3)), (((imm) >> 2) & 0x3),   \
+            (((imm) >> 4) & 0x3), (((imm) >> 6) & 0x3), 4, 5, 6, 7); \
+        vreinterpretq_m128i_s16(_shuf);                              \
+    })
+#else  // generic
+#define _mm_shufflelo_epi16(a, imm) _mm_shufflelo_epi16_function((a), (imm))
+#endif
+
+// Shift packed 16-bit integers in a left by count while shifting in zeros, and
+// store the results in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sll_epi16
+FORCE_INLINE __m128i _mm_sll_epi16(__m128i a, __m128i count)
+{
+    uint64_t c = vreinterpretq_nth_u64_m128i(count, 0);
+    if (_sse2neon_unlikely(c & ~15))
+        return _mm_setzero_si128();
+
+    int16x8_t vc = vdupq_n_s16((int16_t) c);
+    return vreinterpretq_m128i_s16(vshlq_s16(vreinterpretq_s16_m128i(a), vc));
+}
+
+// Shift packed 32-bit integers in a left by count while shifting in zeros, and
+// store the results in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sll_epi32
+FORCE_INLINE __m128i _mm_sll_epi32(__m128i a, __m128i count)
+{
+    uint64_t c = vreinterpretq_nth_u64_m128i(count, 0);
+    if (_sse2neon_unlikely(c & ~31))
+        return _mm_setzero_si128();
+
+    int32x4_t vc = vdupq_n_s32((int32_t) c);
+    return vreinterpretq_m128i_s32(vshlq_s32(vreinterpretq_s32_m128i(a), vc));
+}
+
+// Shift packed 64-bit integers in a left by count while shifting in zeros, and
+// store the results in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sll_epi64
+FORCE_INLINE __m128i _mm_sll_epi64(__m128i a, __m128i count)
+{
+    uint64_t c = vreinterpretq_nth_u64_m128i(count, 0);
+    if (_sse2neon_unlikely(c & ~63))
+        return _mm_setzero_si128();
+
+    int64x2_t vc = vdupq_n_s64((int64_t) c);
+    return vreinterpretq_m128i_s64(vshlq_s64(vreinterpretq_s64_m128i(a), vc));
+}
+
+// Shift packed 16-bit integers in a left by imm8 while shifting in zeros, and
+// store the results in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_slli_epi16
+FORCE_INLINE __m128i _mm_slli_epi16(__m128i a, int imm)
+{
+    if (_sse2neon_unlikely(imm & ~15))
+        return _mm_setzero_si128();
+    return vreinterpretq_m128i_s16(
+        vshlq_s16(vreinterpretq_s16_m128i(a), vdupq_n_s16(imm)));
+}
+
+// Shift packed 32-bit integers in a left by imm8 while shifting in zeros, and
+// store the results in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_slli_epi32
+FORCE_INLINE __m128i _mm_slli_epi32(__m128i a, int imm)
+{
+    if (_sse2neon_unlikely(imm & ~31))
+        return _mm_setzero_si128();
+    return vreinterpretq_m128i_s32(
+        vshlq_s32(vreinterpretq_s32_m128i(a), vdupq_n_s32(imm)));
+}
+
+// Shift packed 64-bit integers in a left by imm8 while shifting in zeros, and
+// store the results in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_slli_epi64
+FORCE_INLINE __m128i _mm_slli_epi64(__m128i a, int imm)
+{
+    if (_sse2neon_unlikely(imm & ~63))
+        return _mm_setzero_si128();
+    return vreinterpretq_m128i_s64(
+        vshlq_s64(vreinterpretq_s64_m128i(a), vdupq_n_s64(imm)));
+}
+
+// Shift a left by imm8 bytes while shifting in zeros, and store the results in
+// dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_slli_si128
+#define _mm_slli_si128(a, imm)                                         \
+    __extension__({                                                    \
+        int8x16_t ret;                                                 \
+        if (_sse2neon_unlikely(imm == 0))                              \
+            ret = vreinterpretq_s8_m128i(a);                           \
+        else if (_sse2neon_unlikely((imm) & ~15))                      \
+            ret = vdupq_n_s8(0);                                       \
+        else                                                           \
+            ret = vextq_s8(vdupq_n_s8(0), vreinterpretq_s8_m128i(a),   \
+                           ((imm <= 0 || imm > 15) ? 0 : (16 - imm))); \
+        vreinterpretq_m128i_s8(ret);                                   \
+    })
+
+// Compute the square root of packed double-precision (64-bit) floating-point
+// elements in a, and store the results in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sqrt_pd
+FORCE_INLINE __m128d _mm_sqrt_pd(__m128d a)
+{
+#if defined(__aarch64__)
+    return vreinterpretq_m128d_f64(vsqrtq_f64(vreinterpretq_f64_m128d(a)));
+#else
+    double a0 = sqrt(((double *) &a)[0]);
+    double a1 = sqrt(((double *) &a)[1]);
+    return _mm_set_pd(a1, a0);
+#endif
+}
+
+// Compute the square root of the lower double-precision (64-bit) floating-point
+// element in b, store the result in the lower element of dst, and copy the
+// upper element from a to the upper element of dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sqrt_sd
+FORCE_INLINE __m128d _mm_sqrt_sd(__m128d a, __m128d b)
+{
+#if defined(__aarch64__)
+    return _mm_move_sd(a, _mm_sqrt_pd(b));
+#else
+    return _mm_set_pd(((double *) &a)[1], sqrt(((double *) &b)[0]));
+#endif
+}
+
+// Shift packed 16-bit integers in a right by count while shifting in sign bits,
+// and store the results in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sra_epi16
+FORCE_INLINE __m128i _mm_sra_epi16(__m128i a, __m128i count)
+{
+    int64_t c = (int64_t) vget_low_s64((int64x2_t) count);
+    if (_sse2neon_unlikely(c & ~15))
+        return _mm_cmplt_epi16(a, _mm_setzero_si128());
+    return vreinterpretq_m128i_s16(vshlq_s16((int16x8_t) a, vdupq_n_s16(-c)));
+}
+
+// Shift packed 32-bit integers in a right by count while shifting in sign bits,
+// and store the results in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sra_epi32
+FORCE_INLINE __m128i _mm_sra_epi32(__m128i a, __m128i count)
+{
+    int64_t c = (int64_t) vget_low_s64((int64x2_t) count);
+    if (_sse2neon_unlikely(c & ~31))
+        return _mm_cmplt_epi32(a, _mm_setzero_si128());
+    return vreinterpretq_m128i_s32(vshlq_s32((int32x4_t) a, vdupq_n_s32(-c)));
+}
+
+// Shift packed 16-bit integers in a right by imm8 while shifting in sign
+// bits, and store the results in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_srai_epi16
+FORCE_INLINE __m128i _mm_srai_epi16(__m128i a, int imm)
+{
+    const int count = (imm & ~15) ? 15 : imm;
+    return (__m128i) vshlq_s16((int16x8_t) a, vdupq_n_s16(-count));
+}
+
+// Shift packed 32-bit integers in a right by imm8 while shifting in sign bits,
+// and store the results in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_srai_epi32
+// FORCE_INLINE __m128i _mm_srai_epi32(__m128i a, __constrange(0,255) int imm)
+#define _mm_srai_epi32(a, imm)                                               \
+    __extension__({                                                          \
+        __m128i ret;                                                         \
+        if (_sse2neon_unlikely((imm) == 0)) {                                \
+            ret = a;                                                         \
+        } else if (_sse2neon_likely(0 < (imm) && (imm) < 32)) {              \
+            ret = vreinterpretq_m128i_s32(                                   \
+                vshlq_s32(vreinterpretq_s32_m128i(a), vdupq_n_s32(-(imm)))); \
+        } else {                                                             \
+            ret = vreinterpretq_m128i_s32(                                   \
+                vshrq_n_s32(vreinterpretq_s32_m128i(a), 31));                \
+        }                                                                    \
+        ret;                                                                 \
+    })
+
+// Shift packed 16-bit integers in a right by count while shifting in zeros, and
+// store the results in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_srl_epi16
+FORCE_INLINE __m128i _mm_srl_epi16(__m128i a, __m128i count)
+{
+    uint64_t c = vreinterpretq_nth_u64_m128i(count, 0);
+    if (_sse2neon_unlikely(c & ~15))
+        return _mm_setzero_si128();
+
+    int16x8_t vc = vdupq_n_s16(-(int16_t) c);
+    return vreinterpretq_m128i_u16(vshlq_u16(vreinterpretq_u16_m128i(a), vc));
+}
+
+// Shift packed 32-bit integers in a right by count while shifting in zeros, and
+// store the results in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_srl_epi32
+FORCE_INLINE __m128i _mm_srl_epi32(__m128i a, __m128i count)
+{
+    uint64_t c = vreinterpretq_nth_u64_m128i(count, 0);
+    if (_sse2neon_unlikely(c & ~31))
+        return _mm_setzero_si128();
+
+    int32x4_t vc = vdupq_n_s32(-(int32_t) c);
+    return vreinterpretq_m128i_u32(vshlq_u32(vreinterpretq_u32_m128i(a), vc));
+}
+
+// Shift packed 64-bit integers in a right by count while shifting in zeros, and
+// store the results in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_srl_epi64
+FORCE_INLINE __m128i _mm_srl_epi64(__m128i a, __m128i count)
+{
+    uint64_t c = vreinterpretq_nth_u64_m128i(count, 0);
+    if (_sse2neon_unlikely(c & ~63))
+        return _mm_setzero_si128();
+
+    int64x2_t vc = vdupq_n_s64(-(int64_t) c);
+    return vreinterpretq_m128i_u64(vshlq_u64(vreinterpretq_u64_m128i(a), vc));
+}
+
+// Shift packed 16-bit integers in a right by imm8 while shifting in zeros, and
+// store the results in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_srli_epi16
+#define _mm_srli_epi16(a, imm)                                               \
+    __extension__({                                                          \
+        __m128i ret;                                                         \
+        if (_sse2neon_unlikely((imm) & ~15)) {                               \
+            ret = _mm_setzero_si128();                                       \
+        } else {                                                             \
+            ret = vreinterpretq_m128i_u16(                                   \
+                vshlq_u16(vreinterpretq_u16_m128i(a), vdupq_n_s16(-(imm)))); \
+        }                                                                    \
+        ret;                                                                 \
+    })
+
+// Shift packed 32-bit integers in a right by imm8 while shifting in zeros, and
+// store the results in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_srli_epi32
+// FORCE_INLINE __m128i _mm_srli_epi32(__m128i a, __constrange(0,255) int imm)
+#define _mm_srli_epi32(a, imm)                                               \
+    __extension__({                                                          \
+        __m128i ret;                                                         \
+        if (_sse2neon_unlikely((imm) & ~31)) {                               \
+            ret = _mm_setzero_si128();                                       \
+        } else {                                                             \
+            ret = vreinterpretq_m128i_u32(                                   \
+                vshlq_u32(vreinterpretq_u32_m128i(a), vdupq_n_s32(-(imm)))); \
+        }                                                                    \
+        ret;                                                                 \
+    })
+
+// Shift packed 64-bit integers in a right by imm8 while shifting in zeros, and
+// store the results in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_srli_epi64
+#define _mm_srli_epi64(a, imm)                                               \
+    __extension__({                                                          \
+        __m128i ret;                                                         \
+        if (_sse2neon_unlikely((imm) & ~63)) {                               \
+            ret = _mm_setzero_si128();                                       \
+        } else {                                                             \
+            ret = vreinterpretq_m128i_u64(                                   \
+                vshlq_u64(vreinterpretq_u64_m128i(a), vdupq_n_s64(-(imm)))); \
+        }                                                                    \
+        ret;                                                                 \
+    })
+
+// Shift a right by imm8 bytes while shifting in zeros, and store the results in
+// dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_srli_si128
+#define _mm_srli_si128(a, imm)                                       \
+    __extension__({                                                  \
+        int8x16_t ret;                                               \
+        if (_sse2neon_unlikely((imm) & ~15))                         \
+            ret = vdupq_n_s8(0);                                     \
+        else                                                         \
+            ret = vextq_s8(vreinterpretq_s8_m128i(a), vdupq_n_s8(0), \
+                           (imm > 15 ? 0 : imm));                    \
+        vreinterpretq_m128i_s8(ret);                                 \
+    })
+
+// Store 128-bits (composed of 2 packed double-precision (64-bit) floating-point
+// elements) from a into memory. mem_addr must be aligned on a 16-byte boundary
+// or a general-protection exception may be generated.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_store_pd
+FORCE_INLINE void _mm_store_pd(double *mem_addr, __m128d a)
+{
+#if defined(__aarch64__)
+    vst1q_f64((float64_t *) mem_addr, vreinterpretq_f64_m128d(a));
+#else
+    vst1q_f32((float32_t *) mem_addr, vreinterpretq_f32_m128d(a));
+#endif
+}
+
+// Store the lower double-precision (64-bit) floating-point element from a into
+// 2 contiguous elements in memory. mem_addr must be aligned on a 16-byte
+// boundary or a general-protection exception may be generated.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_store_pd1
+FORCE_INLINE void _mm_store_pd1(double *mem_addr, __m128d a)
+{
+#if defined(__aarch64__)
+    float64x1_t a_low = vget_low_f64(vreinterpretq_f64_m128d(a));
+    vst1q_f64((float64_t *) mem_addr,
+              vreinterpretq_f64_m128d(vcombine_f64(a_low, a_low)));
+#else
+    float32x2_t a_low = vget_low_f32(vreinterpretq_f32_m128d(a));
+    vst1q_f32((float32_t *) mem_addr,
+              vreinterpretq_f32_m128d(vcombine_f32(a_low, a_low)));
+#endif
+}
+
+// Store the lower double-precision (64-bit) floating-point element from a into
+// memory. mem_addr does not need to be aligned on any particular boundary.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=mm_store_sd
+FORCE_INLINE void _mm_store_sd(double *mem_addr, __m128d a)
+{
+#if defined(__aarch64__)
+    vst1_f64((float64_t *) mem_addr, vget_low_f64(vreinterpretq_f64_m128d(a)));
+#else
+    vst1_u64((uint64_t *) mem_addr, vget_low_u64(vreinterpretq_u64_m128d(a)));
+#endif
+}
+
+// Store 128-bits of integer data from a into memory. mem_addr must be aligned
+// on a 16-byte boundary or a general-protection exception may be generated.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_store_si128
+FORCE_INLINE void _mm_store_si128(__m128i *p, __m128i a)
+{
+    vst1q_s32((int32_t *) p, vreinterpretq_s32_m128i(a));
+}
+
+// Store the lower double-precision (64-bit) floating-point element from a into
+// 2 contiguous elements in memory. mem_addr must be aligned on a 16-byte
+// boundary or a general-protection exception may be generated.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#expand=9,526,5601&text=_mm_store1_pd
+#define _mm_store1_pd _mm_store_pd1
+
+// Store the upper double-precision (64-bit) floating-point element from a into
+// memory.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_storeh_pd
+FORCE_INLINE void _mm_storeh_pd(double *mem_addr, __m128d a)
+{
+#if defined(__aarch64__)
+    vst1_f64((float64_t *) mem_addr, vget_high_f64(vreinterpretq_f64_m128d(a)));
+#else
+    vst1_f32((float32_t *) mem_addr, vget_high_f32(vreinterpretq_f32_m128d(a)));
+#endif
+}
+
+// Store 64-bit integer from the first element of a into memory.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_storel_epi64
+FORCE_INLINE void _mm_storel_epi64(__m128i *a, __m128i b)
+{
+    vst1_u64((uint64_t *) a, vget_low_u64(vreinterpretq_u64_m128i(b)));
+}
+
+// Store the lower double-precision (64-bit) floating-point element from a into
+// memory.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_storel_pd
+FORCE_INLINE void _mm_storel_pd(double *mem_addr, __m128d a)
+{
+#if defined(__aarch64__)
+    vst1_f64((float64_t *) mem_addr, vget_low_f64(vreinterpretq_f64_m128d(a)));
+#else
+    vst1_f32((float32_t *) mem_addr, vget_low_f32(vreinterpretq_f32_m128d(a)));
+#endif
+}
+
+// Store 2 double-precision (64-bit) floating-point elements from a into memory
+// in reverse order. mem_addr must be aligned on a 16-byte boundary or a
+// general-protection exception may be generated.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_storer_pd
+FORCE_INLINE void _mm_storer_pd(double *mem_addr, __m128d a)
+{
+    float32x4_t f = vreinterpretq_f32_m128d(a);
+    _mm_store_pd(mem_addr, vreinterpretq_m128d_f32(vextq_f32(f, f, 2)));
+}
+
+// Store 128-bits (composed of 2 packed double-precision (64-bit) floating-point
+// elements) from a into memory. mem_addr does not need to be aligned on any
+// particular boundary.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_storeu_pd
+FORCE_INLINE void _mm_storeu_pd(double *mem_addr, __m128d a)
+{
+    _mm_store_pd(mem_addr, a);
+}
+
+// Store 128-bits of integer data from a into memory. mem_addr does not need to
+// be aligned on any particular boundary.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_storeu_si128
+FORCE_INLINE void _mm_storeu_si128(__m128i *p, __m128i a)
+{
+    vst1q_s32((int32_t *) p, vreinterpretq_s32_m128i(a));
+}
+
+// Store 32-bit integer from the first element of a into memory. mem_addr does
+// not need to be aligned on any particular boundary.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_storeu_si32
+FORCE_INLINE void _mm_storeu_si32(void *p, __m128i a)
+{
+    vst1q_lane_s32((int32_t *) p, vreinterpretq_s32_m128i(a), 0);
+}
+
+// Store 128-bits (composed of 2 packed double-precision (64-bit) floating-point
+// elements) from a into memory using a non-temporal memory hint. mem_addr must
+// be aligned on a 16-byte boundary or a general-protection exception may be
+// generated.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_stream_pd
+FORCE_INLINE void _mm_stream_pd(double *p, __m128d a)
+{
+#if __has_builtin(__builtin_nontemporal_store)
+    __builtin_nontemporal_store(a, (float32x4_t *) p);
+#elif defined(__aarch64__)
+    vst1q_f64(p, vreinterpretq_f64_m128d(a));
+#else
+    vst1q_s64((int64_t *) p, vreinterpretq_s64_m128d(a));
+#endif
+}
+
+// Store 128-bits of integer data from a into memory using a non-temporal memory
+// hint. mem_addr must be aligned on a 16-byte boundary or a general-protection
+// exception may be generated.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_stream_si128
+FORCE_INLINE void _mm_stream_si128(__m128i *p, __m128i a)
+{
+#if __has_builtin(__builtin_nontemporal_store)
+    __builtin_nontemporal_store(a, p);
+#else
+    vst1q_s64((int64_t *) p, vreinterpretq_s64_m128i(a));
+#endif
+}
+
+// Store 32-bit integer a into memory using a non-temporal hint to minimize
+// cache pollution. If the cache line containing address mem_addr is already in
+// the cache, the cache will be updated.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_stream_si32
+FORCE_INLINE void _mm_stream_si32(int *p, int a)
+{
+    vst1q_lane_s32((int32_t *) p, vdupq_n_s32(a), 0);
+}
+
+// Store 64-bit integer a into memory using a non-temporal hint to minimize
+// cache pollution. If the cache line containing address mem_addr is already in
+// the cache, the cache will be updated.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_stream_si64
+FORCE_INLINE void _mm_stream_si64(__int64 *p, __int64 a)
+{
+    vst1_s64((int64_t *) p, vdup_n_s64((int64_t) a));
+}
+
+// Subtract packed 16-bit integers in b from packed 16-bit integers in a, and
+// store the results in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sub_epi16
+FORCE_INLINE __m128i _mm_sub_epi16(__m128i a, __m128i b)
+{
+    return vreinterpretq_m128i_s16(
+        vsubq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b)));
+}
+
+// Subtract packed 32-bit integers in b from packed 32-bit integers in a, and
+// store the results in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sub_epi32
+FORCE_INLINE __m128i _mm_sub_epi32(__m128i a, __m128i b)
+{
+    return vreinterpretq_m128i_s32(
+        vsubq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b)));
+}
+
+// Subtract packed 64-bit integers in b from packed 64-bit integers in a, and
+// store the results in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sub_epi64
+FORCE_INLINE __m128i _mm_sub_epi64(__m128i a, __m128i b)
+{
+    return vreinterpretq_m128i_s64(
+        vsubq_s64(vreinterpretq_s64_m128i(a), vreinterpretq_s64_m128i(b)));
+}
+
+// Subtract packed 8-bit integers in b from packed 8-bit integers in a, and
+// store the results in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sub_epi8
+FORCE_INLINE __m128i _mm_sub_epi8(__m128i a, __m128i b)
+{
+    return vreinterpretq_m128i_s8(
+        vsubq_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b)));
+}
+
+// Subtract packed double-precision (64-bit) floating-point elements in b from
+// packed double-precision (64-bit) floating-point elements in a, and store the
+// results in dst.
+//  https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=mm_sub_pd
+FORCE_INLINE __m128d _mm_sub_pd(__m128d a, __m128d b)
+{
+#if defined(__aarch64__)
+    return vreinterpretq_m128d_f64(
+        vsubq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)));
+#else
+    double *da = (double *) &a;
+    double *db = (double *) &b;
+    double c[2];
+    c[0] = da[0] - db[0];
+    c[1] = da[1] - db[1];
+    return vld1q_f32((float32_t *) c);
+#endif
+}
+
+// Subtract the lower double-precision (64-bit) floating-point element in b from
+// the lower double-precision (64-bit) floating-point element in a, store the
+// result in the lower element of dst, and copy the upper element from a to the
+// upper element of dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sub_sd
+FORCE_INLINE __m128d _mm_sub_sd(__m128d a, __m128d b)
+{
+    return _mm_move_sd(a, _mm_sub_pd(a, b));
+}
+
+// Subtract 64-bit integer b from 64-bit integer a, and store the result in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sub_si64
+FORCE_INLINE __m64 _mm_sub_si64(__m64 a, __m64 b)
+{
+    return vreinterpret_m64_s64(
+        vsub_s64(vreinterpret_s64_m64(a), vreinterpret_s64_m64(b)));
+}
+
+// Subtract packed signed 16-bit integers in b from packed 16-bit integers in a
+// using saturation, and store the results in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_subs_epi16
+FORCE_INLINE __m128i _mm_subs_epi16(__m128i a, __m128i b)
+{
+    return vreinterpretq_m128i_s16(
+        vqsubq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b)));
+}
+
+// Subtract packed signed 8-bit integers in b from packed 8-bit integers in a
+// using saturation, and store the results in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_subs_epi8
+FORCE_INLINE __m128i _mm_subs_epi8(__m128i a, __m128i b)
+{
+    return vreinterpretq_m128i_s8(
+        vqsubq_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b)));
+}
+
+// Subtract packed unsigned 16-bit integers in b from packed unsigned 16-bit
+// integers in a using saturation, and store the results in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_subs_epu16
+FORCE_INLINE __m128i _mm_subs_epu16(__m128i a, __m128i b)
+{
+    return vreinterpretq_m128i_u16(
+        vqsubq_u16(vreinterpretq_u16_m128i(a), vreinterpretq_u16_m128i(b)));
+}
+
+// Subtract packed unsigned 8-bit integers in b from packed unsigned 8-bit
+// integers in a using saturation, and store the results in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_subs_epu8
+FORCE_INLINE __m128i _mm_subs_epu8(__m128i a, __m128i b)
+{
+    return vreinterpretq_m128i_u8(
+        vqsubq_u8(vreinterpretq_u8_m128i(a), vreinterpretq_u8_m128i(b)));
+}
+
+#define _mm_ucomieq_sd _mm_comieq_sd
+#define _mm_ucomige_sd _mm_comige_sd
+#define _mm_ucomigt_sd _mm_comigt_sd
+#define _mm_ucomile_sd _mm_comile_sd
+#define _mm_ucomilt_sd _mm_comilt_sd
+#define _mm_ucomineq_sd _mm_comineq_sd
+
+// Return vector of type __m128d with undefined elements.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_undefined_pd
+FORCE_INLINE __m128d _mm_undefined_pd(void)
+{
+#if defined(__GNUC__) || defined(__clang__)
+#pragma GCC diagnostic push
+#pragma GCC diagnostic ignored "-Wuninitialized"
+#endif
+    __m128d a;
+    return a;
+#if defined(__GNUC__) || defined(__clang__)
+#pragma GCC diagnostic pop
+#endif
+}
+
+// Unpack and interleave 16-bit integers from the high half of a and b, and
+// store the results in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_unpackhi_epi16
+FORCE_INLINE __m128i _mm_unpackhi_epi16(__m128i a, __m128i b)
+{
+#if defined(__aarch64__)
+    return vreinterpretq_m128i_s16(
+        vzip2q_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b)));
+#else
+    int16x4_t a1 = vget_high_s16(vreinterpretq_s16_m128i(a));
+    int16x4_t b1 = vget_high_s16(vreinterpretq_s16_m128i(b));
+    int16x4x2_t result = vzip_s16(a1, b1);
+    return vreinterpretq_m128i_s16(vcombine_s16(result.val[0], result.val[1]));
+#endif
+}
+
+// Unpack and interleave 32-bit integers from the high half of a and b, and
+// store the results in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_unpackhi_epi32
+FORCE_INLINE __m128i _mm_unpackhi_epi32(__m128i a, __m128i b)
+{
+#if defined(__aarch64__)
+    return vreinterpretq_m128i_s32(
+        vzip2q_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b)));
+#else
+    int32x2_t a1 = vget_high_s32(vreinterpretq_s32_m128i(a));
+    int32x2_t b1 = vget_high_s32(vreinterpretq_s32_m128i(b));
+    int32x2x2_t result = vzip_s32(a1, b1);
+    return vreinterpretq_m128i_s32(vcombine_s32(result.val[0], result.val[1]));
+#endif
+}
+
+// Unpack and interleave 64-bit integers from the high half of a and b, and
+// store the results in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_unpackhi_epi64
+FORCE_INLINE __m128i _mm_unpackhi_epi64(__m128i a, __m128i b)
+{
+#if defined(__aarch64__)
+    return vreinterpretq_m128i_s64(
+        vzip2q_s64(vreinterpretq_s64_m128i(a), vreinterpretq_s64_m128i(b)));
+#else
+    int64x1_t a_h = vget_high_s64(vreinterpretq_s64_m128i(a));
+    int64x1_t b_h = vget_high_s64(vreinterpretq_s64_m128i(b));
+    return vreinterpretq_m128i_s64(vcombine_s64(a_h, b_h));
+#endif
+}
+
+// Unpack and interleave 8-bit integers from the high half of a and b, and store
+// the results in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_unpackhi_epi8
+FORCE_INLINE __m128i _mm_unpackhi_epi8(__m128i a, __m128i b)
+{
+#if defined(__aarch64__)
+    return vreinterpretq_m128i_s8(
+        vzip2q_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b)));
+#else
+    int8x8_t a1 =
+        vreinterpret_s8_s16(vget_high_s16(vreinterpretq_s16_m128i(a)));
+    int8x8_t b1 =
+        vreinterpret_s8_s16(vget_high_s16(vreinterpretq_s16_m128i(b)));
+    int8x8x2_t result = vzip_s8(a1, b1);
+    return vreinterpretq_m128i_s8(vcombine_s8(result.val[0], result.val[1]));
+#endif
+}
+
+// Unpack and interleave double-precision (64-bit) floating-point elements from
+// the high half of a and b, and store the results in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_unpackhi_pd
+FORCE_INLINE __m128d _mm_unpackhi_pd(__m128d a, __m128d b)
+{
+#if defined(__aarch64__)
+    return vreinterpretq_m128d_f64(
+        vzip2q_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)));
+#else
+    return vreinterpretq_m128d_s64(
+        vcombine_s64(vget_high_s64(vreinterpretq_s64_m128d(a)),
+                     vget_high_s64(vreinterpretq_s64_m128d(b))));
+#endif
+}
+
+// Unpack and interleave 16-bit integers from the low half of a and b, and store
+// the results in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_unpacklo_epi16
+FORCE_INLINE __m128i _mm_unpacklo_epi16(__m128i a, __m128i b)
+{
+#if defined(__aarch64__)
+    return vreinterpretq_m128i_s16(
+        vzip1q_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b)));
+#else
+    int16x4_t a1 = vget_low_s16(vreinterpretq_s16_m128i(a));
+    int16x4_t b1 = vget_low_s16(vreinterpretq_s16_m128i(b));
+    int16x4x2_t result = vzip_s16(a1, b1);
+    return vreinterpretq_m128i_s16(vcombine_s16(result.val[0], result.val[1]));
+#endif
+}
+
+// Unpack and interleave 32-bit integers from the low half of a and b, and store
+// the results in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_unpacklo_epi32
+FORCE_INLINE __m128i _mm_unpacklo_epi32(__m128i a, __m128i b)
+{
+#if defined(__aarch64__)
+    return vreinterpretq_m128i_s32(
+        vzip1q_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b)));
+#else
+    int32x2_t a1 = vget_low_s32(vreinterpretq_s32_m128i(a));
+    int32x2_t b1 = vget_low_s32(vreinterpretq_s32_m128i(b));
+    int32x2x2_t result = vzip_s32(a1, b1);
+    return vreinterpretq_m128i_s32(vcombine_s32(result.val[0], result.val[1]));
+#endif
+}
+
+// Unpack and interleave 64-bit integers from the low half of a and b, and store
+// the results in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_unpacklo_epi64
+FORCE_INLINE __m128i _mm_unpacklo_epi64(__m128i a, __m128i b)
+{
+#if defined(__aarch64__)
+    return vreinterpretq_m128i_s64(
+        vzip1q_s64(vreinterpretq_s64_m128i(a), vreinterpretq_s64_m128i(b)));
+#else
+    int64x1_t a_l = vget_low_s64(vreinterpretq_s64_m128i(a));
+    int64x1_t b_l = vget_low_s64(vreinterpretq_s64_m128i(b));
+    return vreinterpretq_m128i_s64(vcombine_s64(a_l, b_l));
+#endif
+}
+
+// Unpack and interleave 8-bit integers from the low half of a and b, and store
+// the results in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_unpacklo_epi8
+FORCE_INLINE __m128i _mm_unpacklo_epi8(__m128i a, __m128i b)
+{
+#if defined(__aarch64__)
+    return vreinterpretq_m128i_s8(
+        vzip1q_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b)));
+#else
+    int8x8_t a1 = vreinterpret_s8_s16(vget_low_s16(vreinterpretq_s16_m128i(a)));
+    int8x8_t b1 = vreinterpret_s8_s16(vget_low_s16(vreinterpretq_s16_m128i(b)));
+    int8x8x2_t result = vzip_s8(a1, b1);
+    return vreinterpretq_m128i_s8(vcombine_s8(result.val[0], result.val[1]));
+#endif
+}
+
+// Unpack and interleave double-precision (64-bit) floating-point elements from
+// the low half of a and b, and store the results in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_unpacklo_pd
+FORCE_INLINE __m128d _mm_unpacklo_pd(__m128d a, __m128d b)
+{
+#if defined(__aarch64__)
+    return vreinterpretq_m128d_f64(
+        vzip1q_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)));
+#else
+    return vreinterpretq_m128d_s64(
+        vcombine_s64(vget_low_s64(vreinterpretq_s64_m128d(a)),
+                     vget_low_s64(vreinterpretq_s64_m128d(b))));
+#endif
+}
+
+// Compute the bitwise XOR of packed double-precision (64-bit) floating-point
+// elements in a and b, and store the results in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_xor_pd
+FORCE_INLINE __m128d _mm_xor_pd(__m128d a, __m128d b)
+{
+    return vreinterpretq_m128d_s64(
+        veorq_s64(vreinterpretq_s64_m128d(a), vreinterpretq_s64_m128d(b)));
+}
+
+// Compute the bitwise XOR of 128 bits (representing integer data) in a and b,
+// and store the result in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_xor_si128
+FORCE_INLINE __m128i _mm_xor_si128(__m128i a, __m128i b)
+{
+    return vreinterpretq_m128i_s32(
+        veorq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b)));
+}
+
+/* SSE3 */
+
+// Alternatively add and subtract packed double-precision (64-bit)
+// floating-point elements in a to/from packed elements in b, and store the
+// results in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_addsub_pd
+FORCE_INLINE __m128d _mm_addsub_pd(__m128d a, __m128d b)
+{
+    _sse2neon_const __m128d mask = _mm_set_pd(1.0f, -1.0f);
+#if defined(__aarch64__)
+    return vreinterpretq_m128d_f64(vfmaq_f64(vreinterpretq_f64_m128d(a),
+                                             vreinterpretq_f64_m128d(b),
+                                             vreinterpretq_f64_m128d(mask)));
+#else
+    return _mm_add_pd(_mm_mul_pd(b, mask), a);
+#endif
+}
+
+// Alternatively add and subtract packed single-precision (32-bit)
+// floating-point elements in a to/from packed elements in b, and store the
+// results in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=addsub_ps
+FORCE_INLINE __m128 _mm_addsub_ps(__m128 a, __m128 b)
+{
+    _sse2neon_const __m128 mask = _mm_setr_ps(-1.0f, 1.0f, -1.0f, 1.0f);
+#if defined(__aarch64__) || defined(__ARM_FEATURE_FMA) /* VFPv4+ */
+    return vreinterpretq_m128_f32(vfmaq_f32(vreinterpretq_f32_m128(a),
+                                            vreinterpretq_f32_m128(mask),
+                                            vreinterpretq_f32_m128(b)));
+#else
+    return _mm_add_ps(_mm_mul_ps(b, mask), a);
+#endif
+}
+
+// Horizontally add adjacent pairs of double-precision (64-bit) floating-point
+// elements in a and b, and pack the results in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_hadd_pd
+FORCE_INLINE __m128d _mm_hadd_pd(__m128d a, __m128d b)
+{
+#if defined(__aarch64__)
+    return vreinterpretq_m128d_f64(
+        vpaddq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)));
+#else
+    double *da = (double *) &a;
+    double *db = (double *) &b;
+    double c[] = {da[0] + da[1], db[0] + db[1]};
+    return vreinterpretq_m128d_u64(vld1q_u64((uint64_t *) c));
+#endif
+}
+
+// Horizontally add adjacent pairs of single-precision (32-bit) floating-point
+// elements in a and b, and pack the results in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_hadd_ps
+FORCE_INLINE __m128 _mm_hadd_ps(__m128 a, __m128 b)
+{
+#if defined(__aarch64__)
+    return vreinterpretq_m128_f32(
+        vpaddq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
+#else
+    float32x2_t a10 = vget_low_f32(vreinterpretq_f32_m128(a));
+    float32x2_t a32 = vget_high_f32(vreinterpretq_f32_m128(a));
+    float32x2_t b10 = vget_low_f32(vreinterpretq_f32_m128(b));
+    float32x2_t b32 = vget_high_f32(vreinterpretq_f32_m128(b));
+    return vreinterpretq_m128_f32(
+        vcombine_f32(vpadd_f32(a10, a32), vpadd_f32(b10, b32)));
+#endif
+}
+
+// Horizontally subtract adjacent pairs of double-precision (64-bit)
+// floating-point elements in a and b, and pack the results in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_hsub_pd
+FORCE_INLINE __m128d _mm_hsub_pd(__m128d _a, __m128d _b)
+{
+#if defined(__aarch64__)
+    float64x2_t a = vreinterpretq_f64_m128d(_a);
+    float64x2_t b = vreinterpretq_f64_m128d(_b);
+    return vreinterpretq_m128d_f64(
+        vsubq_f64(vuzp1q_f64(a, b), vuzp2q_f64(a, b)));
+#else
+    double *da = (double *) &_a;
+    double *db = (double *) &_b;
+    double c[] = {da[0] - da[1], db[0] - db[1]};
+    return vreinterpretq_m128d_u64(vld1q_u64((uint64_t *) c));
+#endif
+}
+
+// Horizontally subtract adjacent pairs of single-precision (32-bit)
+// floating-point elements in a and b, and pack the results in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_hsub_ps
+FORCE_INLINE __m128 _mm_hsub_ps(__m128 _a, __m128 _b)
+{
+    float32x4_t a = vreinterpretq_f32_m128(_a);
+    float32x4_t b = vreinterpretq_f32_m128(_b);
+#if defined(__aarch64__)
+    return vreinterpretq_m128_f32(
+        vsubq_f32(vuzp1q_f32(a, b), vuzp2q_f32(a, b)));
+#else
+    float32x4x2_t c = vuzpq_f32(a, b);
+    return vreinterpretq_m128_f32(vsubq_f32(c.val[0], c.val[1]));
+#endif
+}
+
+// Load 128-bits of integer data from unaligned memory into dst. This intrinsic
+// may perform better than _mm_loadu_si128 when the data crosses a cache line
+// boundary.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_lddqu_si128
+#define _mm_lddqu_si128 _mm_loadu_si128
+
+// Load a double-precision (64-bit) floating-point element from memory into both
+// elements of dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_loaddup_pd
+#define _mm_loaddup_pd _mm_load1_pd
+
+// Duplicate the low double-precision (64-bit) floating-point element from a,
+// and store the results in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_movedup_pd
+FORCE_INLINE __m128d _mm_movedup_pd(__m128d a)
+{
+#if defined(__aarch64__)
+    return vreinterpretq_m128d_f64(
+        vdupq_laneq_f64(vreinterpretq_f64_m128d(a), 0));
+#else
+    return vreinterpretq_m128d_u64(
+        vdupq_n_u64(vgetq_lane_u64(vreinterpretq_u64_m128d(a), 0)));
+#endif
+}
+
+// Duplicate odd-indexed single-precision (32-bit) floating-point elements
+// from a, and store the results in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_movehdup_ps
+FORCE_INLINE __m128 _mm_movehdup_ps(__m128 a)
+{
+#if defined(__aarch64__)
+    return vreinterpretq_m128_f32(
+        vtrn2q_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a)));
+#elif defined(_sse2neon_shuffle)
+    return vreinterpretq_m128_f32(vshuffleq_s32(
+        vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a), 1, 1, 3, 3));
+#else
+    float32_t a1 = vgetq_lane_f32(vreinterpretq_f32_m128(a), 1);
+    float32_t a3 = vgetq_lane_f32(vreinterpretq_f32_m128(a), 3);
+    float ALIGN_STRUCT(16) data[4] = {a1, a1, a3, a3};
+    return vreinterpretq_m128_f32(vld1q_f32(data));
+#endif
+}
+
+// Duplicate even-indexed single-precision (32-bit) floating-point elements
+// from a, and store the results in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_moveldup_ps
+FORCE_INLINE __m128 _mm_moveldup_ps(__m128 a)
+{
+#if defined(__aarch64__)
+    return vreinterpretq_m128_f32(
+        vtrn1q_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a)));
+#elif defined(_sse2neon_shuffle)
+    return vreinterpretq_m128_f32(vshuffleq_s32(
+        vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a), 0, 0, 2, 2));
+#else
+    float32_t a0 = vgetq_lane_f32(vreinterpretq_f32_m128(a), 0);
+    float32_t a2 = vgetq_lane_f32(vreinterpretq_f32_m128(a), 2);
+    float ALIGN_STRUCT(16) data[4] = {a0, a0, a2, a2};
+    return vreinterpretq_m128_f32(vld1q_f32(data));
+#endif
+}
+
+/* SSSE3 */
+
+// Compute the absolute value of packed signed 16-bit integers in a, and store
+// the unsigned results in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_abs_epi16
+FORCE_INLINE __m128i _mm_abs_epi16(__m128i a)
+{
+    return vreinterpretq_m128i_s16(vabsq_s16(vreinterpretq_s16_m128i(a)));
+}
+
+// Compute the absolute value of packed signed 32-bit integers in a, and store
+// the unsigned results in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_abs_epi32
+FORCE_INLINE __m128i _mm_abs_epi32(__m128i a)
+{
+    return vreinterpretq_m128i_s32(vabsq_s32(vreinterpretq_s32_m128i(a)));
+}
+
+// Compute the absolute value of packed signed 8-bit integers in a, and store
+// the unsigned results in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_abs_epi8
+FORCE_INLINE __m128i _mm_abs_epi8(__m128i a)
+{
+    return vreinterpretq_m128i_s8(vabsq_s8(vreinterpretq_s8_m128i(a)));
+}
+
+// Compute the absolute value of packed signed 16-bit integers in a, and store
+// the unsigned results in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_abs_pi16
+FORCE_INLINE __m64 _mm_abs_pi16(__m64 a)
+{
+    return vreinterpret_m64_s16(vabs_s16(vreinterpret_s16_m64(a)));
+}
+
+// Compute the absolute value of packed signed 32-bit integers in a, and store
+// the unsigned results in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_abs_pi32
+FORCE_INLINE __m64 _mm_abs_pi32(__m64 a)
+{
+    return vreinterpret_m64_s32(vabs_s32(vreinterpret_s32_m64(a)));
+}
+
+// Compute the absolute value of packed signed 8-bit integers in a, and store
+// the unsigned results in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_abs_pi8
+FORCE_INLINE __m64 _mm_abs_pi8(__m64 a)
+{
+    return vreinterpret_m64_s8(vabs_s8(vreinterpret_s8_m64(a)));
+}
+
+// Concatenate 16-byte blocks in a and b into a 32-byte temporary result, shift
+// the result right by imm8 bytes, and store the low 16 bytes in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_alignr_epi8
+#define _mm_alignr_epi8(a, b, imm)                                            \
+    __extension__({                                                           \
+        uint8x16_t _a = vreinterpretq_u8_m128i(a);                            \
+        uint8x16_t _b = vreinterpretq_u8_m128i(b);                            \
+        __m128i ret;                                                          \
+        if (_sse2neon_unlikely((imm) & ~31))                                  \
+            ret = vreinterpretq_m128i_u8(vdupq_n_u8(0));                      \
+        else if (imm >= 16)                                                   \
+            ret = _mm_srli_si128(a, imm >= 16 ? imm - 16 : 0);                \
+        else                                                                  \
+            ret =                                                             \
+                vreinterpretq_m128i_u8(vextq_u8(_b, _a, imm < 16 ? imm : 0)); \
+        ret;                                                                  \
+    })
+
+// Concatenate 8-byte blocks in a and b into a 16-byte temporary result, shift
+// the result right by imm8 bytes, and store the low 8 bytes in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_alignr_pi8
+#define _mm_alignr_pi8(a, b, imm)                                           \
+    __extension__({                                                         \
+        __m64 ret;                                                          \
+        if (_sse2neon_unlikely((imm) >= 16)) {                              \
+            ret = vreinterpret_m64_s8(vdup_n_s8(0));                        \
+        } else {                                                            \
+            uint8x8_t tmp_low, tmp_high;                                    \
+            if ((imm) >= 8) {                                               \
+                const int idx = (imm) -8;                                   \
+                tmp_low = vreinterpret_u8_m64(a);                           \
+                tmp_high = vdup_n_u8(0);                                    \
+                ret = vreinterpret_m64_u8(vext_u8(tmp_low, tmp_high, idx)); \
+            } else {                                                        \
+                const int idx = (imm);                                      \
+                tmp_low = vreinterpret_u8_m64(b);                           \
+                tmp_high = vreinterpret_u8_m64(a);                          \
+                ret = vreinterpret_m64_u8(vext_u8(tmp_low, tmp_high, idx)); \
+            }                                                               \
+        }                                                                   \
+        ret;                                                                \
+    })
+
+// Horizontally add adjacent pairs of 16-bit integers in a and b, and pack the
+// signed 16-bit results in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_hadd_epi16
+FORCE_INLINE __m128i _mm_hadd_epi16(__m128i _a, __m128i _b)
+{
+    int16x8_t a = vreinterpretq_s16_m128i(_a);
+    int16x8_t b = vreinterpretq_s16_m128i(_b);
+#if defined(__aarch64__)
+    return vreinterpretq_m128i_s16(vpaddq_s16(a, b));
+#else
+    return vreinterpretq_m128i_s16(
+        vcombine_s16(vpadd_s16(vget_low_s16(a), vget_high_s16(a)),
+                     vpadd_s16(vget_low_s16(b), vget_high_s16(b))));
+#endif
+}
+
+// Horizontally add adjacent pairs of 32-bit integers in a and b, and pack the
+// signed 32-bit results in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_hadd_epi32
+FORCE_INLINE __m128i _mm_hadd_epi32(__m128i _a, __m128i _b)
+{
+    int32x4_t a = vreinterpretq_s32_m128i(_a);
+    int32x4_t b = vreinterpretq_s32_m128i(_b);
+#if defined(__aarch64__)
+    return vreinterpretq_m128i_s32(vpaddq_s32(a, b));
+#else
+    return vreinterpretq_m128i_s32(
+        vcombine_s32(vpadd_s32(vget_low_s32(a), vget_high_s32(a)),
+                     vpadd_s32(vget_low_s32(b), vget_high_s32(b))));
+#endif
+}
+
+// Horizontally add adjacent pairs of 16-bit integers in a and b, and pack the
+// signed 16-bit results in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_hadd_pi16
+FORCE_INLINE __m64 _mm_hadd_pi16(__m64 a, __m64 b)
+{
+    return vreinterpret_m64_s16(
+        vpadd_s16(vreinterpret_s16_m64(a), vreinterpret_s16_m64(b)));
+}
+
+// Horizontally add adjacent pairs of 32-bit integers in a and b, and pack the
+// signed 32-bit results in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_hadd_pi32
+FORCE_INLINE __m64 _mm_hadd_pi32(__m64 a, __m64 b)
+{
+    return vreinterpret_m64_s32(
+        vpadd_s32(vreinterpret_s32_m64(a), vreinterpret_s32_m64(b)));
+}
+
+// Horizontally add adjacent pairs of signed 16-bit integers in a and b using
+// saturation, and pack the signed 16-bit results in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_hadds_epi16
+FORCE_INLINE __m128i _mm_hadds_epi16(__m128i _a, __m128i _b)
+{
+#if defined(__aarch64__)
+    int16x8_t a = vreinterpretq_s16_m128i(_a);
+    int16x8_t b = vreinterpretq_s16_m128i(_b);
+    return vreinterpretq_s64_s16(
+        vqaddq_s16(vuzp1q_s16(a, b), vuzp2q_s16(a, b)));
+#else
+    int32x4_t a = vreinterpretq_s32_m128i(_a);
+    int32x4_t b = vreinterpretq_s32_m128i(_b);
+    // Interleave using vshrn/vmovn
+    // [a0|a2|a4|a6|b0|b2|b4|b6]
+    // [a1|a3|a5|a7|b1|b3|b5|b7]
+    int16x8_t ab0246 = vcombine_s16(vmovn_s32(a), vmovn_s32(b));
+    int16x8_t ab1357 = vcombine_s16(vshrn_n_s32(a, 16), vshrn_n_s32(b, 16));
+    // Saturated add
+    return vreinterpretq_m128i_s16(vqaddq_s16(ab0246, ab1357));
+#endif
+}
+
+// Horizontally add adjacent pairs of signed 16-bit integers in a and b using
+// saturation, and pack the signed 16-bit results in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_hadds_pi16
+FORCE_INLINE __m64 _mm_hadds_pi16(__m64 _a, __m64 _b)
+{
+    int16x4_t a = vreinterpret_s16_m64(_a);
+    int16x4_t b = vreinterpret_s16_m64(_b);
+#if defined(__aarch64__)
+    return vreinterpret_s64_s16(vqadd_s16(vuzp1_s16(a, b), vuzp2_s16(a, b)));
+#else
+    int16x4x2_t res = vuzp_s16(a, b);
+    return vreinterpret_s64_s16(vqadd_s16(res.val[0], res.val[1]));
+#endif
+}
+
+// Horizontally subtract adjacent pairs of 16-bit integers in a and b, and pack
+// the signed 16-bit results in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_hsub_epi16
+FORCE_INLINE __m128i _mm_hsub_epi16(__m128i _a, __m128i _b)
+{
+    int16x8_t a = vreinterpretq_s16_m128i(_a);
+    int16x8_t b = vreinterpretq_s16_m128i(_b);
+#if defined(__aarch64__)
+    return vreinterpretq_m128i_s16(
+        vsubq_s16(vuzp1q_s16(a, b), vuzp2q_s16(a, b)));
+#else
+    int16x8x2_t c = vuzpq_s16(a, b);
+    return vreinterpretq_m128i_s16(vsubq_s16(c.val[0], c.val[1]));
+#endif
+}
+
+// Horizontally subtract adjacent pairs of 32-bit integers in a and b, and pack
+// the signed 32-bit results in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_hsub_epi32
+FORCE_INLINE __m128i _mm_hsub_epi32(__m128i _a, __m128i _b)
+{
+    int32x4_t a = vreinterpretq_s32_m128i(_a);
+    int32x4_t b = vreinterpretq_s32_m128i(_b);
+#if defined(__aarch64__)
+    return vreinterpretq_m128i_s32(
+        vsubq_s32(vuzp1q_s32(a, b), vuzp2q_s32(a, b)));
+#else
+    int32x4x2_t c = vuzpq_s32(a, b);
+    return vreinterpretq_m128i_s32(vsubq_s32(c.val[0], c.val[1]));
+#endif
+}
+
+// Horizontally subtract adjacent pairs of 16-bit integers in a and b, and pack
+// the signed 16-bit results in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_hsub_pi16
+FORCE_INLINE __m64 _mm_hsub_pi16(__m64 _a, __m64 _b)
+{
+    int16x4_t a = vreinterpret_s16_m64(_a);
+    int16x4_t b = vreinterpret_s16_m64(_b);
+#if defined(__aarch64__)
+    return vreinterpret_m64_s16(vsub_s16(vuzp1_s16(a, b), vuzp2_s16(a, b)));
+#else
+    int16x4x2_t c = vuzp_s16(a, b);
+    return vreinterpret_m64_s16(vsub_s16(c.val[0], c.val[1]));
+#endif
+}
+
+// Horizontally subtract adjacent pairs of 32-bit integers in a and b, and pack
+// the signed 32-bit results in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=mm_hsub_pi32
+FORCE_INLINE __m64 _mm_hsub_pi32(__m64 _a, __m64 _b)
+{
+    int32x2_t a = vreinterpret_s32_m64(_a);
+    int32x2_t b = vreinterpret_s32_m64(_b);
+#if defined(__aarch64__)
+    return vreinterpret_m64_s32(vsub_s32(vuzp1_s32(a, b), vuzp2_s32(a, b)));
+#else
+    int32x2x2_t c = vuzp_s32(a, b);
+    return vreinterpret_m64_s32(vsub_s32(c.val[0], c.val[1]));
+#endif
+}
+
+// Horizontally subtract adjacent pairs of signed 16-bit integers in a and b
+// using saturation, and pack the signed 16-bit results in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_hsubs_epi16
+FORCE_INLINE __m128i _mm_hsubs_epi16(__m128i _a, __m128i _b)
+{
+    int16x8_t a = vreinterpretq_s16_m128i(_a);
+    int16x8_t b = vreinterpretq_s16_m128i(_b);
+#if defined(__aarch64__)
+    return vreinterpretq_m128i_s16(
+        vqsubq_s16(vuzp1q_s16(a, b), vuzp2q_s16(a, b)));
+#else
+    int16x8x2_t c = vuzpq_s16(a, b);
+    return vreinterpretq_m128i_s16(vqsubq_s16(c.val[0], c.val[1]));
+#endif
+}
+
+// Horizontally subtract adjacent pairs of signed 16-bit integers in a and b
+// using saturation, and pack the signed 16-bit results in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_hsubs_pi16
+FORCE_INLINE __m64 _mm_hsubs_pi16(__m64 _a, __m64 _b)
+{
+    int16x4_t a = vreinterpret_s16_m64(_a);
+    int16x4_t b = vreinterpret_s16_m64(_b);
+#if defined(__aarch64__)
+    return vreinterpret_m64_s16(vqsub_s16(vuzp1_s16(a, b), vuzp2_s16(a, b)));
+#else
+    int16x4x2_t c = vuzp_s16(a, b);
+    return vreinterpret_m64_s16(vqsub_s16(c.val[0], c.val[1]));
+#endif
+}
+
+// Vertically multiply each unsigned 8-bit integer from a with the corresponding
+// signed 8-bit integer from b, producing intermediate signed 16-bit integers.
+// Horizontally add adjacent pairs of intermediate signed 16-bit integers,
+// and pack the saturated results in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_maddubs_epi16
+FORCE_INLINE __m128i _mm_maddubs_epi16(__m128i _a, __m128i _b)
+{
+#if defined(__aarch64__)
+    uint8x16_t a = vreinterpretq_u8_m128i(_a);
+    int8x16_t b = vreinterpretq_s8_m128i(_b);
+    int16x8_t tl = vmulq_s16(vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(a))),
+                             vmovl_s8(vget_low_s8(b)));
+    int16x8_t th = vmulq_s16(vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(a))),
+                             vmovl_s8(vget_high_s8(b)));
+    return vreinterpretq_m128i_s16(
+        vqaddq_s16(vuzp1q_s16(tl, th), vuzp2q_s16(tl, th)));
+#else
+    // This would be much simpler if x86 would choose to zero extend OR sign
+    // extend, not both. This could probably be optimized better.
+    uint16x8_t a = vreinterpretq_u16_m128i(_a);
+    int16x8_t b = vreinterpretq_s16_m128i(_b);
+
+    // Zero extend a
+    int16x8_t a_odd = vreinterpretq_s16_u16(vshrq_n_u16(a, 8));
+    int16x8_t a_even = vreinterpretq_s16_u16(vbicq_u16(a, vdupq_n_u16(0xff00)));
+
+    // Sign extend by shifting left then shifting right.
+    int16x8_t b_even = vshrq_n_s16(vshlq_n_s16(b, 8), 8);
+    int16x8_t b_odd = vshrq_n_s16(b, 8);
+
+    // multiply
+    int16x8_t prod1 = vmulq_s16(a_even, b_even);
+    int16x8_t prod2 = vmulq_s16(a_odd, b_odd);
+
+    // saturated add
+    return vreinterpretq_m128i_s16(vqaddq_s16(prod1, prod2));
+#endif
+}
+
+// Vertically multiply each unsigned 8-bit integer from a with the corresponding
+// signed 8-bit integer from b, producing intermediate signed 16-bit integers.
+// Horizontally add adjacent pairs of intermediate signed 16-bit integers, and
+// pack the saturated results in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_maddubs_pi16
+FORCE_INLINE __m64 _mm_maddubs_pi16(__m64 _a, __m64 _b)
+{
+    uint16x4_t a = vreinterpret_u16_m64(_a);
+    int16x4_t b = vreinterpret_s16_m64(_b);
+
+    // Zero extend a
+    int16x4_t a_odd = vreinterpret_s16_u16(vshr_n_u16(a, 8));
+    int16x4_t a_even = vreinterpret_s16_u16(vand_u16(a, vdup_n_u16(0xff)));
+
+    // Sign extend by shifting left then shifting right.
+    int16x4_t b_even = vshr_n_s16(vshl_n_s16(b, 8), 8);
+    int16x4_t b_odd = vshr_n_s16(b, 8);
+
+    // multiply
+    int16x4_t prod1 = vmul_s16(a_even, b_even);
+    int16x4_t prod2 = vmul_s16(a_odd, b_odd);
+
+    // saturated add
+    return vreinterpret_m64_s16(vqadd_s16(prod1, prod2));
+}
+
+// Multiply packed signed 16-bit integers in a and b, producing intermediate
+// signed 32-bit integers. Shift right by 15 bits while rounding up, and store
+// the packed 16-bit integers in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mulhrs_epi16
+FORCE_INLINE __m128i _mm_mulhrs_epi16(__m128i a, __m128i b)
+{
+    // Has issues due to saturation
+    // return vreinterpretq_m128i_s16(vqrdmulhq_s16(a, b));
+
+    // Multiply
+    int32x4_t mul_lo = vmull_s16(vget_low_s16(vreinterpretq_s16_m128i(a)),
+                                 vget_low_s16(vreinterpretq_s16_m128i(b)));
+    int32x4_t mul_hi = vmull_s16(vget_high_s16(vreinterpretq_s16_m128i(a)),
+                                 vget_high_s16(vreinterpretq_s16_m128i(b)));
+
+    // Rounding narrowing shift right
+    // narrow = (int16_t)((mul + 16384) >> 15);
+    int16x4_t narrow_lo = vrshrn_n_s32(mul_lo, 15);
+    int16x4_t narrow_hi = vrshrn_n_s32(mul_hi, 15);
+
+    // Join together
+    return vreinterpretq_m128i_s16(vcombine_s16(narrow_lo, narrow_hi));
+}
+
+// Multiply packed signed 16-bit integers in a and b, producing intermediate
+// signed 32-bit integers. Truncate each intermediate integer to the 18 most
+// significant bits, round by adding 1, and store bits [16:1] to dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mulhrs_pi16
+FORCE_INLINE __m64 _mm_mulhrs_pi16(__m64 a, __m64 b)
+{
+    int32x4_t mul_extend =
+        vmull_s16((vreinterpret_s16_m64(a)), (vreinterpret_s16_m64(b)));
+
+    // Rounding narrowing shift right
+    return vreinterpret_m64_s16(vrshrn_n_s32(mul_extend, 15));
+}
+
+// Shuffle packed 8-bit integers in a according to shuffle control mask in the
+// corresponding 8-bit element of b, and store the results in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_shuffle_epi8
+FORCE_INLINE __m128i _mm_shuffle_epi8(__m128i a, __m128i b)
+{
+    int8x16_t tbl = vreinterpretq_s8_m128i(a);   // input a
+    uint8x16_t idx = vreinterpretq_u8_m128i(b);  // input b
+    uint8x16_t idx_masked =
+        vandq_u8(idx, vdupq_n_u8(0x8F));  // avoid using meaningless bits
+#if defined(__aarch64__)
+    return vreinterpretq_m128i_s8(vqtbl1q_s8(tbl, idx_masked));
+#elif defined(__GNUC__)
+    int8x16_t ret;
+    // %e and %f represent the even and odd D registers
+    // respectively.
+    __asm__ __volatile__(
+        "vtbl.8  %e[ret], {%e[tbl], %f[tbl]}, %e[idx]\n"
+        "vtbl.8  %f[ret], {%e[tbl], %f[tbl]}, %f[idx]\n"
+        : [ret] "=&w"(ret)
+        : [tbl] "w"(tbl), [idx] "w"(idx_masked));
+    return vreinterpretq_m128i_s8(ret);
+#else
+    // use this line if testing on aarch64
+    int8x8x2_t a_split = {vget_low_s8(tbl), vget_high_s8(tbl)};
+    return vreinterpretq_m128i_s8(
+        vcombine_s8(vtbl2_s8(a_split, vget_low_u8(idx_masked)),
+                    vtbl2_s8(a_split, vget_high_u8(idx_masked))));
+#endif
+}
+
+// Shuffle packed 8-bit integers in a according to shuffle control mask in the
+// corresponding 8-bit element of b, and store the results in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_shuffle_pi8
+FORCE_INLINE __m64 _mm_shuffle_pi8(__m64 a, __m64 b)
+{
+    const int8x8_t controlMask =
+        vand_s8(vreinterpret_s8_m64(b), vdup_n_s8((int8_t) (0x1 << 7 | 0x07)));
+    int8x8_t res = vtbl1_s8(vreinterpret_s8_m64(a), controlMask);
+    return vreinterpret_m64_s8(res);
+}
+
+// Negate packed 16-bit integers in a when the corresponding signed
+// 16-bit integer in b is negative, and store the results in dst.
+// Element in dst are zeroed out when the corresponding element
+// in b is zero.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sign_epi16
+FORCE_INLINE __m128i _mm_sign_epi16(__m128i _a, __m128i _b)
+{
+    int16x8_t a = vreinterpretq_s16_m128i(_a);
+    int16x8_t b = vreinterpretq_s16_m128i(_b);
+
+    // signed shift right: faster than vclt
+    // (b < 0) ? 0xFFFF : 0
+    uint16x8_t ltMask = vreinterpretq_u16_s16(vshrq_n_s16(b, 15));
+    // (b == 0) ? 0xFFFF : 0
+#if defined(__aarch64__)
+    int16x8_t zeroMask = vreinterpretq_s16_u16(vceqzq_s16(b));
+#else
+    int16x8_t zeroMask = vreinterpretq_s16_u16(vceqq_s16(b, vdupq_n_s16(0)));
+#endif
+
+    // bitwise select either a or negative 'a' (vnegq_s16(a) equals to negative
+    // 'a') based on ltMask
+    int16x8_t masked = vbslq_s16(ltMask, vnegq_s16(a), a);
+    // res = masked & (~zeroMask)
+    int16x8_t res = vbicq_s16(masked, zeroMask);
+    return vreinterpretq_m128i_s16(res);
+}
+
+// Negate packed 32-bit integers in a when the corresponding signed
+// 32-bit integer in b is negative, and store the results in dst.
+// Element in dst are zeroed out when the corresponding element
+// in b is zero.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sign_epi32
+FORCE_INLINE __m128i _mm_sign_epi32(__m128i _a, __m128i _b)
+{
+    int32x4_t a = vreinterpretq_s32_m128i(_a);
+    int32x4_t b = vreinterpretq_s32_m128i(_b);
+
+    // signed shift right: faster than vclt
+    // (b < 0) ? 0xFFFFFFFF : 0
+    uint32x4_t ltMask = vreinterpretq_u32_s32(vshrq_n_s32(b, 31));
+
+    // (b == 0) ? 0xFFFFFFFF : 0
+#if defined(__aarch64__)
+    int32x4_t zeroMask = vreinterpretq_s32_u32(vceqzq_s32(b));
+#else
+    int32x4_t zeroMask = vreinterpretq_s32_u32(vceqq_s32(b, vdupq_n_s32(0)));
+#endif
+
+    // bitwise select either a or negative 'a' (vnegq_s32(a) equals to negative
+    // 'a') based on ltMask
+    int32x4_t masked = vbslq_s32(ltMask, vnegq_s32(a), a);
+    // res = masked & (~zeroMask)
+    int32x4_t res = vbicq_s32(masked, zeroMask);
+    return vreinterpretq_m128i_s32(res);
+}
+
+// Negate packed 8-bit integers in a when the corresponding signed
+// 8-bit integer in b is negative, and store the results in dst.
+// Element in dst are zeroed out when the corresponding element
+// in b is zero.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sign_epi8
+FORCE_INLINE __m128i _mm_sign_epi8(__m128i _a, __m128i _b)
+{
+    int8x16_t a = vreinterpretq_s8_m128i(_a);
+    int8x16_t b = vreinterpretq_s8_m128i(_b);
+
+    // signed shift right: faster than vclt
+    // (b < 0) ? 0xFF : 0
+    uint8x16_t ltMask = vreinterpretq_u8_s8(vshrq_n_s8(b, 7));
+
+    // (b == 0) ? 0xFF : 0
+#if defined(__aarch64__)
+    int8x16_t zeroMask = vreinterpretq_s8_u8(vceqzq_s8(b));
+#else
+    int8x16_t zeroMask = vreinterpretq_s8_u8(vceqq_s8(b, vdupq_n_s8(0)));
+#endif
+
+    // bitwise select either a or negative 'a' (vnegq_s8(a) return negative 'a')
+    // based on ltMask
+    int8x16_t masked = vbslq_s8(ltMask, vnegq_s8(a), a);
+    // res = masked & (~zeroMask)
+    int8x16_t res = vbicq_s8(masked, zeroMask);
+
+    return vreinterpretq_m128i_s8(res);
+}
+
+// Negate packed 16-bit integers in a when the corresponding signed 16-bit
+// integer in b is negative, and store the results in dst. Element in dst are
+// zeroed out when the corresponding element in b is zero.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sign_pi16
+FORCE_INLINE __m64 _mm_sign_pi16(__m64 _a, __m64 _b)
+{
+    int16x4_t a = vreinterpret_s16_m64(_a);
+    int16x4_t b = vreinterpret_s16_m64(_b);
+
+    // signed shift right: faster than vclt
+    // (b < 0) ? 0xFFFF : 0
+    uint16x4_t ltMask = vreinterpret_u16_s16(vshr_n_s16(b, 15));
+
+    // (b == 0) ? 0xFFFF : 0
+#if defined(__aarch64__)
+    int16x4_t zeroMask = vreinterpret_s16_u16(vceqz_s16(b));
+#else
+    int16x4_t zeroMask = vreinterpret_s16_u16(vceq_s16(b, vdup_n_s16(0)));
+#endif
+
+    // bitwise select either a or negative 'a' (vneg_s16(a) return negative 'a')
+    // based on ltMask
+    int16x4_t masked = vbsl_s16(ltMask, vneg_s16(a), a);
+    // res = masked & (~zeroMask)
+    int16x4_t res = vbic_s16(masked, zeroMask);
+
+    return vreinterpret_m64_s16(res);
+}
+
+// Negate packed 32-bit integers in a when the corresponding signed 32-bit
+// integer in b is negative, and store the results in dst. Element in dst are
+// zeroed out when the corresponding element in b is zero.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sign_pi32
+FORCE_INLINE __m64 _mm_sign_pi32(__m64 _a, __m64 _b)
+{
+    int32x2_t a = vreinterpret_s32_m64(_a);
+    int32x2_t b = vreinterpret_s32_m64(_b);
+
+    // signed shift right: faster than vclt
+    // (b < 0) ? 0xFFFFFFFF : 0
+    uint32x2_t ltMask = vreinterpret_u32_s32(vshr_n_s32(b, 31));
+
+    // (b == 0) ? 0xFFFFFFFF : 0
+#if defined(__aarch64__)
+    int32x2_t zeroMask = vreinterpret_s32_u32(vceqz_s32(b));
+#else
+    int32x2_t zeroMask = vreinterpret_s32_u32(vceq_s32(b, vdup_n_s32(0)));
+#endif
+
+    // bitwise select either a or negative 'a' (vneg_s32(a) return negative 'a')
+    // based on ltMask
+    int32x2_t masked = vbsl_s32(ltMask, vneg_s32(a), a);
+    // res = masked & (~zeroMask)
+    int32x2_t res = vbic_s32(masked, zeroMask);
+
+    return vreinterpret_m64_s32(res);
+}
+
+// Negate packed 8-bit integers in a when the corresponding signed 8-bit integer
+// in b is negative, and store the results in dst. Element in dst are zeroed out
+// when the corresponding element in b is zero.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sign_pi8
+FORCE_INLINE __m64 _mm_sign_pi8(__m64 _a, __m64 _b)
+{
+    int8x8_t a = vreinterpret_s8_m64(_a);
+    int8x8_t b = vreinterpret_s8_m64(_b);
+
+    // signed shift right: faster than vclt
+    // (b < 0) ? 0xFF : 0
+    uint8x8_t ltMask = vreinterpret_u8_s8(vshr_n_s8(b, 7));
+
+    // (b == 0) ? 0xFF : 0
+#if defined(__aarch64__)
+    int8x8_t zeroMask = vreinterpret_s8_u8(vceqz_s8(b));
+#else
+    int8x8_t zeroMask = vreinterpret_s8_u8(vceq_s8(b, vdup_n_s8(0)));
+#endif
+
+    // bitwise select either a or negative 'a' (vneg_s8(a) return negative 'a')
+    // based on ltMask
+    int8x8_t masked = vbsl_s8(ltMask, vneg_s8(a), a);
+    // res = masked & (~zeroMask)
+    int8x8_t res = vbic_s8(masked, zeroMask);
+
+    return vreinterpret_m64_s8(res);
+}
+
+/* SSE4.1 */
+
+// Blend packed 16-bit integers from a and b using control mask imm8, and store
+// the results in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_blend_epi16
+// FORCE_INLINE __m128i _mm_blend_epi16(__m128i a, __m128i b,
+//                                      __constrange(0,255) int imm)
+#define _mm_blend_epi16(a, b, imm)                                            \
+    __extension__({                                                           \
+        const uint16_t _mask[8] = {((imm) & (1 << 0)) ? (uint16_t) -1 : 0x0,  \
+                                   ((imm) & (1 << 1)) ? (uint16_t) -1 : 0x0,  \
+                                   ((imm) & (1 << 2)) ? (uint16_t) -1 : 0x0,  \
+                                   ((imm) & (1 << 3)) ? (uint16_t) -1 : 0x0,  \
+                                   ((imm) & (1 << 4)) ? (uint16_t) -1 : 0x0,  \
+                                   ((imm) & (1 << 5)) ? (uint16_t) -1 : 0x0,  \
+                                   ((imm) & (1 << 6)) ? (uint16_t) -1 : 0x0,  \
+                                   ((imm) & (1 << 7)) ? (uint16_t) -1 : 0x0}; \
+        uint16x8_t _mask_vec = vld1q_u16(_mask);                              \
+        uint16x8_t _a = vreinterpretq_u16_m128i(a);                           \
+        uint16x8_t _b = vreinterpretq_u16_m128i(b);                           \
+        vreinterpretq_m128i_u16(vbslq_u16(_mask_vec, _b, _a));                \
+    })
+
+// Blend packed double-precision (64-bit) floating-point elements from a and b
+// using control mask imm8, and store the results in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_blend_pd
+#define _mm_blend_pd(a, b, imm)                                \
+    __extension__({                                            \
+        const uint64_t _mask[2] = {                            \
+            ((imm) & (1 << 0)) ? ~UINT64_C(0) : UINT64_C(0),   \
+            ((imm) & (1 << 1)) ? ~UINT64_C(0) : UINT64_C(0)};  \
+        uint64x2_t _mask_vec = vld1q_u64(_mask);               \
+        uint64x2_t _a = vreinterpretq_u64_m128d(a);            \
+        uint64x2_t _b = vreinterpretq_u64_m128d(b);            \
+        vreinterpretq_m128d_u64(vbslq_u64(_mask_vec, _b, _a)); \
+    })
+
+// Blend packed single-precision (32-bit) floating-point elements from a and b
+// using mask, and store the results in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_blend_ps
+FORCE_INLINE __m128 _mm_blend_ps(__m128 _a, __m128 _b, const char imm8)
+{
+    const uint32_t ALIGN_STRUCT(16)
+        data[4] = {((imm8) & (1 << 0)) ? UINT32_MAX : 0,
+                   ((imm8) & (1 << 1)) ? UINT32_MAX : 0,
+                   ((imm8) & (1 << 2)) ? UINT32_MAX : 0,
+                   ((imm8) & (1 << 3)) ? UINT32_MAX : 0};
+    uint32x4_t mask = vld1q_u32(data);
+    float32x4_t a = vreinterpretq_f32_m128(_a);
+    float32x4_t b = vreinterpretq_f32_m128(_b);
+    return vreinterpretq_m128_f32(vbslq_f32(mask, b, a));
+}
+
+// Blend packed 8-bit integers from a and b using mask, and store the results in
+// dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_blendv_epi8
+FORCE_INLINE __m128i _mm_blendv_epi8(__m128i _a, __m128i _b, __m128i _mask)
+{
+    // Use a signed shift right to create a mask with the sign bit
+    uint8x16_t mask =
+        vreinterpretq_u8_s8(vshrq_n_s8(vreinterpretq_s8_m128i(_mask), 7));
+    uint8x16_t a = vreinterpretq_u8_m128i(_a);
+    uint8x16_t b = vreinterpretq_u8_m128i(_b);
+    return vreinterpretq_m128i_u8(vbslq_u8(mask, b, a));
+}
+
+// Blend packed double-precision (64-bit) floating-point elements from a and b
+// using mask, and store the results in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_blendv_pd
+FORCE_INLINE __m128d _mm_blendv_pd(__m128d _a, __m128d _b, __m128d _mask)
+{
+    uint64x2_t mask =
+        vreinterpretq_u64_s64(vshrq_n_s64(vreinterpretq_s64_m128d(_mask), 63));
+#if defined(__aarch64__)
+    float64x2_t a = vreinterpretq_f64_m128d(_a);
+    float64x2_t b = vreinterpretq_f64_m128d(_b);
+    return vreinterpretq_m128d_f64(vbslq_f64(mask, b, a));
+#else
+    uint64x2_t a = vreinterpretq_u64_m128d(_a);
+    uint64x2_t b = vreinterpretq_u64_m128d(_b);
+    return vreinterpretq_m128d_u64(vbslq_u64(mask, b, a));
+#endif
+}
+
+// Blend packed single-precision (32-bit) floating-point elements from a and b
+// using mask, and store the results in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_blendv_ps
+FORCE_INLINE __m128 _mm_blendv_ps(__m128 _a, __m128 _b, __m128 _mask)
+{
+    // Use a signed shift right to create a mask with the sign bit
+    uint32x4_t mask =
+        vreinterpretq_u32_s32(vshrq_n_s32(vreinterpretq_s32_m128(_mask), 31));
+    float32x4_t a = vreinterpretq_f32_m128(_a);
+    float32x4_t b = vreinterpretq_f32_m128(_b);
+    return vreinterpretq_m128_f32(vbslq_f32(mask, b, a));
+}
+
+// Round the packed double-precision (64-bit) floating-point elements in a up
+// to an integer value, and store the results as packed double-precision
+// floating-point elements in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_ceil_pd
+FORCE_INLINE __m128d _mm_ceil_pd(__m128d a)
+{
+#if defined(__aarch64__)
+    return vreinterpretq_m128d_f64(vrndpq_f64(vreinterpretq_f64_m128d(a)));
+#else
+    double *f = (double *) &a;
+    return _mm_set_pd(ceil(f[1]), ceil(f[0]));
+#endif
+}
+
+// Round the packed single-precision (32-bit) floating-point elements in a up to
+// an integer value, and store the results as packed single-precision
+// floating-point elements in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_ceil_ps
+FORCE_INLINE __m128 _mm_ceil_ps(__m128 a)
+{
+#if defined(__aarch64__) || defined(__ARM_FEATURE_DIRECTED_ROUNDING)
+    return vreinterpretq_m128_f32(vrndpq_f32(vreinterpretq_f32_m128(a)));
+#else
+    float *f = (float *) &a;
+    return _mm_set_ps(ceilf(f[3]), ceilf(f[2]), ceilf(f[1]), ceilf(f[0]));
+#endif
+}
+
+// Round the lower double-precision (64-bit) floating-point element in b up to
+// an integer value, store the result as a double-precision floating-point
+// element in the lower element of dst, and copy the upper element from a to the
+// upper element of dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_ceil_sd
+FORCE_INLINE __m128d _mm_ceil_sd(__m128d a, __m128d b)
+{
+    return _mm_move_sd(a, _mm_ceil_pd(b));
+}
+
+// Round the lower single-precision (32-bit) floating-point element in b up to
+// an integer value, store the result as a single-precision floating-point
+// element in the lower element of dst, and copy the upper 3 packed elements
+// from a to the upper elements of dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_ceil_ss
+FORCE_INLINE __m128 _mm_ceil_ss(__m128 a, __m128 b)
+{
+    return _mm_move_ss(a, _mm_ceil_ps(b));
+}
+
+// Compare packed 64-bit integers in a and b for equality, and store the results
+// in dst
+FORCE_INLINE __m128i _mm_cmpeq_epi64(__m128i a, __m128i b)
+{
+#if defined(__aarch64__)
+    return vreinterpretq_m128i_u64(
+        vceqq_u64(vreinterpretq_u64_m128i(a), vreinterpretq_u64_m128i(b)));
+#else
+    // ARMv7 lacks vceqq_u64
+    // (a == b) -> (a_lo == b_lo) && (a_hi == b_hi)
+    uint32x4_t cmp =
+        vceqq_u32(vreinterpretq_u32_m128i(a), vreinterpretq_u32_m128i(b));
+    uint32x4_t swapped = vrev64q_u32(cmp);
+    return vreinterpretq_m128i_u32(vandq_u32(cmp, swapped));
+#endif
+}
+
+// Sign extend packed 16-bit integers in a to packed 32-bit integers, and store
+// the results in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtepi16_epi32
+FORCE_INLINE __m128i _mm_cvtepi16_epi32(__m128i a)
+{
+    return vreinterpretq_m128i_s32(
+        vmovl_s16(vget_low_s16(vreinterpretq_s16_m128i(a))));
+}
+
+// Sign extend packed 16-bit integers in a to packed 64-bit integers, and store
+// the results in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtepi16_epi64
+FORCE_INLINE __m128i _mm_cvtepi16_epi64(__m128i a)
+{
+    int16x8_t s16x8 = vreinterpretq_s16_m128i(a);     /* xxxx xxxx xxxx 0B0A */
+    int32x4_t s32x4 = vmovl_s16(vget_low_s16(s16x8)); /* 000x 000x 000B 000A */
+    int64x2_t s64x2 = vmovl_s32(vget_low_s32(s32x4)); /* 0000 000B 0000 000A */
+    return vreinterpretq_m128i_s64(s64x2);
+}
+
+// Sign extend packed 32-bit integers in a to packed 64-bit integers, and store
+// the results in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtepi32_epi64
+FORCE_INLINE __m128i _mm_cvtepi32_epi64(__m128i a)
+{
+    return vreinterpretq_m128i_s64(
+        vmovl_s32(vget_low_s32(vreinterpretq_s32_m128i(a))));
+}
+
+// Sign extend packed 8-bit integers in a to packed 16-bit integers, and store
+// the results in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtepi8_epi16
+FORCE_INLINE __m128i _mm_cvtepi8_epi16(__m128i a)
+{
+    int8x16_t s8x16 = vreinterpretq_s8_m128i(a);    /* xxxx xxxx xxxx DCBA */
+    int16x8_t s16x8 = vmovl_s8(vget_low_s8(s8x16)); /* 0x0x 0x0x 0D0C 0B0A */
+    return vreinterpretq_m128i_s16(s16x8);
+}
+
+// Sign extend packed 8-bit integers in a to packed 32-bit integers, and store
+// the results in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtepi8_epi32
+FORCE_INLINE __m128i _mm_cvtepi8_epi32(__m128i a)
+{
+    int8x16_t s8x16 = vreinterpretq_s8_m128i(a);      /* xxxx xxxx xxxx DCBA */
+    int16x8_t s16x8 = vmovl_s8(vget_low_s8(s8x16));   /* 0x0x 0x0x 0D0C 0B0A */
+    int32x4_t s32x4 = vmovl_s16(vget_low_s16(s16x8)); /* 000D 000C 000B 000A */
+    return vreinterpretq_m128i_s32(s32x4);
+}
+
+// Sign extend packed 8-bit integers in the low 8 bytes of a to packed 64-bit
+// integers, and store the results in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtepi8_epi64
+FORCE_INLINE __m128i _mm_cvtepi8_epi64(__m128i a)
+{
+    int8x16_t s8x16 = vreinterpretq_s8_m128i(a);      /* xxxx xxxx xxxx xxBA */
+    int16x8_t s16x8 = vmovl_s8(vget_low_s8(s8x16));   /* 0x0x 0x0x 0x0x 0B0A */
+    int32x4_t s32x4 = vmovl_s16(vget_low_s16(s16x8)); /* 000x 000x 000B 000A */
+    int64x2_t s64x2 = vmovl_s32(vget_low_s32(s32x4)); /* 0000 000B 0000 000A */
+    return vreinterpretq_m128i_s64(s64x2);
+}
+
+// Zero extend packed unsigned 16-bit integers in a to packed 32-bit integers,
+// and store the results in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtepu16_epi32
+FORCE_INLINE __m128i _mm_cvtepu16_epi32(__m128i a)
+{
+    return vreinterpretq_m128i_u32(
+        vmovl_u16(vget_low_u16(vreinterpretq_u16_m128i(a))));
+}
+
+// Zero extend packed unsigned 16-bit integers in a to packed 64-bit integers,
+// and store the results in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtepu16_epi64
+FORCE_INLINE __m128i _mm_cvtepu16_epi64(__m128i a)
+{
+    uint16x8_t u16x8 = vreinterpretq_u16_m128i(a);     /* xxxx xxxx xxxx 0B0A */
+    uint32x4_t u32x4 = vmovl_u16(vget_low_u16(u16x8)); /* 000x 000x 000B 000A */
+    uint64x2_t u64x2 = vmovl_u32(vget_low_u32(u32x4)); /* 0000 000B 0000 000A */
+    return vreinterpretq_m128i_u64(u64x2);
+}
+
+// Zero extend packed unsigned 32-bit integers in a to packed 64-bit integers,
+// and store the results in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtepu32_epi64
+FORCE_INLINE __m128i _mm_cvtepu32_epi64(__m128i a)
+{
+    return vreinterpretq_m128i_u64(
+        vmovl_u32(vget_low_u32(vreinterpretq_u32_m128i(a))));
+}
+
+// Zero extend packed unsigned 8-bit integers in a to packed 16-bit integers,
+// and store the results in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtepu8_epi16
+FORCE_INLINE __m128i _mm_cvtepu8_epi16(__m128i a)
+{
+    uint8x16_t u8x16 = vreinterpretq_u8_m128i(a);    /* xxxx xxxx HGFE DCBA */
+    uint16x8_t u16x8 = vmovl_u8(vget_low_u8(u8x16)); /* 0H0G 0F0E 0D0C 0B0A */
+    return vreinterpretq_m128i_u16(u16x8);
+}
+
+// Zero extend packed unsigned 8-bit integers in a to packed 32-bit integers,
+// and store the results in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtepu8_epi32
+FORCE_INLINE __m128i _mm_cvtepu8_epi32(__m128i a)
+{
+    uint8x16_t u8x16 = vreinterpretq_u8_m128i(a);      /* xxxx xxxx xxxx DCBA */
+    uint16x8_t u16x8 = vmovl_u8(vget_low_u8(u8x16));   /* 0x0x 0x0x 0D0C 0B0A */
+    uint32x4_t u32x4 = vmovl_u16(vget_low_u16(u16x8)); /* 000D 000C 000B 000A */
+    return vreinterpretq_m128i_u32(u32x4);
+}
+
+// Zero extend packed unsigned 8-bit integers in the low 8 byte sof a to packed
+// 64-bit integers, and store the results in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtepu8_epi64
+FORCE_INLINE __m128i _mm_cvtepu8_epi64(__m128i a)
+{
+    uint8x16_t u8x16 = vreinterpretq_u8_m128i(a);      /* xxxx xxxx xxxx xxBA */
+    uint16x8_t u16x8 = vmovl_u8(vget_low_u8(u8x16));   /* 0x0x 0x0x 0x0x 0B0A */
+    uint32x4_t u32x4 = vmovl_u16(vget_low_u16(u16x8)); /* 000x 000x 000B 000A */
+    uint64x2_t u64x2 = vmovl_u32(vget_low_u32(u32x4)); /* 0000 000B 0000 000A */
+    return vreinterpretq_m128i_u64(u64x2);
+}
+
+// Conditionally multiply the packed double-precision (64-bit) floating-point
+// elements in a and b using the high 4 bits in imm8, sum the four products, and
+// conditionally store the sum in dst using the low 4 bits of imm8.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_dp_pd
+FORCE_INLINE __m128d _mm_dp_pd(__m128d a, __m128d b, const int imm)
+{
+    // Generate mask value from constant immediate bit value
+    const int64_t bit0Mask = imm & 0x01 ? UINT64_MAX : 0;
+    const int64_t bit1Mask = imm & 0x02 ? UINT64_MAX : 0;
+#if !SSE2NEON_PRECISE_DP
+    const int64_t bit4Mask = imm & 0x10 ? UINT64_MAX : 0;
+    const int64_t bit5Mask = imm & 0x20 ? UINT64_MAX : 0;
+#endif
+    // Conditional multiplication
+#if !SSE2NEON_PRECISE_DP
+    __m128d mul = _mm_mul_pd(a, b);
+    const __m128d mulMask =
+        _mm_castsi128_pd(_mm_set_epi64x(bit5Mask, bit4Mask));
+    __m128d tmp = _mm_and_pd(mul, mulMask);
+#else
+#if defined(__aarch64__)
+    double d0 = (imm & 0x10) ? vgetq_lane_f64(vreinterpretq_f64_m128d(a), 0) *
+                                   vgetq_lane_f64(vreinterpretq_f64_m128d(b), 0)
+                             : 0;
+    double d1 = (imm & 0x20) ? vgetq_lane_f64(vreinterpretq_f64_m128d(a), 1) *
+                                   vgetq_lane_f64(vreinterpretq_f64_m128d(b), 1)
+                             : 0;
+#else
+    double d0 = (imm & 0x10) ? ((double *) &a)[0] * ((double *) &b)[0] : 0;
+    double d1 = (imm & 0x20) ? ((double *) &a)[1] * ((double *) &b)[1] : 0;
+#endif
+    __m128d tmp = _mm_set_pd(d1, d0);
+#endif
+    // Sum the products
+#if defined(__aarch64__)
+    double sum = vpaddd_f64(vreinterpretq_f64_m128d(tmp));
+#else
+    double sum = *((double *) &tmp) + *(((double *) &tmp) + 1);
+#endif
+    // Conditionally store the sum
+    const __m128d sumMask =
+        _mm_castsi128_pd(_mm_set_epi64x(bit1Mask, bit0Mask));
+    __m128d res = _mm_and_pd(_mm_set_pd1(sum), sumMask);
+    return res;
+}
+
+// Conditionally multiply the packed single-precision (32-bit) floating-point
+// elements in a and b using the high 4 bits in imm8, sum the four products,
+// and conditionally store the sum in dst using the low 4 bits of imm.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_dp_ps
+FORCE_INLINE __m128 _mm_dp_ps(__m128 a, __m128 b, const int imm)
+{
+#if defined(__aarch64__)
+    /* shortcuts */
+    if (imm == 0xFF) {
+        return _mm_set1_ps(vaddvq_f32(_mm_mul_ps(a, b)));
+    }
+    if (imm == 0x7F) {
+        float32x4_t m = _mm_mul_ps(a, b);
+        m[3] = 0;
+        return _mm_set1_ps(vaddvq_f32(m));
+    }
+#endif
+
+    float s = 0, c = 0;
+    float32x4_t f32a = vreinterpretq_f32_m128(a);
+    float32x4_t f32b = vreinterpretq_f32_m128(b);
+
+    /* To improve the accuracy of floating-point summation, Kahan algorithm
+     * is used for each operation.
+     */
+    if (imm & (1 << 4))
+        _sse2neon_kadd_f32(&s, &c, f32a[0] * f32b[0]);
+    if (imm & (1 << 5))
+        _sse2neon_kadd_f32(&s, &c, f32a[1] * f32b[1]);
+    if (imm & (1 << 6))
+        _sse2neon_kadd_f32(&s, &c, f32a[2] * f32b[2]);
+    if (imm & (1 << 7))
+        _sse2neon_kadd_f32(&s, &c, f32a[3] * f32b[3]);
+    s += c;
+
+    float32x4_t res = {
+        (imm & 0x1) ? s : 0,
+        (imm & 0x2) ? s : 0,
+        (imm & 0x4) ? s : 0,
+        (imm & 0x8) ? s : 0,
+    };
+    return vreinterpretq_m128_f32(res);
+}
+
+// Extract a 32-bit integer from a, selected with imm8, and store the result in
+// dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_extract_epi32
+// FORCE_INLINE int _mm_extract_epi32(__m128i a, __constrange(0,4) int imm)
+#define _mm_extract_epi32(a, imm) \
+    vgetq_lane_s32(vreinterpretq_s32_m128i(a), (imm))
+
+// Extract a 64-bit integer from a, selected with imm8, and store the result in
+// dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_extract_epi64
+// FORCE_INLINE __int64 _mm_extract_epi64(__m128i a, __constrange(0,2) int imm)
+#define _mm_extract_epi64(a, imm) \
+    vgetq_lane_s64(vreinterpretq_s64_m128i(a), (imm))
+
+// Extract an 8-bit integer from a, selected with imm8, and store the result in
+// the lower element of dst. FORCE_INLINE int _mm_extract_epi8(__m128i a,
+// __constrange(0,16) int imm)
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_extract_epi8
+#define _mm_extract_epi8(a, imm) vgetq_lane_u8(vreinterpretq_u8_m128i(a), (imm))
+
+// Extracts the selected single-precision (32-bit) floating-point from a.
+// FORCE_INLINE int _mm_extract_ps(__m128 a, __constrange(0,4) int imm)
+#define _mm_extract_ps(a, imm) vgetq_lane_s32(vreinterpretq_s32_m128(a), (imm))
+
+// Round the packed double-precision (64-bit) floating-point elements in a down
+// to an integer value, and store the results as packed double-precision
+// floating-point elements in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_floor_pd
+FORCE_INLINE __m128d _mm_floor_pd(__m128d a)
+{
+#if defined(__aarch64__)
+    return vreinterpretq_m128d_f64(vrndmq_f64(vreinterpretq_f64_m128d(a)));
+#else
+    double *f = (double *) &a;
+    return _mm_set_pd(floor(f[1]), floor(f[0]));
+#endif
+}
+
+// Round the packed single-precision (32-bit) floating-point elements in a down
+// to an integer value, and store the results as packed single-precision
+// floating-point elements in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_floor_ps
+FORCE_INLINE __m128 _mm_floor_ps(__m128 a)
+{
+#if defined(__aarch64__) || defined(__ARM_FEATURE_DIRECTED_ROUNDING)
+    return vreinterpretq_m128_f32(vrndmq_f32(vreinterpretq_f32_m128(a)));
+#else
+    float *f = (float *) &a;
+    return _mm_set_ps(floorf(f[3]), floorf(f[2]), floorf(f[1]), floorf(f[0]));
+#endif
+}
+
+// Round the lower double-precision (64-bit) floating-point element in b down to
+// an integer value, store the result as a double-precision floating-point
+// element in the lower element of dst, and copy the upper element from a to the
+// upper element of dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_floor_sd
+FORCE_INLINE __m128d _mm_floor_sd(__m128d a, __m128d b)
+{
+    return _mm_move_sd(a, _mm_floor_pd(b));
+}
+
+// Round the lower single-precision (32-bit) floating-point element in b down to
+// an integer value, store the result as a single-precision floating-point
+// element in the lower element of dst, and copy the upper 3 packed elements
+// from a to the upper elements of dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_floor_ss
+FORCE_INLINE __m128 _mm_floor_ss(__m128 a, __m128 b)
+{
+    return _mm_move_ss(a, _mm_floor_ps(b));
+}
+
+// Copy a to dst, and insert the 32-bit integer i into dst at the location
+// specified by imm8.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_insert_epi32
+// FORCE_INLINE __m128i _mm_insert_epi32(__m128i a, int b,
+//                                       __constrange(0,4) int imm)
+#define _mm_insert_epi32(a, b, imm)                                  \
+    __extension__({                                                  \
+        vreinterpretq_m128i_s32(                                     \
+            vsetq_lane_s32((b), vreinterpretq_s32_m128i(a), (imm))); \
+    })
+
+// Copy a to dst, and insert the 64-bit integer i into dst at the location
+// specified by imm8.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_insert_epi64
+// FORCE_INLINE __m128i _mm_insert_epi64(__m128i a, __int64 b,
+//                                       __constrange(0,2) int imm)
+#define _mm_insert_epi64(a, b, imm)                                  \
+    __extension__({                                                  \
+        vreinterpretq_m128i_s64(                                     \
+            vsetq_lane_s64((b), vreinterpretq_s64_m128i(a), (imm))); \
+    })
+
+// Copy a to dst, and insert the lower 8-bit integer from i into dst at the
+// location specified by imm8.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_insert_epi8
+// FORCE_INLINE __m128i _mm_insert_epi8(__m128i a, int b,
+//                                      __constrange(0,16) int imm)
+#define _mm_insert_epi8(a, b, imm)                                 \
+    __extension__({                                                \
+        vreinterpretq_m128i_s8(                                    \
+            vsetq_lane_s8((b), vreinterpretq_s8_m128i(a), (imm))); \
+    })
+
+// Copy a to tmp, then insert a single-precision (32-bit) floating-point
+// element from b into tmp using the control in imm8. Store tmp to dst using
+// the mask in imm8 (elements are zeroed out when the corresponding bit is set).
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=insert_ps
+#define _mm_insert_ps(a, b, imm8)                                              \
+    __extension__({                                                            \
+        float32x4_t tmp1 =                                                     \
+            vsetq_lane_f32(vgetq_lane_f32(b, (imm8 >> 6) & 0x3),               \
+                           vreinterpretq_f32_m128(a), 0);                      \
+        float32x4_t tmp2 =                                                     \
+            vsetq_lane_f32(vgetq_lane_f32(tmp1, 0), vreinterpretq_f32_m128(a), \
+                           ((imm8 >> 4) & 0x3));                               \
+        const uint32_t data[4] = {((imm8) & (1 << 0)) ? UINT32_MAX : 0,        \
+                                  ((imm8) & (1 << 1)) ? UINT32_MAX : 0,        \
+                                  ((imm8) & (1 << 2)) ? UINT32_MAX : 0,        \
+                                  ((imm8) & (1 << 3)) ? UINT32_MAX : 0};       \
+        uint32x4_t mask = vld1q_u32(data);                                     \
+        float32x4_t all_zeros = vdupq_n_f32(0);                                \
+                                                                               \
+        vreinterpretq_m128_f32(                                                \
+            vbslq_f32(mask, all_zeros, vreinterpretq_f32_m128(tmp2)));         \
+    })
+
+// Compare packed signed 32-bit integers in a and b, and store packed maximum
+// values in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_max_epi32
+FORCE_INLINE __m128i _mm_max_epi32(__m128i a, __m128i b)
+{
+    return vreinterpretq_m128i_s32(
+        vmaxq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b)));
+}
+
+// Compare packed signed 8-bit integers in a and b, and store packed maximum
+// values in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_max_epi8
+FORCE_INLINE __m128i _mm_max_epi8(__m128i a, __m128i b)
+{
+    return vreinterpretq_m128i_s8(
+        vmaxq_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b)));
+}
+
+// Compare packed unsigned 16-bit integers in a and b, and store packed maximum
+// values in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_max_epu16
+FORCE_INLINE __m128i _mm_max_epu16(__m128i a, __m128i b)
+{
+    return vreinterpretq_m128i_u16(
+        vmaxq_u16(vreinterpretq_u16_m128i(a), vreinterpretq_u16_m128i(b)));
+}
+
+// Compare packed unsigned 32-bit integers in a and b, and store packed maximum
+// values in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_max_epu32
+FORCE_INLINE __m128i _mm_max_epu32(__m128i a, __m128i b)
+{
+    return vreinterpretq_m128i_u32(
+        vmaxq_u32(vreinterpretq_u32_m128i(a), vreinterpretq_u32_m128i(b)));
+}
+
+// Compare packed signed 32-bit integers in a and b, and store packed minimum
+// values in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_min_epi32
+FORCE_INLINE __m128i _mm_min_epi32(__m128i a, __m128i b)
+{
+    return vreinterpretq_m128i_s32(
+        vminq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b)));
+}
+
+// Compare packed signed 8-bit integers in a and b, and store packed minimum
+// values in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_min_epi8
+FORCE_INLINE __m128i _mm_min_epi8(__m128i a, __m128i b)
+{
+    return vreinterpretq_m128i_s8(
+        vminq_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b)));
+}
+
+// Compare packed unsigned 16-bit integers in a and b, and store packed minimum
+// values in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_min_epu16
+FORCE_INLINE __m128i _mm_min_epu16(__m128i a, __m128i b)
+{
+    return vreinterpretq_m128i_u16(
+        vminq_u16(vreinterpretq_u16_m128i(a), vreinterpretq_u16_m128i(b)));
+}
+
+// Compare packed unsigned 32-bit integers in a and b, and store packed minimum
+// values in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_max_epu32
+FORCE_INLINE __m128i _mm_min_epu32(__m128i a, __m128i b)
+{
+    return vreinterpretq_m128i_u32(
+        vminq_u32(vreinterpretq_u32_m128i(a), vreinterpretq_u32_m128i(b)));
+}
+
+// Horizontally compute the minimum amongst the packed unsigned 16-bit integers
+// in a, store the minimum and index in dst, and zero the remaining bits in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_minpos_epu16
+FORCE_INLINE __m128i _mm_minpos_epu16(__m128i a)
+{
+    __m128i dst;
+    uint16_t min, idx = 0;
+#if defined(__aarch64__)
+    // Find the minimum value
+    min = vminvq_u16(vreinterpretq_u16_m128i(a));
+
+    // Get the index of the minimum value
+    static const uint16_t idxv[] = {0, 1, 2, 3, 4, 5, 6, 7};
+    uint16x8_t minv = vdupq_n_u16(min);
+    uint16x8_t cmeq = vceqq_u16(minv, vreinterpretq_u16_m128i(a));
+    idx = vminvq_u16(vornq_u16(vld1q_u16(idxv), cmeq));
+#else
+    // Find the minimum value
+    __m64 tmp;
+    tmp = vreinterpret_m64_u16(
+        vmin_u16(vget_low_u16(vreinterpretq_u16_m128i(a)),
+                 vget_high_u16(vreinterpretq_u16_m128i(a))));
+    tmp = vreinterpret_m64_u16(
+        vpmin_u16(vreinterpret_u16_m64(tmp), vreinterpret_u16_m64(tmp)));
+    tmp = vreinterpret_m64_u16(
+        vpmin_u16(vreinterpret_u16_m64(tmp), vreinterpret_u16_m64(tmp)));
+    min = vget_lane_u16(vreinterpret_u16_m64(tmp), 0);
+    // Get the index of the minimum value
+    int i;
+    for (i = 0; i < 8; i++) {
+        if (min == vgetq_lane_u16(vreinterpretq_u16_m128i(a), 0)) {
+            idx = (uint16_t) i;
+            break;
+        }
+        a = _mm_srli_si128(a, 2);
+    }
+#endif
+    // Generate result
+    dst = _mm_setzero_si128();
+    dst = vreinterpretq_m128i_u16(
+        vsetq_lane_u16(min, vreinterpretq_u16_m128i(dst), 0));
+    dst = vreinterpretq_m128i_u16(
+        vsetq_lane_u16(idx, vreinterpretq_u16_m128i(dst), 1));
+    return dst;
+}
+
+// Compute the sum of absolute differences (SADs) of quadruplets of unsigned
+// 8-bit integers in a compared to those in b, and store the 16-bit results in
+// dst. Eight SADs are performed using one quadruplet from b and eight
+// quadruplets from a. One quadruplet is selected from b starting at on the
+// offset specified in imm8. Eight quadruplets are formed from sequential 8-bit
+// integers selected from a starting at the offset specified in imm8.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mpsadbw_epu8
+FORCE_INLINE __m128i _mm_mpsadbw_epu8(__m128i a, __m128i b, const int imm)
+{
+    uint8x16_t _a, _b;
+
+    switch (imm & 0x4) {
+    case 0:
+        // do nothing
+        _a = vreinterpretq_u8_m128i(a);
+        break;
+    case 4:
+        _a = vreinterpretq_u8_u32(vextq_u32(vreinterpretq_u32_m128i(a),
+                                            vreinterpretq_u32_m128i(a), 1));
+        break;
+    default:
+#if defined(__GNUC__) || defined(__clang__)
+        __builtin_unreachable();
+#endif
+        break;
+    }
+
+    switch (imm & 0x3) {
+    case 0:
+        _b = vreinterpretq_u8_u32(
+            vdupq_n_u32(vgetq_lane_u32(vreinterpretq_u32_m128i(b), 0)));
+        break;
+    case 1:
+        _b = vreinterpretq_u8_u32(
+            vdupq_n_u32(vgetq_lane_u32(vreinterpretq_u32_m128i(b), 1)));
+        break;
+    case 2:
+        _b = vreinterpretq_u8_u32(
+            vdupq_n_u32(vgetq_lane_u32(vreinterpretq_u32_m128i(b), 2)));
+        break;
+    case 3:
+        _b = vreinterpretq_u8_u32(
+            vdupq_n_u32(vgetq_lane_u32(vreinterpretq_u32_m128i(b), 3)));
+        break;
+    default:
+#if defined(__GNUC__) || defined(__clang__)
+        __builtin_unreachable();
+#endif
+        break;
+    }
+
+    int16x8_t c04, c15, c26, c37;
+    uint8x8_t low_b = vget_low_u8(_b);
+    c04 = vreinterpretq_s16_u16(vabdl_u8(vget_low_u8(_a), low_b));
+    uint8x16_t _a_1 = vextq_u8(_a, _a, 1);
+    c15 = vreinterpretq_s16_u16(vabdl_u8(vget_low_u8(_a_1), low_b));
+    uint8x16_t _a_2 = vextq_u8(_a, _a, 2);
+    c26 = vreinterpretq_s16_u16(vabdl_u8(vget_low_u8(_a_2), low_b));
+    uint8x16_t _a_3 = vextq_u8(_a, _a, 3);
+    c37 = vreinterpretq_s16_u16(vabdl_u8(vget_low_u8(_a_3), low_b));
+#if defined(__aarch64__)
+    // |0|4|2|6|
+    c04 = vpaddq_s16(c04, c26);
+    // |1|5|3|7|
+    c15 = vpaddq_s16(c15, c37);
+
+    int32x4_t trn1_c =
+        vtrn1q_s32(vreinterpretq_s32_s16(c04), vreinterpretq_s32_s16(c15));
+    int32x4_t trn2_c =
+        vtrn2q_s32(vreinterpretq_s32_s16(c04), vreinterpretq_s32_s16(c15));
+    return vreinterpretq_m128i_s16(vpaddq_s16(vreinterpretq_s16_s32(trn1_c),
+                                              vreinterpretq_s16_s32(trn2_c)));
+#else
+    int16x4_t c01, c23, c45, c67;
+    c01 = vpadd_s16(vget_low_s16(c04), vget_low_s16(c15));
+    c23 = vpadd_s16(vget_low_s16(c26), vget_low_s16(c37));
+    c45 = vpadd_s16(vget_high_s16(c04), vget_high_s16(c15));
+    c67 = vpadd_s16(vget_high_s16(c26), vget_high_s16(c37));
+
+    return vreinterpretq_m128i_s16(
+        vcombine_s16(vpadd_s16(c01, c23), vpadd_s16(c45, c67)));
+#endif
+}
+
+// Multiply the low signed 32-bit integers from each packed 64-bit element in
+// a and b, and store the signed 64-bit results in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mul_epi32
+FORCE_INLINE __m128i _mm_mul_epi32(__m128i a, __m128i b)
+{
+    // vmull_s32 upcasts instead of masking, so we downcast.
+    int32x2_t a_lo = vmovn_s64(vreinterpretq_s64_m128i(a));
+    int32x2_t b_lo = vmovn_s64(vreinterpretq_s64_m128i(b));
+    return vreinterpretq_m128i_s64(vmull_s32(a_lo, b_lo));
+}
+
+// Multiply the packed 32-bit integers in a and b, producing intermediate 64-bit
+// integers, and store the low 32 bits of the intermediate integers in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mullo_epi32
+FORCE_INLINE __m128i _mm_mullo_epi32(__m128i a, __m128i b)
+{
+    return vreinterpretq_m128i_s32(
+        vmulq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b)));
+}
+
+// Convert packed signed 32-bit integers from a and b to packed 16-bit integers
+// using unsigned saturation, and store the results in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_packus_epi32
+FORCE_INLINE __m128i _mm_packus_epi32(__m128i a, __m128i b)
+{
+    return vreinterpretq_m128i_u16(
+        vcombine_u16(vqmovun_s32(vreinterpretq_s32_m128i(a)),
+                     vqmovun_s32(vreinterpretq_s32_m128i(b))));
+}
+
+// Round the packed double-precision (64-bit) floating-point elements in a using
+// the rounding parameter, and store the results as packed double-precision
+// floating-point elements in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_round_pd
+FORCE_INLINE __m128d _mm_round_pd(__m128d a, int rounding)
+{
+#if defined(__aarch64__)
+    switch (rounding) {
+    case (_MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC):
+        return vreinterpretq_m128d_f64(vrndnq_f64(vreinterpretq_f64_m128d(a)));
+    case (_MM_FROUND_TO_NEG_INF | _MM_FROUND_NO_EXC):
+        return _mm_floor_pd(a);
+    case (_MM_FROUND_TO_POS_INF | _MM_FROUND_NO_EXC):
+        return _mm_ceil_pd(a);
+    case (_MM_FROUND_TO_ZERO | _MM_FROUND_NO_EXC):
+        return vreinterpretq_m128d_f64(vrndq_f64(vreinterpretq_f64_m128d(a)));
+    default:  //_MM_FROUND_CUR_DIRECTION
+        return vreinterpretq_m128d_f64(vrndiq_f64(vreinterpretq_f64_m128d(a)));
+    }
+#else
+    double *v_double = (double *) &a;
+
+    if (rounding == (_MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC) ||
+        (rounding == _MM_FROUND_CUR_DIRECTION &&
+         _MM_GET_ROUNDING_MODE() == _MM_ROUND_NEAREST)) {
+        double res[2], tmp;
+        for (int i = 0; i < 2; i++) {
+            tmp = (v_double[i] < 0) ? -v_double[i] : v_double[i];
+            double roundDown = floor(tmp);  // Round down value
+            double roundUp = ceil(tmp);     // Round up value
+            double diffDown = tmp - roundDown;
+            double diffUp = roundUp - tmp;
+            if (diffDown < diffUp) {
+                /* If it's closer to the round down value, then use it */
+                res[i] = roundDown;
+            } else if (diffDown > diffUp) {
+                /* If it's closer to the round up value, then use it */
+                res[i] = roundUp;
+            } else {
+                /* If it's equidistant between round up and round down value,
+                 * pick the one which is an even number */
+                double half = roundDown / 2;
+                if (half != floor(half)) {
+                    /* If the round down value is odd, return the round up value
+                     */
+                    res[i] = roundUp;
+                } else {
+                    /* If the round up value is odd, return the round down value
+                     */
+                    res[i] = roundDown;
+                }
+            }
+            res[i] = (v_double[i] < 0) ? -res[i] : res[i];
+        }
+        return _mm_set_pd(res[1], res[0]);
+    } else if (rounding == (_MM_FROUND_TO_NEG_INF | _MM_FROUND_NO_EXC) ||
+               (rounding == _MM_FROUND_CUR_DIRECTION &&
+                _MM_GET_ROUNDING_MODE() == _MM_ROUND_DOWN)) {
+        return _mm_floor_pd(a);
+    } else if (rounding == (_MM_FROUND_TO_POS_INF | _MM_FROUND_NO_EXC) ||
+               (rounding == _MM_FROUND_CUR_DIRECTION &&
+                _MM_GET_ROUNDING_MODE() == _MM_ROUND_UP)) {
+        return _mm_ceil_pd(a);
+    }
+    return _mm_set_pd(v_double[1] > 0 ? floor(v_double[1]) : ceil(v_double[1]),
+                      v_double[0] > 0 ? floor(v_double[0]) : ceil(v_double[0]));
+#endif
+}
+
+// Round the packed single-precision (32-bit) floating-point elements in a using
+// the rounding parameter, and store the results as packed single-precision
+// floating-point elements in dst.
+// software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_round_ps
+FORCE_INLINE __m128 _mm_round_ps(__m128 a, int rounding)
+{
+#if defined(__aarch64__) || defined(__ARM_FEATURE_DIRECTED_ROUNDING)
+    switch (rounding) {
+    case (_MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC):
+        return vreinterpretq_m128_f32(vrndnq_f32(vreinterpretq_f32_m128(a)));
+    case (_MM_FROUND_TO_NEG_INF | _MM_FROUND_NO_EXC):
+        return _mm_floor_ps(a);
+    case (_MM_FROUND_TO_POS_INF | _MM_FROUND_NO_EXC):
+        return _mm_ceil_ps(a);
+    case (_MM_FROUND_TO_ZERO | _MM_FROUND_NO_EXC):
+        return vreinterpretq_m128_f32(vrndq_f32(vreinterpretq_f32_m128(a)));
+    default:  //_MM_FROUND_CUR_DIRECTION
+        return vreinterpretq_m128_f32(vrndiq_f32(vreinterpretq_f32_m128(a)));
+    }
+#else
+    float *v_float = (float *) &a;
+
+    if (rounding == (_MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC) ||
+        (rounding == _MM_FROUND_CUR_DIRECTION &&
+         _MM_GET_ROUNDING_MODE() == _MM_ROUND_NEAREST)) {
+        uint32x4_t signmask = vdupq_n_u32(0x80000000);
+        float32x4_t half = vbslq_f32(signmask, vreinterpretq_f32_m128(a),
+                                     vdupq_n_f32(0.5f)); /* +/- 0.5 */
+        int32x4_t r_normal = vcvtq_s32_f32(vaddq_f32(
+            vreinterpretq_f32_m128(a), half)); /* round to integer: [a + 0.5]*/
+        int32x4_t r_trunc = vcvtq_s32_f32(
+            vreinterpretq_f32_m128(a)); /* truncate to integer: [a] */
+        int32x4_t plusone = vreinterpretq_s32_u32(vshrq_n_u32(
+            vreinterpretq_u32_s32(vnegq_s32(r_trunc)), 31)); /* 1 or 0 */
+        int32x4_t r_even = vbicq_s32(vaddq_s32(r_trunc, plusone),
+                                     vdupq_n_s32(1)); /* ([a] + {0,1}) & ~1 */
+        float32x4_t delta = vsubq_f32(
+            vreinterpretq_f32_m128(a),
+            vcvtq_f32_s32(r_trunc)); /* compute delta: delta = (a - [a]) */
+        uint32x4_t is_delta_half =
+            vceqq_f32(delta, half); /* delta == +/- 0.5 */
+        return vreinterpretq_m128_f32(
+            vcvtq_f32_s32(vbslq_s32(is_delta_half, r_even, r_normal)));
+    } else if (rounding == (_MM_FROUND_TO_NEG_INF | _MM_FROUND_NO_EXC) ||
+               (rounding == _MM_FROUND_CUR_DIRECTION &&
+                _MM_GET_ROUNDING_MODE() == _MM_ROUND_DOWN)) {
+        return _mm_floor_ps(a);
+    } else if (rounding == (_MM_FROUND_TO_POS_INF | _MM_FROUND_NO_EXC) ||
+               (rounding == _MM_FROUND_CUR_DIRECTION &&
+                _MM_GET_ROUNDING_MODE() == _MM_ROUND_UP)) {
+        return _mm_ceil_ps(a);
+    }
+    return _mm_set_ps(v_float[3] > 0 ? floorf(v_float[3]) : ceilf(v_float[3]),
+                      v_float[2] > 0 ? floorf(v_float[2]) : ceilf(v_float[2]),
+                      v_float[1] > 0 ? floorf(v_float[1]) : ceilf(v_float[1]),
+                      v_float[0] > 0 ? floorf(v_float[0]) : ceilf(v_float[0]));
+#endif
+}
+
+// Round the lower double-precision (64-bit) floating-point element in b using
+// the rounding parameter, store the result as a double-precision floating-point
+// element in the lower element of dst, and copy the upper element from a to the
+// upper element of dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_round_sd
+FORCE_INLINE __m128d _mm_round_sd(__m128d a, __m128d b, int rounding)
+{
+    return _mm_move_sd(a, _mm_round_pd(b, rounding));
+}
+
+// Round the lower single-precision (32-bit) floating-point element in b using
+// the rounding parameter, store the result as a single-precision floating-point
+// element in the lower element of dst, and copy the upper 3 packed elements
+// from a to the upper elements of dst. Rounding is done according to the
+// rounding[3:0] parameter, which can be one of:
+//     (_MM_FROUND_TO_NEAREST_INT |_MM_FROUND_NO_EXC) // round to nearest, and
+//     suppress exceptions
+//     (_MM_FROUND_TO_NEG_INF |_MM_FROUND_NO_EXC)     // round down, and
+//     suppress exceptions
+//     (_MM_FROUND_TO_POS_INF |_MM_FROUND_NO_EXC)     // round up, and suppress
+//     exceptions
+//     (_MM_FROUND_TO_ZERO |_MM_FROUND_NO_EXC)        // truncate, and suppress
+//     exceptions _MM_FROUND_CUR_DIRECTION // use MXCSR.RC; see
+//     _MM_SET_ROUNDING_MODE
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_round_ss
+FORCE_INLINE __m128 _mm_round_ss(__m128 a, __m128 b, int rounding)
+{
+    return _mm_move_ss(a, _mm_round_ps(b, rounding));
+}
+
+// Load 128-bits of integer data from memory into dst using a non-temporal
+// memory hint. mem_addr must be aligned on a 16-byte boundary or a
+// general-protection exception may be generated.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_stream_load_si128
+FORCE_INLINE __m128i _mm_stream_load_si128(__m128i *p)
+{
+#if __has_builtin(__builtin_nontemporal_store)
+    return __builtin_nontemporal_load(p);
+#else
+    return vreinterpretq_m128i_s64(vld1q_s64((int64_t *) p));
+#endif
+}
+
+// Compute the bitwise NOT of a and then AND with a 128-bit vector containing
+// all 1's, and return 1 if the result is zero, otherwise return 0.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_test_all_ones
+FORCE_INLINE int _mm_test_all_ones(__m128i a)
+{
+    return (uint64_t) (vgetq_lane_s64(a, 0) & vgetq_lane_s64(a, 1)) ==
+           ~(uint64_t) 0;
+}
+
+// Compute the bitwise AND of 128 bits (representing integer data) in a and
+// mask, and return 1 if the result is zero, otherwise return 0.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_test_all_zeros
+FORCE_INLINE int _mm_test_all_zeros(__m128i a, __m128i mask)
+{
+    int64x2_t a_and_mask =
+        vandq_s64(vreinterpretq_s64_m128i(a), vreinterpretq_s64_m128i(mask));
+    return !(vgetq_lane_s64(a_and_mask, 0) | vgetq_lane_s64(a_and_mask, 1));
+}
+
+// Compute the bitwise AND of 128 bits (representing integer data) in a and
+// mask, and set ZF to 1 if the result is zero, otherwise set ZF to 0. Compute
+// the bitwise NOT of a and then AND with mask, and set CF to 1 if the result is
+// zero, otherwise set CF to 0. Return 1 if both the ZF and CF values are zero,
+// otherwise return 0.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=mm_test_mix_ones_zero
+FORCE_INLINE int _mm_test_mix_ones_zeros(__m128i a, __m128i mask)
+{
+    uint64x2_t zf =
+        vandq_u64(vreinterpretq_u64_m128i(mask), vreinterpretq_u64_m128i(a));
+    uint64x2_t cf =
+        vbicq_u64(vreinterpretq_u64_m128i(mask), vreinterpretq_u64_m128i(a));
+    uint64x2_t result = vandq_u64(zf, cf);
+    return !(vgetq_lane_u64(result, 0) | vgetq_lane_u64(result, 1));
+}
+
+// Compute the bitwise AND of 128 bits (representing integer data) in a and b,
+// and set ZF to 1 if the result is zero, otherwise set ZF to 0. Compute the
+// bitwise NOT of a and then AND with b, and set CF to 1 if the result is zero,
+// otherwise set CF to 0. Return the CF value.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_testc_si128
+FORCE_INLINE int _mm_testc_si128(__m128i a, __m128i b)
+{
+    int64x2_t s64 =
+        vbicq_s64(vreinterpretq_s64_m128i(b), vreinterpretq_s64_m128i(a));
+    return !(vgetq_lane_s64(s64, 0) | vgetq_lane_s64(s64, 1));
+}
+
+// Compute the bitwise AND of 128 bits (representing integer data) in a and b,
+// and set ZF to 1 if the result is zero, otherwise set ZF to 0. Compute the
+// bitwise NOT of a and then AND with b, and set CF to 1 if the result is zero,
+// otherwise set CF to 0. Return 1 if both the ZF and CF values are zero,
+// otherwise return 0.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_testnzc_si128
+#define _mm_testnzc_si128(a, b) _mm_test_mix_ones_zeros(a, b)
+
+// Compute the bitwise AND of 128 bits (representing integer data) in a and b,
+// and set ZF to 1 if the result is zero, otherwise set ZF to 0. Compute the
+// bitwise NOT of a and then AND with b, and set CF to 1 if the result is zero,
+// otherwise set CF to 0. Return the ZF value.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_testz_si128
+FORCE_INLINE int _mm_testz_si128(__m128i a, __m128i b)
+{
+    int64x2_t s64 =
+        vandq_s64(vreinterpretq_s64_m128i(a), vreinterpretq_s64_m128i(b));
+    return !(vgetq_lane_s64(s64, 0) | vgetq_lane_s64(s64, 1));
+}
+
+/* SSE4.2 */
+
+const static uint16_t _sse2neon_cmpestr_mask16b[8] ALIGN_STRUCT(16) = {
+    0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
+};
+const static uint8_t _sse2neon_cmpestr_mask8b[16] ALIGN_STRUCT(16) = {
+    0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
+    0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
+};
+
+/* specify the source data format */
+#define _SIDD_UBYTE_OPS 0x00 /* unsigned 8-bit characters */
+#define _SIDD_UWORD_OPS 0x01 /* unsigned 16-bit characters */
+#define _SIDD_SBYTE_OPS 0x02 /* signed 8-bit characters */
+#define _SIDD_SWORD_OPS 0x03 /* signed 16-bit characters */
+
+/* specify the comparison operation */
+#define _SIDD_CMP_EQUAL_ANY 0x00     /* compare equal any: strchr */
+#define _SIDD_CMP_RANGES 0x04        /* compare ranges */
+#define _SIDD_CMP_EQUAL_EACH 0x08    /* compare equal each: strcmp */
+#define _SIDD_CMP_EQUAL_ORDERED 0x0C /* compare equal ordered */
+
+/* specify the polarity */
+#define _SIDD_POSITIVE_POLARITY 0x00
+#define _SIDD_MASKED_POSITIVE_POLARITY 0x20
+#define _SIDD_NEGATIVE_POLARITY 0x10 /* negate results */
+#define _SIDD_MASKED_NEGATIVE_POLARITY \
+    0x30 /* negate results only before end of string */
+
+/* specify the output selection in _mm_cmpXstri */
+#define _SIDD_LEAST_SIGNIFICANT 0x00
+#define _SIDD_MOST_SIGNIFICANT 0x40
+
+/* specify the output selection in _mm_cmpXstrm */
+#define _SIDD_BIT_MASK 0x00
+#define _SIDD_UNIT_MASK 0x40
+
+/* Pattern Matching for C macros.
+ * https://github.com/pfultz2/Cloak/wiki/C-Preprocessor-tricks,-tips,-and-idioms
+ */
+
+/* catenate */
+#define SSE2NEON_PRIMITIVE_CAT(a, ...) a##__VA_ARGS__
+#define SSE2NEON_CAT(a, b) SSE2NEON_PRIMITIVE_CAT(a, b)
+
+#define SSE2NEON_IIF(c) SSE2NEON_PRIMITIVE_CAT(SSE2NEON_IIF_, c)
+/* run the 2nd parameter */
+#define SSE2NEON_IIF_0(t, ...) __VA_ARGS__
+/* run the 1st parameter */
+#define SSE2NEON_IIF_1(t, ...) t
+
+#define SSE2NEON_COMPL(b) SSE2NEON_PRIMITIVE_CAT(SSE2NEON_COMPL_, b)
+#define SSE2NEON_COMPL_0 1
+#define SSE2NEON_COMPL_1 0
+
+#define SSE2NEON_DEC(x) SSE2NEON_PRIMITIVE_CAT(SSE2NEON_DEC_, x)
+#define SSE2NEON_DEC_1 0
+#define SSE2NEON_DEC_2 1
+#define SSE2NEON_DEC_3 2
+#define SSE2NEON_DEC_4 3
+#define SSE2NEON_DEC_5 4
+#define SSE2NEON_DEC_6 5
+#define SSE2NEON_DEC_7 6
+#define SSE2NEON_DEC_8 7
+#define SSE2NEON_DEC_9 8
+#define SSE2NEON_DEC_10 9
+#define SSE2NEON_DEC_11 10
+#define SSE2NEON_DEC_12 11
+#define SSE2NEON_DEC_13 12
+#define SSE2NEON_DEC_14 13
+#define SSE2NEON_DEC_15 14
+#define SSE2NEON_DEC_16 15
+
+/* detection */
+#define SSE2NEON_CHECK_N(x, n, ...) n
+#define SSE2NEON_CHECK(...) SSE2NEON_CHECK_N(__VA_ARGS__, 0, )
+#define SSE2NEON_PROBE(x) x, 1,
+
+#define SSE2NEON_NOT(x) SSE2NEON_CHECK(SSE2NEON_PRIMITIVE_CAT(SSE2NEON_NOT_, x))
+#define SSE2NEON_NOT_0 SSE2NEON_PROBE(~)
+
+#define SSE2NEON_BOOL(x) SSE2NEON_COMPL(SSE2NEON_NOT(x))
+#define SSE2NEON_IF(c) SSE2NEON_IIF(SSE2NEON_BOOL(c))
+
+#define SSE2NEON_EAT(...)
+#define SSE2NEON_EXPAND(...) __VA_ARGS__
+#define SSE2NEON_WHEN(c) SSE2NEON_IF(c)(SSE2NEON_EXPAND, SSE2NEON_EAT)
+
+/* recursion */
+/* deferred expression */
+#define SSE2NEON_EMPTY()
+#define SSE2NEON_DEFER(id) id SSE2NEON_EMPTY()
+#define SSE2NEON_OBSTRUCT(...) __VA_ARGS__ SSE2NEON_DEFER(SSE2NEON_EMPTY)()
+#define SSE2NEON_EXPAND(...) __VA_ARGS__
+
+#define SSE2NEON_EVAL(...) \
+    SSE2NEON_EVAL1(SSE2NEON_EVAL1(SSE2NEON_EVAL1(__VA_ARGS__)))
+#define SSE2NEON_EVAL1(...) \
+    SSE2NEON_EVAL2(SSE2NEON_EVAL2(SSE2NEON_EVAL2(__VA_ARGS__)))
+#define SSE2NEON_EVAL2(...) \
+    SSE2NEON_EVAL3(SSE2NEON_EVAL3(SSE2NEON_EVAL3(__VA_ARGS__)))
+#define SSE2NEON_EVAL3(...) __VA_ARGS__
+
+#define SSE2NEON_REPEAT(count, macro, ...)                         \
+    SSE2NEON_WHEN(count)                                           \
+    (SSE2NEON_OBSTRUCT(SSE2NEON_REPEAT_INDIRECT)()(                \
+        SSE2NEON_DEC(count), macro,                                \
+        __VA_ARGS__) SSE2NEON_OBSTRUCT(macro)(SSE2NEON_DEC(count), \
+                                              __VA_ARGS__))
+#define SSE2NEON_REPEAT_INDIRECT() SSE2NEON_REPEAT
+
+#define SSE2NEON_SIZE_OF_byte 8
+#define SSE2NEON_NUMBER_OF_LANES_byte 16
+#define SSE2NEON_SIZE_OF_word 16
+#define SSE2NEON_NUMBER_OF_LANES_word 8
+
+#define SSE2NEON_COMPARE_EQUAL_THEN_FILL_LANE(i, type)                         \
+    mtx[i] = vreinterpretq_m128i_##type(vceqq_##type(                          \
+        vdupq_n_##type(vgetq_lane_##type(vreinterpretq_##type##_m128i(b), i)), \
+        vreinterpretq_##type##_m128i(a)));
+
+#define SSE2NEON_FILL_LANE(i, type) \
+    vec_b[i] =                      \
+        vdupq_n_##type(vgetq_lane_##type(vreinterpretq_##type##_m128i(b), i));
+
+#define PCMPSTR_RANGES(a, b, mtx, data_type_prefix, type_prefix, size,        \
+                       number_of_lanes, byte_or_word)                         \
+    do {                                                                      \
+        SSE2NEON_CAT(                                                         \
+            data_type_prefix,                                                 \
+            SSE2NEON_CAT(size,                                                \
+                         SSE2NEON_CAT(x, SSE2NEON_CAT(number_of_lanes, _t)))) \
+        vec_b[number_of_lanes];                                               \
+        __m128i mask = SSE2NEON_IIF(byte_or_word)(                            \
+            vreinterpretq_m128i_u16(vdupq_n_u16(0xff)),                       \
+            vreinterpretq_m128i_u32(vdupq_n_u32(0xffff)));                    \
+        SSE2NEON_EVAL(SSE2NEON_REPEAT(number_of_lanes, SSE2NEON_FILL_LANE,    \
+                                      SSE2NEON_CAT(type_prefix, size)))       \
+        for (int i = 0; i < number_of_lanes; i++) {                           \
+            mtx[i] = SSE2NEON_CAT(vreinterpretq_m128i_u,                      \
+                                  size)(SSE2NEON_CAT(vbslq_u, size)(          \
+                SSE2NEON_CAT(vreinterpretq_u,                                 \
+                             SSE2NEON_CAT(size, _m128i))(mask),               \
+                SSE2NEON_CAT(vcgeq_, SSE2NEON_CAT(type_prefix, size))(        \
+                    vec_b[i],                                                 \
+                    SSE2NEON_CAT(                                             \
+                        vreinterpretq_,                                       \
+                        SSE2NEON_CAT(type_prefix,                             \
+                                     SSE2NEON_CAT(size, _m128i(a))))),        \
+                SSE2NEON_CAT(vcleq_, SSE2NEON_CAT(type_prefix, size))(        \
+                    vec_b[i],                                                 \
+                    SSE2NEON_CAT(                                             \
+                        vreinterpretq_,                                       \
+                        SSE2NEON_CAT(type_prefix,                             \
+                                     SSE2NEON_CAT(size, _m128i(a)))))));      \
+        }                                                                     \
+    } while (0)
+
+#define PCMPSTR_EQ(a, b, mtx, size, number_of_lanes)                         \
+    do {                                                                     \
+        SSE2NEON_EVAL(SSE2NEON_REPEAT(number_of_lanes,                       \
+                                      SSE2NEON_COMPARE_EQUAL_THEN_FILL_LANE, \
+                                      SSE2NEON_CAT(u, size)))                \
+    } while (0)
+
+#define SSE2NEON_CMP_EQUAL_ANY_IMPL(type)                                     \
+    static int _sse2neon_cmp_##type##_equal_any(__m128i a, int la, __m128i b, \
+                                                int lb)                       \
+    {                                                                         \
+        __m128i mtx[16];                                                      \
+        PCMPSTR_EQ(a, b, mtx, SSE2NEON_CAT(SSE2NEON_SIZE_OF_, type),          \
+                   SSE2NEON_CAT(SSE2NEON_NUMBER_OF_LANES_, type));            \
+        return SSE2NEON_CAT(                                                  \
+            _sse2neon_aggregate_equal_any_,                                   \
+            SSE2NEON_CAT(                                                     \
+                SSE2NEON_CAT(SSE2NEON_SIZE_OF_, type),                        \
+                SSE2NEON_CAT(x, SSE2NEON_CAT(SSE2NEON_NUMBER_OF_LANES_,       \
+                                             type))))(la, lb, mtx);           \
+    }
+
+#define SSE2NEON_CMP_RANGES_IMPL(type, data_type, us, byte_or_word)            \
+    static int _sse2neon_cmp_##us##type##_ranges(__m128i a, int la, __m128i b, \
+                                                 int lb)                       \
+    {                                                                          \
+        __m128i mtx[16];                                                       \
+        PCMPSTR_RANGES(                                                        \
+            a, b, mtx, data_type, us, SSE2NEON_CAT(SSE2NEON_SIZE_OF_, type),   \
+            SSE2NEON_CAT(SSE2NEON_NUMBER_OF_LANES_, type), byte_or_word);      \
+        return SSE2NEON_CAT(                                                   \
+            _sse2neon_aggregate_ranges_,                                       \
+            SSE2NEON_CAT(                                                      \
+                SSE2NEON_CAT(SSE2NEON_SIZE_OF_, type),                         \
+                SSE2NEON_CAT(x, SSE2NEON_CAT(SSE2NEON_NUMBER_OF_LANES_,        \
+                                             type))))(la, lb, mtx);            \
+    }
+
+#define SSE2NEON_CMP_EQUAL_ORDERED_IMPL(type)                                  \
+    static int _sse2neon_cmp_##type##_equal_ordered(__m128i a, int la,         \
+                                                    __m128i b, int lb)         \
+    {                                                                          \
+        __m128i mtx[16];                                                       \
+        PCMPSTR_EQ(a, b, mtx, SSE2NEON_CAT(SSE2NEON_SIZE_OF_, type),           \
+                   SSE2NEON_CAT(SSE2NEON_NUMBER_OF_LANES_, type));             \
+        return SSE2NEON_CAT(                                                   \
+            _sse2neon_aggregate_equal_ordered_,                                \
+            SSE2NEON_CAT(                                                      \
+                SSE2NEON_CAT(SSE2NEON_SIZE_OF_, type),                         \
+                SSE2NEON_CAT(x,                                                \
+                             SSE2NEON_CAT(SSE2NEON_NUMBER_OF_LANES_, type))))( \
+            SSE2NEON_CAT(SSE2NEON_NUMBER_OF_LANES_, type), la, lb, mtx);       \
+    }
+
+static int _sse2neon_aggregate_equal_any_8x16(int la, int lb, __m128i mtx[16])
+{
+    int res = 0;
+    int m = (1 << la) - 1;
+    uint8x8_t vec_mask = vld1_u8(_sse2neon_cmpestr_mask8b);
+    uint8x8_t t_lo = vtst_u8(vdup_n_u8(m & 0xff), vec_mask);
+    uint8x8_t t_hi = vtst_u8(vdup_n_u8(m >> 8), vec_mask);
+    uint8x16_t vec = vcombine_u8(t_lo, t_hi);
+    for (int j = 0; j < lb; j++) {
+        mtx[j] = vreinterpretq_m128i_u8(
+            vandq_u8(vec, vreinterpretq_u8_m128i(mtx[j])));
+        mtx[j] = vreinterpretq_m128i_u8(
+            vshrq_n_u8(vreinterpretq_u8_m128i(mtx[j]), 7));
+        int tmp = _sse2neon_vaddvq_u8(vreinterpretq_u8_m128i(mtx[j])) ? 1 : 0;
+        res |= (tmp << j);
+    }
+    return res;
+}
+
+static int _sse2neon_aggregate_equal_any_16x8(int la, int lb, __m128i mtx[16])
+{
+    int res = 0;
+    int m = (1 << la) - 1;
+    uint16x8_t vec =
+        vtstq_u16(vdupq_n_u16(m), vld1q_u16(_sse2neon_cmpestr_mask16b));
+    for (int j = 0; j < lb; j++) {
+        mtx[j] = vreinterpretq_m128i_u16(
+            vandq_u16(vec, vreinterpretq_u16_m128i(mtx[j])));
+        mtx[j] = vreinterpretq_m128i_u16(
+            vshrq_n_u16(vreinterpretq_u16_m128i(mtx[j]), 15));
+        int tmp = _sse2neon_vaddvq_u16(vreinterpretq_u16_m128i(mtx[j])) ? 1 : 0;
+        res |= (tmp << j);
+    }
+    return res;
+}
+
+/* clang-format off */
+#define SSE2NEON_GENERATE_CMP_EQUAL_ANY(prefix) \
+    prefix##IMPL(byte) \
+    prefix##IMPL(word)
+/* clang-format on */
+
+SSE2NEON_GENERATE_CMP_EQUAL_ANY(SSE2NEON_CMP_EQUAL_ANY_)
+
+static int _sse2neon_aggregate_ranges_16x8(int la, int lb, __m128i mtx[16])
+{
+    int res = 0;
+    int m = (1 << la) - 1;
+    uint16x8_t vec =
+        vtstq_u16(vdupq_n_u16(m), vld1q_u16(_sse2neon_cmpestr_mask16b));
+    for (int j = 0; j < lb; j++) {
+        mtx[j] = vreinterpretq_m128i_u16(
+            vandq_u16(vec, vreinterpretq_u16_m128i(mtx[j])));
+        mtx[j] = vreinterpretq_m128i_u16(
+            vshrq_n_u16(vreinterpretq_u16_m128i(mtx[j]), 15));
+        __m128i tmp = vreinterpretq_m128i_u32(
+            vshrq_n_u32(vreinterpretq_u32_m128i(mtx[j]), 16));
+        uint32x4_t vec_res = vandq_u32(vreinterpretq_u32_m128i(mtx[j]),
+                                       vreinterpretq_u32_m128i(tmp));
+#if defined(__aarch64__)
+        int t = vaddvq_u32(vec_res) ? 1 : 0;
+#else
+        uint64x2_t sumh = vpaddlq_u32(vec_res);
+        int t = vgetq_lane_u64(sumh, 0) + vgetq_lane_u64(sumh, 1);
+#endif
+        res |= (t << j);
+    }
+    return res;
+}
+
+static int _sse2neon_aggregate_ranges_8x16(int la, int lb, __m128i mtx[16])
+{
+    int res = 0;
+    int m = (1 << la) - 1;
+    uint8x8_t vec_mask = vld1_u8(_sse2neon_cmpestr_mask8b);
+    uint8x8_t t_lo = vtst_u8(vdup_n_u8(m & 0xff), vec_mask);
+    uint8x8_t t_hi = vtst_u8(vdup_n_u8(m >> 8), vec_mask);
+    uint8x16_t vec = vcombine_u8(t_lo, t_hi);
+    for (int j = 0; j < lb; j++) {
+        mtx[j] = vreinterpretq_m128i_u8(
+            vandq_u8(vec, vreinterpretq_u8_m128i(mtx[j])));
+        mtx[j] = vreinterpretq_m128i_u8(
+            vshrq_n_u8(vreinterpretq_u8_m128i(mtx[j]), 7));
+        __m128i tmp = vreinterpretq_m128i_u16(
+            vshrq_n_u16(vreinterpretq_u16_m128i(mtx[j]), 8));
+        uint16x8_t vec_res = vandq_u16(vreinterpretq_u16_m128i(mtx[j]),
+                                       vreinterpretq_u16_m128i(tmp));
+        int t = _sse2neon_vaddvq_u16(vec_res) ? 1 : 0;
+        res |= (t << j);
+    }
+    return res;
+}
+
+#define SSE2NEON_CMP_RANGES_IS_BYTE 1
+#define SSE2NEON_CMP_RANGES_IS_WORD 0
+
+/* clang-format off */
+#define SSE2NEON_GENERATE_CMP_RANGES(prefix)             \
+    prefix##IMPL(byte, uint, u, prefix##IS_BYTE)         \
+    prefix##IMPL(byte, int, s, prefix##IS_BYTE)          \
+    prefix##IMPL(word, uint, u, prefix##IS_WORD)         \
+    prefix##IMPL(word, int, s, prefix##IS_WORD)
+/* clang-format on */
+
+SSE2NEON_GENERATE_CMP_RANGES(SSE2NEON_CMP_RANGES_)
+
+#undef SSE2NEON_CMP_RANGES_IS_BYTE
+#undef SSE2NEON_CMP_RANGES_IS_WORD
+
+static int _sse2neon_cmp_byte_equal_each(__m128i a, int la, __m128i b, int lb)
+{
+    uint8x16_t mtx =
+        vceqq_u8(vreinterpretq_u8_m128i(a), vreinterpretq_u8_m128i(b));
+    int m0 = (la < lb) ? 0 : ((1 << la) - (1 << lb));
+    int m1 = 0x10000 - (1 << la);
+    int tb = 0x10000 - (1 << lb);
+    uint8x8_t vec_mask, vec0_lo, vec0_hi, vec1_lo, vec1_hi;
+    uint8x8_t tmp_lo, tmp_hi, res_lo, res_hi;
+    vec_mask = vld1_u8(_sse2neon_cmpestr_mask8b);
+    vec0_lo = vtst_u8(vdup_n_u8(m0), vec_mask);
+    vec0_hi = vtst_u8(vdup_n_u8(m0 >> 8), vec_mask);
+    vec1_lo = vtst_u8(vdup_n_u8(m1), vec_mask);
+    vec1_hi = vtst_u8(vdup_n_u8(m1 >> 8), vec_mask);
+    tmp_lo = vtst_u8(vdup_n_u8(tb), vec_mask);
+    tmp_hi = vtst_u8(vdup_n_u8(tb >> 8), vec_mask);
+
+    res_lo = vbsl_u8(vec0_lo, vdup_n_u8(0), vget_low_u8(mtx));
+    res_hi = vbsl_u8(vec0_hi, vdup_n_u8(0), vget_high_u8(mtx));
+    res_lo = vbsl_u8(vec1_lo, tmp_lo, res_lo);
+    res_hi = vbsl_u8(vec1_hi, tmp_hi, res_hi);
+    res_lo = vand_u8(res_lo, vec_mask);
+    res_hi = vand_u8(res_hi, vec_mask);
+
+    int res = _sse2neon_vaddv_u8(res_lo) + (_sse2neon_vaddv_u8(res_hi) << 8);
+    return res;
+}
+
+static int _sse2neon_cmp_word_equal_each(__m128i a, int la, __m128i b, int lb)
+{
+    uint16x8_t mtx =
+        vceqq_u16(vreinterpretq_u16_m128i(a), vreinterpretq_u16_m128i(b));
+    int m0 = (la < lb) ? 0 : ((1 << la) - (1 << lb));
+    int m1 = 0x100 - (1 << la);
+    int tb = 0x100 - (1 << lb);
+    uint16x8_t vec_mask = vld1q_u16(_sse2neon_cmpestr_mask16b);
+    uint16x8_t vec0 = vtstq_u16(vdupq_n_u16(m0), vec_mask);
+    uint16x8_t vec1 = vtstq_u16(vdupq_n_u16(m1), vec_mask);
+    uint16x8_t tmp = vtstq_u16(vdupq_n_u16(tb), vec_mask);
+    mtx = vbslq_u16(vec0, vdupq_n_u16(0), mtx);
+    mtx = vbslq_u16(vec1, tmp, mtx);
+    mtx = vandq_u16(mtx, vec_mask);
+    return _sse2neon_vaddvq_u16(mtx);
+}
+
+#define SSE2NEON_AGGREGATE_EQUAL_ORDER_IS_UBYTE 1
+#define SSE2NEON_AGGREGATE_EQUAL_ORDER_IS_UWORD 0
+
+#define SSE2NEON_AGGREGATE_EQUAL_ORDER_IMPL(size, number_of_lanes, data_type)  \
+    static int _sse2neon_aggregate_equal_ordered_##size##x##number_of_lanes(   \
+        int bound, int la, int lb, __m128i mtx[16])                            \
+    {                                                                          \
+        int res = 0;                                                           \
+        int m1 = SSE2NEON_IIF(data_type)(0x10000, 0x100) - (1 << la);          \
+        uint##size##x8_t vec_mask = SSE2NEON_IIF(data_type)(                   \
+            vld1_u##size(_sse2neon_cmpestr_mask##size##b),                     \
+            vld1q_u##size(_sse2neon_cmpestr_mask##size##b));                   \
+        uint##size##x##number_of_lanes##_t vec1 = SSE2NEON_IIF(data_type)(     \
+            vcombine_u##size(vtst_u##size(vdup_n_u##size(m1), vec_mask),       \
+                             vtst_u##size(vdup_n_u##size(m1 >> 8), vec_mask)), \
+            vtstq_u##size(vdupq_n_u##size(m1), vec_mask));                     \
+        uint##size##x##number_of_lanes##_t vec_minusone = vdupq_n_u##size(-1); \
+        uint##size##x##number_of_lanes##_t vec_zero = vdupq_n_u##size(0);      \
+        for (int j = 0; j < lb; j++) {                                         \
+            mtx[j] = vreinterpretq_m128i_u##size(vbslq_u##size(                \
+                vec1, vec_minusone, vreinterpretq_u##size##_m128i(mtx[j])));   \
+        }                                                                      \
+        for (int j = lb; j < bound; j++) {                                     \
+            mtx[j] = vreinterpretq_m128i_u##size(                              \
+                vbslq_u##size(vec1, vec_minusone, vec_zero));                  \
+        }                                                                      \
+        unsigned SSE2NEON_IIF(data_type)(char, short) *ptr =                   \
+            (unsigned SSE2NEON_IIF(data_type)(char, short) *) mtx;             \
+        for (int i = 0; i < bound; i++) {                                      \
+            int val = 1;                                                       \
+            for (int j = 0, k = i; j < bound - i && k < bound; j++, k++)       \
+                val &= ptr[k * bound + j];                                     \
+            res += val << i;                                                   \
+        }                                                                      \
+        return res;                                                            \
+    }
+
+/* clang-format off */
+#define SSE2NEON_GENERATE_AGGREGATE_EQUAL_ORDER(prefix) \
+    prefix##IMPL(8, 16, prefix##IS_UBYTE)               \
+    prefix##IMPL(16, 8, prefix##IS_UWORD)
+/* clang-format on */
+
+SSE2NEON_GENERATE_AGGREGATE_EQUAL_ORDER(SSE2NEON_AGGREGATE_EQUAL_ORDER_)
+
+#undef SSE2NEON_AGGREGATE_EQUAL_ORDER_IS_UBYTE
+#undef SSE2NEON_AGGREGATE_EQUAL_ORDER_IS_UWORD
+
+/* clang-format off */
+#define SSE2NEON_GENERATE_CMP_EQUAL_ORDERED(prefix) \
+    prefix##IMPL(byte)                              \
+    prefix##IMPL(word)
+/* clang-format on */
+
+SSE2NEON_GENERATE_CMP_EQUAL_ORDERED(SSE2NEON_CMP_EQUAL_ORDERED_)
+
+#define SSE2NEON_CMPESTR_LIST                          \
+    _(CMP_UBYTE_EQUAL_ANY, cmp_byte_equal_any)         \
+    _(CMP_UWORD_EQUAL_ANY, cmp_word_equal_any)         \
+    _(CMP_SBYTE_EQUAL_ANY, cmp_byte_equal_any)         \
+    _(CMP_SWORD_EQUAL_ANY, cmp_word_equal_any)         \
+    _(CMP_UBYTE_RANGES, cmp_ubyte_ranges)              \
+    _(CMP_UWORD_RANGES, cmp_uword_ranges)              \
+    _(CMP_SBYTE_RANGES, cmp_sbyte_ranges)              \
+    _(CMP_SWORD_RANGES, cmp_sword_ranges)              \
+    _(CMP_UBYTE_EQUAL_EACH, cmp_byte_equal_each)       \
+    _(CMP_UWORD_EQUAL_EACH, cmp_word_equal_each)       \
+    _(CMP_SBYTE_EQUAL_EACH, cmp_byte_equal_each)       \
+    _(CMP_SWORD_EQUAL_EACH, cmp_word_equal_each)       \
+    _(CMP_UBYTE_EQUAL_ORDERED, cmp_byte_equal_ordered) \
+    _(CMP_UWORD_EQUAL_ORDERED, cmp_word_equal_ordered) \
+    _(CMP_SBYTE_EQUAL_ORDERED, cmp_byte_equal_ordered) \
+    _(CMP_SWORD_EQUAL_ORDERED, cmp_word_equal_ordered)
+
+enum {
+#define _(name, func_suffix) name,
+    SSE2NEON_CMPESTR_LIST
+#undef _
+};
+typedef int (*cmpestr_func_t)(__m128i a, int la, __m128i b, int lb);
+static cmpestr_func_t _sse2neon_cmpfunc_table[] = {
+#define _(name, func_suffix) _sse2neon_##func_suffix,
+    SSE2NEON_CMPESTR_LIST
+#undef _
+};
+
+FORCE_INLINE int _sse2neon_sido_negative(int res, int lb, int imm8, int bound)
+{
+    switch (imm8 & 0x30) {
+    case _SIDD_NEGATIVE_POLARITY:
+        res ^= 0xffffffff;
+        break;
+    case _SIDD_MASKED_NEGATIVE_POLARITY:
+        res ^= (1 << lb) - 1;
+        break;
+    default:
+        break;
+    }
+
+    return res & ((bound == 8) ? 0xFF : 0xFFFF);
+}
+
+FORCE_INLINE int _sse2neon_clz(unsigned int x)
+{
+#if _MSC_VER
+    unsigned long cnt = 0;
+    if (_BitScanForward(&cnt, x))
+        return cnt;
+    return 32;
+#else
+    return x != 0 ? __builtin_clz(x) : 32;
+#endif
+}
+
+FORCE_INLINE int _sse2neon_ctz(unsigned int x)
+{
+#if _MSC_VER
+    unsigned long cnt = 0;
+    if (_BitScanReverse(&cnt, x))
+        return 31 - cnt;
+    return 32;
+#else
+    return x != 0 ? __builtin_ctz(x) : 32;
+#endif
+}
+
+FORCE_INLINE int _sse2neon_ctzll(unsigned long long x)
+{
+#if _MSC_VER
+    unsigned long cnt;
+#if defined(SSE2NEON_HAS_BITSCAN64)
+    if ((_BitScanForward64(&cnt, x))
+        return (int)(cnt);
+#else
+    if (_BitScanForward(&cnt, (unsigned long) (x)))
+        return (int) cnt;
+    if (_BitScanForward(&cnt, (unsigned long) (x >> 32)))
+        return (int) (cnt + 32);
+#endif /* SSE2NEON_HAS_BITSCAN64 */
+#else  /* assume GNU compatible compilers */
+    return x != 0 ? __builtin_ctzll(x) : 64;
+#endif
+}
+
+#define SSE2NEON_MIN(x, y) (x) < (y) ? (x) : (y)
+
+#define SSE2NEON_CMPSTR_SET_UPPER(var, imm) \
+    const int var = (imm & 0x01) ? 8 : 16
+
+#define SSE2NEON_CMPESTRX_LEN_PAIR(a, b, la, lb) \
+    int tmp1 = la ^ (la >> 31);                  \
+    la = tmp1 - (la >> 31);                      \
+    int tmp2 = lb ^ (lb >> 31);                  \
+    lb = tmp2 - (lb >> 31);                      \
+    la = SSE2NEON_MIN(la, bound);                \
+    lb = SSE2NEON_MIN(lb, bound)
+
+// Compare all pairs of character in string a and b,
+// then aggregate the result.
+// As the only difference of PCMPESTR* and PCMPISTR* is the way to calculate the
+// length of string, we use SSE2NEON_CMP{I,E}STRX_GET_LEN to get the length of
+// string a and b.
+#define SSE2NEON_COMP_AGG(a, b, la, lb, imm8, IE)                  \
+    SSE2NEON_CMPSTR_SET_UPPER(bound, imm8);                        \
+    SSE2NEON_##IE##_LEN_PAIR(a, b, la, lb);                        \
+    int r2 = (_sse2neon_cmpfunc_table[imm8 & 0x0f])(a, la, b, lb); \
+    r2 = _sse2neon_sido_negative(r2, lb, imm8, bound)
+
+#define SSE2NEON_CMPSTR_GENERATE_INDEX(r2, bound, imm8)          \
+    return (r2 == 0) ? bound                                     \
+                     : ((imm8 & 0x40) ? (31 - _sse2neon_clz(r2)) \
+                                      : _sse2neon_ctz(r2))
+
+#define SSE2NEON_CMPSTR_GENERATE_MASK(dst)                                     \
+    __m128i dst = vreinterpretq_m128i_u8(vdupq_n_u8(0));                       \
+    if (imm8 & 0x40) {                                                         \
+        if (bound == 8) {                                                      \
+            uint16x8_t tmp = vtstq_u16(vdupq_n_u16(r2),                        \
+                                       vld1q_u16(_sse2neon_cmpestr_mask16b));  \
+            dst = vreinterpretq_m128i_u16(vbslq_u16(                           \
+                tmp, vdupq_n_u16(-1), vreinterpretq_u16_m128i(dst)));          \
+        } else {                                                               \
+            uint8x16_t vec_r2 =                                                \
+                vcombine_u8(vdup_n_u8(r2), vdup_n_u8(r2 >> 8));                \
+            uint8x16_t tmp =                                                   \
+                vtstq_u8(vec_r2, vld1q_u8(_sse2neon_cmpestr_mask8b));          \
+            dst = vreinterpretq_m128i_u8(                                      \
+                vbslq_u8(tmp, vdupq_n_u8(-1), vreinterpretq_u8_m128i(dst)));   \
+        }                                                                      \
+    } else {                                                                   \
+        if (bound == 16) {                                                     \
+            dst = vreinterpretq_m128i_u16(                                     \
+                vsetq_lane_u16(r2 & 0xffff, vreinterpretq_u16_m128i(dst), 0)); \
+        } else {                                                               \
+            dst = vreinterpretq_m128i_u8(                                      \
+                vsetq_lane_u8(r2 & 0xff, vreinterpretq_u8_m128i(dst), 0));     \
+        }                                                                      \
+    }                                                                          \
+    return dst
+
+// Compare packed strings in a and b with lengths la and lb using the control
+// in imm8, and returns 1 if b did not contain a null character and the
+// resulting mask was zero, and 0 otherwise.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpestra
+FORCE_INLINE int _mm_cmpestra(__m128i a,
+                              int la,
+                              __m128i b,
+                              int lb,
+                              const int imm8)
+{
+    int lb_cpy = lb;
+    SSE2NEON_COMP_AGG(a, b, la, lb, imm8, CMPESTRX);
+    return !r2 & (lb_cpy > bound);
+}
+
+// Compare packed strings in a and b with lengths la and lb using the control in
+// imm8, and returns 1 if the resulting mask was non-zero, and 0 otherwise.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpestrc
+FORCE_INLINE int _mm_cmpestrc(__m128i a,
+                              int la,
+                              __m128i b,
+                              int lb,
+                              const int imm8)
+{
+    SSE2NEON_COMP_AGG(a, b, la, lb, imm8, CMPESTRX);
+    return r2 != 0;
+}
+
+// Compare packed strings in a and b with lengths la and lb using the control
+// in imm8, and store the generated index in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpestri
+FORCE_INLINE int _mm_cmpestri(__m128i a,
+                              int la,
+                              __m128i b,
+                              int lb,
+                              const int imm8)
+{
+    SSE2NEON_COMP_AGG(a, b, la, lb, imm8, CMPESTRX);
+    SSE2NEON_CMPSTR_GENERATE_INDEX(r2, bound, imm8);
+}
+
+// Compare packed strings in a and b with lengths la and lb using the control
+// in imm8, and store the generated mask in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpestrm
+FORCE_INLINE __m128i
+_mm_cmpestrm(__m128i a, int la, __m128i b, int lb, const int imm8)
+{
+    SSE2NEON_COMP_AGG(a, b, la, lb, imm8, CMPESTRX);
+    SSE2NEON_CMPSTR_GENERATE_MASK(dst);
+}
+
+// Compare packed strings in a and b with lengths la and lb using the control in
+// imm8, and returns bit 0 of the resulting bit mask.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpestro
+FORCE_INLINE int _mm_cmpestro(__m128i a,
+                              int la,
+                              __m128i b,
+                              int lb,
+                              const int imm8)
+{
+    SSE2NEON_COMP_AGG(a, b, la, lb, imm8, CMPESTRX);
+    return r2 & 1;
+}
+
+// Compare packed strings in a and b with lengths la and lb using the control in
+// imm8, and returns 1 if any character in a was null, and 0 otherwise.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpestrs
+FORCE_INLINE int _mm_cmpestrs(__m128i a,
+                              int la,
+                              __m128i b,
+                              int lb,
+                              const int imm8)
+{
+    SSE2NEON_CMPSTR_SET_UPPER(bound, imm8);
+    return la <= (bound - 1);
+}
+
+// Compare packed strings in a and b with lengths la and lb using the control in
+// imm8, and returns 1 if any character in b was null, and 0 otherwise.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpestrz
+FORCE_INLINE int _mm_cmpestrz(__m128i a,
+                              int la,
+                              __m128i b,
+                              int lb,
+                              const int imm8)
+{
+    SSE2NEON_CMPSTR_SET_UPPER(bound, imm8);
+    return lb <= (bound - 1);
+}
+
+#define SSE2NEON_CMPISTRX_LENGTH(str, len, imm8)                         \
+    do {                                                                 \
+        if (imm8 & 0x01) {                                               \
+            uint16x8_t equal_mask_##str =                                \
+                vceqq_u16(vreinterpretq_u16_m128i(str), vdupq_n_u16(0)); \
+            uint8x8_t res_##str = vshrn_n_u16(equal_mask_##str, 4);      \
+            uint64_t matches_##str =                                     \
+                vget_lane_u64(vreinterpret_u64_u8(res_##str), 0);        \
+            len = _sse2neon_ctzll(matches_##str) >> 3;                   \
+        } else {                                                         \
+            uint16x8_t equal_mask_##str = vreinterpretq_u16_u8(          \
+                vceqq_u8(vreinterpretq_u8_m128i(str), vdupq_n_u8(0)));   \
+            uint8x8_t res_##str = vshrn_n_u16(equal_mask_##str, 4);      \
+            uint64_t matches_##str =                                     \
+                vget_lane_u64(vreinterpret_u64_u8(res_##str), 0);        \
+            len = _sse2neon_ctzll(matches_##str) >> 2;                   \
+        }                                                                \
+    } while (0)
+
+#define SSE2NEON_CMPISTRX_LEN_PAIR(a, b, la, lb) \
+    int la, lb;                                  \
+    do {                                         \
+        SSE2NEON_CMPISTRX_LENGTH(a, la, imm8);   \
+        SSE2NEON_CMPISTRX_LENGTH(b, lb, imm8);   \
+    } while (0)
+
+// Compare packed strings with implicit lengths in a and b using the control in
+// imm8, and returns 1 if b did not contain a null character and the resulting
+// mask was zero, and 0 otherwise.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpistra
+FORCE_INLINE int _mm_cmpistra(__m128i a, __m128i b, const int imm8)
+{
+    SSE2NEON_COMP_AGG(a, b, la, lb, imm8, CMPISTRX);
+    return !r2 & (lb >= bound);
+}
+
+// Compare packed strings with implicit lengths in a and b using the control in
+// imm8, and returns 1 if the resulting mask was non-zero, and 0 otherwise.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpistrc
+FORCE_INLINE int _mm_cmpistrc(__m128i a, __m128i b, const int imm8)
+{
+    SSE2NEON_COMP_AGG(a, b, la, lb, imm8, CMPISTRX);
+    return r2 != 0;
+}
+
+// Compare packed strings with implicit lengths in a and b using the control in
+// imm8, and store the generated index in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpistri
+FORCE_INLINE int _mm_cmpistri(__m128i a, __m128i b, const int imm8)
+{
+    SSE2NEON_COMP_AGG(a, b, la, lb, imm8, CMPISTRX);
+    SSE2NEON_CMPSTR_GENERATE_INDEX(r2, bound, imm8);
+}
+
+// Compare packed strings with implicit lengths in a and b using the control in
+// imm8, and store the generated mask in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpistrm
+FORCE_INLINE __m128i _mm_cmpistrm(__m128i a, __m128i b, const int imm8)
+{
+    SSE2NEON_COMP_AGG(a, b, la, lb, imm8, CMPISTRX);
+    SSE2NEON_CMPSTR_GENERATE_MASK(dst);
+}
+
+// Compare packed strings with implicit lengths in a and b using the control in
+// imm8, and returns bit 0 of the resulting bit mask.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpistro
+FORCE_INLINE int _mm_cmpistro(__m128i a, __m128i b, const int imm8)
+{
+    SSE2NEON_COMP_AGG(a, b, la, lb, imm8, CMPISTRX);
+    return r2 & 1;
+}
+
+// Compare packed strings with implicit lengths in a and b using the control in
+// imm8, and returns 1 if any character in a was null, and 0 otherwise.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpistrs
+FORCE_INLINE int _mm_cmpistrs(__m128i a, __m128i b, const int imm8)
+{
+    SSE2NEON_CMPSTR_SET_UPPER(bound, imm8);
+    int la;
+    SSE2NEON_CMPISTRX_LENGTH(a, la, imm8);
+    return la <= (bound - 1);
+}
+
+// Compare packed strings with implicit lengths in a and b using the control in
+// imm8, and returns 1 if any character in b was null, and 0 otherwise.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpistrz
+FORCE_INLINE int _mm_cmpistrz(__m128i a, __m128i b, const int imm8)
+{
+    SSE2NEON_CMPSTR_SET_UPPER(bound, imm8);
+    int lb;
+    SSE2NEON_CMPISTRX_LENGTH(b, lb, imm8);
+    return lb <= (bound - 1);
+}
+
+// Compares the 2 signed 64-bit integers in a and the 2 signed 64-bit integers
+// in b for greater than.
+FORCE_INLINE __m128i _mm_cmpgt_epi64(__m128i a, __m128i b)
+{
+#if defined(__aarch64__)
+    return vreinterpretq_m128i_u64(
+        vcgtq_s64(vreinterpretq_s64_m128i(a), vreinterpretq_s64_m128i(b)));
+#else
+    return vreinterpretq_m128i_s64(vshrq_n_s64(
+        vqsubq_s64(vreinterpretq_s64_m128i(b), vreinterpretq_s64_m128i(a)),
+        63));
+#endif
+}
+
+// Starting with the initial value in crc, accumulates a CRC32 value for
+// unsigned 16-bit integer v, and stores the result in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_crc32_u16
+FORCE_INLINE uint32_t _mm_crc32_u16(uint32_t crc, uint16_t v)
+{
+#if defined(__aarch64__) && defined(__ARM_FEATURE_CRC32)
+    __asm__ __volatile__("crc32ch %w[c], %w[c], %w[v]\n\t"
+                         : [c] "+r"(crc)
+                         : [v] "r"(v));
+#elif (__ARM_ARCH == 8) && defined(__ARM_FEATURE_CRC32)
+    crc = __crc32ch(crc, v);
+#else
+    crc = _mm_crc32_u8(crc, v & 0xff);
+    crc = _mm_crc32_u8(crc, (v >> 8) & 0xff);
+#endif
+    return crc;
+}
+
+// Starting with the initial value in crc, accumulates a CRC32 value for
+// unsigned 32-bit integer v, and stores the result in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_crc32_u32
+FORCE_INLINE uint32_t _mm_crc32_u32(uint32_t crc, uint32_t v)
+{
+#if defined(__aarch64__) && defined(__ARM_FEATURE_CRC32)
+    __asm__ __volatile__("crc32cw %w[c], %w[c], %w[v]\n\t"
+                         : [c] "+r"(crc)
+                         : [v] "r"(v));
+#elif (__ARM_ARCH == 8) && defined(__ARM_FEATURE_CRC32)
+    crc = __crc32cw(crc, v);
+#else
+    crc = _mm_crc32_u16(crc, v & 0xffff);
+    crc = _mm_crc32_u16(crc, (v >> 16) & 0xffff);
+#endif
+    return crc;
+}
+
+// Starting with the initial value in crc, accumulates a CRC32 value for
+// unsigned 64-bit integer v, and stores the result in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_crc32_u64
+FORCE_INLINE uint64_t _mm_crc32_u64(uint64_t crc, uint64_t v)
+{
+#if defined(__aarch64__) && defined(__ARM_FEATURE_CRC32)
+    __asm__ __volatile__("crc32cx %w[c], %w[c], %x[v]\n\t"
+                         : [c] "+r"(crc)
+                         : [v] "r"(v));
+#else
+    crc = _mm_crc32_u32((uint32_t) (crc), v & 0xffffffff);
+    crc = _mm_crc32_u32((uint32_t) (crc), (v >> 32) & 0xffffffff);
+#endif
+    return crc;
+}
+
+// Starting with the initial value in crc, accumulates a CRC32 value for
+// unsigned 8-bit integer v, and stores the result in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_crc32_u8
+FORCE_INLINE uint32_t _mm_crc32_u8(uint32_t crc, uint8_t v)
+{
+#if defined(__aarch64__) && defined(__ARM_FEATURE_CRC32)
+    __asm__ __volatile__("crc32cb %w[c], %w[c], %w[v]\n\t"
+                         : [c] "+r"(crc)
+                         : [v] "r"(v));
+#elif (__ARM_ARCH == 8) && defined(__ARM_FEATURE_CRC32)
+    crc = __crc32cb(crc, v);
+#else
+    crc ^= v;
+    for (int bit = 0; bit < 8; bit++) {
+        if (crc & 1)
+            crc = (crc >> 1) ^ UINT32_C(0x82f63b78);
+        else
+            crc = (crc >> 1);
+    }
+#endif
+    return crc;
+}
+
+/* AES */
+
+#if !defined(__ARM_FEATURE_CRYPTO)
+/* clang-format off */
+#define SSE2NEON_AES_SBOX(w)                                           \
+    {                                                                  \
+        w(0x63), w(0x7c), w(0x77), w(0x7b), w(0xf2), w(0x6b), w(0x6f), \
+        w(0xc5), w(0x30), w(0x01), w(0x67), w(0x2b), w(0xfe), w(0xd7), \
+        w(0xab), w(0x76), w(0xca), w(0x82), w(0xc9), w(0x7d), w(0xfa), \
+        w(0x59), w(0x47), w(0xf0), w(0xad), w(0xd4), w(0xa2), w(0xaf), \
+        w(0x9c), w(0xa4), w(0x72), w(0xc0), w(0xb7), w(0xfd), w(0x93), \
+        w(0x26), w(0x36), w(0x3f), w(0xf7), w(0xcc), w(0x34), w(0xa5), \
+        w(0xe5), w(0xf1), w(0x71), w(0xd8), w(0x31), w(0x15), w(0x04), \
+        w(0xc7), w(0x23), w(0xc3), w(0x18), w(0x96), w(0x05), w(0x9a), \
+        w(0x07), w(0x12), w(0x80), w(0xe2), w(0xeb), w(0x27), w(0xb2), \
+        w(0x75), w(0x09), w(0x83), w(0x2c), w(0x1a), w(0x1b), w(0x6e), \
+        w(0x5a), w(0xa0), w(0x52), w(0x3b), w(0xd6), w(0xb3), w(0x29), \
+        w(0xe3), w(0x2f), w(0x84), w(0x53), w(0xd1), w(0x00), w(0xed), \
+        w(0x20), w(0xfc), w(0xb1), w(0x5b), w(0x6a), w(0xcb), w(0xbe), \
+        w(0x39), w(0x4a), w(0x4c), w(0x58), w(0xcf), w(0xd0), w(0xef), \
+        w(0xaa), w(0xfb), w(0x43), w(0x4d), w(0x33), w(0x85), w(0x45), \
+        w(0xf9), w(0x02), w(0x7f), w(0x50), w(0x3c), w(0x9f), w(0xa8), \
+        w(0x51), w(0xa3), w(0x40), w(0x8f), w(0x92), w(0x9d), w(0x38), \
+        w(0xf5), w(0xbc), w(0xb6), w(0xda), w(0x21), w(0x10), w(0xff), \
+        w(0xf3), w(0xd2), w(0xcd), w(0x0c), w(0x13), w(0xec), w(0x5f), \
+        w(0x97), w(0x44), w(0x17), w(0xc4), w(0xa7), w(0x7e), w(0x3d), \
+        w(0x64), w(0x5d), w(0x19), w(0x73), w(0x60), w(0x81), w(0x4f), \
+        w(0xdc), w(0x22), w(0x2a), w(0x90), w(0x88), w(0x46), w(0xee), \
+        w(0xb8), w(0x14), w(0xde), w(0x5e), w(0x0b), w(0xdb), w(0xe0), \
+        w(0x32), w(0x3a), w(0x0a), w(0x49), w(0x06), w(0x24), w(0x5c), \
+        w(0xc2), w(0xd3), w(0xac), w(0x62), w(0x91), w(0x95), w(0xe4), \
+        w(0x79), w(0xe7), w(0xc8), w(0x37), w(0x6d), w(0x8d), w(0xd5), \
+        w(0x4e), w(0xa9), w(0x6c), w(0x56), w(0xf4), w(0xea), w(0x65), \
+        w(0x7a), w(0xae), w(0x08), w(0xba), w(0x78), w(0x25), w(0x2e), \
+        w(0x1c), w(0xa6), w(0xb4), w(0xc6), w(0xe8), w(0xdd), w(0x74), \
+        w(0x1f), w(0x4b), w(0xbd), w(0x8b), w(0x8a), w(0x70), w(0x3e), \
+        w(0xb5), w(0x66), w(0x48), w(0x03), w(0xf6), w(0x0e), w(0x61), \
+        w(0x35), w(0x57), w(0xb9), w(0x86), w(0xc1), w(0x1d), w(0x9e), \
+        w(0xe1), w(0xf8), w(0x98), w(0x11), w(0x69), w(0xd9), w(0x8e), \
+        w(0x94), w(0x9b), w(0x1e), w(0x87), w(0xe9), w(0xce), w(0x55), \
+        w(0x28), w(0xdf), w(0x8c), w(0xa1), w(0x89), w(0x0d), w(0xbf), \
+        w(0xe6), w(0x42), w(0x68), w(0x41), w(0x99), w(0x2d), w(0x0f), \
+        w(0xb0), w(0x54), w(0xbb), w(0x16)                             \
+    }
+#define SSE2NEON_AES_RSBOX(w)                                          \
+    {                                                                  \
+        w(0x52), w(0x09), w(0x6a), w(0xd5), w(0x30), w(0x36), w(0xa5), \
+        w(0x38), w(0xbf), w(0x40), w(0xa3), w(0x9e), w(0x81), w(0xf3), \
+        w(0xd7), w(0xfb), w(0x7c), w(0xe3), w(0x39), w(0x82), w(0x9b), \
+        w(0x2f), w(0xff), w(0x87), w(0x34), w(0x8e), w(0x43), w(0x44), \
+        w(0xc4), w(0xde), w(0xe9), w(0xcb), w(0x54), w(0x7b), w(0x94), \
+        w(0x32), w(0xa6), w(0xc2), w(0x23), w(0x3d), w(0xee), w(0x4c), \
+        w(0x95), w(0x0b), w(0x42), w(0xfa), w(0xc3), w(0x4e), w(0x08), \
+        w(0x2e), w(0xa1), w(0x66), w(0x28), w(0xd9), w(0x24), w(0xb2), \
+        w(0x76), w(0x5b), w(0xa2), w(0x49), w(0x6d), w(0x8b), w(0xd1), \
+        w(0x25), w(0x72), w(0xf8), w(0xf6), w(0x64), w(0x86), w(0x68), \
+        w(0x98), w(0x16), w(0xd4), w(0xa4), w(0x5c), w(0xcc), w(0x5d), \
+        w(0x65), w(0xb6), w(0x92), w(0x6c), w(0x70), w(0x48), w(0x50), \
+        w(0xfd), w(0xed), w(0xb9), w(0xda), w(0x5e), w(0x15), w(0x46), \
+        w(0x57), w(0xa7), w(0x8d), w(0x9d), w(0x84), w(0x90), w(0xd8), \
+        w(0xab), w(0x00), w(0x8c), w(0xbc), w(0xd3), w(0x0a), w(0xf7), \
+        w(0xe4), w(0x58), w(0x05), w(0xb8), w(0xb3), w(0x45), w(0x06), \
+        w(0xd0), w(0x2c), w(0x1e), w(0x8f), w(0xca), w(0x3f), w(0x0f), \
+        w(0x02), w(0xc1), w(0xaf), w(0xbd), w(0x03), w(0x01), w(0x13), \
+        w(0x8a), w(0x6b), w(0x3a), w(0x91), w(0x11), w(0x41), w(0x4f), \
+        w(0x67), w(0xdc), w(0xea), w(0x97), w(0xf2), w(0xcf), w(0xce), \
+        w(0xf0), w(0xb4), w(0xe6), w(0x73), w(0x96), w(0xac), w(0x74), \
+        w(0x22), w(0xe7), w(0xad), w(0x35), w(0x85), w(0xe2), w(0xf9), \
+        w(0x37), w(0xe8), w(0x1c), w(0x75), w(0xdf), w(0x6e), w(0x47), \
+        w(0xf1), w(0x1a), w(0x71), w(0x1d), w(0x29), w(0xc5), w(0x89), \
+        w(0x6f), w(0xb7), w(0x62), w(0x0e), w(0xaa), w(0x18), w(0xbe), \
+        w(0x1b), w(0xfc), w(0x56), w(0x3e), w(0x4b), w(0xc6), w(0xd2), \
+        w(0x79), w(0x20), w(0x9a), w(0xdb), w(0xc0), w(0xfe), w(0x78), \
+        w(0xcd), w(0x5a), w(0xf4), w(0x1f), w(0xdd), w(0xa8), w(0x33), \
+        w(0x88), w(0x07), w(0xc7), w(0x31), w(0xb1), w(0x12), w(0x10), \
+        w(0x59), w(0x27), w(0x80), w(0xec), w(0x5f), w(0x60), w(0x51), \
+        w(0x7f), w(0xa9), w(0x19), w(0xb5), w(0x4a), w(0x0d), w(0x2d), \
+        w(0xe5), w(0x7a), w(0x9f), w(0x93), w(0xc9), w(0x9c), w(0xef), \
+        w(0xa0), w(0xe0), w(0x3b), w(0x4d), w(0xae), w(0x2a), w(0xf5), \
+        w(0xb0), w(0xc8), w(0xeb), w(0xbb), w(0x3c), w(0x83), w(0x53), \
+        w(0x99), w(0x61), w(0x17), w(0x2b), w(0x04), w(0x7e), w(0xba), \
+        w(0x77), w(0xd6), w(0x26), w(0xe1), w(0x69), w(0x14), w(0x63), \
+        w(0x55), w(0x21), w(0x0c), w(0x7d)                             \
+    }
+/* clang-format on */
+
+/* X Macro trick. See https://en.wikipedia.org/wiki/X_Macro */
+#define SSE2NEON_AES_H0(x) (x)
+static const uint8_t _sse2neon_sbox[256] = SSE2NEON_AES_SBOX(SSE2NEON_AES_H0);
+static const uint8_t _sse2neon_rsbox[256] = SSE2NEON_AES_RSBOX(SSE2NEON_AES_H0);
+#undef SSE2NEON_AES_H0
+
+/* x_time function and matrix multiply function */
+#if !defined(__aarch64__)
+#define SSE2NEON_XT(x) (((x) << 1) ^ ((((x) >> 7) & 1) * 0x1b))
+#define SSE2NEON_MULTIPLY(x, y)                                  \
+    (((y & 1) * x) ^ ((y >> 1 & 1) * SSE2NEON_XT(x)) ^           \
+     ((y >> 2 & 1) * SSE2NEON_XT(SSE2NEON_XT(x))) ^              \
+     ((y >> 3 & 1) * SSE2NEON_XT(SSE2NEON_XT(SSE2NEON_XT(x)))) ^ \
+     ((y >> 4 & 1) * SSE2NEON_XT(SSE2NEON_XT(SSE2NEON_XT(SSE2NEON_XT(x))))))
+#endif
+
+// In the absence of crypto extensions, implement aesenc using regular NEON
 // intrinsics instead. See:
 // https://www.workofard.com/2017/01/accelerated-aes-for-the-arm64-linux-kernel/
 // https://www.workofard.com/2017/07/ghash-for-low-end-cores/ and
-// https://github.com/ColinIanKing/linux-next-mirror/blob/b5f466091e130caaf0735976648f72bd5e09aa84/crypto/aegis128-neon-inner.c#L52
-// for more information Reproduced with permission of the author.
-FORCE_INLINE __m128i _mm_aesenc_si128(__m128i EncBlock, __m128i RoundKey) {
-  static const uint8_t crypto_aes_sbox[256] = {
-      0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b,
-      0xfe, 0xd7, 0xab, 0x76, 0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0,
-      0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0, 0xb7, 0xfd, 0x93, 0x26,
-      0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15,
-      0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2,
-      0xeb, 0x27, 0xb2, 0x75, 0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0,
-      0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84, 0x53, 0xd1, 0x00, 0xed,
-      0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf,
-      0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f,
-      0x50, 0x3c, 0x9f, 0xa8, 0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5,
-      0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2, 0xcd, 0x0c, 0x13, 0xec,
-      0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73,
-      0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14,
-      0xde, 0x5e, 0x0b, 0xdb, 0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c,
-      0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79, 0xe7, 0xc8, 0x37, 0x6d,
-      0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08,
-      0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f,
-      0x4b, 0xbd, 0x8b, 0x8a, 0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e,
-      0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e, 0xe1, 0xf8, 0x98, 0x11,
-      0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf,
-      0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f,
-      0xb0, 0x54, 0xbb, 0x16};
-  static const uint8_t shift_rows[] = {0x0, 0x5, 0xa, 0xf, 0x4, 0x9, 0xe, 0x3,
-                                       0x8, 0xd, 0x2, 0x7, 0xc, 0x1, 0x6, 0xb};
-  static const uint8_t ror32by8[] = {0x1, 0x2, 0x3, 0x0, 0x5, 0x6, 0x7, 0x4,
-                                     0x9, 0xa, 0xb, 0x8, 0xd, 0xe, 0xf, 0xc};
+// for more information.
+FORCE_INLINE __m128i _mm_aesenc_si128(__m128i a, __m128i RoundKey)
+{
+#if defined(__aarch64__)
+    static const uint8_t shift_rows[] = {
+        0x0, 0x5, 0xa, 0xf, 0x4, 0x9, 0xe, 0x3,
+        0x8, 0xd, 0x2, 0x7, 0xc, 0x1, 0x6, 0xb,
+    };
+    static const uint8_t ror32by8[] = {
+        0x1, 0x2, 0x3, 0x0, 0x5, 0x6, 0x7, 0x4,
+        0x9, 0xa, 0xb, 0x8, 0xd, 0xe, 0xf, 0xc,
+    };
 
-  uint8x16_t v;
-  uint8x16_t w = vreinterpretq_u8_m128i(EncBlock);
+    uint8x16_t v;
+    uint8x16_t w = vreinterpretq_u8_m128i(a);
 
-  // shift rows
-  w = vqtbl1q_u8(w, vld1q_u8(shift_rows));
+    /* shift rows */
+    w = vqtbl1q_u8(w, vld1q_u8(shift_rows));
 
-  // sub bytes
-  v = vqtbl4q_u8(vld1q_u8_x4(crypto_aes_sbox), w);
-  v = vqtbx4q_u8(v, vld1q_u8_x4(crypto_aes_sbox + 0x40), w - 0x40);
-  v = vqtbx4q_u8(v, vld1q_u8_x4(crypto_aes_sbox + 0x80), w - 0x80);
-  v = vqtbx4q_u8(v, vld1q_u8_x4(crypto_aes_sbox + 0xc0), w - 0xc0);
+    /* sub bytes */
+    // Here, we separate the whole 256-bytes table into 4 64-bytes tables, and
+    // look up each of the table. After each lookup, we load the next table
+    // which locates at the next 64-bytes. In the meantime, the index in the
+    // table would be smaller than it was, so the index parameters of
+    // `vqtbx4q_u8()` need to be added the same constant as the loaded tables.
+    v = vqtbl4q_u8(_sse2neon_vld1q_u8_x4(_sse2neon_sbox), w);
+    // 'w-0x40' equals to 'vsubq_u8(w, vdupq_n_u8(0x40))'
+    v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_sbox + 0x40), w - 0x40);
+    v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_sbox + 0x80), w - 0x80);
+    v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_sbox + 0xc0), w - 0xc0);
 
-  // mix columns
-  w = (v << 1) ^ (uint8x16_t)(((int8x16_t)v >> 7) & 0x1b);
-  w ^= (uint8x16_t)vrev32q_u16((uint16x8_t)v);
-  w ^= vqtbl1q_u8(v ^ w, vld1q_u8(ror32by8));
+    /* mix columns */
+    w = (v << 1) ^ (uint8x16_t) (((int8x16_t) v >> 7) & 0x1b);
+    w ^= (uint8x16_t) vrev32q_u16((uint16x8_t) v);
+    w ^= vqtbl1q_u8(v ^ w, vld1q_u8(ror32by8));
 
-  //  add round key
-  return vreinterpretq_m128i_u8(w) ^ RoundKey;
+    /* add round key */
+    return vreinterpretq_m128i_u8(w) ^ RoundKey;
+
+#else /* ARMv7-A implementation for a table-based AES */
+#define SSE2NEON_AES_B2W(b0, b1, b2, b3)                 \
+    (((uint32_t) (b3) << 24) | ((uint32_t) (b2) << 16) | \
+     ((uint32_t) (b1) << 8) | (uint32_t) (b0))
+// muliplying 'x' by 2 in GF(2^8)
+#define SSE2NEON_AES_F2(x) ((x << 1) ^ (((x >> 7) & 1) * 0x011b /* WPOLY */))
+// muliplying 'x' by 3 in GF(2^8)
+#define SSE2NEON_AES_F3(x) (SSE2NEON_AES_F2(x) ^ x)
+#define SSE2NEON_AES_U0(p) \
+    SSE2NEON_AES_B2W(SSE2NEON_AES_F2(p), p, p, SSE2NEON_AES_F3(p))
+#define SSE2NEON_AES_U1(p) \
+    SSE2NEON_AES_B2W(SSE2NEON_AES_F3(p), SSE2NEON_AES_F2(p), p, p)
+#define SSE2NEON_AES_U2(p) \
+    SSE2NEON_AES_B2W(p, SSE2NEON_AES_F3(p), SSE2NEON_AES_F2(p), p)
+#define SSE2NEON_AES_U3(p) \
+    SSE2NEON_AES_B2W(p, p, SSE2NEON_AES_F3(p), SSE2NEON_AES_F2(p))
+
+    // this generates a table containing every possible permutation of
+    // shift_rows() and sub_bytes() with mix_columns().
+    static const uint32_t ALIGN_STRUCT(16) aes_table[4][256] = {
+        SSE2NEON_AES_SBOX(SSE2NEON_AES_U0),
+        SSE2NEON_AES_SBOX(SSE2NEON_AES_U1),
+        SSE2NEON_AES_SBOX(SSE2NEON_AES_U2),
+        SSE2NEON_AES_SBOX(SSE2NEON_AES_U3),
+    };
+#undef SSE2NEON_AES_B2W
+#undef SSE2NEON_AES_F2
+#undef SSE2NEON_AES_F3
+#undef SSE2NEON_AES_U0
+#undef SSE2NEON_AES_U1
+#undef SSE2NEON_AES_U2
+#undef SSE2NEON_AES_U3
+
+    uint32_t x0 = _mm_cvtsi128_si32(a);  // get a[31:0]
+    uint32_t x1 =
+        _mm_cvtsi128_si32(_mm_shuffle_epi32(a, 0x55));  // get a[63:32]
+    uint32_t x2 =
+        _mm_cvtsi128_si32(_mm_shuffle_epi32(a, 0xAA));  // get a[95:64]
+    uint32_t x3 =
+        _mm_cvtsi128_si32(_mm_shuffle_epi32(a, 0xFF));  // get a[127:96]
+
+    // finish the modulo addition step in mix_columns()
+    __m128i out = _mm_set_epi32(
+        (aes_table[0][x3 & 0xff] ^ aes_table[1][(x0 >> 8) & 0xff] ^
+         aes_table[2][(x1 >> 16) & 0xff] ^ aes_table[3][x2 >> 24]),
+        (aes_table[0][x2 & 0xff] ^ aes_table[1][(x3 >> 8) & 0xff] ^
+         aes_table[2][(x0 >> 16) & 0xff] ^ aes_table[3][x1 >> 24]),
+        (aes_table[0][x1 & 0xff] ^ aes_table[1][(x2 >> 8) & 0xff] ^
+         aes_table[2][(x3 >> 16) & 0xff] ^ aes_table[3][x0 >> 24]),
+        (aes_table[0][x0 & 0xff] ^ aes_table[1][(x1 >> 8) & 0xff] ^
+         aes_table[2][(x2 >> 16) & 0xff] ^ aes_table[3][x3 >> 24]));
+
+    return _mm_xor_si128(out, RoundKey);
+#endif
 }
-#elif defined(__ARM_FEATURE_CRYPTO)
+
+// Perform one round of an AES decryption flow on data (state) in a using the
+// round key in RoundKey, and store the result in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_aesdec_si128
+FORCE_INLINE __m128i _mm_aesdec_si128(__m128i a, __m128i RoundKey)
+{
+#if defined(__aarch64__)
+    static const uint8_t inv_shift_rows[] = {
+        0x0, 0xd, 0xa, 0x7, 0x4, 0x1, 0xe, 0xb,
+        0x8, 0x5, 0x2, 0xf, 0xc, 0x9, 0x6, 0x3,
+    };
+    static const uint8_t ror32by8[] = {
+        0x1, 0x2, 0x3, 0x0, 0x5, 0x6, 0x7, 0x4,
+        0x9, 0xa, 0xb, 0x8, 0xd, 0xe, 0xf, 0xc,
+    };
+
+    uint8x16_t v;
+    uint8x16_t w = vreinterpretq_u8_m128i(a);
+
+    // inverse shift rows
+    w = vqtbl1q_u8(w, vld1q_u8(inv_shift_rows));
+
+    // inverse sub bytes
+    v = vqtbl4q_u8(_sse2neon_vld1q_u8_x4(_sse2neon_rsbox), w);
+    v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_rsbox + 0x40), w - 0x40);
+    v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_rsbox + 0x80), w - 0x80);
+    v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_rsbox + 0xc0), w - 0xc0);
+
+    // inverse mix columns
+    // muliplying 'v' by 4 in GF(2^8)
+    w = (v << 1) ^ (uint8x16_t) (((int8x16_t) v >> 7) & 0x1b);
+    w = (w << 1) ^ (uint8x16_t) (((int8x16_t) w >> 7) & 0x1b);
+    v ^= w;
+    v ^= (uint8x16_t) vrev32q_u16((uint16x8_t) w);
+
+    w = (v << 1) ^ (uint8x16_t) (((int8x16_t) v >> 7) &
+                                 0x1b);  // muliplying 'v' by 2 in GF(2^8)
+    w ^= (uint8x16_t) vrev32q_u16((uint16x8_t) v);
+    w ^= vqtbl1q_u8(v ^ w, vld1q_u8(ror32by8));
+
+    // add round key
+    return vreinterpretq_m128i_u8(w) ^ RoundKey;
+
+#else /* ARMv7-A NEON implementation */
+    /* FIXME: optimized for NEON */
+    uint8_t i, e, f, g, h, v[4][4];
+    uint8_t *_a = (uint8_t *) &a;
+    for (i = 0; i < 16; ++i) {
+        v[((i / 4) + (i % 4)) % 4][i % 4] = _sse2neon_rsbox[_a[i]];
+    }
+
+    // inverse mix columns
+    for (i = 0; i < 4; ++i) {
+        e = v[i][0];
+        f = v[i][1];
+        g = v[i][2];
+        h = v[i][3];
+
+        v[i][0] = SSE2NEON_MULTIPLY(e, 0x0e) ^ SSE2NEON_MULTIPLY(f, 0x0b) ^
+                  SSE2NEON_MULTIPLY(g, 0x0d) ^ SSE2NEON_MULTIPLY(h, 0x09);
+        v[i][1] = SSE2NEON_MULTIPLY(e, 0x09) ^ SSE2NEON_MULTIPLY(f, 0x0e) ^
+                  SSE2NEON_MULTIPLY(g, 0x0b) ^ SSE2NEON_MULTIPLY(h, 0x0d);
+        v[i][2] = SSE2NEON_MULTIPLY(e, 0x0d) ^ SSE2NEON_MULTIPLY(f, 0x09) ^
+                  SSE2NEON_MULTIPLY(g, 0x0e) ^ SSE2NEON_MULTIPLY(h, 0x0b);
+        v[i][3] = SSE2NEON_MULTIPLY(e, 0x0b) ^ SSE2NEON_MULTIPLY(f, 0x0d) ^
+                  SSE2NEON_MULTIPLY(g, 0x09) ^ SSE2NEON_MULTIPLY(h, 0x0e);
+    }
+
+    return vreinterpretq_m128i_u8(vld1q_u8((uint8_t *) v)) ^ RoundKey;
+#endif
+}
+
+// Perform the last round of an AES encryption flow on data (state) in a using
+// the round key in RoundKey, and store the result in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_aesenclast_si128
+FORCE_INLINE __m128i _mm_aesenclast_si128(__m128i a, __m128i RoundKey)
+{
+#if defined(__aarch64__)
+    static const uint8_t shift_rows[] = {
+        0x0, 0x5, 0xa, 0xf, 0x4, 0x9, 0xe, 0x3,
+        0x8, 0xd, 0x2, 0x7, 0xc, 0x1, 0x6, 0xb,
+    };
+
+    uint8x16_t v;
+    uint8x16_t w = vreinterpretq_u8_m128i(a);
+
+    // shift rows
+    w = vqtbl1q_u8(w, vld1q_u8(shift_rows));
+
+    // sub bytes
+    v = vqtbl4q_u8(_sse2neon_vld1q_u8_x4(_sse2neon_sbox), w);
+    v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_sbox + 0x40), w - 0x40);
+    v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_sbox + 0x80), w - 0x80);
+    v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_sbox + 0xc0), w - 0xc0);
+
+    // add round key
+    return vreinterpretq_m128i_u8(v) ^ RoundKey;
+
+#else /* ARMv7-A implementation */
+    uint8_t v[16] = {
+        _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 0)],
+        _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 5)],
+        _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 10)],
+        _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 15)],
+        _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 4)],
+        _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 9)],
+        _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 14)],
+        _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 3)],
+        _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 8)],
+        _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 13)],
+        _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 2)],
+        _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 7)],
+        _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 12)],
+        _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 1)],
+        _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 6)],
+        _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 11)],
+    };
+
+    return vreinterpretq_m128i_u8(vld1q_u8(v)) ^ RoundKey;
+#endif
+}
+
+// Perform the last round of an AES decryption flow on data (state) in a using
+// the round key in RoundKey, and store the result in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_aesdeclast_si128
+FORCE_INLINE __m128i _mm_aesdeclast_si128(__m128i a, __m128i RoundKey)
+{
+#if defined(__aarch64__)
+    static const uint8_t inv_shift_rows[] = {
+        0x0, 0xd, 0xa, 0x7, 0x4, 0x1, 0xe, 0xb,
+        0x8, 0x5, 0x2, 0xf, 0xc, 0x9, 0x6, 0x3,
+    };
+
+    uint8x16_t v;
+    uint8x16_t w = vreinterpretq_u8_m128i(a);
+
+    // inverse shift rows
+    w = vqtbl1q_u8(w, vld1q_u8(inv_shift_rows));
+
+    // inverse sub bytes
+    v = vqtbl4q_u8(_sse2neon_vld1q_u8_x4(_sse2neon_rsbox), w);
+    v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_rsbox + 0x40), w - 0x40);
+    v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_rsbox + 0x80), w - 0x80);
+    v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_rsbox + 0xc0), w - 0xc0);
+
+    // add round key
+    return vreinterpretq_m128i_u8(v) ^ RoundKey;
+
+#else /* ARMv7-A NEON implementation */
+    /* FIXME: optimized for NEON */
+    uint8_t v[4][4];
+    uint8_t *_a = (uint8_t *) &a;
+    for (int i = 0; i < 16; ++i) {
+        v[((i / 4) + (i % 4)) % 4][i % 4] = _sse2neon_rsbox[_a[i]];
+    }
+
+    return vreinterpretq_m128i_u8(vld1q_u8((uint8_t *) v)) ^ RoundKey;
+#endif
+}
+
+// Perform the InvMixColumns transformation on a and store the result in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_aesimc_si128
+FORCE_INLINE __m128i _mm_aesimc_si128(__m128i a)
+{
+#if defined(__aarch64__)
+    static const uint8_t ror32by8[] = {
+        0x1, 0x2, 0x3, 0x0, 0x5, 0x6, 0x7, 0x4,
+        0x9, 0xa, 0xb, 0x8, 0xd, 0xe, 0xf, 0xc,
+    };
+    uint8x16_t v = vreinterpretq_u8_m128i(a);
+    uint8x16_t w;
+
+    // multiplying 'v' by 4 in GF(2^8)
+    w = (v << 1) ^ (uint8x16_t) (((int8x16_t) v >> 7) & 0x1b);
+    w = (w << 1) ^ (uint8x16_t) (((int8x16_t) w >> 7) & 0x1b);
+    v ^= w;
+    v ^= (uint8x16_t) vrev32q_u16((uint16x8_t) w);
+
+    // multiplying 'v' by 2 in GF(2^8)
+    w = (v << 1) ^ (uint8x16_t) (((int8x16_t) v >> 7) & 0x1b);
+    w ^= (uint8x16_t) vrev32q_u16((uint16x8_t) v);
+    w ^= vqtbl1q_u8(v ^ w, vld1q_u8(ror32by8));
+    return vreinterpretq_m128i_u8(w);
+
+#else /* ARMv7-A NEON implementation */
+    uint8_t i, e, f, g, h, v[4][4];
+    vst1q_u8((uint8_t *) v, vreinterpretq_u8_m128i(a));
+    for (i = 0; i < 4; ++i) {
+        e = v[i][0];
+        f = v[i][1];
+        g = v[i][2];
+        h = v[i][3];
+
+        v[i][0] = SSE2NEON_MULTIPLY(e, 0x0e) ^ SSE2NEON_MULTIPLY(f, 0x0b) ^
+                  SSE2NEON_MULTIPLY(g, 0x0d) ^ SSE2NEON_MULTIPLY(h, 0x09);
+        v[i][1] = SSE2NEON_MULTIPLY(e, 0x09) ^ SSE2NEON_MULTIPLY(f, 0x0e) ^
+                  SSE2NEON_MULTIPLY(g, 0x0b) ^ SSE2NEON_MULTIPLY(h, 0x0d);
+        v[i][2] = SSE2NEON_MULTIPLY(e, 0x0d) ^ SSE2NEON_MULTIPLY(f, 0x09) ^
+                  SSE2NEON_MULTIPLY(g, 0x0e) ^ SSE2NEON_MULTIPLY(h, 0x0b);
+        v[i][3] = SSE2NEON_MULTIPLY(e, 0x0b) ^ SSE2NEON_MULTIPLY(f, 0x0d) ^
+                  SSE2NEON_MULTIPLY(g, 0x09) ^ SSE2NEON_MULTIPLY(h, 0x0e);
+    }
+
+    return vreinterpretq_m128i_u8(vld1q_u8((uint8_t *) v));
+#endif
+}
+
+// Assist in expanding the AES cipher key by computing steps towards generating
+// a round key for encryption cipher using data from a and an 8-bit round
+// constant specified in imm8, and store the result in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_aeskeygenassist_si128
+//
+// Emits the Advanced Encryption Standard (AES) instruction aeskeygenassist.
+// This instruction generates a round key for AES encryption. See
+// https://kazakov.life/2017/11/01/cryptocurrency-mining-on-ios-devices/
+// for details.
+FORCE_INLINE __m128i _mm_aeskeygenassist_si128(__m128i a, const int rcon)
+{
+#if defined(__aarch64__)
+    uint8x16_t _a = vreinterpretq_u8_m128i(a);
+    uint8x16_t v = vqtbl4q_u8(_sse2neon_vld1q_u8_x4(_sse2neon_sbox), _a);
+    v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_sbox + 0x40), _a - 0x40);
+    v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_sbox + 0x80), _a - 0x80);
+    v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_sbox + 0xc0), _a - 0xc0);
+
+    uint32x4_t v_u32 = vreinterpretq_u32_u8(v);
+    uint32x4_t ror_v = vorrq_u32(vshrq_n_u32(v_u32, 8), vshlq_n_u32(v_u32, 24));
+    uint32x4_t ror_xor_v = veorq_u32(ror_v, vdupq_n_u32(rcon));
+
+    return vreinterpretq_m128i_u32(vtrn2q_u32(v_u32, ror_xor_v));
+
+#else /* ARMv7-A NEON implementation */
+    uint32_t X1 = _mm_cvtsi128_si32(_mm_shuffle_epi32(a, 0x55));
+    uint32_t X3 = _mm_cvtsi128_si32(_mm_shuffle_epi32(a, 0xFF));
+    for (int i = 0; i < 4; ++i) {
+        ((uint8_t *) &X1)[i] = _sse2neon_sbox[((uint8_t *) &X1)[i]];
+        ((uint8_t *) &X3)[i] = _sse2neon_sbox[((uint8_t *) &X3)[i]];
+    }
+    return _mm_set_epi32(((X3 >> 8) | (X3 << 24)) ^ rcon, X3,
+                         ((X1 >> 8) | (X1 << 24)) ^ rcon, X1);
+#endif
+}
+#undef SSE2NEON_AES_SBOX
+#undef SSE2NEON_AES_RSBOX
+
+#if defined(__aarch64__)
+#undef SSE2NEON_XT
+#undef SSE2NEON_MULTIPLY
+#endif
+
+#else /* __ARM_FEATURE_CRYPTO */
 // Implements equivalent of 'aesenc' by combining AESE (with an empty key) and
-// AESMC and then manually applying the real key as an xor operation This
+// AESMC and then manually applying the real key as an xor operation. This
 // unfortunately means an additional xor op; the compiler should be able to
-// optimise this away for repeated calls however See
+// optimize this away for repeated calls however. See
 // https://blog.michaelbrase.com/2018/05/08/emulating-x86-aes-intrinsics-on-armv8-a
 // for more details.
-inline __m128i _mm_aesenc_si128(__m128i a, __m128i b) {
-  return vreinterpretq_m128i_u8(
-      vaesmcq_u8(vaeseq_u8(vreinterpretq_u8_m128i(a), vdupq_n_u8(0))) ^
-      vreinterpretq_u8_m128i(b));
+FORCE_INLINE __m128i _mm_aesenc_si128(__m128i a, __m128i b)
+{
+    return vreinterpretq_m128i_u8(
+        vaesmcq_u8(vaeseq_u8(vreinterpretq_u8_m128i(a), vdupq_n_u8(0))) ^
+        vreinterpretq_u8_m128i(b));
+}
+
+// Perform one round of an AES decryption flow on data (state) in a using the
+// round key in RoundKey, and store the result in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_aesdec_si128
+FORCE_INLINE __m128i _mm_aesdec_si128(__m128i a, __m128i RoundKey)
+{
+    return vreinterpretq_m128i_u8(veorq_u8(
+        vaesimcq_u8(vaesdq_u8(vreinterpretq_u8_m128i(a), vdupq_n_u8(0))),
+        vreinterpretq_u8_m128i(RoundKey)));
+}
+
+// Perform the last round of an AES encryption flow on data (state) in a using
+// the round key in RoundKey, and store the result in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_aesenclast_si128
+FORCE_INLINE __m128i _mm_aesenclast_si128(__m128i a, __m128i RoundKey)
+{
+    return _mm_xor_si128(vreinterpretq_m128i_u8(vaeseq_u8(
+                             vreinterpretq_u8_m128i(a), vdupq_n_u8(0))),
+                         RoundKey);
+}
+
+// Perform the last round of an AES decryption flow on data (state) in a using
+// the round key in RoundKey, and store the result in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_aesdeclast_si128
+FORCE_INLINE __m128i _mm_aesdeclast_si128(__m128i a, __m128i RoundKey)
+{
+    return vreinterpretq_m128i_u8(
+        vaesdq_u8(vreinterpretq_u8_m128i(a), vdupq_n_u8(0)) ^
+        vreinterpretq_u8_m128i(RoundKey));
+}
+
+// Perform the InvMixColumns transformation on a and store the result in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_aesimc_si128
+FORCE_INLINE __m128i _mm_aesimc_si128(__m128i a)
+{
+    return vreinterpretq_m128i_u8(vaesimcq_u8(vreinterpretq_u8_m128i(a)));
+}
+
+// Assist in expanding the AES cipher key by computing steps towards generating
+// a round key for encryption cipher using data from a and an 8-bit round
+// constant specified in imm8, and store the result in dst."
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_aeskeygenassist_si128
+FORCE_INLINE __m128i _mm_aeskeygenassist_si128(__m128i a, const int rcon)
+{
+    // AESE does ShiftRows and SubBytes on A
+    uint8x16_t u8 = vaeseq_u8(vreinterpretq_u8_m128i(a), vdupq_n_u8(0));
+
+    uint8x16_t dest = {
+        // Undo ShiftRows step from AESE and extract X1 and X3
+        u8[0x4], u8[0x1], u8[0xE], u8[0xB],  // SubBytes(X1)
+        u8[0x1], u8[0xE], u8[0xB], u8[0x4],  // ROT(SubBytes(X1))
+        u8[0xC], u8[0x9], u8[0x6], u8[0x3],  // SubBytes(X3)
+        u8[0x9], u8[0x6], u8[0x3], u8[0xC],  // ROT(SubBytes(X3))
+    };
+    uint32x4_t r = {0, (unsigned) rcon, 0, (unsigned) rcon};
+    return vreinterpretq_m128i_u8(dest) ^ vreinterpretq_m128i_u32(r);
 }
 #endif
 
-// ******************************************
-// Streaming Extensions
-// ******************************************
+/* Others */
 
-// Guarantees that every preceding store is globally visible before any
-// subsequent store.
-// https://msdn.microsoft.com/en-us/library/5h2w73d1%28v=vs.90%29.aspx
-FORCE_INLINE void _mm_sfence(void) { __sync_synchronize(); }
-
-// Stores the data in a to the address p without polluting the caches.  If the
-// cache line containing address p is already in the cache, the cache will be
-// updated.Address p must be 16 - byte aligned.
-// https://msdn.microsoft.com/en-us/library/ba08y07y%28v=vs.90%29.aspx
-FORCE_INLINE void _mm_stream_si128(__m128i *p, __m128i a) {
-  vst1q_s64((int64_t *)p, vreinterpretq_s64_m128i(a)); //NOLINT
+// Perform a carry-less multiplication of two 64-bit integers, selected from a
+// and b according to imm8, and store the results in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_clmulepi64_si128
+FORCE_INLINE __m128i _mm_clmulepi64_si128(__m128i _a, __m128i _b, const int imm)
+{
+    uint64x2_t a = vreinterpretq_u64_m128i(_a);
+    uint64x2_t b = vreinterpretq_u64_m128i(_b);
+    switch (imm & 0x11) {
+    case 0x00:
+        return vreinterpretq_m128i_u64(
+            _sse2neon_vmull_p64(vget_low_u64(a), vget_low_u64(b)));
+    case 0x01:
+        return vreinterpretq_m128i_u64(
+            _sse2neon_vmull_p64(vget_high_u64(a), vget_low_u64(b)));
+    case 0x10:
+        return vreinterpretq_m128i_u64(
+            _sse2neon_vmull_p64(vget_low_u64(a), vget_high_u64(b)));
+    case 0x11:
+        return vreinterpretq_m128i_u64(
+            _sse2neon_vmull_p64(vget_high_u64(a), vget_high_u64(b)));
+    default:
+        abort();
+    }
 }
 
-// Cache line containing p is flushed and invalidated from all caches in the
-// coherency domain. :
-// https://msdn.microsoft.com/en-us/library/ba08y07y(v=vs.100).aspx
-FORCE_INLINE void _mm_clflush(void const *p) {
-  (void)p;
-  // no corollary for Neon?
+FORCE_INLINE unsigned int _sse2neon_mm_get_denormals_zero_mode()
+{
+    union {
+        fpcr_bitfield field;
+#if defined(__aarch64__)
+        uint64_t value;
+#else
+        uint32_t value;
+#endif
+    } r;
+
+#if defined(__aarch64__)
+    __asm__ __volatile__("mrs %0, FPCR" : "=r"(r.value)); /* read */
+#else
+    __asm__ __volatile__("vmrs %0, FPSCR" : "=r"(r.value)); /* read */
+#endif
+
+    return r.field.bit24 ? _MM_DENORMALS_ZERO_ON : _MM_DENORMALS_ZERO_OFF;
+}
+
+// Count the number of bits set to 1 in unsigned 32-bit integer a, and
+// return that count in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_popcnt_u32
+FORCE_INLINE int _mm_popcnt_u32(unsigned int a)
+{
+#if defined(__aarch64__)
+#if __has_builtin(__builtin_popcount)
+    return __builtin_popcount(a);
+#else
+    return (int) vaddlv_u8(vcnt_u8(vcreate_u8((uint64_t) a)));
+#endif
+#else
+    uint32_t count = 0;
+    uint8x8_t input_val, count8x8_val;
+    uint16x4_t count16x4_val;
+    uint32x2_t count32x2_val;
+
+    input_val = vld1_u8((uint8_t *) &a);
+    count8x8_val = vcnt_u8(input_val);
+    count16x4_val = vpaddl_u8(count8x8_val);
+    count32x2_val = vpaddl_u16(count16x4_val);
+
+    vst1_u32(&count, count32x2_val);
+    return count;
+#endif
+}
+
+// Count the number of bits set to 1 in unsigned 64-bit integer a, and
+// return that count in dst.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_popcnt_u64
+FORCE_INLINE int64_t _mm_popcnt_u64(uint64_t a)
+{
+#if defined(__aarch64__)
+#if __has_builtin(__builtin_popcountll)
+    return __builtin_popcountll(a);
+#else
+    return (int64_t) vaddlv_u8(vcnt_u8(vcreate_u8(a)));
+#endif
+#else
+    uint64_t count = 0;
+    uint8x8_t input_val, count8x8_val;
+    uint16x4_t count16x4_val;
+    uint32x2_t count32x2_val;
+    uint64x1_t count64x1_val;
+
+    input_val = vld1_u8((uint8_t *) &a);
+    count8x8_val = vcnt_u8(input_val);
+    count16x4_val = vpaddl_u8(count8x8_val);
+    count32x2_val = vpaddl_u16(count16x4_val);
+    count64x1_val = vpaddl_u32(count32x2_val);
+    vst1_u64(&count, count64x1_val);
+    return count;
+#endif
+}
+
+FORCE_INLINE void _sse2neon_mm_set_denormals_zero_mode(unsigned int flag)
+{
+    // AArch32 Advanced SIMD arithmetic always uses the Flush-to-zero setting,
+    // regardless of the value of the FZ bit.
+    union {
+        fpcr_bitfield field;
+#if defined(__aarch64__)
+        uint64_t value;
+#else
+        uint32_t value;
+#endif
+    } r;
+
+#if defined(__aarch64__)
+    __asm__ __volatile__("mrs %0, FPCR" : "=r"(r.value)); /* read */
+#else
+    __asm__ __volatile__("vmrs %0, FPSCR" : "=r"(r.value)); /* read */
+#endif
+
+    r.field.bit24 = (flag & _MM_DENORMALS_ZERO_MASK) == _MM_DENORMALS_ZERO_ON;
+
+#if defined(__aarch64__)
+    __asm__ __volatile__("msr FPCR, %0" ::"r"(r)); /* write */
+#else
+    __asm__ __volatile__("vmsr FPSCR, %0" ::"r"(r));        /* write */
+#endif
+}
+
+// Return the current 64-bit value of the processor's time-stamp counter.
+// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=rdtsc
+FORCE_INLINE uint64_t _rdtsc(void)
+{
+#if defined(__aarch64__)
+    uint64_t val;
+
+    /* According to ARM DDI 0487F.c, from Armv8.0 to Armv8.5 inclusive, the
+     * system counter is at least 56 bits wide; from Armv8.6, the counter
+     * must be 64 bits wide.  So the system counter could be less than 64
+     * bits wide and it is attributed with the flag 'cap_user_time_short'
+     * is true.
+     */
+    __asm__ __volatile__("mrs %0, cntvct_el0" : "=r"(val));
+
+    return val;
+#else
+    uint32_t pmccntr, pmuseren, pmcntenset;
+    // Read the user mode Performance Monitoring Unit (PMU)
+    // User Enable Register (PMUSERENR) access permissions.
+    __asm__ __volatile__("mrc p15, 0, %0, c9, c14, 0" : "=r"(pmuseren));
+    if (pmuseren & 1) {  // Allows reading PMUSERENR for user mode code.
+        __asm__ __volatile__("mrc p15, 0, %0, c9, c12, 1" : "=r"(pmcntenset));
+        if (pmcntenset & 0x80000000UL) {  // Is it counting?
+            __asm__ __volatile__("mrc p15, 0, %0, c9, c13, 0" : "=r"(pmccntr));
+            // The counter is set up to count every 64th cycle
+            return (uint64_t) (pmccntr) << 6;
+        }
+    }
+
+    // Fallback to syscall as we can't enable PMUSERENR in user mode.
+    struct timeval tv;
+    gettimeofday(&tv, NULL);
+    return (uint64_t) (tv.tv_sec) * 1000000 + tv.tv_usec;
+#endif
 }
 
 #if defined(__GNUC__) || defined(__clang__)
@@ -3282,4 +9063,8 @@
 #pragma pop_macro("FORCE_INLINE")
 #endif
 
+#if defined(__GNUC__) && !defined(__clang__)
+#pragma GCC pop_options
+#endif
+
 #endif