blob: b091caf2c8cca3c0e4c47cff1467b27342c598b6 [file] [log] [blame]
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
//
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "kudu/util/debug/trace_event_impl.h"
#include <sched.h>
#include <unistd.h>
#include <algorithm>
#include <cinttypes>
#include <cstdlib>
#include <cstring>
#include <functional>
#include <list>
#include <memory>
#include <sstream>
#include <utility>
#include <vector>
#include <gflags/gflags.h>
#include "kudu/gutil/dynamic_annotations.h"
#include "kudu/gutil/map-util.h"
#include "kudu/gutil/mathlimits.h"
#include "kudu/gutil/port.h"
#include "kudu/gutil/ref_counted_memory.h"
#include "kudu/gutil/singleton.h"
#include "kudu/gutil/stl_util.h"
#include "kudu/gutil/stringprintf.h"
#include "kudu/gutil/strings/join.h"
#include "kudu/gutil/strings/split.h"
#include "kudu/gutil/strings/stringpiece.h"
#include "kudu/gutil/strings/substitute.h"
#include "kudu/gutil/strings/util.h"
#include "kudu/gutil/sysinfo.h"
#include "kudu/gutil/walltime.h"
#include "kudu/util/atomic.h"
#include "kudu/util/debug/trace_event.h"
#include "kudu/util/debug/trace_event_synthetic_delay.h"
#include "kudu/util/flag_tags.h"
#include "kudu/util/monotime.h"
#include "kudu/util/status.h"
#include "kudu/util/thread.h"
#include "kudu/util/threadlocal.h"
DEFINE_string(trace_to_console, "",
"Trace pattern specifying which trace events should be dumped "
"directly to the console");
TAG_FLAG(trace_to_console, experimental);
// The thread buckets for the sampling profiler.
TRACE_EVENT_API_ATOMIC_WORD g_trace_state[3];
using base::SpinLockHolder;
using strings::SubstituteAndAppend;
using std::string;
using std::unique_ptr;
using std::vector;
namespace kudu {
namespace debug {
__thread TraceLog::PerThreadInfo* TraceLog::thread_local_info_ = nullptr;
namespace {
// Controls the number of trace events we will buffer in-memory
// before throwing them away.
const size_t kTraceBufferChunkSize = TraceBufferChunk::kTraceBufferChunkSize;
const size_t kTraceEventVectorBufferChunks = 256000 / kTraceBufferChunkSize;
const size_t kTraceEventRingBufferChunks = kTraceEventVectorBufferChunks / 4;
const size_t kTraceEventBatchChunks = 1000 / kTraceBufferChunkSize;
// Can store results for 30 seconds with 1 ms sampling interval.
const size_t kMonitorTraceEventBufferChunks = 30000 / kTraceBufferChunkSize;
// ECHO_TO_CONSOLE needs a small buffer to hold the unfinished COMPLETE events.
const size_t kEchoToConsoleTraceEventBufferChunks = 256;
const char kSyntheticDelayCategoryFilterPrefix[] = "DELAY(";
#define MAX_CATEGORY_GROUPS 100
// Parallel arrays g_category_groups and g_category_group_enabled are separate
// so that a pointer to a member of g_category_group_enabled can be easily
// converted to an index into g_category_groups. This allows macros to deal
// only with char enabled pointers from g_category_group_enabled, and we can
// convert internally to determine the category name from the char enabled
// pointer.
const char* g_category_groups[MAX_CATEGORY_GROUPS] = {
"toplevel",
"tracing already shutdown",
"tracing categories exhausted; must increase MAX_CATEGORY_GROUPS",
"__metadata"};
// The enabled flag is char instead of bool so that the API can be used from C.
unsigned char g_category_group_enabled[MAX_CATEGORY_GROUPS] = { 0 };
// Indexes here have to match the g_category_groups array indexes above.
const int kCategoryAlreadyShutdown = 1;
const int kCategoryCategoriesExhausted = 2;
const int kCategoryMetadata = 3;
const int kNumBuiltinCategories = 4;
// Skip default categories.
AtomicWord g_category_index = kNumBuiltinCategories;
// The name of the current thread. This is used to decide if the current
// thread name has changed. We combine all the seen thread names into the
// output name for the thread.
__thread const char* g_current_thread_name = "";
static void NOTIMPLEMENTED() {
LOG(FATAL);
}
class TraceBufferRingBuffer : public TraceBuffer {
public:
explicit TraceBufferRingBuffer(size_t max_chunks)
: max_chunks_(max_chunks),
recyclable_chunks_queue_(new size_t[queue_capacity()]),
queue_head_(0),
queue_tail_(max_chunks),
current_iteration_index_(0),
current_chunk_seq_(1) {
chunks_.reserve(max_chunks);
for (size_t i = 0; i < max_chunks; ++i)
recyclable_chunks_queue_[i] = i;
}
~TraceBufferRingBuffer() {
STLDeleteElements(&chunks_);
}
virtual unique_ptr<TraceBufferChunk> GetChunk(size_t* index) OVERRIDE {
// Because the number of threads is much less than the number of chunks,
// the queue should never be empty.
DCHECK(!QueueIsEmpty());
*index = recyclable_chunks_queue_[queue_head_];
queue_head_ = NextQueueIndex(queue_head_);
current_iteration_index_ = queue_head_;
if (*index >= chunks_.size())
chunks_.resize(*index + 1);
TraceBufferChunk* chunk = chunks_[*index];
chunks_[*index] = nullptr; // Put NULL in the slot of a in-flight chunk.
if (chunk)
chunk->Reset(current_chunk_seq_++);
else
chunk = new TraceBufferChunk(current_chunk_seq_++);
return unique_ptr<TraceBufferChunk>(chunk);
}
virtual void ReturnChunk(size_t index,
unique_ptr<TraceBufferChunk> chunk) OVERRIDE {
// When this method is called, the queue should not be full because it
// can contain all chunks including the one to be returned.
DCHECK(!QueueIsFull());
DCHECK(chunk);
DCHECK_LT(index, chunks_.size());
DCHECK(!chunks_[index]);
chunks_[index] = chunk.release();
recyclable_chunks_queue_[queue_tail_] = index;
queue_tail_ = NextQueueIndex(queue_tail_);
}
virtual bool IsFull() const OVERRIDE {
return false;
}
virtual size_t Size() const OVERRIDE {
// This is approximate because not all of the chunks are full.
return chunks_.size() * kTraceBufferChunkSize;
}
virtual size_t Capacity() const OVERRIDE {
return max_chunks_ * kTraceBufferChunkSize;
}
virtual TraceEvent* GetEventByHandle(TraceEventHandle handle) OVERRIDE {
if (handle.chunk_index >= chunks_.size())
return nullptr;
TraceBufferChunk* chunk = chunks_[handle.chunk_index];
if (!chunk || chunk->seq() != handle.chunk_seq)
return nullptr;
return chunk->GetEventAt(handle.event_index);
}
virtual const TraceBufferChunk* NextChunk() OVERRIDE {
if (chunks_.empty())
return nullptr;
while (current_iteration_index_ != queue_tail_) {
size_t chunk_index = recyclable_chunks_queue_[current_iteration_index_];
current_iteration_index_ = NextQueueIndex(current_iteration_index_);
if (chunk_index >= chunks_.size()) // Skip uninitialized chunks.
continue;
DCHECK(chunks_[chunk_index]);
return chunks_[chunk_index];
}
return nullptr;
}
virtual unique_ptr<TraceBuffer> CloneForIteration() const OVERRIDE {
unique_ptr<ClonedTraceBuffer> cloned_buffer(new ClonedTraceBuffer());
for (size_t queue_index = queue_head_; queue_index != queue_tail_;
queue_index = NextQueueIndex(queue_index)) {
size_t chunk_index = recyclable_chunks_queue_[queue_index];
if (chunk_index >= chunks_.size()) // Skip uninitialized chunks.
continue;
TraceBufferChunk* chunk = chunks_[chunk_index];
cloned_buffer->chunks_.push_back(chunk ? chunk->Clone().release() : nullptr);
}
return std::move(cloned_buffer);
}
private:
class ClonedTraceBuffer : public TraceBuffer {
public:
ClonedTraceBuffer() : current_iteration_index_(0) {}
~ClonedTraceBuffer() {
STLDeleteElements(&chunks_);
}
// The only implemented method.
virtual const TraceBufferChunk* NextChunk() OVERRIDE {
return current_iteration_index_ < chunks_.size() ?
chunks_[current_iteration_index_++] : nullptr;
}
virtual unique_ptr<TraceBufferChunk> GetChunk(size_t* /*index*/) OVERRIDE {
NOTIMPLEMENTED();
return unique_ptr<TraceBufferChunk>();
}
virtual void ReturnChunk(size_t /*index*/,
unique_ptr<TraceBufferChunk> /*chunk*/) OVERRIDE {
NOTIMPLEMENTED();
}
virtual bool IsFull() const OVERRIDE { return false; }
virtual size_t Size() const OVERRIDE { return 0; }
virtual size_t Capacity() const OVERRIDE { return 0; }
virtual TraceEvent* GetEventByHandle(TraceEventHandle /*handle*/) OVERRIDE {
return nullptr;
}
virtual unique_ptr<TraceBuffer> CloneForIteration() const OVERRIDE {
NOTIMPLEMENTED();
return unique_ptr<TraceBuffer>();
}
size_t current_iteration_index_;
vector<TraceBufferChunk*> chunks_;
};
bool QueueIsEmpty() const {
return queue_head_ == queue_tail_;
}
size_t QueueSize() const {
return queue_tail_ > queue_head_ ? queue_tail_ - queue_head_ :
queue_tail_ + queue_capacity() - queue_head_;
}
bool QueueIsFull() const {
return QueueSize() == queue_capacity() - 1;
}
size_t queue_capacity() const {
// One extra space to help distinguish full state and empty state.
return max_chunks_ + 1;
}
size_t NextQueueIndex(size_t index) const {
index++;
if (index >= queue_capacity())
index = 0;
return index;
}
size_t max_chunks_;
vector<TraceBufferChunk*> chunks_;
unique_ptr<size_t[]> recyclable_chunks_queue_;
size_t queue_head_;
size_t queue_tail_;
size_t current_iteration_index_;
uint32_t current_chunk_seq_;
DISALLOW_COPY_AND_ASSIGN(TraceBufferRingBuffer);
};
class TraceBufferVector : public TraceBuffer {
public:
TraceBufferVector()
: in_flight_chunk_count_(0),
current_iteration_index_(0) {
chunks_.reserve(kTraceEventVectorBufferChunks);
}
~TraceBufferVector() {
STLDeleteElements(&chunks_);
}
virtual unique_ptr<TraceBufferChunk> GetChunk(size_t* index) OVERRIDE {
// This function may be called when adding normal events or indirectly from
// AddMetadataEventsWhileLocked(). We can not DECHECK(!IsFull()) because we
// have to add the metadata events and flush thread-local buffers even if
// the buffer is full.
*index = chunks_.size();
chunks_.push_back(nullptr); // Put NULL in the slot of a in-flight chunk.
++in_flight_chunk_count_;
// + 1 because zero chunk_seq is not allowed.
return unique_ptr<TraceBufferChunk>(
new TraceBufferChunk(static_cast<uint32_t>(*index) + 1));
}
virtual void ReturnChunk(size_t index,
unique_ptr<TraceBufferChunk> chunk) OVERRIDE {
DCHECK_GT(in_flight_chunk_count_, 0U);
DCHECK_LT(index, chunks_.size());
DCHECK(!chunks_[index]);
--in_flight_chunk_count_;
chunks_[index] = chunk.release();
}
virtual bool IsFull() const OVERRIDE {
return chunks_.size() >= kTraceEventVectorBufferChunks;
}
virtual size_t Size() const OVERRIDE {
// This is approximate because not all of the chunks are full.
return chunks_.size() * kTraceBufferChunkSize;
}
virtual size_t Capacity() const OVERRIDE {
return kTraceEventVectorBufferChunks * kTraceBufferChunkSize;
}
virtual TraceEvent* GetEventByHandle(TraceEventHandle handle) OVERRIDE {
if (handle.chunk_index >= chunks_.size())
return nullptr;
TraceBufferChunk* chunk = chunks_[handle.chunk_index];
if (!chunk || chunk->seq() != handle.chunk_seq)
return nullptr;
return chunk->GetEventAt(handle.event_index);
}
virtual const TraceBufferChunk* NextChunk() OVERRIDE {
while (current_iteration_index_ < chunks_.size()) {
// Skip in-flight chunks.
const TraceBufferChunk* chunk = chunks_[current_iteration_index_++];
if (chunk)
return chunk;
}
return nullptr;
}
virtual unique_ptr<TraceBuffer> CloneForIteration() const OVERRIDE {
NOTIMPLEMENTED();
return unique_ptr<TraceBuffer>();
}
private:
size_t in_flight_chunk_count_;
size_t current_iteration_index_;
vector<TraceBufferChunk*> chunks_;
DISALLOW_COPY_AND_ASSIGN(TraceBufferVector);
};
template <typename T>
void InitializeMetadataEvent(TraceEvent* trace_event,
int thread_id,
const char* metadata_name, const char* arg_name,
const T& value) {
if (!trace_event)
return;
int num_args = 1;
unsigned char arg_type;
uint64_t arg_value;
::trace_event_internal::SetTraceValue(value, &arg_type, &arg_value);
trace_event->Initialize(thread_id,
MicrosecondsInt64(0), MicrosecondsInt64(0), TRACE_EVENT_PHASE_METADATA,
&g_category_group_enabled[kCategoryMetadata],
metadata_name, ::trace_event_internal::kNoEventId,
num_args, &arg_name, &arg_type, &arg_value, nullptr,
TRACE_EVENT_FLAG_NONE);
}
// RAII object which marks '*dst' with a non-zero value while in scope.
// This assumes that no other threads write to '*dst'.
class MarkFlagInScope {
public:
explicit MarkFlagInScope(Atomic32* dst)
: dst_(dst) {
// We currently use Acquire_AtomicExchange here because it appears
// to be the cheapest way of getting an "Acquire_Store" barrier. Actually
// using Acquire_Store generates more assembly instructions and benchmarks
// slightly slower.
//
// TODO: it would be even faster to avoid the memory barrier here entirely,
// and do an asymmetric barrier, for example by having the flusher thread
// send a signal to every registered thread, or wait until every other thread
// has experienced at least one context switch. A number of options for this
// are outlined in:
// http://home.comcast.net/~pjbishop/Dave/Asymmetric-Dekker-Synchronization.txt
Atomic32 old_val = base::subtle::Acquire_AtomicExchange(dst_, 1);
DCHECK_EQ(old_val, 0);
}
~MarkFlagInScope() {
base::subtle::Release_Store(dst_, 0);
}
private:
Atomic32* dst_;
DISALLOW_COPY_AND_ASSIGN(MarkFlagInScope);
};
} // anonymous namespace
TraceLog::ThreadLocalEventBuffer* TraceLog::PerThreadInfo::AtomicTakeBuffer() {
return reinterpret_cast<TraceLog::ThreadLocalEventBuffer*>(
base::subtle::Acquire_AtomicExchange(
reinterpret_cast<AtomicWord*>(&event_buffer_),
0));
}
void TraceBufferChunk::Reset(uint32_t new_seq) {
for (size_t i = 0; i < next_free_; ++i)
chunk_[i].Reset();
next_free_ = 0;
seq_ = new_seq;
}
TraceEvent* TraceBufferChunk::AddTraceEvent(size_t* event_index) {
DCHECK(!IsFull());
*event_index = next_free_++;
return &chunk_[*event_index];
}
unique_ptr<TraceBufferChunk> TraceBufferChunk::Clone() const {
unique_ptr<TraceBufferChunk> cloned_chunk(new TraceBufferChunk(seq_));
cloned_chunk->next_free_ = next_free_;
for (size_t i = 0; i < next_free_; ++i)
cloned_chunk->chunk_[i].CopyFrom(chunk_[i]);
return cloned_chunk;
}
// A helper class that allows the lock to be acquired in the middle of the scope
// and unlocks at the end of scope if locked.
class TraceLog::OptionalAutoLock {
public:
explicit OptionalAutoLock(base::SpinLock& lock) // NOLINT(google-runtime-references)
: lock_(lock),
locked_(false) {
}
~OptionalAutoLock() {
if (locked_)
lock_.Unlock();
}
void EnsureAcquired() {
if (!locked_) {
lock_.Lock();
locked_ = true;
}
}
private:
base::SpinLock& lock_;
bool locked_;
DISALLOW_COPY_AND_ASSIGN(OptionalAutoLock);
};
// Use this function instead of TraceEventHandle constructor to keep the
// overhead of ScopedTracer (trace_event.h) constructor minimum.
void MakeHandle(uint32_t chunk_seq, size_t chunk_index, size_t event_index,
TraceEventHandle* handle) {
DCHECK(chunk_seq);
DCHECK(chunk_index < (1u << 16));
DCHECK(event_index < (1u << 16));
handle->chunk_seq = chunk_seq;
handle->chunk_index = static_cast<uint16_t>(chunk_index);
handle->event_index = static_cast<uint16_t>(event_index);
}
////////////////////////////////////////////////////////////////////////////////
//
// TraceEvent
//
////////////////////////////////////////////////////////////////////////////////
namespace {
size_t GetAllocLength(const char* str) { return str ? strlen(str) + 1 : 0; }
// Copies |*member| into |*buffer|, sets |*member| to point to this new
// location, and then advances |*buffer| by the amount written.
void CopyTraceEventParameter(char** buffer,
const char** member,
const char* end) {
if (*member) {
size_t written = strings::strlcpy(*buffer, *member, end - *buffer) + 1;
DCHECK_LE(static_cast<int>(written), end - *buffer);
*member = *buffer;
*buffer += written;
}
}
} // namespace
TraceEvent::TraceEvent()
: duration_(-1),
thread_duration_(-1),
id_(0u),
category_group_enabled_(nullptr),
name_(nullptr),
thread_id_(0),
phase_(TRACE_EVENT_PHASE_BEGIN),
flags_(0) {
for (auto& arg_name : arg_names_) {
arg_name = nullptr;
}
memset(arg_values_, 0, sizeof(arg_values_));
}
TraceEvent::~TraceEvent() {
}
void TraceEvent::CopyFrom(const TraceEvent& other) {
timestamp_ = other.timestamp_;
thread_timestamp_ = other.thread_timestamp_;
duration_ = other.duration_;
id_ = other.id_;
category_group_enabled_ = other.category_group_enabled_;
name_ = other.name_;
thread_id_ = other.thread_id_;
phase_ = other.phase_;
flags_ = other.flags_;
parameter_copy_storage_ = other.parameter_copy_storage_;
for (int i = 0; i < kTraceMaxNumArgs; ++i) {
arg_names_[i] = other.arg_names_[i];
arg_types_[i] = other.arg_types_[i];
arg_values_[i] = other.arg_values_[i];
convertable_values_[i] = other.convertable_values_[i];
}
}
void TraceEvent::Initialize(
int thread_id,
MicrosecondsInt64 timestamp,
MicrosecondsInt64 thread_timestamp,
char phase,
const unsigned char* category_group_enabled,
const char* name,
uint64_t id,
int num_args,
const char** arg_names,
const unsigned char* arg_types,
const uint64_t* arg_values,
const scoped_refptr<ConvertableToTraceFormat>* convertable_values,
unsigned char flags) {
timestamp_ = timestamp;
thread_timestamp_ = thread_timestamp;
duration_ = -1;
id_ = id;
category_group_enabled_ = category_group_enabled;
name_ = name;
thread_id_ = thread_id;
phase_ = phase;
flags_ = flags;
// Clamp num_args since it may have been set by a third_party library.
num_args = (num_args > kTraceMaxNumArgs) ? kTraceMaxNumArgs : num_args;
int i = 0;
for (; i < num_args; ++i) {
arg_names_[i] = arg_names[i];
arg_types_[i] = arg_types[i];
if (arg_types[i] == TRACE_VALUE_TYPE_CONVERTABLE)
convertable_values_[i] = convertable_values[i];
else
arg_values_[i].as_uint = arg_values[i];
}
for (; i < kTraceMaxNumArgs; ++i) {
arg_names_[i] = nullptr;
arg_values_[i].as_uint = 0u;
convertable_values_[i] = nullptr;
arg_types_[i] = TRACE_VALUE_TYPE_UINT;
}
bool copy = !!(flags & TRACE_EVENT_FLAG_COPY);
size_t alloc_size = 0;
if (copy) {
alloc_size += GetAllocLength(name);
for (i = 0; i < num_args; ++i) {
alloc_size += GetAllocLength(arg_names_[i]);
if (arg_types_[i] == TRACE_VALUE_TYPE_STRING)
arg_types_[i] = TRACE_VALUE_TYPE_COPY_STRING;
}
}
bool arg_is_copy[kTraceMaxNumArgs];
for (i = 0; i < num_args; ++i) {
// No copying of convertable types, we retain ownership.
if (arg_types_[i] == TRACE_VALUE_TYPE_CONVERTABLE)
continue;
// We only take a copy of arg_vals if they are of type COPY_STRING.
arg_is_copy[i] = (arg_types_[i] == TRACE_VALUE_TYPE_COPY_STRING);
if (arg_is_copy[i])
alloc_size += GetAllocLength(arg_values_[i].as_string);
}
if (alloc_size) {
parameter_copy_storage_ = new RefCountedString;
parameter_copy_storage_->data().resize(alloc_size);
char* ptr = string_as_array(&parameter_copy_storage_->data());
const char* end = ptr + alloc_size;
if (copy) {
CopyTraceEventParameter(&ptr, &name_, end);
for (i = 0; i < num_args; ++i) {
CopyTraceEventParameter(&ptr, &arg_names_[i], end);
}
}
for (i = 0; i < num_args; ++i) {
if (arg_types_[i] == TRACE_VALUE_TYPE_CONVERTABLE)
continue;
if (arg_is_copy[i])
CopyTraceEventParameter(&ptr, &arg_values_[i].as_string, end);
}
DCHECK_EQ(end, ptr) << "Overrun by " << ptr - end;
}
}
void TraceEvent::Reset() {
// Only reset fields that won't be initialized in Initialize(), or that may
// hold references to other objects.
duration_ = -1;
parameter_copy_storage_ = nullptr;
for (int i = 0; i < kTraceMaxNumArgs && arg_names_[i]; ++i)
convertable_values_[i] = nullptr;
}
void TraceEvent::UpdateDuration(const MicrosecondsInt64& now,
const MicrosecondsInt64& thread_now) {
DCHECK(duration_ == -1);
duration_ = now - timestamp_;
thread_duration_ = thread_now - thread_timestamp_;
}
namespace {
// Escape the given string using JSON rules.
void JsonEscape(StringPiece s, string* out) {
out->reserve(out->size() + s.size() * 2);
const char* p_end = s.data() + s.size();
for (const char* p = s.data(); p != p_end; p++) {
// Only the following characters need to be escaped, according to json.org.
// In particular, it's illegal to escape the single-quote character, and
// JSON does not support the "\x" escape sequence like C/Java.
switch (*p) {
case '"':
case '\\':
out->push_back('\\');
out->push_back(*p);
break;
case '\b':
out->append("\\b");
break;
case '\f':
out->append("\\f");
break;
case '\n':
out->append("\\n");
break;
case '\r':
out->append("\\r");
break;
case '\t':
out->append("\\t");
break;
default:
out->push_back(*p);
}
}
}
} // anonymous namespace
// static
void TraceEvent::AppendValueAsJSON(unsigned char type,
TraceEvent::TraceValue value,
std::string* out) {
switch (type) {
case TRACE_VALUE_TYPE_BOOL:
*out += value.as_bool ? "true" : "false";
break;
case TRACE_VALUE_TYPE_UINT:
SubstituteAndAppend(out, "$0", static_cast<uint64_t>(value.as_uint));
break;
case TRACE_VALUE_TYPE_INT:
SubstituteAndAppend(out, "$0", static_cast<int64_t>(value.as_int));
break;
case TRACE_VALUE_TYPE_DOUBLE: {
// FIXME: base/json/json_writer.cc is using the same code,
// should be made into a common method.
std::string real;
double val = value.as_double;
if (MathLimits<double>::IsFinite(val)) {
real = strings::Substitute("$0", val);
// Ensure that the number has a .0 if there's no decimal or 'e'. This
// makes sure that when we read the JSON back, it's interpreted as a
// real rather than an int.
if (real.find('.') == std::string::npos &&
real.find('e') == std::string::npos &&
real.find('E') == std::string::npos) {
real.append(".0");
}
// The JSON spec requires that non-integer values in the range (-1,1)
// have a zero before the decimal point - ".52" is not valid, "0.52" is.
if (real[0] == '.') {
real.insert(0, "0");
} else if (real.length() > 1 && real[0] == '-' && real[1] == '.') {
// "-.1" bad "-0.1" good
real.insert(1, "0");
}
} else if (MathLimits<double>::IsNaN(val)){
// The JSON spec doesn't allow NaN and Infinity (since these are
// objects in EcmaScript). Use strings instead.
real = "\"NaN\"";
} else if (val < 0) {
real = "\"-Infinity\"";
} else {
real = "\"Infinity\"";
}
SubstituteAndAppend(out, "$0", real);
break;
}
case TRACE_VALUE_TYPE_POINTER:
// JSON only supports double and int numbers.
// So as not to lose bits from a 64-bit pointer, output as a hex string.
StringAppendF(out, "\"0x%" PRIx64 "\"", static_cast<uint64_t>(
reinterpret_cast<intptr_t>(
value.as_pointer)));
break;
case TRACE_VALUE_TYPE_STRING:
case TRACE_VALUE_TYPE_COPY_STRING:
*out += "\"";
JsonEscape(value.as_string ? value.as_string : "NULL", out);
*out += "\"";
break;
default:
LOG(FATAL) << "Don't know how to print this value";
break;
}
}
void TraceEvent::AppendAsJSON(std::string* out) const {
int64_t time_int64 = timestamp_;
int process_id = TraceLog::GetInstance()->process_id();
// Category group checked at category creation time.
DCHECK(!strchr(name_, '"'));
StringAppendF(out,
"{\"cat\":\"%s\",\"pid\":%i,\"tid\":%i,\"ts\":%" PRId64 ","
"\"ph\":\"%c\",\"name\":\"%s\",\"args\":{",
TraceLog::GetCategoryGroupName(category_group_enabled_),
process_id,
thread_id_,
time_int64,
phase_,
name_);
// Output argument names and values, stop at first NULL argument name.
for (int i = 0; i < kTraceMaxNumArgs && arg_names_[i]; ++i) {
if (i > 0)
*out += ",";
*out += "\"";
*out += arg_names_[i];
*out += "\":";
if (arg_types_[i] == TRACE_VALUE_TYPE_CONVERTABLE)
convertable_values_[i]->AppendAsTraceFormat(out);
else
AppendValueAsJSON(arg_types_[i], arg_values_[i], out);
}
*out += "}";
if (phase_ == TRACE_EVENT_PHASE_COMPLETE) {
int64_t duration = duration_;
if (duration != -1)
StringAppendF(out, ",\"dur\":%" PRId64, duration);
if (thread_timestamp_ >= 0) {
int64_t thread_duration = thread_duration_;
if (thread_duration != -1)
StringAppendF(out, ",\"tdur\":%" PRId64, thread_duration);
}
}
// Output tts if thread_timestamp is valid.
if (thread_timestamp_ >= 0) {
int64_t thread_time_int64 = thread_timestamp_;
StringAppendF(out, ",\"tts\":%" PRId64, thread_time_int64);
}
// If id_ is set, print it out as a hex string so we don't loose any
// bits (it might be a 64-bit pointer).
if (flags_ & TRACE_EVENT_FLAG_HAS_ID)
StringAppendF(out, ",\"id\":\"0x%" PRIx64 "\"", static_cast<uint64_t>(id_));
// Instant events also output their scope.
if (phase_ == TRACE_EVENT_PHASE_INSTANT) {
char scope = '?';
switch (flags_ & TRACE_EVENT_FLAG_SCOPE_MASK) {
case TRACE_EVENT_SCOPE_GLOBAL:
scope = TRACE_EVENT_SCOPE_NAME_GLOBAL;
break;
case TRACE_EVENT_SCOPE_PROCESS:
scope = TRACE_EVENT_SCOPE_NAME_PROCESS;
break;
case TRACE_EVENT_SCOPE_THREAD:
scope = TRACE_EVENT_SCOPE_NAME_THREAD;
break;
}
StringAppendF(out, ",\"s\":\"%c\"", scope);
}
*out += "}";
}
void TraceEvent::AppendPrettyPrinted(std::ostringstream* out) const {
*out << name_ << "[";
*out << TraceLog::GetCategoryGroupName(category_group_enabled_);
*out << "]";
if (arg_names_[0]) {
*out << ", {";
for (int i = 0; i < kTraceMaxNumArgs && arg_names_[i]; ++i) {
if (i > 0)
*out << ", ";
*out << arg_names_[i] << ":";
std::string value_as_text;
if (arg_types_[i] == TRACE_VALUE_TYPE_CONVERTABLE)
convertable_values_[i]->AppendAsTraceFormat(&value_as_text);
else
AppendValueAsJSON(arg_types_[i], arg_values_[i], &value_as_text);
*out << value_as_text;
}
*out << "}";
}
}
////////////////////////////////////////////////////////////////////////////////
//
// TraceResultBuffer
//
////////////////////////////////////////////////////////////////////////////////
string TraceResultBuffer::FlushTraceLogToString() {
return DoFlush(false);
}
string TraceResultBuffer::FlushTraceLogToStringButLeaveBufferIntact() {
return DoFlush(true);
}
string TraceResultBuffer::DoFlush(bool leave_intact) {
TraceResultBuffer buf;
auto* buf_ptr = &buf;
TraceLog* tl = TraceLog::GetInstance();
auto cb = [buf_ptr](const scoped_refptr<RefCountedString>& s, bool has_more_events) {
buf_ptr->Collect(s, has_more_events);
};
if (leave_intact) {
tl->FlushButLeaveBufferIntact(cb);
} else {
tl->Flush(cb);
}
buf.json_.append("]}\n");
return buf.json_;
}
TraceResultBuffer::TraceResultBuffer()
: first_(true) {
}
TraceResultBuffer::~TraceResultBuffer() {
}
void TraceResultBuffer::Collect(
const scoped_refptr<RefCountedString>& s,
bool has_more_events) {
if (first_) {
json_.append("{\"traceEvents\": [\n");
first_ = false;
} else if (!s->data().empty()) {
// Sometimes we get sent an empty chunk at the end,
// and we don't want to end up with an extra trailing ','
json_.append(",\n");
}
json_.append(s->data());
}
////////////////////////////////////////////////////////////////////////////////
//
// TraceSamplingThread
//
////////////////////////////////////////////////////////////////////////////////
class TraceBucketData;
typedef std::function<void(TraceBucketData*)> TraceSampleCallback;
class TraceBucketData {
public:
TraceBucketData(AtomicWord* bucket,
const char* name,
TraceSampleCallback callback);
~TraceBucketData();
TRACE_EVENT_API_ATOMIC_WORD* bucket;
const char* bucket_name;
TraceSampleCallback callback;
};
// This object must be created on the IO thread.
class TraceSamplingThread {
public:
TraceSamplingThread();
virtual ~TraceSamplingThread();
void ThreadMain();
static void DefaultSamplingCallback(TraceBucketData* bucket_data);
void Stop();
private:
friend class TraceLog;
void GetSamples();
// Not thread-safe. Once the ThreadMain has been called, this can no longer
// be called.
void RegisterSampleBucket(TRACE_EVENT_API_ATOMIC_WORD* bucket,
const char* const name,
TraceSampleCallback callback);
// Splits a combined "category\0name" into the two component parts.
static void ExtractCategoryAndName(const char* combined,
const char** category,
const char** name);
std::vector<TraceBucketData> sample_buckets_;
bool thread_running_;
AtomicBool cancellation_flag_;
};
TraceSamplingThread::TraceSamplingThread()
: thread_running_(false),
cancellation_flag_(false) {
}
TraceSamplingThread::~TraceSamplingThread() {
}
void TraceSamplingThread::ThreadMain() {
thread_running_ = true;
const MonoDelta sleepDelta = MonoDelta::FromMicroseconds(1000);
while (!cancellation_flag_.Load()) {
SleepFor(sleepDelta);
GetSamples();
}
}
// static
void TraceSamplingThread::DefaultSamplingCallback(
TraceBucketData* bucket_data) {
TRACE_EVENT_API_ATOMIC_WORD category_and_name =
TRACE_EVENT_API_ATOMIC_LOAD(*bucket_data->bucket);
if (!category_and_name)
return;
const char* const combined =
reinterpret_cast<const char* const>(category_and_name);
const char* category_group;
const char* name;
ExtractCategoryAndName(combined, &category_group, &name);
TRACE_EVENT_API_ADD_TRACE_EVENT(TRACE_EVENT_PHASE_SAMPLE,
TraceLog::GetCategoryGroupEnabled(category_group),
name, 0, 0, nullptr, nullptr, nullptr, nullptr, 0);
}
void TraceSamplingThread::GetSamples() {
for (auto& sample_bucket : sample_buckets_) {
TraceBucketData* bucket_data = &sample_bucket;
bucket_data->callback(bucket_data);
}
}
void TraceSamplingThread::RegisterSampleBucket(
TRACE_EVENT_API_ATOMIC_WORD* bucket,
const char* const name,
TraceSampleCallback callback) {
// Access to sample_buckets_ doesn't cause races with the sampling thread
// that uses the sample_buckets_, because it is guaranteed that
// RegisterSampleBucket is called before the sampling thread is created.
DCHECK(!thread_running_);
sample_buckets_.emplace_back(bucket, name, callback);
}
// static
void TraceSamplingThread::ExtractCategoryAndName(const char* combined,
const char** category,
const char** name) {
*category = combined;
*name = &combined[strlen(combined) + 1];
}
void TraceSamplingThread::Stop() {
cancellation_flag_.Store(true);
}
TraceBucketData::TraceBucketData(AtomicWord* bucket, const char* name,
TraceSampleCallback callback)
: bucket(bucket), bucket_name(name), callback(std::move(callback)) {}
TraceBucketData::~TraceBucketData() {
}
////////////////////////////////////////////////////////////////////////////////
//
// TraceLog
//
////////////////////////////////////////////////////////////////////////////////
class TraceLog::ThreadLocalEventBuffer {
public:
explicit ThreadLocalEventBuffer(TraceLog* trace_log);
virtual ~ThreadLocalEventBuffer();
TraceEvent* AddTraceEvent(TraceEventHandle* handle);
TraceEvent* GetEventByHandle(TraceEventHandle handle) {
if (!chunk_ || handle.chunk_seq != chunk_->seq() ||
handle.chunk_index != chunk_index_)
return nullptr;
return chunk_->GetEventAt(handle.event_index);
}
int generation() const { return generation_; }
void Flush(int64_t tid);
private:
// Check that the current thread is the one that constructed this trace buffer.
void CheckIsOwnerThread() const {
DCHECK_EQ(kudu::Thread::UniqueThreadId(), owner_tid_);
}
// Since TraceLog is a leaky singleton, trace_log_ will always be valid
// as long as the thread exists.
TraceLog* trace_log_;
unique_ptr<TraceBufferChunk> chunk_;
size_t chunk_index_;
int generation_;
// The TID of the thread that constructed this event buffer. Only this thread
// may add trace events.
int64_t owner_tid_;
DISALLOW_COPY_AND_ASSIGN(ThreadLocalEventBuffer);
};
TraceLog::ThreadLocalEventBuffer::ThreadLocalEventBuffer(TraceLog* trace_log)
: trace_log_(trace_log),
chunk_index_(0),
generation_(trace_log->generation()),
owner_tid_(kudu::Thread::UniqueThreadId()) {
}
TraceLog::ThreadLocalEventBuffer::~ThreadLocalEventBuffer() {
}
TraceEvent* TraceLog::ThreadLocalEventBuffer::AddTraceEvent(
TraceEventHandle* handle) {
CheckIsOwnerThread();
if (chunk_ && chunk_->IsFull()) {
SpinLockHolder lock(&trace_log_->lock_);
Flush(Thread::UniqueThreadId());
chunk_.reset();
}
if (!chunk_) {
SpinLockHolder lock(&trace_log_->lock_);
chunk_ = trace_log_->logged_events_->GetChunk(&chunk_index_);
trace_log_->CheckIfBufferIsFullWhileLocked();
}
if (!chunk_)
return nullptr;
size_t event_index;
TraceEvent* trace_event = chunk_->AddTraceEvent(&event_index);
if (trace_event && handle)
MakeHandle(chunk_->seq(), chunk_index_, event_index, handle);
return trace_event;
}
void TraceLog::ThreadLocalEventBuffer::Flush(int64_t tid) {
DCHECK(trace_log_->lock_.IsHeld());
if (!chunk_)
return;
if (trace_log_->CheckGeneration(generation_)) {
// Return the chunk to the buffer only if the generation matches.
trace_log_->logged_events_->ReturnChunk(chunk_index_, std::move(chunk_));
}
}
// static
TraceLog* TraceLog::GetInstance() {
return Singleton<TraceLog>::get();
}
TraceLog::TraceLog()
: mode_(DISABLED),
num_traces_recorded_(0),
event_callback_(0),
dispatching_to_observer_list_(false),
process_sort_index_(0),
process_id_hash_(0),
process_id_(0),
time_offset_(0),
watch_category_(0),
trace_options_(RECORD_UNTIL_FULL),
sampling_thread_handle_(nullptr),
category_filter_(CategoryFilter::kDefaultCategoryFilterString),
event_callback_category_filter_(
CategoryFilter::kDefaultCategoryFilterString),
thread_shared_chunk_index_(0),
generation_(0) {
// Trace is enabled or disabled on one thread while other threads are
// accessing the enabled flag. We don't care whether edge-case events are
// traced or not, so we allow races on the enabled flag to keep the trace
// macros fast.
ANNOTATE_BENIGN_RACE_SIZED(g_category_group_enabled,
sizeof(g_category_group_enabled),
"trace_event category enabled");
for (int i = 0; i < MAX_CATEGORY_GROUPS; ++i) {
ANNOTATE_BENIGN_RACE(&g_category_group_enabled[i],
"trace_event category enabled");
}
SetProcessID(static_cast<int>(getpid()));
string filter = FLAGS_trace_to_console;
if (!filter.empty()) {
SetEnabled(CategoryFilter(filter), RECORDING_MODE, ECHO_TO_CONSOLE);
LOG(ERROR) << "Tracing to console with CategoryFilter '" << filter << "'.";
}
logged_events_.reset(CreateTraceBuffer());
}
TraceLog::~TraceLog() {
}
const unsigned char* TraceLog::GetCategoryGroupEnabled(
const char* category_group) {
TraceLog* tracelog = GetInstance();
if (!tracelog) {
DCHECK(!g_category_group_enabled[kCategoryAlreadyShutdown]);
return &g_category_group_enabled[kCategoryAlreadyShutdown];
}
return tracelog->GetCategoryGroupEnabledInternal(category_group);
}
const char* TraceLog::GetCategoryGroupName(
const unsigned char* category_group_enabled) {
// Calculate the index of the category group by finding
// category_group_enabled in g_category_group_enabled array.
uintptr_t category_begin =
reinterpret_cast<uintptr_t>(g_category_group_enabled);
uintptr_t category_ptr = reinterpret_cast<uintptr_t>(category_group_enabled);
DCHECK(category_ptr >= category_begin &&
category_ptr < reinterpret_cast<uintptr_t>(
g_category_group_enabled + MAX_CATEGORY_GROUPS)) <<
"out of bounds category pointer";
uintptr_t category_index =
(category_ptr - category_begin) / sizeof(g_category_group_enabled[0]);
return g_category_groups[category_index];
}
void TraceLog::UpdateCategoryGroupEnabledFlag(int category_index) {
unsigned char enabled_flag = 0;
const char* category_group = g_category_groups[category_index];
if (mode_ == RECORDING_MODE &&
category_filter_.IsCategoryGroupEnabled(category_group))
enabled_flag |= ENABLED_FOR_RECORDING;
else if (mode_ == MONITORING_MODE &&
category_filter_.IsCategoryGroupEnabled(category_group))
enabled_flag |= ENABLED_FOR_MONITORING;
if (event_callback_ &&
event_callback_category_filter_.IsCategoryGroupEnabled(category_group))
enabled_flag |= ENABLED_FOR_EVENT_CALLBACK;
g_category_group_enabled[category_index] = enabled_flag;
}
void TraceLog::UpdateCategoryGroupEnabledFlags() {
int category_index = base::subtle::NoBarrier_Load(&g_category_index);
for (int i = 0; i < category_index; i++)
UpdateCategoryGroupEnabledFlag(i);
}
void TraceLog::UpdateSyntheticDelaysFromCategoryFilter() {
ResetTraceEventSyntheticDelays();
const CategoryFilter::StringList& delays =
category_filter_.GetSyntheticDelayValues();
CategoryFilter::StringList::const_iterator ci;
for (ci = delays.begin(); ci != delays.end(); ++ci) {
std::list<string> tokens = strings::Split(*ci, ";");
if (tokens.empty()) continue;
TraceEventSyntheticDelay* delay =
TraceEventSyntheticDelay::Lookup(tokens.front());
tokens.pop_front();
while (!tokens.empty()) {
std::string token = tokens.front();
tokens.pop_front();
char* duration_end;
double target_duration = strtod(token.c_str(), &duration_end);
if (duration_end != token.c_str()) {
delay->SetTargetDuration(MonoDelta::FromSeconds(target_duration));
} else if (token == "static") {
delay->SetMode(TraceEventSyntheticDelay::STATIC);
} else if (token == "oneshot") {
delay->SetMode(TraceEventSyntheticDelay::ONE_SHOT);
} else if (token == "alternating") {
delay->SetMode(TraceEventSyntheticDelay::ALTERNATING);
}
}
}
}
const unsigned char* TraceLog::GetCategoryGroupEnabledInternal(
const char* category_group) {
DCHECK(!strchr(category_group, '"')) <<
"Category groups may not contain double quote";
// The g_category_groups is append only, avoid using a lock for the fast path.
int current_category_index = base::subtle::Acquire_Load(&g_category_index);
// Search for pre-existing category group.
for (int i = 0; i < current_category_index; ++i) {
if (strcmp(g_category_groups[i], category_group) == 0) {
return &g_category_group_enabled[i];
}
}
unsigned char* category_group_enabled = nullptr;
// This is the slow path: the lock is not held in the case above, so more
// than one thread could have reached here trying to add the same category.
// Only hold to lock when actually appending a new category, and
// check the categories groups again.
SpinLockHolder lock(&lock_);
int category_index = base::subtle::Acquire_Load(&g_category_index);
for (int i = 0; i < category_index; ++i) {
if (strcmp(g_category_groups[i], category_group) == 0) {
return &g_category_group_enabled[i];
}
}
// Create a new category group.
DCHECK(category_index < MAX_CATEGORY_GROUPS) <<
"must increase MAX_CATEGORY_GROUPS";
if (category_index < MAX_CATEGORY_GROUPS) {
// Don't hold on to the category_group pointer, so that we can create
// category groups with strings not known at compile time (this is
// required by SetWatchEvent).
const char* new_group = strdup(category_group);
// NOTE: new_group is leaked, but this is a small finite amount of data
g_category_groups[category_index] = new_group;
DCHECK(!g_category_group_enabled[category_index]);
// Note that if both included and excluded patterns in the
// CategoryFilter are empty, we exclude nothing,
// thereby enabling this category group.
UpdateCategoryGroupEnabledFlag(category_index);
category_group_enabled = &g_category_group_enabled[category_index];
// Update the max index now.
base::subtle::Release_Store(&g_category_index, category_index + 1);
} else {
category_group_enabled =
&g_category_group_enabled[kCategoryCategoriesExhausted];
}
return category_group_enabled;
}
void TraceLog::GetKnownCategoryGroups(
std::vector<std::string>* category_groups) {
SpinLockHolder lock(&lock_);
int category_index = base::subtle::NoBarrier_Load(&g_category_index);
for (int i = kNumBuiltinCategories; i < category_index; i++)
category_groups->push_back(g_category_groups[i]);
}
void TraceLog::SetEnabled(const CategoryFilter& category_filter,
Mode mode,
Options options) {
std::vector<EnabledStateObserver*> observer_list;
{
SpinLockHolder lock(&lock_);
// Can't enable tracing when Flush() is in progress.
Options old_options = trace_options();
if (IsEnabled()) {
if (options != old_options) {
DLOG(ERROR) << "Attempting to re-enable tracing with a different "
<< "set of options.";
}
if (mode != mode_) {
DLOG(ERROR) << "Attempting to re-enable tracing with a different mode.";
}
category_filter_.Merge(category_filter);
UpdateCategoryGroupEnabledFlags();
return;
}
if (dispatching_to_observer_list_) {
DLOG(ERROR) <<
"Cannot manipulate TraceLog::Enabled state from an observer.";
return;
}
mode_ = mode;
if (options != old_options) {
base::subtle::NoBarrier_Store(&trace_options_, options);
UseNextTraceBuffer();
}
num_traces_recorded_++;
category_filter_ = CategoryFilter(category_filter);
UpdateCategoryGroupEnabledFlags();
UpdateSyntheticDelaysFromCategoryFilter();
if (options & ENABLE_SAMPLING) {
sampling_thread_.reset(new TraceSamplingThread);
sampling_thread_->RegisterSampleBucket(
&g_trace_state[0],
"bucket0",
&TraceSamplingThread::DefaultSamplingCallback);
sampling_thread_->RegisterSampleBucket(
&g_trace_state[1],
"bucket1",
&TraceSamplingThread::DefaultSamplingCallback);
sampling_thread_->RegisterSampleBucket(
&g_trace_state[2],
"bucket2",
&TraceSamplingThread::DefaultSamplingCallback);
Status s = Thread::CreateWithFlags(
"tracing", "sampler",
[this]() { this->sampling_thread_->ThreadMain(); },
Thread::NO_STACK_WATCHDOG, &sampling_thread_handle_);
if (!s.ok()) {
LOG(DFATAL) << "failed to create trace sampling thread: " << s.ToString();
}
}
dispatching_to_observer_list_ = true;
observer_list = enabled_state_observer_list_;
}
// Notify observers outside the lock in case they trigger trace events.
for (const auto& observer : observer_list)
observer->OnTraceLogEnabled();
{
SpinLockHolder lock(&lock_);
dispatching_to_observer_list_ = false;
}
}
CategoryFilter TraceLog::GetCurrentCategoryFilter() {
SpinLockHolder lock(&lock_);
return category_filter_;
}
void TraceLog::SetDisabled() {
SpinLockHolder lock(&lock_);
SetDisabledWhileLocked();
}
void TraceLog::SetDisabledWhileLocked() {
DCHECK(lock_.IsHeld());
if (!IsEnabled())
return;
if (dispatching_to_observer_list_) {
DLOG(ERROR)
<< "Cannot manipulate TraceLog::Enabled state from an observer.";
return;
}
mode_ = DISABLED;
if (sampling_thread_.get()) {
// Stop the sampling thread.
sampling_thread_->Stop();
lock_.Unlock();
sampling_thread_handle_->Join();
lock_.Lock();
sampling_thread_handle_.reset();
sampling_thread_.reset();
}
category_filter_.Clear();
base::subtle::NoBarrier_Store(&watch_category_, 0);
watch_event_name_ = "";
UpdateCategoryGroupEnabledFlags();
AddMetadataEventsWhileLocked();
dispatching_to_observer_list_ = true;
std::vector<EnabledStateObserver*> observer_list =
enabled_state_observer_list_;
{
// Dispatch to observers outside the lock in case the observer triggers a
// trace event.
lock_.Unlock();
for (const auto& observer : observer_list)
observer->OnTraceLogDisabled();
lock_.Lock();
}
dispatching_to_observer_list_ = false;
}
int TraceLog::GetNumTracesRecorded() {
SpinLockHolder lock(&lock_);
if (!IsEnabled())
return -1;
return num_traces_recorded_;
}
void TraceLog::AddEnabledStateObserver(EnabledStateObserver* listener) {
enabled_state_observer_list_.push_back(listener);
}
void TraceLog::RemoveEnabledStateObserver(EnabledStateObserver* listener) {
auto it = std::find(enabled_state_observer_list_.begin(),
enabled_state_observer_list_.end(), listener);
if (it != enabled_state_observer_list_.end())
enabled_state_observer_list_.erase(it);
}
bool TraceLog::HasEnabledStateObserver(EnabledStateObserver* listener) const {
auto it = std::find(enabled_state_observer_list_.begin(),
enabled_state_observer_list_.end(), listener);
return it != enabled_state_observer_list_.end();
}
float TraceLog::GetBufferPercentFull() const {
SpinLockHolder lock(&lock_);
return static_cast<float>(static_cast<double>(logged_events_->Size()) /
logged_events_->Capacity());
}
bool TraceLog::BufferIsFull() const {
SpinLockHolder lock(&lock_);
return logged_events_->IsFull();
}
TraceBuffer* TraceLog::CreateTraceBuffer() {
Options options = trace_options();
if (options & RECORD_CONTINUOUSLY)
return new TraceBufferRingBuffer(kTraceEventRingBufferChunks);
else if ((options & ENABLE_SAMPLING) && mode_ == MONITORING_MODE)
return new TraceBufferRingBuffer(kMonitorTraceEventBufferChunks);
else if (options & ECHO_TO_CONSOLE)
return new TraceBufferRingBuffer(kEchoToConsoleTraceEventBufferChunks);
return new TraceBufferVector();
}
TraceEvent* TraceLog::AddEventToThreadSharedChunkWhileLocked(
TraceEventHandle* handle, bool check_buffer_is_full) {
DCHECK(lock_.IsHeld());
if (thread_shared_chunk_ && thread_shared_chunk_->IsFull()) {
logged_events_->ReturnChunk(thread_shared_chunk_index_,
std::move(thread_shared_chunk_));
}
if (!thread_shared_chunk_) {
thread_shared_chunk_ = logged_events_->GetChunk(
&thread_shared_chunk_index_);
if (check_buffer_is_full)
CheckIfBufferIsFullWhileLocked();
}
if (!thread_shared_chunk_)
return nullptr;
size_t event_index;
TraceEvent* trace_event = thread_shared_chunk_->AddTraceEvent(&event_index);
if (trace_event && handle) {
MakeHandle(thread_shared_chunk_->seq(), thread_shared_chunk_index_,
event_index, handle);
}
return trace_event;
}
void TraceLog::CheckIfBufferIsFullWhileLocked() {
DCHECK(lock_.IsHeld());
if (logged_events_->IsFull())
SetDisabledWhileLocked();
}
void TraceLog::SetEventCallbackEnabled(const CategoryFilter& category_filter,
EventCallback cb) {
SpinLockHolder lock(&lock_);
base::subtle::NoBarrier_Store(&event_callback_,
reinterpret_cast<AtomicWord>(cb));
event_callback_category_filter_ = category_filter;
UpdateCategoryGroupEnabledFlags();
};
void TraceLog::SetEventCallbackDisabled() {
SpinLockHolder lock(&lock_);
base::subtle::NoBarrier_Store(&event_callback_, 0);
UpdateCategoryGroupEnabledFlags();
}
// Flush() works as the following:
//
// We ensure by taking the global lock that we have exactly one Flusher thread
// (the caller of this function) and some number of "target" threads. We do
// not want to block the target threads, since they are running application code,
// so this implementation takes an approach based on asymmetric synchronization.
//
// For each active thread, we grab its PerThreadInfo object, which may contain
// a pointer to its active trace chunk. We use an AtomicExchange to swap this
// out for a null pointer. This ensures that, on the *next* TRACE call made by
// that thread, it will see a NULL buffer and create a _new_ trace buffer. That
// new buffer would be assigned the generation of the next collection and we don't
// have to worry about it in the current Flush().
//
// However, the swap doesn't ensure that the thread doesn't already have a local copy of
// the 'event_buffer_' that we are trying to flush. So, if the thread is in the
// middle of a Trace call, we have to wait until it exits. We do that by spinning
// on the 'is_in_trace_event_' member of that thread's thread-local structure.
//
// After we've swapped the buffer pointer and waited on the thread to exit any
// concurrent Trace() call, we know that no other thread can hold a pointer to
// the trace buffer, and we can safely flush it and delete it.
void TraceLog::Flush(const TraceLog::OutputCallback& cb) {
if (IsEnabled()) {
// Can't flush when tracing is enabled because otherwise PostTask would
// - generate more trace events;
// - deschedule the calling thread on some platforms causing inaccurate
// timing of the trace events.
scoped_refptr<RefCountedString> empty_result = new RefCountedString;
if (cb)
cb(empty_result, false);
LOG(WARNING) << "Ignored TraceLog::Flush called when tracing is enabled";
return;
}
int generation = this->generation();
{
// Holding the active threads lock ensures that no thread will exit and
// delete its own PerThreadInfo object.
MutexLock l(active_threads_lock_);
for (const ActiveThreadMap::value_type& entry : active_threads_) {
int64_t tid = entry.first;
PerThreadInfo* thr_info = entry.second;
// Swap out their buffer from their thread-local data.
// After this, any _future_ trace calls on that thread will create a new buffer
// and not use the one we obtain here.
ThreadLocalEventBuffer* buf = thr_info->AtomicTakeBuffer();
// If this thread hasn't traced anything since our last
// flush, we can skip it.
if (!buf) {
continue;
}
// The buffer may still be in use by that thread if they're in a call. Sleep until
// they aren't, so we can flush/delete their old buffer.
//
// It's important that we do not hold 'lock_' here, because otherwise we can get a
// deadlock: a thread may be in the middle of a trace event (is_in_trace_event_ ==
// true) and waiting to take lock_, while we are holding the lock and waiting for it
// to not be in the trace event.
while (base::subtle::Acquire_Load(&thr_info->is_in_trace_event_)) {
sched_yield();
}
{
SpinLockHolder lock(&lock_);
buf->Flush(tid);
}
delete buf;
}
}
{
SpinLockHolder lock(&lock_);
if (thread_shared_chunk_) {
logged_events_->ReturnChunk(thread_shared_chunk_index_,
std::move(thread_shared_chunk_));
}
}
FinishFlush(generation, cb);
}
void TraceLog::ConvertTraceEventsToTraceFormat(
unique_ptr<TraceBuffer> logged_events,
const TraceLog::OutputCallback& flush_output_callback) {
if (!flush_output_callback)
return;
// The callback need to be called at least once even if there is no events
// to let the caller know the completion of flush.
bool has_more_events = true;
do {
scoped_refptr<RefCountedString> json_events_str_ptr =
new RefCountedString();
for (size_t i = 0; i < kTraceEventBatchChunks; ++i) {
const TraceBufferChunk* chunk = logged_events->NextChunk();
if (!chunk) {
has_more_events = false;
break;
}
for (size_t j = 0; j < chunk->size(); ++j) {
if (i > 0 || j > 0)
json_events_str_ptr->data().append(",");
chunk->GetEventAt(j)->AppendAsJSON(&(json_events_str_ptr->data()));
}
}
flush_output_callback(json_events_str_ptr, has_more_events);
} while (has_more_events);
logged_events.reset();
}
void TraceLog::FinishFlush(int generation,
const TraceLog::OutputCallback& flush_output_callback) {
unique_ptr<TraceBuffer> previous_logged_events;
if (!CheckGeneration(generation))
return;
{
SpinLockHolder lock(&lock_);
previous_logged_events.swap(logged_events_);
UseNextTraceBuffer();
}
ConvertTraceEventsToTraceFormat(std::move(previous_logged_events),
flush_output_callback);
}
void TraceLog::FlushButLeaveBufferIntact(
const TraceLog::OutputCallback& flush_output_callback) {
unique_ptr<TraceBuffer> previous_logged_events;
{
SpinLockHolder lock(&lock_);
if (mode_ == DISABLED || (trace_options_ & RECORD_CONTINUOUSLY) == 0) {
scoped_refptr<RefCountedString> empty_result = new RefCountedString;
flush_output_callback(empty_result, false);
LOG(WARNING) << "Ignored TraceLog::FlushButLeaveBufferIntact when monitoring is not enabled";
return;
}
AddMetadataEventsWhileLocked();
if (thread_shared_chunk_) {
// Return the chunk to the main buffer to flush the sampling data.
logged_events_->ReturnChunk(thread_shared_chunk_index_,
std::move(thread_shared_chunk_));
}
previous_logged_events = logged_events_->CloneForIteration();
}
ConvertTraceEventsToTraceFormat(std::move(previous_logged_events),
flush_output_callback);
}
void TraceLog::UseNextTraceBuffer() {
logged_events_.reset(CreateTraceBuffer());
base::subtle::NoBarrier_AtomicIncrement(&generation_, 1);
thread_shared_chunk_.reset();
thread_shared_chunk_index_ = 0;
}
TraceEventHandle TraceLog::AddTraceEvent(
char phase,
const unsigned char* category_group_enabled,
const char* name,
uint64_t id,
int num_args,
const char** arg_names,
const unsigned char* arg_types,
const uint64_t* arg_values,
const scoped_refptr<ConvertableToTraceFormat>* convertable_values,
unsigned char flags) {
int thread_id = static_cast<int>(kudu::Thread::UniqueThreadId());
MicrosecondsInt64 now = GetMonoTimeMicros();
return AddTraceEventWithThreadIdAndTimestamp(phase, category_group_enabled,
name, id, thread_id, now,
num_args, arg_names,
arg_types, arg_values,
convertable_values, flags);
}
TraceLog::PerThreadInfo* TraceLog::SetupThreadLocalBuffer() {
int64_t cur_tid = Thread::UniqueThreadId();
auto thr_info = new PerThreadInfo();
thr_info->event_buffer_ = nullptr;
thr_info->is_in_trace_event_ = 0;
thread_local_info_ = thr_info;
threadlocal::internal::AddDestructor(&TraceLog::ThreadExitingCB, this);
{
MutexLock lock(active_threads_lock_);
InsertOrDie(&active_threads_, cur_tid, thr_info);
}
return thr_info;
}
void TraceLog::ThreadExitingCB(void* arg) {
static_cast<TraceLog*>(arg)->ThreadExiting();
}
void TraceLog::ThreadExiting() {
PerThreadInfo* thr_info = thread_local_info_;
if (!thr_info) {
return;
}
int64_t cur_tid = Thread::UniqueThreadId();
// Flush our own buffer back to the central event buffer.
// We do the atomic exchange because a flusher thread may
// also be trying to flush us at the same time, and we need to avoid
// conflict.
ThreadLocalEventBuffer* buf = thr_info->AtomicTakeBuffer();
if (buf) {
SpinLockHolder lock(&lock_);
buf->Flush(Thread::UniqueThreadId());
}
delete buf;
{
MutexLock lock(active_threads_lock_);
active_threads_.erase(cur_tid);
}
delete thr_info;
}
TraceEventHandle TraceLog::AddTraceEventWithThreadIdAndTimestamp(
char phase,
const unsigned char* category_group_enabled,
const char* name,
uint64_t id,
int thread_id,
const MicrosecondsInt64& timestamp,
int num_args,
const char** arg_names,
const unsigned char* arg_types,
const uint64_t* arg_values,
const scoped_refptr<ConvertableToTraceFormat>* convertable_values,
unsigned char flags) {
TraceEventHandle handle = { 0, 0, 0 };
if (!*category_group_enabled)
return handle;
DCHECK(name);
if (flags & TRACE_EVENT_FLAG_MANGLE_ID)
id ^= process_id_hash_;
MicrosecondsInt64 now = OffsetTimestamp(timestamp);
MicrosecondsInt64 thread_now = GetThreadCpuTimeMicros();
PerThreadInfo* thr_info = thread_local_info_;
if (PREDICT_FALSE(!thr_info)) {
thr_info = SetupThreadLocalBuffer();
}
// Avoid re-entrance of AddTraceEvent. This may happen in GPU process when
// ECHO_TO_CONSOLE is enabled: AddTraceEvent -> LOG(ERROR) ->
// GpuProcessLogMessageHandler -> PostPendingTask -> TRACE_EVENT ...
if (base::subtle::NoBarrier_Load(&thr_info->is_in_trace_event_))
return handle;
MarkFlagInScope thread_is_in_trace_event(&thr_info->is_in_trace_event_);
ThreadLocalEventBuffer* thread_local_event_buffer =
reinterpret_cast<ThreadLocalEventBuffer*>(
base::subtle::NoBarrier_Load(
reinterpret_cast<AtomicWord*>(&thr_info->event_buffer_)));
// If we have an event buffer, but it's a left-over from a previous trace,
// delete it.
if (PREDICT_FALSE(thread_local_event_buffer &&
!CheckGeneration(thread_local_event_buffer->generation()))) {
// We might also race against a flusher thread, so we have to atomically
// take the buffer.
thread_local_event_buffer = thr_info->AtomicTakeBuffer();
delete thread_local_event_buffer;
thread_local_event_buffer = nullptr;
}
// If there is no current buffer, create one for this event.
if (PREDICT_FALSE(!thread_local_event_buffer)) {
thread_local_event_buffer = new ThreadLocalEventBuffer(this);
base::subtle::NoBarrier_Store(
reinterpret_cast<AtomicWord*>(&thr_info->event_buffer_),
reinterpret_cast<AtomicWord>(thread_local_event_buffer));
}
// Check and update the current thread name only if the event is for the
// current thread to avoid locks in most cases.
if (thread_id == static_cast<int>(Thread::UniqueThreadId())) {
Thread* kudu_thr = Thread::current_thread();
if (kudu_thr) {
const char* new_name = kudu_thr->name().c_str();
// Check if the thread name has been set or changed since the previous
// call (if any), but don't bother if the new name is empty. Note this will
// not detect a thread name change within the same char* buffer address: we
// favor common case performance over corner case correctness.
if (PREDICT_FALSE(new_name != g_current_thread_name &&
new_name && *new_name)) {
g_current_thread_name = new_name;
SpinLockHolder thread_info_lock(&thread_info_lock_);
auto existing_name = thread_names_.find(thread_id);
if (existing_name == thread_names_.end()) {
// This is a new thread id, and a new name.
thread_names_[thread_id] = new_name;
} else {
// This is a thread id that we've seen before, but potentially with a
// new name.
std::vector<StringPiece> existing_names = strings::Split(existing_name->second, ",");
bool found = std::find(existing_names.begin(),
existing_names.end(),
new_name) != existing_names.end();
if (!found) {
if (existing_names.size())
existing_name->second.push_back(',');
existing_name->second.append(new_name);
}
}
}
}
}
std::string console_message;
if (*category_group_enabled &
(ENABLED_FOR_RECORDING | ENABLED_FOR_MONITORING)) {
TraceEvent* trace_event = thread_local_event_buffer->AddTraceEvent(&handle);
if (trace_event) {
trace_event->Initialize(thread_id, now, thread_now, phase,
category_group_enabled, name, id,
num_args, arg_names, arg_types, arg_values,
convertable_values, flags);
#if defined(OS_ANDROID)
trace_event->SendToATrace();
#endif
}
if (trace_options() & ECHO_TO_CONSOLE) {
console_message = EventToConsoleMessage(
phase == TRACE_EVENT_PHASE_COMPLETE ? TRACE_EVENT_PHASE_BEGIN : phase,
timestamp, trace_event);
}
}
if (PREDICT_FALSE(console_message.size()))
LOG(ERROR) << console_message;
if (PREDICT_FALSE(reinterpret_cast<const unsigned char*>(
base::subtle::NoBarrier_Load(&watch_category_)) == category_group_enabled)) {
bool event_name_matches;
WatchEventCallback watch_event_callback_copy;
{
SpinLockHolder lock(&lock_);
event_name_matches = watch_event_name_ == name;
watch_event_callback_copy = watch_event_callback_;
}
if (event_name_matches) {
if (watch_event_callback_copy)
watch_event_callback_copy();
}
}
if (PREDICT_FALSE(*category_group_enabled & ENABLED_FOR_EVENT_CALLBACK)) {
EventCallback event_callback = reinterpret_cast<EventCallback>(
base::subtle::NoBarrier_Load(&event_callback_));
if (event_callback) {
event_callback(now,
phase == TRACE_EVENT_PHASE_COMPLETE ?
TRACE_EVENT_PHASE_BEGIN : phase,
category_group_enabled, name, id,
num_args, arg_names, arg_types, arg_values,
flags);
}
}
return handle;
}
// May be called when a COMPELETE event ends and the unfinished event has been
// recycled (phase == TRACE_EVENT_PHASE_END and trace_event == NULL).
std::string TraceLog::EventToConsoleMessage(unsigned char phase,
const MicrosecondsInt64& timestamp,
TraceEvent* trace_event) {
SpinLockHolder thread_info_lock(&thread_info_lock_);
// The caller should translate TRACE_EVENT_PHASE_COMPLETE to
// TRACE_EVENT_PHASE_BEGIN or TRACE_EVENT_END.
DCHECK(phase != TRACE_EVENT_PHASE_COMPLETE);
MicrosecondsInt64 duration = 0;
int thread_id = trace_event ?
trace_event->thread_id() : Thread::UniqueThreadId();
if (phase == TRACE_EVENT_PHASE_END) {
duration = timestamp - thread_event_start_times_[thread_id].top();
thread_event_start_times_[thread_id].pop();
}
std::string thread_name = thread_names_[thread_id];
if (thread_colors_.find(thread_name) == thread_colors_.end())
thread_colors_[thread_name] = (thread_colors_.size() % 6) + 1;
std::ostringstream log;
log << StringPrintf("%s: \x1b[0;3%dm",
thread_name.c_str(),
thread_colors_[thread_name]);
size_t depth = 0;
if (thread_event_start_times_.find(thread_id) !=
thread_event_start_times_.end())
depth = thread_event_start_times_[thread_id].size();
for (size_t i = 0; i < depth; ++i)
log << "| ";
if (trace_event)
trace_event->AppendPrettyPrinted(&log);
if (phase == TRACE_EVENT_PHASE_END)
log << StringPrintf(" (%.3f ms)", duration / 1000.0f);
log << "\x1b[0;m";
if (phase == TRACE_EVENT_PHASE_BEGIN)
thread_event_start_times_[thread_id].push(timestamp);
return log.str();
}
void TraceLog::AddTraceEventEtw(char phase,
const char* name,
const void* id,
const char* extra) {
#if defined(OS_WIN)
TraceEventETWProvider::Trace(name, phase, id, extra);
#endif
INTERNAL_TRACE_EVENT_ADD(phase, "ETW Trace Event", name,
TRACE_EVENT_FLAG_COPY, "id", id, "extra", extra);
}
void TraceLog::AddTraceEventEtw(char phase,
const char* name,
const void* id,
const std::string& extra) {
#if defined(OS_WIN)
TraceEventETWProvider::Trace(name, phase, id, extra);
#endif
INTERNAL_TRACE_EVENT_ADD(phase, "ETW Trace Event", name,
TRACE_EVENT_FLAG_COPY, "id", id, "extra", extra);
}
void TraceLog::UpdateTraceEventDuration(
const unsigned char* category_group_enabled,
const char* name,
TraceEventHandle handle) {
PerThreadInfo* thr_info = thread_local_info_;
if (!thr_info) {
thr_info = SetupThreadLocalBuffer();
}
// Avoid re-entrance of AddTraceEvent. This may happen in GPU process when
// ECHO_TO_CONSOLE is enabled: AddTraceEvent -> LOG(ERROR) ->
// GpuProcessLogMessageHandler -> PostPendingTask -> TRACE_EVENT ...
if (base::subtle::NoBarrier_Load(&thr_info->is_in_trace_event_))
return;
MarkFlagInScope thread_is_in_trace_event(&thr_info->is_in_trace_event_);
MicrosecondsInt64 thread_now = GetThreadCpuTimeMicros();
MicrosecondsInt64 now = OffsetNow();
std::string console_message;
if (*category_group_enabled & ENABLED_FOR_RECORDING) {
OptionalAutoLock lock(lock_);
TraceEvent* trace_event = GetEventByHandleInternal(handle, &lock);
if (trace_event) {
DCHECK(trace_event->phase() == TRACE_EVENT_PHASE_COMPLETE);
trace_event->UpdateDuration(now, thread_now);
#if defined(OS_ANDROID)
trace_event->SendToATrace();
#endif
}
if (trace_options() & ECHO_TO_CONSOLE) {
console_message = EventToConsoleMessage(TRACE_EVENT_PHASE_END,
now, trace_event);
}
}
if (console_message.size())
LOG(ERROR) << console_message;
if (*category_group_enabled & ENABLED_FOR_EVENT_CALLBACK) {
EventCallback event_callback = reinterpret_cast<EventCallback>(
base::subtle::NoBarrier_Load(&event_callback_));
if (event_callback) {
event_callback(now, TRACE_EVENT_PHASE_END, category_group_enabled, name,
trace_event_internal::kNoEventId, 0, nullptr, nullptr, nullptr,
TRACE_EVENT_FLAG_NONE);
}
}
}
void TraceLog::SetWatchEvent(const std::string& category_name,
const std::string& event_name,
const WatchEventCallback& callback) {
const unsigned char* category = GetCategoryGroupEnabled(
category_name.c_str());
SpinLockHolder lock(&lock_);
base::subtle::NoBarrier_Store(&watch_category_,
reinterpret_cast<AtomicWord>(category));
watch_event_name_ = event_name;
watch_event_callback_ = callback;
}
void TraceLog::CancelWatchEvent() {
SpinLockHolder lock(&lock_);
base::subtle::NoBarrier_Store(&watch_category_, 0);
watch_event_name_ = "";
watch_event_callback_ = nullptr;
}
void TraceLog::AddMetadataEventsWhileLocked() {
DCHECK(lock_.IsHeld());
#if !defined(OS_NACL) // NaCl shouldn't expose the process id.
InitializeMetadataEvent(AddEventToThreadSharedChunkWhileLocked(nullptr, false),
0,
"num_cpus", "number",
base::NumCPUs());
#endif
int current_thread_id = static_cast<int>(kudu::Thread::UniqueThreadId());
if (process_sort_index_ != 0) {
InitializeMetadataEvent(AddEventToThreadSharedChunkWhileLocked(nullptr, false),
current_thread_id,
"process_sort_index", "sort_index",
process_sort_index_);
}
if (process_name_.size()) {
InitializeMetadataEvent(AddEventToThreadSharedChunkWhileLocked(nullptr, false),
current_thread_id,
"process_name", "name",
process_name_);
}
if (process_labels_.size() > 0) {
std::vector<std::string> labels;
for(auto& label : process_labels_) {
labels.push_back(label.second);
}
InitializeMetadataEvent(AddEventToThreadSharedChunkWhileLocked(nullptr, false),
current_thread_id,
"process_labels", "labels",
JoinStrings(labels, ","));
}
// Thread sort indices.
for(auto& sort_index : thread_sort_indices_) {
if (sort_index.second == 0)
continue;
InitializeMetadataEvent(AddEventToThreadSharedChunkWhileLocked(nullptr, false),
sort_index.first,
"thread_sort_index", "sort_index",
sort_index.second);
}
// Thread names.
SpinLockHolder thread_info_lock(&thread_info_lock_);
for(auto& name : thread_names_) {
if (name.second.empty())
continue;
InitializeMetadataEvent(AddEventToThreadSharedChunkWhileLocked(nullptr, false),
name.first,
"thread_name", "name",
name.second);
}
}
TraceEvent* TraceLog::GetEventByHandle(TraceEventHandle handle) {
return GetEventByHandleInternal(handle, nullptr);
}
TraceEvent* TraceLog::GetEventByHandleInternal(TraceEventHandle handle,
OptionalAutoLock* lock) {
TraceLog::PerThreadInfo* thr_info = TraceLog::thread_local_info_;
if (!handle.chunk_seq)
return nullptr;
if (thr_info) {
ThreadLocalEventBuffer* buf =
reinterpret_cast<ThreadLocalEventBuffer*>(
base::subtle::NoBarrier_Load(
reinterpret_cast<AtomicWord*>(&thr_info->event_buffer_)));
if (buf) {
DCHECK_EQ(1, ANNOTATE_UNPROTECTED_READ(thr_info->is_in_trace_event_));
TraceEvent* trace_event = buf->GetEventByHandle(handle);
if (trace_event)
return trace_event;
}
}
// The event has been out-of-control of the thread local buffer.
// Try to get the event from the main buffer with a lock.
if (lock)
lock->EnsureAcquired();
if (thread_shared_chunk_ &&
handle.chunk_index == thread_shared_chunk_index_) {
return handle.chunk_seq == thread_shared_chunk_->seq() ?
thread_shared_chunk_->GetEventAt(handle.event_index) : nullptr;
}
return logged_events_->GetEventByHandle(handle);
}
ATTRIBUTE_NO_SANITIZE_INTEGER
void TraceLog::SetProcessID(int process_id) {
process_id_ = process_id;
// Create a FNV hash from the process ID for XORing.
// See http://isthe.com/chongo/tech/comp/fnv/ for algorithm details.
uint64_t offset_basis = 14695981039346656037ull;
uint64_t fnv_prime = 1099511628211ull;
uint64_t pid = static_cast<uint64_t>(process_id_);
process_id_hash_ = (offset_basis ^ pid) * fnv_prime;
}
void TraceLog::SetProcessSortIndex(int sort_index) {
SpinLockHolder lock(&lock_);
process_sort_index_ = sort_index;
}
void TraceLog::SetProcessName(const std::string& process_name) {
SpinLockHolder lock(&lock_);
process_name_ = process_name;
}
void TraceLog::UpdateProcessLabel(
int label_id, const std::string& current_label) {
if(!current_label.length())
return RemoveProcessLabel(label_id);
SpinLockHolder lock(&lock_);
process_labels_[label_id] = current_label;
}
void TraceLog::RemoveProcessLabel(int label_id) {
SpinLockHolder lock(&lock_);
auto it = process_labels_.find(label_id);
if (it == process_labels_.end())
return;
process_labels_.erase(it);
}
void TraceLog::SetThreadSortIndex(int64_t thread_id, int sort_index) {
SpinLockHolder lock(&lock_);
thread_sort_indices_[static_cast<int>(thread_id)] = sort_index;
}
void TraceLog::SetTimeOffset(MicrosecondsInt64 offset) {
time_offset_ = offset;
}
size_t TraceLog::GetObserverCountForTest() const {
return enabled_state_observer_list_.size();
}
bool CategoryFilter::IsEmptyOrContainsLeadingOrTrailingWhitespace(
const std::string& str) {
return str.empty() ||
str.at(0) == ' ' ||
str.at(str.length() - 1) == ' ';
}
bool CategoryFilter::DoesCategoryGroupContainCategory(
const char* category_group,
const char* category) const {
DCHECK(category);
vector<string> pieces = strings::Split(category_group, ",");
for (const string& category_group_token : pieces) {
// Don't allow empty tokens, nor tokens with leading or trailing space.
DCHECK(!CategoryFilter::IsEmptyOrContainsLeadingOrTrailingWhitespace(
category_group_token))
<< "Disallowed category string";
if (MatchPattern(category_group_token.c_str(), category))
return true;
}
return false;
}
CategoryFilter::CategoryFilter(const std::string& filter_string) {
if (!filter_string.empty())
Initialize(filter_string);
else
Initialize(CategoryFilter::kDefaultCategoryFilterString);
}
CategoryFilter::CategoryFilter(const CategoryFilter& cf)
: included_(cf.included_),
disabled_(cf.disabled_),
excluded_(cf.excluded_),
delays_(cf.delays_) {
}
CategoryFilter::~CategoryFilter() {
}
CategoryFilter& CategoryFilter::operator=(const CategoryFilter& rhs) {
if (this == &rhs)
return *this;
included_ = rhs.included_;
disabled_ = rhs.disabled_;
excluded_ = rhs.excluded_;
delays_ = rhs.delays_;
return *this;
}
void CategoryFilter::Initialize(const std::string& filter_string) {
// Tokenize list of categories, delimited by ','.
vector<string> tokens = strings::Split(filter_string, ",");
// Add each token to the appropriate list (included_,excluded_).
for (string category : tokens) {
// Ignore empty categories.
if (category.empty())
continue;
// Synthetic delays are of the form 'DELAY(delay;option;option;...)'.
if (category.find(kSyntheticDelayCategoryFilterPrefix) == 0 &&
category.at(category.size() - 1) == ')') {
category = category.substr(
strlen(kSyntheticDelayCategoryFilterPrefix),
category.size() - strlen(kSyntheticDelayCategoryFilterPrefix) - 1);
size_t name_length = category.find(';');
if (name_length != std::string::npos && name_length > 0 &&
name_length != category.size() - 1) {
delays_.push_back(category);
}
} else if (category.at(0) == '-') {
// Excluded categories start with '-'.
// Remove '-' from category string.
category = category.substr(1);
excluded_.push_back(category);
} else if (category.compare(0, strlen(TRACE_DISABLED_BY_DEFAULT("")),
TRACE_DISABLED_BY_DEFAULT("")) == 0) {
disabled_.push_back(category);
} else {
included_.push_back(category);
}
}
}
void CategoryFilter::WriteString(const StringList& values,
std::string* out,
bool included) const {
bool prepend_comma = !out->empty();
int token_cnt = 0;
for (const auto& value : values) {
if (token_cnt > 0 || prepend_comma)
StringAppendF(out, ",");
StringAppendF(out, "%s%s", (included ? "" : "-"), value.c_str());
++token_cnt;
}
}
void CategoryFilter::WriteString(const StringList& delays,
std::string* out) const {
bool prepend_comma = !out->empty();
int token_cnt = 0;
for (const auto& delay : delays) {
if (token_cnt > 0 || prepend_comma)
StringAppendF(out, ",");
StringAppendF(out, "%s%s)", kSyntheticDelayCategoryFilterPrefix,
delay.c_str());
++token_cnt;
}
}
std::string CategoryFilter::ToString() const {
std::string filter_string;
WriteString(included_, &filter_string, true);
WriteString(disabled_, &filter_string, true);
WriteString(excluded_, &filter_string, false);
WriteString(delays_, &filter_string);
return filter_string;
}
bool CategoryFilter::IsCategoryGroupEnabled(
const char* category_group_name) const {
// TraceLog should call this method only as part of enabling/disabling
// categories.
StringList::const_iterator ci;
// Check the disabled- filters and the disabled-* wildcard first so that a
// "*" filter does not include the disabled.
for (ci = disabled_.begin(); ci != disabled_.end(); ++ci) {
if (DoesCategoryGroupContainCategory(category_group_name, ci->c_str()))
return true;
}
if (DoesCategoryGroupContainCategory(category_group_name,
TRACE_DISABLED_BY_DEFAULT("*")))
return false;
for (ci = included_.begin(); ci != included_.end(); ++ci) {
if (DoesCategoryGroupContainCategory(category_group_name, ci->c_str()))
return true;
}
for (ci = excluded_.begin(); ci != excluded_.end(); ++ci) {
if (DoesCategoryGroupContainCategory(category_group_name, ci->c_str()))
return false;
}
// If the category group is not excluded, and there are no included patterns
// we consider this pattern enabled.
return included_.empty();
}
bool CategoryFilter::HasIncludedPatterns() const {
return !included_.empty();
}
void CategoryFilter::Merge(const CategoryFilter& nested_filter) {
// Keep included patterns only if both filters have an included entry.
// Otherwise, one of the filter was specifying "*" and we want to honour the
// broadest filter.
if (HasIncludedPatterns() && nested_filter.HasIncludedPatterns()) {
included_.insert(included_.end(),
nested_filter.included_.begin(),
nested_filter.included_.end());
} else {
included_.clear();
}
disabled_.insert(disabled_.end(),
nested_filter.disabled_.begin(),
nested_filter.disabled_.end());
excluded_.insert(excluded_.end(),
nested_filter.excluded_.begin(),
nested_filter.excluded_.end());
delays_.insert(delays_.end(),
nested_filter.delays_.begin(),
nested_filter.delays_.end());
}
void CategoryFilter::Clear() {
included_.clear();
disabled_.clear();
excluded_.clear();
}
const CategoryFilter::StringList&
CategoryFilter::GetSyntheticDelayValues() const {
return delays_;
}
} // namespace debug
} // namespace kudu
namespace trace_event_internal {
ScopedTraceBinaryEfficient::ScopedTraceBinaryEfficient(
const char* category_group, const char* name) {
// The single atom works because for now the category_group can only be "gpu".
DCHECK(strcmp(category_group, "gpu") == 0);
static TRACE_EVENT_API_ATOMIC_WORD atomic = 0;
INTERNAL_TRACE_EVENT_GET_CATEGORY_INFO_CUSTOM_VARIABLES(
category_group, atomic, category_group_enabled_);
name_ = name;
if (*category_group_enabled_) {
event_handle_ =
TRACE_EVENT_API_ADD_TRACE_EVENT_WITH_THREAD_ID_AND_TIMESTAMP(
TRACE_EVENT_PHASE_COMPLETE, category_group_enabled_, name,
trace_event_internal::kNoEventId,
static_cast<int>(kudu::Thread::UniqueThreadId()),
GetMonoTimeMicros(),
0, nullptr, nullptr, nullptr, nullptr, TRACE_EVENT_FLAG_NONE);
}
}
ScopedTraceBinaryEfficient::~ScopedTraceBinaryEfficient() {
if (*category_group_enabled_) {
TRACE_EVENT_API_UPDATE_TRACE_EVENT_DURATION(category_group_enabled_,
name_, event_handle_);
}
}
} // namespace trace_event_internal