| ### Part 1: parameters similar to Z-MERT |
| # target sentences file name (in this case, file name prefix) |
| -r ./ref.en |
| -rps 4 # references per sentence |
| -p ./params.txt # parameter file |
| |
| #metric setting: |
| -m BLEU 4 closest |
| #-m TER nocase punc 5 5 joshua/zmert/tercom-0.7.25/tercom.7.25.jar 1 |
| #-m TER-BLEU nocase punc 20 50 joshua/zmert/tercom-0.7.25/tercom.7.25.jar 1 4 closest |
| #-m METEOR en norm_yes keepPunc 2 #old meteor interface #Z-MERT Meteor interface(not working) |
| #-m Meteor en lowercase '0.5 1.0 0.5 0.5' 'exact stem synonym paraphrase' '1.0 0.5 0.5 0.5' #CMU meteor interface |
| |
| -maxIt 30 # maximum PRO iterations |
| -cmd ./decoder_command # file containing commands to run decoder |
| -decOut ./output.nbest # file prodcued by decoder |
| -dcfg ./joshua.config # decoder config file |
| -N 300 # size of N-best list |
| -v 1 # verbosity level (0-2; higher value => more verbose) |
| -seed 12341234 # random number generator seed |
| |
| ### Part2: PRO parameters |
| #-trainingMode can be 1,2,3,4 |
| #1: train dense feature weights only |
| #2: train dense & sparse feature weights together |
| #3: train sparse feature weights only(with dense feature weights fixed) also works) |
| #4: treat sparse features as one component(summary feature), train dense and summary feature weights together |
| |
| -trainingMode 2 |
| |
| #-nbestFormat can be "sparse" or "dense" |
| #for trainingMode 1: either "dense" or "sparse" |
| #for trainingMode 2-4: use "sparse" format |
| |
| -nbestFormat sparse #dense or sparse |
| |
| #use one of the classifiers(and the corresponding parameter setting) below: |
| #1.perceptron paramters |
| -classifierClass joshua.pro.ClassifierPerceptron |
| -classifierParams '30 0.5 0.0' |
| |
| #2.MegaM parameters |
| #-classifierClass joshua.pro.ClassifierMegaM |
| #-classifierParams './megam_command ./megam_train.data ./megam_weights' |
| |
| #3.Stanford Max-Ent parameters |
| #-classifierClass joshua.pro.ClassifierMaxEnt |
| #-classifierParams './maxent_prop_file' |
| |
| #4.LibSVM parameters |
| #-classifierClass joshua.pro.ClassifierSVM |
| #-classifierParams './libsvm_command ./libsvm_train.data ./libsvm_train.data.model' |
| |
| -Tau 8000 #num of candidate samples |
| -Xi 50 #num of top candidates |
| -interCoef 0.5 #linear interpolation coef. range:[0,1]. 1=using new weights only; 0=using previous weights only |
| -metricDiff 0.05 #threshold for sample selection |
| |