blob: d1ec27fbaf4d4289569cd0f7ab7fc154ed716cfa [file] [log] [blame]
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
#
import math
import pandas as pd
from tzlocal import get_localzone_name
from iotdb.table_session import TableSession, TableSessionConfig
from iotdb.utils.IoTDBConstants import TSDataType
from iotdb.utils.Tablet import Tablet, ColumnType
from datetime import date
from iotdb.utils.rpc_utils import convert_to_timestamp
from .iotdb_container import IoTDBContainer
# Test query data
def test_query_data():
with IoTDBContainer("iotdb:dev") as db:
db: IoTDBContainer
config = TableSessionConfig(
node_urls=[f"{db.get_container_host_ip()}:{db.get_exposed_port(6667)}"]
)
session = TableSession(config)
# Preparation before testing
session.execute_non_query_statement(
"create database test_insert_relational_tablet_tablet"
)
session.execute_non_query_statement("use test_insert_relational_tablet_tablet")
session.execute_non_query_statement(
"create table table_b("
"tag1 STRING TAG, tag2 STRING TAG, tag3 STRING TAG, "
"attr1 string attribute, attr2 string attribute, attr3 string attribute,"
"BOOLEAN BOOLEAN FIELD, INT32 INT32 FIELD, INT64 INT64 FIELD, FLOAT FLOAT FIELD, DOUBLE DOUBLE FIELD,"
"TEXT TEXT FIELD, TIMESTAMP TIMESTAMP FIELD, DATE DATE FIELD, BLOB BLOB FIELD, STRING STRING FIELD)"
)
# 1、General scenario
expect = 10
table_name = "table_b"
column_names = [
"tag1",
"tag2",
"tag3",
"attr1",
"attr2",
"attr3",
"BOOLEAN",
"INT32",
"INT64",
"FLOAT",
"DOUBLE",
"TEXT",
"TIMESTAMP",
"DATE",
"BLOB",
"STRING",
]
data_types = [
TSDataType.STRING,
TSDataType.STRING,
TSDataType.STRING,
TSDataType.STRING,
TSDataType.STRING,
TSDataType.STRING,
TSDataType.BOOLEAN,
TSDataType.INT32,
TSDataType.INT64,
TSDataType.FLOAT,
TSDataType.DOUBLE,
TSDataType.TEXT,
TSDataType.TIMESTAMP,
TSDataType.DATE,
TSDataType.BLOB,
TSDataType.STRING,
]
column_types = [
ColumnType.TAG,
ColumnType.TAG,
ColumnType.TAG,
ColumnType.ATTRIBUTE,
ColumnType.ATTRIBUTE,
ColumnType.ATTRIBUTE,
ColumnType.FIELD,
ColumnType.FIELD,
ColumnType.FIELD,
ColumnType.FIELD,
ColumnType.FIELD,
ColumnType.FIELD,
ColumnType.FIELD,
ColumnType.FIELD,
ColumnType.FIELD,
ColumnType.FIELD,
]
timestamps = []
values = []
for row_b in range(10):
timestamps.append(row_b)
values.append(
[
"tag1:" + str(row_b),
"tag2:" + str(row_b),
"tag3:" + str(row_b),
"attr1:" + str(row_b),
"attr2:" + str(row_b),
"attr3:" + str(row_b),
False,
0,
0,
0.0,
0.0,
"1234567890",
0,
date(1970, 1, 1),
"1234567890".encode("utf-8"),
"1234567890",
]
)
values.append(
[
"tag1:" + str(row_b),
"tag2:" + str(row_b),
"tag3:" + str(row_b),
"attr1:" + str(row_b),
"attr2:" + str(row_b),
"attr3:" + str(row_b),
True,
-2147483648,
-9223372036854775808,
-0.12345678,
-0.12345678901234567,
"abcdefghijklmnopqrstuvwsyz",
-9223372036854775808,
date(1000, 1, 1),
"abcdefghijklmnopqrstuvwsyz".encode("utf-8"),
"abcdefghijklmnopqrstuvwsyz",
]
)
values.append(
[
"tag1:" + str(row_b),
"tag2:" + str(row_b),
"tag3:" + str(row_b),
"attr1:" + str(row_b),
"attr2:" + str(row_b),
"attr3:" + str(row_b),
True,
2147483647,
9223372036854775807,
0.123456789,
0.12345678901234567,
"!@#$%^&*()_+}{|:'`~-=[];,./<>?~",
9223372036854775807,
date(9999, 12, 31),
"!@#$%^&*()_+}{|:`~-=[];,./<>?~".encode("utf-8"),
"!@#$%^&*()_+}{|:`~-=[];,./<>?~",
]
)
values.append(
[
"tag1:" + str(row_b),
"tag2:" + str(row_b),
"tag3:" + str(row_b),
"attr1:" + str(row_b),
"attr2:" + str(row_b),
"attr3:" + str(row_b),
True,
1,
1,
1.0,
1.0,
"没问题",
1,
date(1970, 1, 1),
"没问题".encode("utf-8"),
"没问题",
]
)
values.append(
[
"tag1:" + str(row_b),
"tag2:" + str(row_b),
"tag3:" + str(row_b),
"attr1:" + str(row_b),
"attr2:" + str(row_b),
"attr3:" + str(row_b),
True,
-1,
-1,
1.1234567,
1.1234567890123456,
"!@#¥%……&*()——|:“《》?·【】、;‘,。/",
11,
date(1970, 1, 1),
"!@#¥%……&*()——|:“《》?·【】、;‘,。/".encode("utf-8"),
"!@#¥%……&*()——|:“《》?·【】、;‘,。/",
]
)
values.append(
[
"tag1:" + str(row_b),
"tag2:" + str(row_b),
"tag3:" + str(row_b),
"attr1:" + str(row_b),
"attr2:" + str(row_b),
"attr3:" + str(row_b),
True,
10,
11,
4.123456,
4.123456789012345,
"1234567890abcdefghijklmnopqrstuvwsyz!@#$%^&*()_+}{|:'`~-=[];,./<>?~!@#¥%……&*()——|:“《》?·【】、;‘,。/没问题",
11,
date(1970, 1, 1),
"1234567890abcdefghijklmnopqrstuvwsyz!@#$%^&*()_+}{|:`~-=[];,./<>?~!@#¥%……&*()——|:“《》?·【】、;‘,。/没问题".encode(
"utf-8"
),
"1234567890abcdefghijklmnopqrstuvwsyz!@#$%^&*()_+}{|:`~-=[];,./<>?~!@#¥%……&*()——|:“《》?·【】、;‘,。/没问题",
]
)
values.append(
[
"tag1:" + str(row_b),
"tag2:" + str(row_b),
"tag3:" + str(row_b),
"attr1:" + str(row_b),
"attr2:" + str(row_b),
"attr3:" + str(row_b),
True,
-10,
-11,
12.12345,
12.12345678901234,
"test01",
11,
date(1970, 1, 1),
"Hello, World!".encode("utf-8"),
"string01",
]
)
values.append(
[
"tag1:" + str(row_b),
"tag2:" + str(row_b),
"tag3:" + str(row_b),
"attr1:" + str(row_b),
"attr2:" + str(row_b),
"attr3:" + str(row_b),
None,
None,
None,
None,
None,
"",
None,
date(1970, 1, 1),
"".encode("utf-8"),
"",
]
)
values.append(
[
"tag1:" + str(row_b),
"tag2:" + str(row_b),
"tag3:" + str(row_b),
"attr1:" + str(row_b),
"attr2:" + str(row_b),
"attr3:" + str(row_b),
True,
-0,
-0,
-0.0,
-0.0,
" ",
11,
date(1970, 1, 1),
" ".encode("utf-8"),
" ",
]
)
values.append(
[
"tag1:" + str(row_b),
"tag2:" + str(row_b),
"tag3:" + str(row_b),
"attr1:" + str(row_b),
"attr2:" + str(row_b),
"attr3:" + str(row_b),
True,
10,
11,
1.1,
10011.1,
"test01",
11,
date(1970, 1, 1),
"Hello, World!".encode("utf-8"),
"string01",
]
)
tablet = Tablet(
table_name, column_names, data_types, values, timestamps, column_types
)
session.insert(tablet)
row = 0
with session.execute_query_statement(
"select * from table_b"
) as session_data_set:
print(session_data_set.get_column_names())
while session_data_set.has_next():
print(session_data_set.next())
row += 1
# Determine whether it meets expectations
assert expect == row
with session.execute_query_statement(
"select * from table_b"
) as session_data_set:
df = session_data_set.todf()
rows, columns = df.shape
assert rows == expect
assert columns == len(column_names) + 1
row = 0
with session.execute_query_statement(
"select " + ",".join(column_names) + " from table_b"
) as session_data_set:
assert session_data_set.get_column_names() == column_names
while session_data_set.has_next():
row_record = session_data_set.next()
assert row_record.get_timestamp() == 0
for i in range(len(column_names)):
if values[row][i] is not None and (
data_types[i] == TSDataType.FLOAT
or data_types[i] == TSDataType.DOUBLE
):
assert math.isclose(
row_record.get_fields()[i].get_object_value(data_types[i]),
values[row][i],
rel_tol=1e-6,
)
elif data_types[i] == TSDataType.TIMESTAMP:
actual = row_record.get_fields()[i].get_timestamp_value()
expected = convert_to_timestamp(
values[row][i], "ms", get_localzone_name()
)
if pd.isnull(actual):
assert pd.isnull(expected)
else:
assert actual == expected
else:
assert (
row_record.get_fields()[i].get_object_value(data_types[i])
== values[row][i]
)
row += 1
# Determine whether it meets expectations
assert expect == row
with session.execute_query_statement(
"select " + ",".join(column_names) + " from table_b"
) as session_data_set:
df = session_data_set.todf()
assert list(df.columns) == column_names
rows, columns = df.shape
assert rows == expect
assert columns == len(column_names)
for i in range(rows):
for j in range(columns):
if pd.isna(df.iloc[i, j]):
continue
elif isinstance(values[i][j], float):
assert math.isclose(
df.iloc[i, j],
values[i][j],
rel_tol=1e-6,
)
elif isinstance(df.iloc[i, j], pd.Timestamp):
actual = df.iloc[i, j]
expected = pd.Series(
convert_to_timestamp(
values[i][j], "ms", get_localzone_name()
)
)[0]
assert actual == expected
else:
assert df.iloc[i, j] == values[i][j]
row = 0
with session.execute_query_statement(
"select tag1, tag1 from table_b"
) as session_data_set:
assert session_data_set.get_column_names() == ["tag1", "tag1"]
while session_data_set.has_next():
row_record = session_data_set.next()
assert row_record.get_timestamp() == 0
for i in range(len(["tag1", "tag1"])):
assert (
row_record.get_fields()[i].get_object_value(
row_record.get_fields()[i].get_data_type()
)
== values[row][0]
)
row += 1
# Determine whether it meets expectations
assert expect == row
with session.execute_query_statement(
"select tag1, tag1 from table_b"
) as session_data_set:
df = session_data_set.todf()
assert list(df.columns) == ["tag1", "tag1"]
rows, columns = df.shape
assert rows == expect
assert columns == 2
for i in range(rows):
for j in range(columns):
if pd.isna(df.iloc[i, j]):
assert values[i][j] is None
else:
assert df.iloc[i, j] == values[i][0]
row = 0
with session.execute_query_statement(
"select tag1, attr1 as tag1 from table_b"
) as session_data_set:
assert session_data_set.get_column_names() == ["tag1", "tag1"]
while session_data_set.has_next():
row_record = session_data_set.next()
print(row_record)
assert row_record.get_timestamp() == 0
assert (
row_record.get_fields()[0].get_object_value(
row_record.get_fields()[0].get_data_type()
)
== values[row][0]
)
assert (
row_record.get_fields()[1].get_object_value(
row_record.get_fields()[1].get_data_type()
)
== values[row][3]
)
row += 1
# Determine whether it meets expectations
assert expect == row
with session.execute_query_statement(
"select tag1, attr1 as tag1 from table_b"
) as session_data_set:
df = session_data_set.todf()
assert list(df.columns) == ["tag1", "tag1"]
rows, columns = df.shape
assert rows == expect
assert columns == 2
for i in range(rows):
assert df.iloc[i, 0] == values[i][0]
assert df.iloc[i, 1] == values[i][3]
session.close()