| # Licensed to the Apache Software Foundation (ASF) under one |
| # or more contributor license agreements. See the NOTICE file |
| # distributed with this work for additional information |
| # regarding copyright ownership. The ASF licenses this file |
| # to you under the Apache License, Version 2.0 (the |
| # "License"); you may not use this file except in compliance |
| # with the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, |
| # software distributed under the License is distributed on an |
| # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| # KIND, either express or implied. See the License for the |
| # specific language governing permissions and limitations |
| # under the License. |
| # |
| |
| import os |
| import time |
| |
| import torch.nn as nn |
| |
| from iotdb.mlnode.config import descriptor |
| from iotdb.mlnode.exception import ModelNotExistError |
| from iotdb.mlnode.storage import model_storage |
| |
| |
| class ExampleModel(nn.Module): |
| def __init__(self): |
| super(ExampleModel, self).__init__() |
| self.layer = nn.Identity() |
| |
| def forward(self, x): |
| return self.layer(x) |
| |
| |
| model = ExampleModel() |
| model_config = { |
| 'input_len': 1, |
| 'input_vars': 1, |
| 'id': time.time() |
| } |
| |
| |
| def test_save_model(): |
| trial_id = 'tid_0' |
| model_id = 'mid_test_model_save' |
| model_storage.save_model(model, model_config, model_id=model_id, trial_id=trial_id) |
| assert os.path.exists( |
| os.path.join(descriptor.get_config().get_mn_model_storage_dir(), f'{model_id}', f'{trial_id}.pt')) |
| |
| |
| def test_load_model(): |
| trial_id = 'tid_0' |
| model_id = 'mid_test_model_load' |
| model_storage.save_model(model, model_config, model_id=model_id, trial_id=trial_id) |
| model_loaded, model_config_loaded = model_storage.load_model(model_id=model_id, trial_id=trial_id) |
| assert model_config == model_config_loaded |
| |
| |
| def test_load_not_exist_model(): |
| trial_id = 'dummy_trial' |
| model_id = 'dummy_model' |
| try: |
| model_loaded, model_config_loaded = model_storage.load_model(model_id=model_id, trial_id=trial_id) |
| except Exception as e: |
| assert e.message == ModelNotExistError( |
| os.path.join('.', descriptor.get_config().get_mn_model_storage_dir(), |
| model_id, f'{trial_id}.pt')).message |
| |
| |
| def test_delete_model(): |
| trial_id1 = 'tid_1' |
| trial_id2 = 'tid_2' |
| model_id = 'mid_test_model_delete' |
| model_storage.save_model(model, model_config, model_id=model_id, trial_id=trial_id1) |
| model_storage.save_model(model, model_config, model_id=model_id, trial_id=trial_id2) |
| model_storage.delete_model(model_id=model_id) |
| assert not os.path.exists( |
| os.path.join(descriptor.get_config().get_mn_model_storage_dir(), f'{model_id}', f'{trial_id1}.pt')) |
| assert not os.path.exists( |
| os.path.join(descriptor.get_config().get_mn_model_storage_dir(), f'{model_id}', f'{trial_id2}.pt')) |
| assert not os.path.exists(os.path.join(descriptor.get_config().get_mn_model_storage_dir(), f'{model_id}')) |
| |
| |
| def test_delete_trial(): |
| trial_id = 'tid_0' |
| model_id = 'mid_test_model_delete' |
| model_storage.save_model(model, model_config, model_id=model_id, trial_id=trial_id) |
| model_storage.delete_trial(model_id=model_id, trial_id=trial_id) |
| assert not os.path.exists( |
| os.path.join(descriptor.get_config().get_mn_model_storage_dir(), f'{model_id}', f'{trial_id}.pt')) |