| <!-- |
| |
| Licensed to the Apache Software Foundation (ASF) under one |
| or more contributor license agreements. See the NOTICE file |
| distributed with this work for additional information |
| regarding copyright ownership. The ASF licenses this file |
| to you under the Apache License, Version 2.0 (the |
| "License"); you may not use this file except in compliance |
| with the License. You may obtain a copy of the License at |
| |
| http://www.apache.org/licenses/LICENSE-2.0 |
| |
| Unless required by applicable law or agreed to in writing, |
| software distributed under the License is distributed on an |
| "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| KIND, either express or implied. See the License for the |
| specific language governing permissions and limitations |
| under the License. |
| |
| --> |
| |
| # 特色函数 |
| |
| ## 1. 时序特色函数 |
| |
| ### 1.1 降采样函数 |
| |
| #### 1.1.1 `date_bin` 函数 |
| |
| ##### 功能描述: |
| |
| `date_bin` 是一个标量函数,用于将时间戳规整到指定的时间区间起点,并结合 `GROUP BY` 子句实现降采样。 |
| |
| - 部分区间结果为空:只会对满足条件的数据进行时间戳规整,不会填充缺失的时间区间。 |
| - 全部区间结果为空::满足条件的整个查询范围内没有数据时,降采样返回空结果集 |
| |
| ##### 使用示例: |
| |
| ###### 示例数据 |
| |
| 在[示例数据页面](../Reference/Sample-Data.md)中,包含了用于构建表结构和插入数据的SQL语句,下载并在IoTDB CLI中执行这些语句,即可将数据导入IoTDB,您可以使用这些数据来测试和执行示例中的SQL语句,并获得相应的结果。 |
| |
| 示例 1:获取设备** **`100`** **某个时间范围的每小时平均温度 |
| |
| ```SQL |
| SELECT date_bin(1h, time) AS hour_time, avg(temperature) AS avg_temp |
| FROM table1 |
| WHERE (time >= 2024-11-27 00:00:00 AND time <= 2024-11-30 00:00:00) |
| AND device_id = '100' |
| GROUP BY 1; |
| ``` |
| |
| 结果: |
| |
| ```Plain |
| +-----------------------------+--------+ |
| | hour_time|avg_temp| |
| +-----------------------------+--------+ |
| |2024-11-29T11:00:00.000+08:00| null| |
| |2024-11-29T18:00:00.000+08:00| 90.0| |
| |2024-11-28T08:00:00.000+08:00| 85.0| |
| |2024-11-28T09:00:00.000+08:00| null| |
| |2024-11-28T10:00:00.000+08:00| 85.0| |
| |2024-11-28T11:00:00.000+08:00| 88.0| |
| +-----------------------------+--------+ |
| ``` |
| |
| 示例 2:获取每个设备某个时间范围的每小时平均温度 |
| |
| ```SQL |
| SELECT date_bin(1h, time) AS hour_time, device_id, avg(temperature) AS avg_temp |
| FROM table1 |
| WHERE time >= 2024-11-27 00:00:00 AND time <= 2024-11-30 00:00:00 |
| GROUP BY 1, device_id; |
| ``` |
| |
| 结果: |
| |
| ```Plain |
| +-----------------------------+---------+--------+ |
| | hour_time|device_id|avg_temp| |
| +-----------------------------+---------+--------+ |
| |2024-11-29T11:00:00.000+08:00| 100| null| |
| |2024-11-29T18:00:00.000+08:00| 100| 90.0| |
| |2024-11-28T08:00:00.000+08:00| 100| 85.0| |
| |2024-11-28T09:00:00.000+08:00| 100| null| |
| |2024-11-28T10:00:00.000+08:00| 100| 85.0| |
| |2024-11-28T11:00:00.000+08:00| 100| 88.0| |
| |2024-11-29T10:00:00.000+08:00| 101| 85.0| |
| |2024-11-27T16:00:00.000+08:00| 101| 85.0| |
| +-----------------------------+---------+--------+ |
| ``` |
| |
| 示例 3:获取所有设备某个时间范围的每小时平均温度 |
| |
| ```SQL |
| SELECT date_bin(1h, time) AS hour_time, avg(temperature) AS avg_temp |
| FROM table1 |
| WHERE time >= 2024-11-27 00:00:00 AND time <= 2024-11-30 00:00:00 |
| group by 1; |
| ``` |
| |
| 结果: |
| |
| ```Plain |
| +-----------------------------+--------+ |
| | hour_time|avg_temp| |
| +-----------------------------+--------+ |
| |2024-11-29T10:00:00.000+08:00| 85.0| |
| |2024-11-27T16:00:00.000+08:00| 85.0| |
| |2024-11-29T11:00:00.000+08:00| null| |
| |2024-11-29T18:00:00.000+08:00| 90.0| |
| |2024-11-28T08:00:00.000+08:00| 85.0| |
| |2024-11-28T09:00:00.000+08:00| null| |
| |2024-11-28T10:00:00.000+08:00| 85.0| |
| |2024-11-28T11:00:00.000+08:00| 88.0| |
| +-----------------------------+--------+ |
| ``` |
| |
| #### 1.1.2 `date_bin_gapfill` 函数 |
| |
| ##### 功能描述 |
| |
| `date_bin_gapfill` 是 `date_bin` 的扩展,能够填充缺失的时间区间,从而返回完整的时间序列。 |
| |
| - 部分区间结果为空:对满足条件的数据进行时间戳规整,并填充缺失的时间区间。 |
| - 全部区间结果为空::整个查询范围内没有数据时,`date_bin_gapfill`会返回空结果集 |
| |
| ##### 功能限制 |
| |
| - **`date_bin_gapfill`** **必须与** **`GROUP BY`** **子句搭配使用**,如果用在其他子句中,不会报错,但不会执行 gapfill 功能,效果与使用 `date_bin` 相同。 |
| - **每个** **`GROUP BY`** **子句中只能使用一个** **`date_bin_gapfill`**。如果出现多个 `date_bin_gapfill`,会报错:multiple date_bin_gapfill calls not allowed |
| - **`date_bin_gapfill`** **的执行顺序**:GAPFILL 功能发生在 `HAVING` 子句执行之后,`FILL` 子句执行之前。 |
| - **使用** **`date_bin_gapfill`** **时,****`WHERE`** **子句中的时间过滤条件必须是以下形式之一:** |
| - `time >= XXX AND time <= XXX` |
| - `time > XXX AND time < XXX` |
| - `time BETWEEN XXX AND XXX` |
| - **使用** **`date_bin_gapfill`** **时,如果出现其他时间过滤条件**,会报错。时间过滤条件与其他值过滤条件只能通过 `AND` 连接。 |
| - **如果不能从 where 子句中推断出 startTime 和 endTime,则报错**:could not infer startTime or endTime from WHERE clause。 |
| |
| ##### 使用示例 |
| |
| 示例 1:填充缺失时间区间 |
| |
| ```SQL |
| SELECT date_bin_gapfill(1h, time) AS hour_time, avg(temperature) AS avg_temp |
| FROM table1 |
| WHERE (time >= 2024-11-28 07:00:00 AND time <= 2024-11-28 16:00:00) |
| AND device_id = '100' |
| GROUP BY 1; |
| ``` |
| |
| 结果: |
| |
| ```Plain |
| +-----------------------------+--------+ |
| | hour_time|avg_temp| |
| +-----------------------------+--------+ |
| |2024-11-28T07:00:00.000+08:00| null| |
| |2024-11-28T08:00:00.000+08:00| 85.0| |
| |2024-11-28T09:00:00.000+08:00| null| |
| |2024-11-28T10:00:00.000+08:00| 85.0| |
| |2024-11-28T11:00:00.000+08:00| 88.0| |
| |2024-11-28T12:00:00.000+08:00| null| |
| |2024-11-28T13:00:00.000+08:00| null| |
| |2024-11-28T14:00:00.000+08:00| null| |
| |2024-11-28T15:00:00.000+08:00| null| |
| |2024-11-28T16:00:00.000+08:00| null| |
| +-----------------------------+--------+ |
| ``` |
| |
| 示例 2:结合设备分组填充缺失时间区间 |
| |
| ```SQL |
| SELECT date_bin_gapfill(1h, time) AS hour_time, device_id, avg(temperature) AS avg_temp |
| FROM table1 |
| WHERE time >= 2024-11-28 07:00:00 AND time <= 2024-11-28 16:00:00 |
| GROUP BY 1, device_id; |
| ``` |
| |
| 结果: |
| |
| ```Plain |
| +-----------------------------+---------+--------+ |
| | hour_time|device_id|avg_temp| |
| +-----------------------------+---------+--------+ |
| |2024-11-28T07:00:00.000+08:00| 100| null| |
| |2024-11-28T08:00:00.000+08:00| 100| 85.0| |
| |2024-11-28T09:00:00.000+08:00| 100| null| |
| |2024-11-28T10:00:00.000+08:00| 100| 85.0| |
| |2024-11-28T11:00:00.000+08:00| 100| 88.0| |
| |2024-11-28T12:00:00.000+08:00| 100| null| |
| |2024-11-28T13:00:00.000+08:00| 100| null| |
| |2024-11-28T14:00:00.000+08:00| 100| null| |
| |2024-11-28T15:00:00.000+08:00| 100| null| |
| |2024-11-28T16:00:00.000+08:00| 100| null| |
| +-----------------------------+---------+--------+ |
| ``` |
| |
| 示例 3:查询范围内没有数据返回空结果集 |
| |
| ```SQL |
| SELECT date_bin_gapfill(1h, time) AS hour_time, device_id, avg(temperature) AS avg_temp |
| FROM table1 |
| WHERE time >= 2024-11-27 09:00:00 AND time <= 2024-11-27 14:00:00 |
| GROUP BY 1, device_id; |
| ``` |
| |
| 结果: |
| |
| ```Plain |
| +---------+---------+--------+ |
| |hour_time|device_id|avg_temp| |
| +---------+---------+--------+ |
| +---------+---------+--------+ |
| ``` |
| |
| ### 1.2 DIFF函数 |
| |
| ##### 功能概述 |
| |
| `DIFF` 函数用于计算当前行与上一行的差值。对于第一行,由于没有前一行数据,因此永远返回 `NULL`。 |
| |
| ##### 函数定义 |
| |
| ``` |
| DIFF(numberic[, boolean]) -> Double |
| ``` |
| |
| ##### 参数说明 |
| |
| - 第一个参数:数值类型 |
| |
| - **类型**:必须是数值类型(`INT32`、`INT64`、`FLOAT`、`DOUBLE`) |
| - **作用**:指定要计算差值的列。 |
| |
| - 第二个参数:布尔类型(可选) |
| - **类型**:布尔类型(`true` 或 `false`)。 |
| - **默认值**:`true`。 |
| - **作用**: |
| - **`true`**:忽略 `NULL` 值,向前找到第一个非 `NULL` 值进行差值计算。如果前面没有非 `NULL` 值,则返回 `NULL`。 |
| - **`false`**:不忽略 `NULL` 值,如果前一行为 `NULL`,则差值结果为 `NULL`。 |
| |
| ##### 注意事项 |
| |
| - 在树模型中,第二个参数需要指定为 `'ignoreNull'='true'` 或 `'ignoreNull'='false'`,但在表模型中,只需指定为 `true` 或 `false`。 |
| - 如果用户写成 `'ignoreNull'='true'` 或 `'ignoreNull'='false'`,表模型会将其视为对两个字符串常量进行等号比较,返回布尔值,但结果总是 `false`,等价于指定第二个参数为 `false`。 |
| |
| ##### 使用示例 |
| |
| 示例 1:忽略 `NULL` 值 |
| |
| ```SQL |
| SELECT time, DIFF(temperature) AS diff_temp |
| FROM table1 |
| WHERE device_id = '100'; |
| ``` |
| |
| 结果: |
| |
| ```Plain |
| +-----------------------------+---------+ |
| | time|diff_temp| |
| +-----------------------------+---------+ |
| |2024-11-29T11:00:00.000+08:00| null| |
| |2024-11-29T18:30:00.000+08:00| null| |
| |2024-11-28T08:00:00.000+08:00| -5.0| |
| |2024-11-28T09:00:00.000+08:00| null| |
| |2024-11-28T10:00:00.000+08:00| 0.0| |
| |2024-11-28T11:00:00.000+08:00| 3.0| |
| |2024-11-26T13:37:00.000+08:00| 2.0| |
| |2024-11-26T13:38:00.000+08:00| 0.0| |
| +-----------------------------+---------+ |
| ``` |
| |
| 示例 2:不忽略 `NULL` 值 |
| |
| ```SQL |
| SELECT time, DIFF(temperature, false) AS diff_temp |
| FROM table1 |
| WHERE device_id = '100'; |
| ``` |
| |
| 结果: |
| |
| ```Plain |
| +-----------------------------+---------+ |
| | time|diff_temp| |
| +-----------------------------+---------+ |
| |2024-11-29T11:00:00.000+08:00| null| |
| |2024-11-29T18:30:00.000+08:00| null| |
| |2024-11-28T08:00:00.000+08:00| -5.0| |
| |2024-11-28T09:00:00.000+08:00| null| |
| |2024-11-28T10:00:00.000+08:00| null| |
| |2024-11-28T11:00:00.000+08:00| 3.0| |
| |2024-11-26T13:37:00.000+08:00| 2.0| |
| |2024-11-26T13:38:00.000+08:00| 0.0| |
| +-----------------------------+---------+ |
| ``` |
| |
| 示例 3:完整示例 |
| |
| ```SQL |
| SELECT time, temperature, |
| DIFF(temperature) AS diff_temp_1, |
| DIFF(temperature, false) AS diff_temp_2 |
| FROM table1 |
| WHERE device_id = '100'; |
| ``` |
| |
| 结果: |
| |
| ```Plain |
| +-----------------------------+-----------+-----------+-----------+ |
| | time|temperature|diff_temp_1|diff_temp_2| |
| +-----------------------------+-----------+-----------+-----------+ |
| |2024-11-29T11:00:00.000+08:00| null| null| null| |
| |2024-11-29T18:30:00.000+08:00| 90.0| null| null| |
| |2024-11-28T08:00:00.000+08:00| 85.0| -5.0| -5.0| |
| |2024-11-28T09:00:00.000+08:00| null| null| null| |
| |2024-11-28T10:00:00.000+08:00| 85.0| 0.0| null| |
| |2024-11-28T11:00:00.000+08:00| 88.0| 3.0| 3.0| |
| |2024-11-26T13:37:00.000+08:00| 90.0| 2.0| 2.0| |
| |2024-11-26T13:38:00.000+08:00| 90.0| 0.0| 0.0| |
| +-----------------------------+-----------+-----------+-----------+ |
| ``` |
| |
| ### 1.3 时序分窗函数 |
| |
| 原始示例数据如下: |
| |
| ```SQL |
| IoTDB> SELECT * FROM bid; |
| +-----------------------------+--------+-----+ |
| | time|stock_id|price| |
| +-----------------------------+--------+-----+ |
| |2021-01-01T09:05:00.000+08:00| AAPL|100.0| |
| |2021-01-01T09:06:00.000+08:00| TESL|200.0| |
| |2021-01-01T09:07:00.000+08:00| AAPL|103.0| |
| |2021-01-01T09:07:00.000+08:00| TESL|202.0| |
| |2021-01-01T09:09:00.000+08:00| AAPL|102.0| |
| |2021-01-01T09:15:00.000+08:00| TESL|195.0| |
| +-----------------------------+--------+-----+ |
| |
| -- 创建语句 |
| CREATE TABLE bid(time TIMESTAMP TIME, stock_id STRING TAG, price FLOAT FIELD); |
| -- 插入数据 |
| INSERT INTO bid(time, stock_id, price) VALUES('2021-01-01T09:05:00','AAPL',100.0),('2021-01-01T09:06:00','TESL',200.0),('2021-01-01T09:07:00','AAPL',103.0),('2021-01-01T09:07:00','TESL',202.0),('2021-01-01T09:09:00','AAPL',102.0),('2021-01-01T09:15:00','TESL',195.0); |
| ``` |
| |
| #### 1.3.1 HOP |
| |
| ##### 功能描述 |
| |
| HOP 函数用于按时间分段分窗分析,识别每一行数据所属的时间窗口。该函数通过指定固定窗口大小(size)和窗口滑动步长(SLIDE),将数据按时间戳分配到所有与其时间戳重叠的窗口中。若窗口之间存在重叠(步长 < 窗口大小),数据会自动复制到多个窗口。 |
| |
| ##### 函数定义 |
| |
| ```SQL |
| HOP(data, timecol, size, slide[, origin]) |
| ``` |
| |
| ##### 参数说明 |
| |
| | 参数名 | 参数类型 | 参数属性 | 描述 | |
| | --------- | ---------- | --------------------------------- | -------------------- | |
| | DATA | 表参数 | ROW SEMANTICPASS THROUGH | 输入表 | |
| | TIMECOL | 标量参数 | 字符串类型默认值:time | 时间列 | |
| | SIZE | 标量参数 | 长整数类型 | 窗口大小 | |
| | SLIDE | 标量参数 | 长整数类型 | 窗口滑动步长 | |
| | ORIGIN | 标量参数 | 时间戳类型默认值:Unix 纪元时间 | 第一个窗口起始时间 | |
| |
| ##### 返回结果 |
| |
| HOP 函数的返回结果列包含: |
| |
| * window\_start: 窗口开始时间(闭区间) |
| * window\_end: 窗口结束时间(开区间) |
| * 映射列:DATA 参数的所有输入列 |
| |
| ##### 使用示例 |
| |
| ```SQL |
| IoTDB> SELECT * FROM HOP(DATA => bid,TIMECOL => 'time',SLIDE => 5m,SIZE => 10m); |
| +-----------------------------+-----------------------------+-----------------------------+--------+-----+ |
| | window_start| window_end| time|stock_id|price| |
| +-----------------------------+-----------------------------+-----------------------------+--------+-----+ |
| |2021-01-01T09:00:00.000+08:00|2021-01-01T09:10:00.000+08:00|2021-01-01T09:05:00.000+08:00| AAPL|100.0| |
| |2021-01-01T09:05:00.000+08:00|2021-01-01T09:15:00.000+08:00|2021-01-01T09:05:00.000+08:00| AAPL|100.0| |
| |2021-01-01T09:00:00.000+08:00|2021-01-01T09:10:00.000+08:00|2021-01-01T09:06:00.000+08:00| TESL|200.0| |
| |2021-01-01T09:05:00.000+08:00|2021-01-01T09:15:00.000+08:00|2021-01-01T09:06:00.000+08:00| TESL|200.0| |
| |2021-01-01T09:00:00.000+08:00|2021-01-01T09:10:00.000+08:00|2021-01-01T09:07:00.000+08:00| AAPL|103.0| |
| |2021-01-01T09:00:00.000+08:00|2021-01-01T09:10:00.000+08:00|2021-01-01T09:07:00.000+08:00| TESL|202.0| |
| |2021-01-01T09:05:00.000+08:00|2021-01-01T09:15:00.000+08:00|2021-01-01T09:07:00.000+08:00| AAPL|103.0| |
| |2021-01-01T09:05:00.000+08:00|2021-01-01T09:15:00.000+08:00|2021-01-01T09:07:00.000+08:00| TESL|202.0| |
| |2021-01-01T09:00:00.000+08:00|2021-01-01T09:10:00.000+08:00|2021-01-01T09:09:00.000+08:00| AAPL|102.0| |
| |2021-01-01T09:05:00.000+08:00|2021-01-01T09:15:00.000+08:00|2021-01-01T09:09:00.000+08:00| AAPL|102.0| |
| |2021-01-01T09:10:00.000+08:00|2021-01-01T09:20:00.000+08:00|2021-01-01T09:15:00.000+08:00| TESL|195.0| |
| |2021-01-01T09:15:00.000+08:00|2021-01-01T09:25:00.000+08:00|2021-01-01T09:15:00.000+08:00| TESL|195.0| |
| +-----------------------------+-----------------------------+-----------------------------+--------+-----+ |
| |
| -- 结合 GROUP BY 语句,等效于树模型的 GROUP BY TIME |
| IoTDB> SELECT window_start, window_end, stock_id, avg(price) as avg FROM HOP(DATA => bid,TIMECOL => 'time',SLIDE => 5m,SIZE => 10m) GROUP BY window_start, window_end, stock_id; |
| +-----------------------------+-----------------------------+--------+------------------+ |
| | window_start| window_end|stock_id| avg| |
| +-----------------------------+-----------------------------+--------+------------------+ |
| |2021-01-01T09:00:00.000+08:00|2021-01-01T09:10:00.000+08:00| TESL| 201.0| |
| |2021-01-01T09:05:00.000+08:00|2021-01-01T09:15:00.000+08:00| TESL| 201.0| |
| |2021-01-01T09:10:00.000+08:00|2021-01-01T09:20:00.000+08:00| TESL| 195.0| |
| |2021-01-01T09:15:00.000+08:00|2021-01-01T09:25:00.000+08:00| TESL| 195.0| |
| |2021-01-01T09:00:00.000+08:00|2021-01-01T09:10:00.000+08:00| AAPL|101.66666666666667| |
| |2021-01-01T09:05:00.000+08:00|2021-01-01T09:15:00.000+08:00| AAPL|101.66666666666667| |
| +-----------------------------+-----------------------------+--------+------------------+ |
| ``` |
| |
| #### 1.3.2 SESSION |
| |
| ##### 功能描述 |
| |
| SESSION 函数用于按会话间隔对数据进行分窗。系统逐行检查与前一行的时间间隔,小于阈值(GAP)则归入当前窗口,超过则归入下一个窗口。 |
| |
| ##### 函数定义 |
| |
| ```SQL |
| SESSION(data [PARTITION BY(pkeys, ...)] [ORDER BY(okeys, ...)], timecol, gap) |
| ``` |
| ##### 参数说明 |
| |
| | 参数名 | 参数类型 | 参数属性 | 描述 | |
| | --------- | ---------- | -------------------------- | ---------------------------------------- | |
| | DATA | 表参数 | SET SEMANTICPASS THROUGH | 输入表通过 pkeys、okeys 指定分区和排序 | |
| | TIMECOL | 标量参数 | 字符串类型默认值:'time' | 时间列名 |
| | |
| | GAP | 标量参数 | 长整数类型 | 会话间隔阈值 | |
| |
| ##### 返回结果 |
| |
| SESSION 函数的返回结果列包含: |
| |
| * window\_start: 会话窗口内的第一条数据的时间 |
| * window\_end: 会话窗口内的最后一条数据的时间 |
| * 映射列:DATA 参数的所有输入列 |
| |
| ##### 使用示例 |
| |
| ```SQL |
| IoTDB> SELECT * FROM SESSION(DATA => bid PARTITION BY stock_id ORDER BY time,TIMECOL => 'time',GAP => 2m); |
| +-----------------------------+-----------------------------+-----------------------------+--------+-----+ |
| | window_start| window_end| time|stock_id|price| |
| +-----------------------------+-----------------------------+-----------------------------+--------+-----+ |
| |2021-01-01T09:06:00.000+08:00|2021-01-01T09:07:00.000+08:00|2021-01-01T09:06:00.000+08:00| TESL|200.0| |
| |2021-01-01T09:06:00.000+08:00|2021-01-01T09:07:00.000+08:00|2021-01-01T09:07:00.000+08:00| TESL|202.0| |
| |2021-01-01T09:15:00.000+08:00|2021-01-01T09:15:00.000+08:00|2021-01-01T09:15:00.000+08:00| TESL|195.0| |
| |2021-01-01T09:05:00.000+08:00|2021-01-01T09:09:00.000+08:00|2021-01-01T09:05:00.000+08:00| AAPL|100.0| |
| |2021-01-01T09:05:00.000+08:00|2021-01-01T09:09:00.000+08:00|2021-01-01T09:07:00.000+08:00| AAPL|103.0| |
| |2021-01-01T09:05:00.000+08:00|2021-01-01T09:09:00.000+08:00|2021-01-01T09:09:00.000+08:00| AAPL|102.0| |
| +-----------------------------+-----------------------------+-----------------------------+--------+-----+ |
| |
| -- 结合 GROUP BY 语句,等效于树模型的 GROUP BY SESSION |
| IoTDB> SELECT window_start, window_end, stock_id, avg(price) as avg FROM SESSION(DATA => bid PARTITION BY stock_id ORDER BY time,TIMECOL => 'time',GAP => 2m) GROUP BY window_start, window_end, stock_id; |
| +-----------------------------+-----------------------------+--------+------------------+ |
| | window_start| window_end|stock_id| avg| |
| +-----------------------------+-----------------------------+--------+------------------+ |
| |2021-01-01T09:06:00.000+08:00|2021-01-01T09:07:00.000+08:00| TESL| 201.0| |
| |2021-01-01T09:15:00.000+08:00|2021-01-01T09:15:00.000+08:00| TESL| 195.0| |
| |2021-01-01T09:05:00.000+08:00|2021-01-01T09:09:00.000+08:00| AAPL|101.66666666666667| |
| +-----------------------------+-----------------------------+--------+------------------+ |
| ``` |
| |
| #### 1.3.3 VARIATION |
| |
| ##### 功能描述 |
| |
| VARIATION 函数用于按数据差值分窗,将第一条数据作为首个窗口的基准值,每个数据点会与基准值进行差值运算,如果差值小于给定的阈值(delta)则加入当前窗口;如果超过阈值,则分为下一个窗口,将该值作为下一个窗口的基准值。 |
| |
| ##### 函数定义 |
| |
| ```sql |
| VARIATION(data [PARTITION BY(pkeys, ...)] [ORDER BY(okeys, ...)], col, delta) |
| ``` |
| |
| ##### 参数说明 |
| |
| | 参数名 | 参数类型 | 参数属性 | 描述 | |
| | -------- | ---------- | -------------------------- | ---------------------------------------- | |
| | DATA | 表参数 | SET SEMANTICPASS THROUGH | 输入表通过 pkeys、okeys 指定分区和排序 | |
| | COL | 标量参数 | 字符串类型 | 标识对哪一列计算差值 | |
| | DELTA | 标量参数 | 浮点数类型 | 差值阈值 | |
| |
| ##### 返回结果 |
| |
| VARIATION 函数的返回结果列包含: |
| |
| * window\_index: 窗口编号 |
| * 映射列:DATA 参数的所有输入列 |
| |
| ##### 使用示例 |
| |
| ```sql |
| IoTDB> SELECT * FROM VARIATION(DATA => bid PARTITION BY stock_id ORDER BY time,COL => 'price',DELTA => 2.0); |
| +------------+-----------------------------+--------+-----+ |
| |window_index| time|stock_id|price| |
| +------------+-----------------------------+--------+-----+ |
| | 0|2021-01-01T09:06:00.000+08:00| TESL|200.0| |
| | 0|2021-01-01T09:07:00.000+08:00| TESL|202.0| |
| | 1|2021-01-01T09:15:00.000+08:00| TESL|195.0| |
| | 0|2021-01-01T09:05:00.000+08:00| AAPL|100.0| |
| | 1|2021-01-01T09:07:00.000+08:00| AAPL|103.0| |
| | 1|2021-01-01T09:09:00.000+08:00| AAPL|102.0| |
| +------------+-----------------------------+--------+-----+ |
| |
| -- 结合 GROUP BY 语句,等效于树模型的 GROUP BY VARIATION |
| IoTDB> SELECT first(time) as window_start, last(time) as window_end, stock_id, avg(price) as avg FROM VARIATION(DATA => bid PARTITION BY stock_id ORDER BY time,COL => 'price', DELTA => 2.0) GROUP BY window_index, stock_id; |
| +-----------------------------+-----------------------------+--------+-----+ |
| | window_start| window_end|stock_id| avg| |
| +-----------------------------+-----------------------------+--------+-----+ |
| |2021-01-01T09:06:00.000+08:00|2021-01-01T09:07:00.000+08:00| TESL|201.0| |
| |2021-01-01T09:15:00.000+08:00|2021-01-01T09:15:00.000+08:00| TESL|195.0| |
| |2021-01-01T09:05:00.000+08:00|2021-01-01T09:05:00.000+08:00| AAPL|100.0| |
| |2021-01-01T09:07:00.000+08:00|2021-01-01T09:09:00.000+08:00| AAPL|102.5| |
| +-----------------------------+-----------------------------+--------+-----+ |
| ``` |
| |
| #### 1.3.4 CAPACITY |
| |
| ##### 功能描述 |
| |
| CAPACITY 函数用于按数据点数(行数)分窗,每个窗口最多有 SIZE 行数据。 |
| |
| ##### 函数定义 |
| |
| ```sql |
| CAPACITY(data [PARTITION BY(pkeys, ...)] [ORDER BY(okeys, ...)], size) |
| ``` |
| |
| ##### 参数说明 |
| |
| | 参数名 | 参数类型 | 参数属性 | 描述 | |
| | -------- | ---------- | -------------------------- | ---------------------------------------- | |
| | DATA | 表参数 | SET SEMANTICPASS THROUGH | 输入表通过 pkeys、okeys 指定分区和排序 | |
| | SIZE | 标量参数 | 长整数类型 | 窗口大小 | |
| |
| ##### 返回结果 |
| |
| CAPACITY 函数的返回结果列包含: |
| |
| * window\_index: 窗口编号 |
| * 映射列:DATA 参数的所有输入列 |
| |
| ##### 使用示例 |
| |
| ```sql |
| IoTDB> SELECT * FROM CAPACITY(DATA => bid PARTITION BY stock_id ORDER BY time, SIZE => 2); |
| +------------+-----------------------------+--------+-----+ |
| |window_index| time|stock_id|price| |
| +------------+-----------------------------+--------+-----+ |
| | 0|2021-01-01T09:06:00.000+08:00| TESL|200.0| |
| | 0|2021-01-01T09:07:00.000+08:00| TESL|202.0| |
| | 1|2021-01-01T09:15:00.000+08:00| TESL|195.0| |
| | 0|2021-01-01T09:05:00.000+08:00| AAPL|100.0| |
| | 0|2021-01-01T09:07:00.000+08:00| AAPL|103.0| |
| | 1|2021-01-01T09:09:00.000+08:00| AAPL|102.0| |
| +------------+-----------------------------+--------+-----+ |
| |
| -- 结合 GROUP BY 语句,等效于树模型的 GROUP BY COUNT |
| IoTDB> SELECT first(time) as start_time, last(time) as end_time, stock_id, avg(price) as avg FROM CAPACITY(DATA => bid PARTITION BY stock_id ORDER BY time, SIZE => 2) GROUP BY window_index, stock_id; |
| +-----------------------------+-----------------------------+--------+-----+ |
| | start_time| end_time|stock_id| avg| |
| +-----------------------------+-----------------------------+--------+-----+ |
| |2021-01-01T09:06:00.000+08:00|2021-01-01T09:07:00.000+08:00| TESL|201.0| |
| |2021-01-01T09:15:00.000+08:00|2021-01-01T09:15:00.000+08:00| TESL|195.0| |
| |2021-01-01T09:05:00.000+08:00|2021-01-01T09:07:00.000+08:00| AAPL|101.5| |
| |2021-01-01T09:09:00.000+08:00|2021-01-01T09:09:00.000+08:00| AAPL|102.0| |
| +-----------------------------+-----------------------------+--------+-----+ |
| ``` |
| |
| #### 1.3.5 TUMBLE |
| |
| ##### 功能描述 |
| |
| TUMBLE 函数用于通过时间属性字段为每行数据分配一个窗口,滚动窗口的大小固定且不重复。 |
| |
| ##### 函数定义 |
| |
| ```sql |
| TUMBLE(data, timecol, size[, origin]) |
| ``` |
| ##### 参数说明 |
| |
| | 参数名 | 参数类型 | 参数属性 | 描述 | |
| | --------- | ---------- | --------------------------------- | -------------------- | |
| | DATA | 表参数 | ROW SEMANTICPASS THROUGH | 输入表 | |
| | TIMECOL | 标量参数 | 字符串类型默认值:time | 时间列 | |
| | SIZE | 标量参数 | 长整数类型 | 窗口大小,需为正数 | |
| | ORIGIN | 标量参数 | 时间戳类型默认值:Unix 纪元时间 | 第一个窗口起始时间 | |
| |
| ##### 返回结果 |
| |
| TUBMLE 函数的返回结果列包含: |
| |
| * window\_start: 窗口开始时间(闭区间) |
| * window\_end: 窗口结束时间(开区间) |
| * 映射列:DATA 参数的所有输入列 |
| |
| ##### 使用示例 |
| |
| ```SQL |
| IoTDB> SELECT * FROM TUMBLE( DATA => bid, TIMECOL => 'time', SIZE => 10m); |
| +-----------------------------+-----------------------------+-----------------------------+--------+-----+ |
| | window_start| window_end| time|stock_id|price| |
| +-----------------------------+-----------------------------+-----------------------------+--------+-----+ |
| |2021-01-01T09:00:00.000+08:00|2021-01-01T09:10:00.000+08:00|2021-01-01T09:06:00.000+08:00| TESL|200.0| |
| |2021-01-01T09:00:00.000+08:00|2021-01-01T09:10:00.000+08:00|2021-01-01T09:07:00.000+08:00| TESL|202.0| |
| |2021-01-01T09:10:00.000+08:00|2021-01-01T09:20:00.000+08:00|2021-01-01T09:15:00.000+08:00| TESL|195.0| |
| |2021-01-01T09:00:00.000+08:00|2021-01-01T09:10:00.000+08:00|2021-01-01T09:05:00.000+08:00| AAPL|100.0| |
| |2021-01-01T09:00:00.000+08:00|2021-01-01T09:10:00.000+08:00|2021-01-01T09:07:00.000+08:00| AAPL|103.0| |
| |2021-01-01T09:00:00.000+08:00|2021-01-01T09:10:00.000+08:00|2021-01-01T09:09:00.000+08:00| AAPL|102.0| |
| +-----------------------------+-----------------------------+-----------------------------+--------+-----+ |
| |
| -- 结合 GROUP BY 语句,等效于树模型的 GROUP BY TIME |
| IoTDB> SELECT window_start, window_end, stock_id, avg(price) as avg FROM TUMBLE(DATA => bid, TIMECOL => 'time', SIZE => 10m) GROUP BY window_start, window_end, stock_id; |
| +-----------------------------+-----------------------------+--------+------------------+ |
| | window_start| window_end|stock_id| avg| |
| +-----------------------------+-----------------------------+--------+------------------+ |
| |2021-01-01T09:00:00.000+08:00|2021-01-01T09:10:00.000+08:00| TESL| 201.0| |
| |2021-01-01T09:10:00.000+08:00|2021-01-01T09:20:00.000+08:00| TESL| 195.0| |
| |2021-01-01T09:00:00.000+08:00|2021-01-01T09:10:00.000+08:00| AAPL|101.66666666666667| |
| +-----------------------------+-----------------------------+--------+------------------+ |
| ``` |
| |
| #### 1.3.6 CUMULATE |
| |
| ##### 功能描述 |
| |
| Cumulate 函数用于从初始的窗口开始,创建相同窗口开始但窗口结束步长不同的窗口,直到达到最大的窗口大小。每个窗口包含其区间内的元素。例如:1小时步长,24小时大小的累计窗口,每天可以获得如下这些窗口:`[00:00, 01:00)`,`[00:00, 02:00)`,`[00:00, 03:00)`, …, `[00:00, 24:00)` |
| |
| ##### 函数定义 |
| |
| ```sql |
| CUMULATE(data, timecol, size, step[, origin]) |
| ``` |
| |
| ##### 参数说明 |
| |
| | 参数名 | 参数类型 | 参数属性 | 描述 | |
| | --------- | ---------- | --------------------------------- | -------------------------------------------- | |
| | DATA | 表参数 | ROW SEMANTICPASS THROUGH | 输入表 | |
| | TIMECOL | 标量参数 | 字符串类型默认值:time | 时间列 | |
| | SIZE | 标量参数 | 长整数类型 | 窗口大小,SIZE必须是STEP的整数倍,需为正数 | |
| | STEP | 标量参数 | 长整数类型 | 窗口步长,需为正数 | |
| | ORIGIN | 标量参数 | 时间戳类型默认值:Unix 纪元时间 | 第一个窗口起始时间 | |
| |
| > 注意:size 如果不是 step 的整数倍,则会报错`Cumulative table function requires size must be an integral multiple of step` |
| |
| ##### 返回结果 |
| |
| CUMULATE函数的返回结果列包含: |
| |
| * window\_start: 窗口开始时间(闭区间) |
| * window\_end: 窗口结束时间(开区间) |
| * 映射列:DATA 参数的所有输入列 |
| |
| ##### 使用示例 |
| |
| ```sql |
| IoTDB> SELECT * FROM CUMULATE(DATA => bid,TIMECOL => 'time',STEP => 2m,SIZE => 10m); |
| +-----------------------------+-----------------------------+-----------------------------+--------+-----+ |
| | window_start| window_end| time|stock_id|price| |
| +-----------------------------+-----------------------------+-----------------------------+--------+-----+ |
| |2021-01-01T09:00:00.000+08:00|2021-01-01T09:08:00.000+08:00|2021-01-01T09:06:00.000+08:00| TESL|200.0| |
| |2021-01-01T09:00:00.000+08:00|2021-01-01T09:10:00.000+08:00|2021-01-01T09:06:00.000+08:00| TESL|200.0| |
| |2021-01-01T09:00:00.000+08:00|2021-01-01T09:08:00.000+08:00|2021-01-01T09:07:00.000+08:00| TESL|202.0| |
| |2021-01-01T09:00:00.000+08:00|2021-01-01T09:10:00.000+08:00|2021-01-01T09:07:00.000+08:00| TESL|202.0| |
| |2021-01-01T09:10:00.000+08:00|2021-01-01T09:16:00.000+08:00|2021-01-01T09:15:00.000+08:00| TESL|195.0| |
| |2021-01-01T09:10:00.000+08:00|2021-01-01T09:18:00.000+08:00|2021-01-01T09:15:00.000+08:00| TESL|195.0| |
| |2021-01-01T09:10:00.000+08:00|2021-01-01T09:20:00.000+08:00|2021-01-01T09:15:00.000+08:00| TESL|195.0| |
| |2021-01-01T09:00:00.000+08:00|2021-01-01T09:06:00.000+08:00|2021-01-01T09:05:00.000+08:00| AAPL|100.0| |
| |2021-01-01T09:00:00.000+08:00|2021-01-01T09:08:00.000+08:00|2021-01-01T09:05:00.000+08:00| AAPL|100.0| |
| |2021-01-01T09:00:00.000+08:00|2021-01-01T09:10:00.000+08:00|2021-01-01T09:05:00.000+08:00| AAPL|100.0| |
| |2021-01-01T09:00:00.000+08:00|2021-01-01T09:08:00.000+08:00|2021-01-01T09:07:00.000+08:00| AAPL|103.0| |
| |2021-01-01T09:00:00.000+08:00|2021-01-01T09:10:00.000+08:00|2021-01-01T09:07:00.000+08:00| AAPL|103.0| |
| |2021-01-01T09:00:00.000+08:00|2021-01-01T09:10:00.000+08:00|2021-01-01T09:09:00.000+08:00| AAPL|102.0| |
| +-----------------------------+-----------------------------+-----------------------------+--------+-----+ |
| |
| -- 结合 GROUP BY 语句,等效于树模型的 GROUP BY TIME |
| IoTDB> SELECT window_start, window_end, stock_id, avg(price) as avg FROM CUMULATE(DATA => bid,TIMECOL => 'time',STEP => 2m, SIZE => 10m) GROUP BY window_start, window_end, stock_id; |
| +-----------------------------+-----------------------------+--------+------------------+ |
| | window_start| window_end|stock_id| avg| |
| +-----------------------------+-----------------------------+--------+------------------+ |
| |2021-01-01T09:00:00.000+08:00|2021-01-01T09:08:00.000+08:00| TESL| 201.0| |
| |2021-01-01T09:00:00.000+08:00|2021-01-01T09:10:00.000+08:00| TESL| 201.0| |
| |2021-01-01T09:10:00.000+08:00|2021-01-01T09:16:00.000+08:00| TESL| 195.0| |
| |2021-01-01T09:10:00.000+08:00|2021-01-01T09:18:00.000+08:00| TESL| 195.0| |
| |2021-01-01T09:10:00.000+08:00|2021-01-01T09:20:00.000+08:00| TESL| 195.0| |
| |2021-01-01T09:00:00.000+08:00|2021-01-01T09:06:00.000+08:00| AAPL| 100.0| |
| |2021-01-01T09:00:00.000+08:00|2021-01-01T09:08:00.000+08:00| AAPL| 101.5| |
| |2021-01-01T09:00:00.000+08:00|2021-01-01T09:10:00.000+08:00| AAPL|101.66666666666667| |
| +-----------------------------+-----------------------------+--------+------------------+ |
| ``` |