date_bin 函数date_bin 是一个标量函数,用于将时间戳规整到指定的时间区间起点,并结合 GROUP BY 子句实现降采样。
在示例数据页面中,包含了用于构建表结构和插入数据的SQL语句,下载并在IoTDB CLI中执行这些语句,即可将数据导入IoTDB,您可以使用这些数据来测试和执行示例中的SQL语句,并获得相应的结果。
示例 1:获取设备** 100 **某个时间范围的每小时平均温度
SELECT date_bin(1h, time) AS hour_time, avg(temperature) AS avg_temp FROM table1 WHERE (time >= 2024-11-27 00:00:00 AND time <= 2024-11-30 00:00:00) AND device_id = '100' GROUP BY 1;
结果:
+-----------------------------+--------+ | hour_time|avg_temp| +-----------------------------+--------+ |2024-11-29T11:00:00.000+08:00| null| |2024-11-29T18:00:00.000+08:00| 90.0| |2024-11-28T08:00:00.000+08:00| 85.0| |2024-11-28T09:00:00.000+08:00| null| |2024-11-28T10:00:00.000+08:00| 85.0| |2024-11-28T11:00:00.000+08:00| 88.0| +-----------------------------+--------+
示例 2:获取每个设备某个时间范围的每小时平均温度
SELECT date_bin(1h, time) AS hour_time, device_id, avg(temperature) AS avg_temp FROM table1 WHERE time >= 2024-11-27 00:00:00 AND time <= 2024-11-30 00:00:00 GROUP BY 1, device_id;
结果:
+-----------------------------+---------+--------+ | hour_time|device_id|avg_temp| +-----------------------------+---------+--------+ |2024-11-29T11:00:00.000+08:00| 100| null| |2024-11-29T18:00:00.000+08:00| 100| 90.0| |2024-11-28T08:00:00.000+08:00| 100| 85.0| |2024-11-28T09:00:00.000+08:00| 100| null| |2024-11-28T10:00:00.000+08:00| 100| 85.0| |2024-11-28T11:00:00.000+08:00| 100| 88.0| |2024-11-29T10:00:00.000+08:00| 101| 85.0| |2024-11-27T16:00:00.000+08:00| 101| 85.0| +-----------------------------+---------+--------+
示例 3:获取所有设备某个时间范围的每小时平均温度
SELECT date_bin(1h, time) AS hour_time, avg(temperature) AS avg_temp FROM table1 WHERE time >= 2024-11-27 00:00:00 AND time <= 2024-11-30 00:00:00 group by 1;
结果:
+-----------------------------+--------+ | hour_time|avg_temp| +-----------------------------+--------+ |2024-11-29T10:00:00.000+08:00| 85.0| |2024-11-27T16:00:00.000+08:00| 85.0| |2024-11-29T11:00:00.000+08:00| null| |2024-11-29T18:00:00.000+08:00| 90.0| |2024-11-28T08:00:00.000+08:00| 85.0| |2024-11-28T09:00:00.000+08:00| null| |2024-11-28T10:00:00.000+08:00| 85.0| |2024-11-28T11:00:00.000+08:00| 88.0| +-----------------------------+--------+
date_bin_gapfill 函数date_bin_gapfill 是 date_bin 的扩展,能够填充缺失的时间区间,从而返回完整的时间序列。
date_bin_gapfill会返回空结果集date_bin_gapfill 必须与 GROUP BY 子句搭配使用,如果用在其他子句中,不会报错,但不会执行 gapfill 功能,效果与使用 date_bin 相同。GROUP BY 子句中只能使用一个 date_bin_gapfill。如果出现多个 date_bin_gapfill,会报错:multiple date_bin_gapfill calls not alloweddate_bin_gapfill 的执行顺序:GAPFILL 功能发生在 HAVING 子句执行之后,FILL 子句执行之前。date_bin_gapfill 时,****WHERE 子句中的时间过滤条件必须是以下形式之一:time >= XXX AND time <= XXXtime > XXX AND time < XXXtime BETWEEN XXX AND XXXdate_bin_gapfill 时,如果出现其他时间过滤条件,会报错。时间过滤条件与其他值过滤条件只能通过 AND 连接。示例 1:填充缺失时间区间
SELECT date_bin_gapfill(1h, time) AS hour_time, avg(temperature) AS avg_temp FROM table1 WHERE (time >= 2024-11-28 07:00:00 AND time <= 2024-11-28 16:00:00) AND device_id = '100' GROUP BY 1;
结果:
+-----------------------------+--------+ | hour_time|avg_temp| +-----------------------------+--------+ |2024-11-28T07:00:00.000+08:00| null| |2024-11-28T08:00:00.000+08:00| 85.0| |2024-11-28T09:00:00.000+08:00| null| |2024-11-28T10:00:00.000+08:00| 85.0| |2024-11-28T11:00:00.000+08:00| 88.0| |2024-11-28T12:00:00.000+08:00| null| |2024-11-28T13:00:00.000+08:00| null| |2024-11-28T14:00:00.000+08:00| null| |2024-11-28T15:00:00.000+08:00| null| |2024-11-28T16:00:00.000+08:00| null| +-----------------------------+--------+
示例 2:结合设备分组填充缺失时间区间
SELECT date_bin_gapfill(1h, time) AS hour_time, device_id, avg(temperature) AS avg_temp FROM table1 WHERE time >= 2024-11-28 07:00:00 AND time <= 2024-11-28 16:00:00 GROUP BY 1, device_id;
结果:
+-----------------------------+---------+--------+ | hour_time|device_id|avg_temp| +-----------------------------+---------+--------+ |2024-11-28T07:00:00.000+08:00| 100| null| |2024-11-28T08:00:00.000+08:00| 100| 85.0| |2024-11-28T09:00:00.000+08:00| 100| null| |2024-11-28T10:00:00.000+08:00| 100| 85.0| |2024-11-28T11:00:00.000+08:00| 100| 88.0| |2024-11-28T12:00:00.000+08:00| 100| null| |2024-11-28T13:00:00.000+08:00| 100| null| |2024-11-28T14:00:00.000+08:00| 100| null| |2024-11-28T15:00:00.000+08:00| 100| null| |2024-11-28T16:00:00.000+08:00| 100| null| +-----------------------------+---------+--------+
示例 3:查询范围内没有数据返回空结果集
SELECT date_bin_gapfill(1h, time) AS hour_time, device_id, avg(temperature) AS avg_temp FROM table1 WHERE time >= 2024-11-27 09:00:00 AND time <= 2024-11-27 14:00:00 GROUP BY 1, device_id;
结果:
+---------+---------+--------+ |hour_time|device_id|avg_temp| +---------+---------+--------+ +---------+---------+--------+
DIFF 函数用于计算当前行与上一行的差值。对于第一行,由于没有前一行数据,因此永远返回 NULL。
DIFF(numberic[, boolean]) -> Double
第一个参数:数值类型
INT32、INT64、FLOAT、DOUBLE)第二个参数:布尔类型(可选)
true 或 false)。true。true:忽略 NULL 值,向前找到第一个非 NULL 值进行差值计算。如果前面没有非 NULL 值,则返回 NULL。false:不忽略 NULL 值,如果前一行为 NULL,则差值结果为 NULL。'ignoreNull'='true' 或 'ignoreNull'='false',但在表模型中,只需指定为 true 或 false。'ignoreNull'='true' 或 'ignoreNull'='false',表模型会将其视为对两个字符串常量进行等号比较,返回布尔值,但结果总是 false,等价于指定第二个参数为 false。示例 1:忽略 NULL 值
SELECT time, DIFF(temperature) AS diff_temp FROM table1 WHERE device_id = '100';
结果:
+-----------------------------+---------+ | time|diff_temp| +-----------------------------+---------+ |2024-11-29T11:00:00.000+08:00| null| |2024-11-29T18:30:00.000+08:00| null| |2024-11-28T08:00:00.000+08:00| -5.0| |2024-11-28T09:00:00.000+08:00| null| |2024-11-28T10:00:00.000+08:00| 0.0| |2024-11-28T11:00:00.000+08:00| 3.0| |2024-11-26T13:37:00.000+08:00| 2.0| |2024-11-26T13:38:00.000+08:00| 0.0| +-----------------------------+---------+
示例 2:不忽略 NULL 值
SELECT time, DIFF(temperature, false) AS diff_temp FROM table1 WHERE device_id = '100';
结果:
+-----------------------------+---------+ | time|diff_temp| +-----------------------------+---------+ |2024-11-29T11:00:00.000+08:00| null| |2024-11-29T18:30:00.000+08:00| null| |2024-11-28T08:00:00.000+08:00| -5.0| |2024-11-28T09:00:00.000+08:00| null| |2024-11-28T10:00:00.000+08:00| null| |2024-11-28T11:00:00.000+08:00| 3.0| |2024-11-26T13:37:00.000+08:00| 2.0| |2024-11-26T13:38:00.000+08:00| 0.0| +-----------------------------+---------+
示例 3:完整示例
SELECT time, temperature, DIFF(temperature) AS diff_temp_1, DIFF(temperature, false) AS diff_temp_2 FROM table1 WHERE device_id = '100';
结果:
+-----------------------------+-----------+-----------+-----------+ | time|temperature|diff_temp_1|diff_temp_2| +-----------------------------+-----------+-----------+-----------+ |2024-11-29T11:00:00.000+08:00| null| null| null| |2024-11-29T18:30:00.000+08:00| 90.0| null| null| |2024-11-28T08:00:00.000+08:00| 85.0| -5.0| -5.0| |2024-11-28T09:00:00.000+08:00| null| null| null| |2024-11-28T10:00:00.000+08:00| 85.0| 0.0| null| |2024-11-28T11:00:00.000+08:00| 88.0| 3.0| 3.0| |2024-11-26T13:37:00.000+08:00| 90.0| 2.0| 2.0| |2024-11-26T13:38:00.000+08:00| 90.0| 0.0| 0.0| +-----------------------------+-----------+-----------+-----------+
原始示例数据如下:
IoTDB> SELECT * FROM bid; +-----------------------------+--------+-----+ | time|stock_id|price| +-----------------------------+--------+-----+ |2021-01-01T09:05:00.000+08:00| AAPL|100.0| |2021-01-01T09:06:00.000+08:00| TESL|200.0| |2021-01-01T09:07:00.000+08:00| AAPL|103.0| |2021-01-01T09:07:00.000+08:00| TESL|202.0| |2021-01-01T09:09:00.000+08:00| AAPL|102.0| |2021-01-01T09:15:00.000+08:00| TESL|195.0| +-----------------------------+--------+-----+ -- 创建语句 CREATE TABLE bid(time TIMESTAMP TIME, stock_id STRING TAG, price FLOAT FIELD); -- 插入数据 INSERT INTO bid(time, stock_id, price) VALUES('2021-01-01T09:05:00','AAPL',100.0),('2021-01-01T09:06:00','TESL',200.0),('2021-01-01T09:07:00','AAPL',103.0),('2021-01-01T09:07:00','TESL',202.0),('2021-01-01T09:09:00','AAPL',102.0),('2021-01-01T09:15:00','TESL',195.0);
HOP 函数用于按时间分段分窗分析,识别每一行数据所属的时间窗口。该函数通过指定固定窗口大小(size)和窗口滑动步长(SLIDE),将数据按时间戳分配到所有与其时间戳重叠的窗口中。若窗口之间存在重叠(步长 < 窗口大小),数据会自动复制到多个窗口。
HOP(data, timecol, size, slide[, origin])
| 参数名 | 参数类型 | 参数属性 | 描述 |
|---|---|---|---|
| DATA | 表参数 | ROW SEMANTICPASS THROUGH | 输入表 |
| TIMECOL | 标量参数 | 字符串类型默认值:time | 时间列 |
| SIZE | 标量参数 | 长整数类型 | 窗口大小 |
| SLIDE | 标量参数 | 长整数类型 | 窗口滑动步长 |
| ORIGIN | 标量参数 | 时间戳类型默认值:Unix 纪元时间 | 第一个窗口起始时间 |
HOP 函数的返回结果列包含:
IoTDB> SELECT * FROM HOP(DATA => bid,TIMECOL => 'time',SLIDE => 5m,SIZE => 10m); +-----------------------------+-----------------------------+-----------------------------+--------+-----+ | window_start| window_end| time|stock_id|price| +-----------------------------+-----------------------------+-----------------------------+--------+-----+ |2021-01-01T09:00:00.000+08:00|2021-01-01T09:10:00.000+08:00|2021-01-01T09:05:00.000+08:00| AAPL|100.0| |2021-01-01T09:05:00.000+08:00|2021-01-01T09:15:00.000+08:00|2021-01-01T09:05:00.000+08:00| AAPL|100.0| |2021-01-01T09:00:00.000+08:00|2021-01-01T09:10:00.000+08:00|2021-01-01T09:06:00.000+08:00| TESL|200.0| |2021-01-01T09:05:00.000+08:00|2021-01-01T09:15:00.000+08:00|2021-01-01T09:06:00.000+08:00| TESL|200.0| |2021-01-01T09:00:00.000+08:00|2021-01-01T09:10:00.000+08:00|2021-01-01T09:07:00.000+08:00| AAPL|103.0| |2021-01-01T09:00:00.000+08:00|2021-01-01T09:10:00.000+08:00|2021-01-01T09:07:00.000+08:00| TESL|202.0| |2021-01-01T09:05:00.000+08:00|2021-01-01T09:15:00.000+08:00|2021-01-01T09:07:00.000+08:00| AAPL|103.0| |2021-01-01T09:05:00.000+08:00|2021-01-01T09:15:00.000+08:00|2021-01-01T09:07:00.000+08:00| TESL|202.0| |2021-01-01T09:00:00.000+08:00|2021-01-01T09:10:00.000+08:00|2021-01-01T09:09:00.000+08:00| AAPL|102.0| |2021-01-01T09:05:00.000+08:00|2021-01-01T09:15:00.000+08:00|2021-01-01T09:09:00.000+08:00| AAPL|102.0| |2021-01-01T09:10:00.000+08:00|2021-01-01T09:20:00.000+08:00|2021-01-01T09:15:00.000+08:00| TESL|195.0| |2021-01-01T09:15:00.000+08:00|2021-01-01T09:25:00.000+08:00|2021-01-01T09:15:00.000+08:00| TESL|195.0| +-----------------------------+-----------------------------+-----------------------------+--------+-----+ -- 结合 GROUP BY 语句,等效于树模型的 GROUP BY TIME IoTDB> SELECT window_start, window_end, stock_id, avg(price) as avg FROM HOP(DATA => bid,TIMECOL => 'time',SLIDE => 5m,SIZE => 10m) GROUP BY window_start, window_end, stock_id; +-----------------------------+-----------------------------+--------+------------------+ | window_start| window_end|stock_id| avg| +-----------------------------+-----------------------------+--------+------------------+ |2021-01-01T09:00:00.000+08:00|2021-01-01T09:10:00.000+08:00| TESL| 201.0| |2021-01-01T09:05:00.000+08:00|2021-01-01T09:15:00.000+08:00| TESL| 201.0| |2021-01-01T09:10:00.000+08:00|2021-01-01T09:20:00.000+08:00| TESL| 195.0| |2021-01-01T09:15:00.000+08:00|2021-01-01T09:25:00.000+08:00| TESL| 195.0| |2021-01-01T09:00:00.000+08:00|2021-01-01T09:10:00.000+08:00| AAPL|101.66666666666667| |2021-01-01T09:05:00.000+08:00|2021-01-01T09:15:00.000+08:00| AAPL|101.66666666666667| +-----------------------------+-----------------------------+--------+------------------+
SESSION 函数用于按会话间隔对数据进行分窗。系统逐行检查与前一行的时间间隔,小于阈值(GAP)则归入当前窗口,超过则归入下一个窗口。
SESSION(data [PARTITION BY(pkeys, ...)] [ORDER BY(okeys, ...)], timecol, gap)
| 参数名 | 参数类型 | 参数属性 | 描述 |
|---|---|---|---|
| DATA | 表参数 | SET SEMANTICPASS THROUGH | 输入表通过 pkeys、okeys 指定分区和排序 |
| TIMECOL | 标量参数 | 字符串类型默认值:‘time’ | 时间列名 |
| | GAP | 标量参数 | 长整数类型 | 会话间隔阈值 |
SESSION 函数的返回结果列包含:
IoTDB> SELECT * FROM SESSION(DATA => bid PARTITION BY stock_id ORDER BY time,TIMECOL => 'time',GAP => 2m); +-----------------------------+-----------------------------+-----------------------------+--------+-----+ | window_start| window_end| time|stock_id|price| +-----------------------------+-----------------------------+-----------------------------+--------+-----+ |2021-01-01T09:06:00.000+08:00|2021-01-01T09:07:00.000+08:00|2021-01-01T09:06:00.000+08:00| TESL|200.0| |2021-01-01T09:06:00.000+08:00|2021-01-01T09:07:00.000+08:00|2021-01-01T09:07:00.000+08:00| TESL|202.0| |2021-01-01T09:15:00.000+08:00|2021-01-01T09:15:00.000+08:00|2021-01-01T09:15:00.000+08:00| TESL|195.0| |2021-01-01T09:05:00.000+08:00|2021-01-01T09:09:00.000+08:00|2021-01-01T09:05:00.000+08:00| AAPL|100.0| |2021-01-01T09:05:00.000+08:00|2021-01-01T09:09:00.000+08:00|2021-01-01T09:07:00.000+08:00| AAPL|103.0| |2021-01-01T09:05:00.000+08:00|2021-01-01T09:09:00.000+08:00|2021-01-01T09:09:00.000+08:00| AAPL|102.0| +-----------------------------+-----------------------------+-----------------------------+--------+-----+ -- 结合 GROUP BY 语句,等效于树模型的 GROUP BY SESSION IoTDB> SELECT window_start, window_end, stock_id, avg(price) as avg FROM SESSION(DATA => bid PARTITION BY stock_id ORDER BY time,TIMECOL => 'time',GAP => 2m) GROUP BY window_start, window_end, stock_id; +-----------------------------+-----------------------------+--------+------------------+ | window_start| window_end|stock_id| avg| +-----------------------------+-----------------------------+--------+------------------+ |2021-01-01T09:06:00.000+08:00|2021-01-01T09:07:00.000+08:00| TESL| 201.0| |2021-01-01T09:15:00.000+08:00|2021-01-01T09:15:00.000+08:00| TESL| 195.0| |2021-01-01T09:05:00.000+08:00|2021-01-01T09:09:00.000+08:00| AAPL|101.66666666666667| +-----------------------------+-----------------------------+--------+------------------+
VARIATION 函数用于按数据差值分窗,将第一条数据作为首个窗口的基准值,每个数据点会与基准值进行差值运算,如果差值小于给定的阈值(delta)则加入当前窗口;如果超过阈值,则分为下一个窗口,将该值作为下一个窗口的基准值。
VARIATION(data [PARTITION BY(pkeys, ...)] [ORDER BY(okeys, ...)], col, delta)
| 参数名 | 参数类型 | 参数属性 | 描述 |
|---|---|---|---|
| DATA | 表参数 | SET SEMANTICPASS THROUGH | 输入表通过 pkeys、okeys 指定分区和排序 |
| COL | 标量参数 | 字符串类型 | 标识对哪一列计算差值 |
| DELTA | 标量参数 | 浮点数类型 | 差值阈值 |
VARIATION 函数的返回结果列包含:
IoTDB> SELECT * FROM VARIATION(DATA => bid PARTITION BY stock_id ORDER BY time,COL => 'price',DELTA => 2.0); +------------+-----------------------------+--------+-----+ |window_index| time|stock_id|price| +------------+-----------------------------+--------+-----+ | 0|2021-01-01T09:06:00.000+08:00| TESL|200.0| | 0|2021-01-01T09:07:00.000+08:00| TESL|202.0| | 1|2021-01-01T09:15:00.000+08:00| TESL|195.0| | 0|2021-01-01T09:05:00.000+08:00| AAPL|100.0| | 1|2021-01-01T09:07:00.000+08:00| AAPL|103.0| | 1|2021-01-01T09:09:00.000+08:00| AAPL|102.0| +------------+-----------------------------+--------+-----+ -- 结合 GROUP BY 语句,等效于树模型的 GROUP BY VARIATION IoTDB> SELECT first(time) as window_start, last(time) as window_end, stock_id, avg(price) as avg FROM VARIATION(DATA => bid PARTITION BY stock_id ORDER BY time,COL => 'price', DELTA => 2.0) GROUP BY window_index, stock_id; +-----------------------------+-----------------------------+--------+-----+ | window_start| window_end|stock_id| avg| +-----------------------------+-----------------------------+--------+-----+ |2021-01-01T09:06:00.000+08:00|2021-01-01T09:07:00.000+08:00| TESL|201.0| |2021-01-01T09:15:00.000+08:00|2021-01-01T09:15:00.000+08:00| TESL|195.0| |2021-01-01T09:05:00.000+08:00|2021-01-01T09:05:00.000+08:00| AAPL|100.0| |2021-01-01T09:07:00.000+08:00|2021-01-01T09:09:00.000+08:00| AAPL|102.5| +-----------------------------+-----------------------------+--------+-----+
CAPACITY 函数用于按数据点数(行数)分窗,每个窗口最多有 SIZE 行数据。
CAPACITY(data [PARTITION BY(pkeys, ...)] [ORDER BY(okeys, ...)], size)
| 参数名 | 参数类型 | 参数属性 | 描述 |
|---|---|---|---|
| DATA | 表参数 | SET SEMANTICPASS THROUGH | 输入表通过 pkeys、okeys 指定分区和排序 |
| SIZE | 标量参数 | 长整数类型 | 窗口大小 |
CAPACITY 函数的返回结果列包含:
IoTDB> SELECT * FROM CAPACITY(DATA => bid PARTITION BY stock_id ORDER BY time, SIZE => 2); +------------+-----------------------------+--------+-----+ |window_index| time|stock_id|price| +------------+-----------------------------+--------+-----+ | 0|2021-01-01T09:06:00.000+08:00| TESL|200.0| | 0|2021-01-01T09:07:00.000+08:00| TESL|202.0| | 1|2021-01-01T09:15:00.000+08:00| TESL|195.0| | 0|2021-01-01T09:05:00.000+08:00| AAPL|100.0| | 0|2021-01-01T09:07:00.000+08:00| AAPL|103.0| | 1|2021-01-01T09:09:00.000+08:00| AAPL|102.0| +------------+-----------------------------+--------+-----+ -- 结合 GROUP BY 语句,等效于树模型的 GROUP BY COUNT IoTDB> SELECT first(time) as start_time, last(time) as end_time, stock_id, avg(price) as avg FROM CAPACITY(DATA => bid PARTITION BY stock_id ORDER BY time, SIZE => 2) GROUP BY window_index, stock_id; +-----------------------------+-----------------------------+--------+-----+ | start_time| end_time|stock_id| avg| +-----------------------------+-----------------------------+--------+-----+ |2021-01-01T09:06:00.000+08:00|2021-01-01T09:07:00.000+08:00| TESL|201.0| |2021-01-01T09:15:00.000+08:00|2021-01-01T09:15:00.000+08:00| TESL|195.0| |2021-01-01T09:05:00.000+08:00|2021-01-01T09:07:00.000+08:00| AAPL|101.5| |2021-01-01T09:09:00.000+08:00|2021-01-01T09:09:00.000+08:00| AAPL|102.0| +-----------------------------+-----------------------------+--------+-----+
TUMBLE 函数用于通过时间属性字段为每行数据分配一个窗口,滚动窗口的大小固定且不重复。
TUMBLE(data, timecol, size[, origin])
| 参数名 | 参数类型 | 参数属性 | 描述 |
|---|---|---|---|
| DATA | 表参数 | ROW SEMANTICPASS THROUGH | 输入表 |
| TIMECOL | 标量参数 | 字符串类型默认值:time | 时间列 |
| SIZE | 标量参数 | 长整数类型 | 窗口大小,需为正数 |
| ORIGIN | 标量参数 | 时间戳类型默认值:Unix 纪元时间 | 第一个窗口起始时间 |
TUBMLE 函数的返回结果列包含:
IoTDB> SELECT * FROM TUMBLE( DATA => bid, TIMECOL => 'time', SIZE => 10m); +-----------------------------+-----------------------------+-----------------------------+--------+-----+ | window_start| window_end| time|stock_id|price| +-----------------------------+-----------------------------+-----------------------------+--------+-----+ |2021-01-01T09:00:00.000+08:00|2021-01-01T09:10:00.000+08:00|2021-01-01T09:06:00.000+08:00| TESL|200.0| |2021-01-01T09:00:00.000+08:00|2021-01-01T09:10:00.000+08:00|2021-01-01T09:07:00.000+08:00| TESL|202.0| |2021-01-01T09:10:00.000+08:00|2021-01-01T09:20:00.000+08:00|2021-01-01T09:15:00.000+08:00| TESL|195.0| |2021-01-01T09:00:00.000+08:00|2021-01-01T09:10:00.000+08:00|2021-01-01T09:05:00.000+08:00| AAPL|100.0| |2021-01-01T09:00:00.000+08:00|2021-01-01T09:10:00.000+08:00|2021-01-01T09:07:00.000+08:00| AAPL|103.0| |2021-01-01T09:00:00.000+08:00|2021-01-01T09:10:00.000+08:00|2021-01-01T09:09:00.000+08:00| AAPL|102.0| +-----------------------------+-----------------------------+-----------------------------+--------+-----+ -- 结合 GROUP BY 语句,等效于树模型的 GROUP BY TIME IoTDB> SELECT window_start, window_end, stock_id, avg(price) as avg FROM TUMBLE(DATA => bid, TIMECOL => 'time', SIZE => 10m) GROUP BY window_start, window_end, stock_id; +-----------------------------+-----------------------------+--------+------------------+ | window_start| window_end|stock_id| avg| +-----------------------------+-----------------------------+--------+------------------+ |2021-01-01T09:00:00.000+08:00|2021-01-01T09:10:00.000+08:00| TESL| 201.0| |2021-01-01T09:10:00.000+08:00|2021-01-01T09:20:00.000+08:00| TESL| 195.0| |2021-01-01T09:00:00.000+08:00|2021-01-01T09:10:00.000+08:00| AAPL|101.66666666666667| +-----------------------------+-----------------------------+--------+------------------+
Cumulate 函数用于从初始的窗口开始,创建相同窗口开始但窗口结束步长不同的窗口,直到达到最大的窗口大小。每个窗口包含其区间内的元素。例如:1小时步长,24小时大小的累计窗口,每天可以获得如下这些窗口:[00:00, 01:00),[00:00, 02:00),[00:00, 03:00), …, [00:00, 24:00)
CUMULATE(data, timecol, size, step[, origin])
| 参数名 | 参数类型 | 参数属性 | 描述 |
|---|---|---|---|
| DATA | 表参数 | ROW SEMANTICPASS THROUGH | 输入表 |
| TIMECOL | 标量参数 | 字符串类型默认值:time | 时间列 |
| SIZE | 标量参数 | 长整数类型 | 窗口大小,SIZE必须是STEP的整数倍,需为正数 |
| STEP | 标量参数 | 长整数类型 | 窗口步长,需为正数 |
| ORIGIN | 标量参数 | 时间戳类型默认值:Unix 纪元时间 | 第一个窗口起始时间 |
注意:size 如果不是 step 的整数倍,则会报错
Cumulative table function requires size must be an integral multiple of step
CUMULATE函数的返回结果列包含:
IoTDB> SELECT * FROM CUMULATE(DATA => bid,TIMECOL => 'time',STEP => 2m,SIZE => 10m); +-----------------------------+-----------------------------+-----------------------------+--------+-----+ | window_start| window_end| time|stock_id|price| +-----------------------------+-----------------------------+-----------------------------+--------+-----+ |2021-01-01T09:00:00.000+08:00|2021-01-01T09:08:00.000+08:00|2021-01-01T09:06:00.000+08:00| TESL|200.0| |2021-01-01T09:00:00.000+08:00|2021-01-01T09:10:00.000+08:00|2021-01-01T09:06:00.000+08:00| TESL|200.0| |2021-01-01T09:00:00.000+08:00|2021-01-01T09:08:00.000+08:00|2021-01-01T09:07:00.000+08:00| TESL|202.0| |2021-01-01T09:00:00.000+08:00|2021-01-01T09:10:00.000+08:00|2021-01-01T09:07:00.000+08:00| TESL|202.0| |2021-01-01T09:10:00.000+08:00|2021-01-01T09:16:00.000+08:00|2021-01-01T09:15:00.000+08:00| TESL|195.0| |2021-01-01T09:10:00.000+08:00|2021-01-01T09:18:00.000+08:00|2021-01-01T09:15:00.000+08:00| TESL|195.0| |2021-01-01T09:10:00.000+08:00|2021-01-01T09:20:00.000+08:00|2021-01-01T09:15:00.000+08:00| TESL|195.0| |2021-01-01T09:00:00.000+08:00|2021-01-01T09:06:00.000+08:00|2021-01-01T09:05:00.000+08:00| AAPL|100.0| |2021-01-01T09:00:00.000+08:00|2021-01-01T09:08:00.000+08:00|2021-01-01T09:05:00.000+08:00| AAPL|100.0| |2021-01-01T09:00:00.000+08:00|2021-01-01T09:10:00.000+08:00|2021-01-01T09:05:00.000+08:00| AAPL|100.0| |2021-01-01T09:00:00.000+08:00|2021-01-01T09:08:00.000+08:00|2021-01-01T09:07:00.000+08:00| AAPL|103.0| |2021-01-01T09:00:00.000+08:00|2021-01-01T09:10:00.000+08:00|2021-01-01T09:07:00.000+08:00| AAPL|103.0| |2021-01-01T09:00:00.000+08:00|2021-01-01T09:10:00.000+08:00|2021-01-01T09:09:00.000+08:00| AAPL|102.0| +-----------------------------+-----------------------------+-----------------------------+--------+-----+ -- 结合 GROUP BY 语句,等效于树模型的 GROUP BY TIME IoTDB> SELECT window_start, window_end, stock_id, avg(price) as avg FROM CUMULATE(DATA => bid,TIMECOL => 'time',STEP => 2m, SIZE => 10m) GROUP BY window_start, window_end, stock_id; +-----------------------------+-----------------------------+--------+------------------+ | window_start| window_end|stock_id| avg| +-----------------------------+-----------------------------+--------+------------------+ |2021-01-01T09:00:00.000+08:00|2021-01-01T09:08:00.000+08:00| TESL| 201.0| |2021-01-01T09:00:00.000+08:00|2021-01-01T09:10:00.000+08:00| TESL| 201.0| |2021-01-01T09:10:00.000+08:00|2021-01-01T09:16:00.000+08:00| TESL| 195.0| |2021-01-01T09:10:00.000+08:00|2021-01-01T09:18:00.000+08:00| TESL| 195.0| |2021-01-01T09:10:00.000+08:00|2021-01-01T09:20:00.000+08:00| TESL| 195.0| |2021-01-01T09:00:00.000+08:00|2021-01-01T09:06:00.000+08:00| AAPL| 100.0| |2021-01-01T09:00:00.000+08:00|2021-01-01T09:08:00.000+08:00| AAPL| 101.5| |2021-01-01T09:00:00.000+08:00|2021-01-01T09:10:00.000+08:00| AAPL|101.66666666666667| +-----------------------------+-----------------------------+--------+------------------+