blob: c31cf852600cb0c896d950f1c4fc937a0ee901f8 [file] [log] [blame]
/*
* Copyright (C) 2009, 2012, 2016 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#pragma once
#include "ExecutableAllocator.h"
#include <wtf/DataLog.h>
#include <wtf/PrintStream.h>
#include <wtf/RefPtr.h>
#include <wtf/text/CString.h>
// ASSERT_VALID_CODE_POINTER checks that ptr is a non-null pointer, and that it is a valid
// instruction address on the platform (for example, check any alignment requirements).
#if CPU(ARM_THUMB2) && ENABLE(JIT)
// ARM instructions must be 16-bit aligned. Thumb2 code pointers to be loaded into
// into the processor are decorated with the bottom bit set, while traditional ARM has
// the lower bit clear. Since we don't know what kind of pointer, we check for both
// decorated and undecorated null.
#define ASSERT_VALID_CODE_POINTER(ptr) \
ASSERT(reinterpret_cast<intptr_t>(ptr) & ~1)
#define ASSERT_VALID_CODE_OFFSET(offset) \
ASSERT(!(offset & 1)) // Must be multiple of 2.
#else
#define ASSERT_VALID_CODE_POINTER(ptr) \
ASSERT(ptr)
#define ASSERT_VALID_CODE_OFFSET(offset) // Anything goes!
#endif
namespace JSC {
enum OpcodeID : unsigned;
// FunctionPtr:
//
// FunctionPtr should be used to wrap pointers to C/C++ functions in JSC
// (particularly, the stub functions).
class FunctionPtr {
public:
FunctionPtr()
: m_value(0)
{
}
template<typename returnType>
FunctionPtr(returnType(*value)())
: m_value((void*)value)
{
ASSERT_VALID_CODE_POINTER(m_value);
}
template<typename returnType, typename argType1>
FunctionPtr(returnType(*value)(argType1))
: m_value((void*)value)
{
ASSERT_VALID_CODE_POINTER(m_value);
}
template<typename returnType, typename argType1, typename argType2>
FunctionPtr(returnType(*value)(argType1, argType2))
: m_value((void*)value)
{
ASSERT_VALID_CODE_POINTER(m_value);
}
template<typename returnType, typename argType1, typename argType2, typename argType3>
FunctionPtr(returnType(*value)(argType1, argType2, argType3))
: m_value((void*)value)
{
ASSERT_VALID_CODE_POINTER(m_value);
}
template<typename returnType, typename argType1, typename argType2, typename argType3, typename argType4>
FunctionPtr(returnType(*value)(argType1, argType2, argType3, argType4))
: m_value((void*)value)
{
ASSERT_VALID_CODE_POINTER(m_value);
}
template<typename returnType, typename argType1, typename argType2, typename argType3, typename argType4, typename argType5>
FunctionPtr(returnType(*value)(argType1, argType2, argType3, argType4, argType5))
: m_value((void*)value)
{
ASSERT_VALID_CODE_POINTER(m_value);
}
template<typename returnType, typename argType1, typename argType2, typename argType3, typename argType4, typename argType5, typename argType6>
FunctionPtr(returnType(*value)(argType1, argType2, argType3, argType4, argType5, argType6))
: m_value((void*)value)
{
ASSERT_VALID_CODE_POINTER(m_value);
}
// MSVC doesn't seem to treat functions with different calling conventions as
// different types; these methods already defined for fastcall, below.
#if CALLING_CONVENTION_IS_STDCALL && !OS(WINDOWS)
template<typename returnType>
FunctionPtr(returnType (CDECL *value)())
: m_value((void*)value)
{
ASSERT_VALID_CODE_POINTER(m_value);
}
template<typename returnType, typename argType1>
FunctionPtr(returnType (CDECL *value)(argType1))
: m_value((void*)value)
{
ASSERT_VALID_CODE_POINTER(m_value);
}
template<typename returnType, typename argType1, typename argType2>
FunctionPtr(returnType (CDECL *value)(argType1, argType2))
: m_value((void*)value)
{
ASSERT_VALID_CODE_POINTER(m_value);
}
template<typename returnType, typename argType1, typename argType2, typename argType3>
FunctionPtr(returnType (CDECL *value)(argType1, argType2, argType3))
: m_value((void*)value)
{
ASSERT_VALID_CODE_POINTER(m_value);
}
template<typename returnType, typename argType1, typename argType2, typename argType3, typename argType4>
FunctionPtr(returnType (CDECL *value)(argType1, argType2, argType3, argType4))
: m_value((void*)value)
{
ASSERT_VALID_CODE_POINTER(m_value);
}
#endif
#if COMPILER_SUPPORTS(FASTCALL_CALLING_CONVENTION)
template<typename returnType>
FunctionPtr(returnType (FASTCALL *value)())
: m_value((void*)value)
{
ASSERT_VALID_CODE_POINTER(m_value);
}
template<typename returnType, typename argType1>
FunctionPtr(returnType (FASTCALL *value)(argType1))
: m_value((void*)value)
{
ASSERT_VALID_CODE_POINTER(m_value);
}
template<typename returnType, typename argType1, typename argType2>
FunctionPtr(returnType (FASTCALL *value)(argType1, argType2))
: m_value((void*)value)
{
ASSERT_VALID_CODE_POINTER(m_value);
}
template<typename returnType, typename argType1, typename argType2, typename argType3>
FunctionPtr(returnType (FASTCALL *value)(argType1, argType2, argType3))
: m_value((void*)value)
{
ASSERT_VALID_CODE_POINTER(m_value);
}
template<typename returnType, typename argType1, typename argType2, typename argType3, typename argType4>
FunctionPtr(returnType (FASTCALL *value)(argType1, argType2, argType3, argType4))
: m_value((void*)value)
{
ASSERT_VALID_CODE_POINTER(m_value);
}
#endif
template<typename FunctionType>
explicit FunctionPtr(FunctionType* value)
// Using a C-ctyle cast here to avoid compiler error on RVTC:
// Error: #694: reinterpret_cast cannot cast away const or other type qualifiers
// (I guess on RVTC function pointers have a different constness to GCC/MSVC?)
: m_value((void*)value)
{
ASSERT_VALID_CODE_POINTER(m_value);
}
void* value() const { return m_value; }
void* executableAddress() const { return m_value; }
private:
void* m_value;
};
// ReturnAddressPtr:
//
// ReturnAddressPtr should be used to wrap return addresses generated by processor
// 'call' instructions exectued in JIT code. We use return addresses to look up
// exception and optimization information, and to repatch the call instruction
// that is the source of the return address.
class ReturnAddressPtr {
public:
ReturnAddressPtr()
: m_value(0)
{
}
explicit ReturnAddressPtr(void* value)
: m_value(value)
{
ASSERT_VALID_CODE_POINTER(m_value);
}
explicit ReturnAddressPtr(FunctionPtr function)
: m_value(function.value())
{
ASSERT_VALID_CODE_POINTER(m_value);
}
void* value() const { return m_value; }
void dump(PrintStream& out) const
{
out.print(RawPointer(m_value));
}
private:
void* m_value;
};
// MacroAssemblerCodePtr:
//
// MacroAssemblerCodePtr should be used to wrap pointers to JIT generated code.
class MacroAssemblerCodePtr {
public:
MacroAssemblerCodePtr()
: m_value(0)
{
}
explicit MacroAssemblerCodePtr(void* value)
#if CPU(ARM_THUMB2)
// Decorate the pointer as a thumb code pointer.
: m_value(reinterpret_cast<char*>(value) + 1)
#else
: m_value(value)
#endif
{
ASSERT_VALID_CODE_POINTER(m_value);
}
static MacroAssemblerCodePtr createFromExecutableAddress(void* value)
{
ASSERT_VALID_CODE_POINTER(value);
MacroAssemblerCodePtr result;
result.m_value = value;
return result;
}
static MacroAssemblerCodePtr createLLIntCodePtr(OpcodeID codeId);
explicit MacroAssemblerCodePtr(ReturnAddressPtr ra)
: m_value(ra.value())
{
ASSERT_VALID_CODE_POINTER(m_value);
}
void* executableAddress() const { return m_value; }
#if CPU(ARM_THUMB2)
// To use this pointer as a data address remove the decoration.
void* dataLocation() const { ASSERT_VALID_CODE_POINTER(m_value); return reinterpret_cast<char*>(m_value) - 1; }
#else
void* dataLocation() const { ASSERT_VALID_CODE_POINTER(m_value); return m_value; }
#endif
explicit operator bool() const { return m_value; }
bool operator==(const MacroAssemblerCodePtr& other) const
{
return m_value == other.m_value;
}
void dumpWithName(const char* name, PrintStream& out) const;
void dump(PrintStream& out) const;
enum EmptyValueTag { EmptyValue };
enum DeletedValueTag { DeletedValue };
MacroAssemblerCodePtr(EmptyValueTag)
: m_value(emptyValue())
{
}
MacroAssemblerCodePtr(DeletedValueTag)
: m_value(deletedValue())
{
}
bool isEmptyValue() const { return m_value == emptyValue(); }
bool isDeletedValue() const { return m_value == deletedValue(); }
unsigned hash() const { return PtrHash<void*>::hash(m_value); }
private:
static void* emptyValue() { return bitwise_cast<void*>(static_cast<intptr_t>(1)); }
static void* deletedValue() { return bitwise_cast<void*>(static_cast<intptr_t>(2)); }
void* m_value;
};
struct MacroAssemblerCodePtrHash {
static unsigned hash(const MacroAssemblerCodePtr& ptr) { return ptr.hash(); }
static bool equal(const MacroAssemblerCodePtr& a, const MacroAssemblerCodePtr& b)
{
return a == b;
}
static const bool safeToCompareToEmptyOrDeleted = true;
};
// MacroAssemblerCodeRef:
//
// A reference to a section of JIT generated code. A CodeRef consists of a
// pointer to the code, and a ref pointer to the pool from within which it
// was allocated.
class MacroAssemblerCodeRef {
private:
// This is private because it's dangerous enough that we want uses of it
// to be easy to find - hence the static create method below.
explicit MacroAssemblerCodeRef(MacroAssemblerCodePtr codePtr)
: m_codePtr(codePtr)
{
ASSERT(m_codePtr);
}
public:
MacroAssemblerCodeRef()
{
}
MacroAssemblerCodeRef(Ref<ExecutableMemoryHandle>&& executableMemory)
: m_codePtr(executableMemory->start())
, m_executableMemory(WTFMove(executableMemory))
{
ASSERT(m_executableMemory->isManaged());
ASSERT(m_executableMemory->start());
ASSERT(m_codePtr);
}
// Use this only when you know that the codePtr refers to code that is
// already being kept alive through some other means. Typically this means
// that codePtr is immortal.
static MacroAssemblerCodeRef createSelfManagedCodeRef(MacroAssemblerCodePtr codePtr)
{
return MacroAssemblerCodeRef(codePtr);
}
// Helper for creating self-managed code refs from LLInt.
static MacroAssemblerCodeRef createLLIntCodeRef(OpcodeID codeId);
ExecutableMemoryHandle* executableMemory() const
{
return m_executableMemory.get();
}
MacroAssemblerCodePtr code() const
{
return m_codePtr;
}
size_t size() const
{
if (!m_executableMemory)
return 0;
return m_executableMemory->sizeInBytes();
}
bool tryToDisassemble(PrintStream& out, const char* prefix = "") const;
bool tryToDisassemble(const char* prefix = "") const;
JS_EXPORT_PRIVATE CString disassembly() const;
explicit operator bool() const { return !!m_codePtr; }
void dump(PrintStream& out) const;
private:
MacroAssemblerCodePtr m_codePtr;
RefPtr<ExecutableMemoryHandle> m_executableMemory;
};
} // namespace JSC
namespace WTF {
template<typename T> struct DefaultHash;
template<> struct DefaultHash<JSC::MacroAssemblerCodePtr> {
typedef JSC::MacroAssemblerCodePtrHash Hash;
};
template<typename T> struct HashTraits;
template<> struct HashTraits<JSC::MacroAssemblerCodePtr> : public CustomHashTraits<JSC::MacroAssemblerCodePtr> { };
} // namespace WTF