blob: 809ac66ad6d62dd3f87338d46049d3226a2a3f13 [file] [log] [blame]
/**
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
#ifndef WTF_Ref_h
#define WTF_Ref_h
#include <wtf/Assertions.h>
#include <wtf/GetPtr.h>
#include <wtf/Noncopyable.h>
#include <wtf/StdLibExtras.h>
#include <wtf/TypeCasts.h>
#if ASAN_ENABLED
extern "C" void __asan_poison_memory_region(void const volatile *addr, size_t size);
extern "C" void __asan_unpoison_memory_region(void const volatile *addr, size_t size);
extern "C" int __asan_address_is_poisoned(void const volatile *addr);
#endif
namespace WTF {
inline void adopted(const void*) { }
template<typename T> class Ref;
template<typename T> Ref<T> adoptRef(T&);
template<typename T> class Ref {
public:
static constexpr bool isRef = true;
~Ref()
{
#if ASAN_ENABLED
if (__asan_address_is_poisoned(this))
__asan_unpoison_memory_region(this, sizeof(*this));
#endif
if (m_ptr)
m_ptr->deref();
}
Ref(T& object)
: m_ptr(&object)
{
m_ptr->ref();
}
// Use copyRef() instead.
Ref(const Ref& other) = delete;
template<typename U> Ref(const Ref<U>& other) = delete;
Ref(Ref&& other)
: m_ptr(&other.leakRef())
{
ASSERT(m_ptr);
}
template<typename U>
Ref(Ref<U>&& other)
: m_ptr(&other.leakRef())
{
ASSERT(m_ptr);
}
Ref& operator=(T& object)
{
ASSERT(m_ptr);
object.ref();
m_ptr->deref();
m_ptr = &object;
ASSERT(m_ptr);
return *this;
}
// Use copyRef() and the move assignment operators instead.
Ref& operator=(const Ref& reference) = delete;
template<typename U> Ref& operator=(const Ref<U>& reference) = delete;
Ref& operator=(Ref&& reference)
{
ASSERT(m_ptr);
m_ptr->deref();
m_ptr = &reference.leakRef();
ASSERT(m_ptr);
return *this;
}
template<typename U> Ref& operator=(Ref<U>&& reference)
{
ASSERT(m_ptr);
m_ptr->deref();
m_ptr = &reference.leakRef();
ASSERT(m_ptr);
return *this;
}
// Hash table deleted values, which are only constructed and never copied or destroyed.
Ref(HashTableDeletedValueType) : m_ptr(hashTableDeletedValue()) { }
bool isHashTableDeletedValue() const { return m_ptr == hashTableDeletedValue(); }
static T* hashTableDeletedValue() { return reinterpret_cast<T*>(-1); }
Ref(HashTableEmptyValueType) : m_ptr(hashTableEmptyValue()) { }
bool isHashTableEmptyValue() const { return m_ptr == hashTableEmptyValue(); }
static T* hashTableEmptyValue() { return nullptr; }
const T* ptrAllowingHashTableEmptyValue() const { ASSERT(m_ptr || isHashTableEmptyValue()); return m_ptr; }
T* ptrAllowingHashTableEmptyValue() { ASSERT(m_ptr || isHashTableEmptyValue()); return m_ptr; }
void assignToHashTableEmptyValue(Ref&& reference)
{
ASSERT(m_ptr == hashTableEmptyValue());
m_ptr = &reference.leakRef();
ASSERT(m_ptr);
}
T* operator->() const { ASSERT(m_ptr); return m_ptr; }
T* ptr() const { ASSERT(m_ptr); return m_ptr; }
T& get() const { ASSERT(m_ptr); return *m_ptr; }
operator T&() const { ASSERT(m_ptr); return *m_ptr; }
bool operator!() const { ASSERT(m_ptr); return !*m_ptr; }
template<typename U> Ref<T> replace(Ref<U>&&) WARN_UNUSED_RETURN;
#if COMPILER_SUPPORTS(CXX_REFERENCE_QUALIFIED_FUNCTIONS)
Ref copyRef() && = delete;
Ref copyRef() const & WARN_UNUSED_RETURN { return Ref(*m_ptr); }
#else
Ref copyRef() const WARN_UNUSED_RETURN { return Ref(*m_ptr); }
#endif
T& leakRef() WARN_UNUSED_RETURN
{
ASSERT(m_ptr);
T& result = *std::exchange(m_ptr, nullptr);
#if ASAN_ENABLED
__asan_poison_memory_region(this, sizeof(*this));
#endif
return result;
}
private:
friend Ref adoptRef<T>(T&);
enum AdoptTag { Adopt };
Ref(T& object, AdoptTag)
: m_ptr(&object)
{
}
T* m_ptr;
};
template<typename T> template<typename U> inline Ref<T> Ref<T>::replace(Ref<U>&& reference)
{
auto oldReference = adoptRef(*m_ptr);
m_ptr = &reference.leakRef();
return oldReference;
}
template<typename T, typename U> inline Ref<T> static_reference_cast(Ref<U>& reference)
{
return Ref<T>(static_cast<T&>(reference.get()));
}
template<typename T, typename U> inline Ref<T> static_reference_cast(Ref<U>&& reference)
{
return adoptRef(static_cast<T&>(reference.leakRef()));
}
template<typename T, typename U> inline Ref<T> static_reference_cast(const Ref<U>& reference)
{
return Ref<T>(static_cast<T&>(reference.copyRef().get()));
}
template <typename T>
struct GetPtrHelper<Ref<T>> {
typedef T* PtrType;
static T* getPtr(const Ref<T>& p) { return const_cast<T*>(p.ptr()); }
};
template <typename T>
struct IsSmartPtr<Ref<T>> {
static const bool value = true;
};
template<typename T>
inline Ref<T> adoptRef(T& reference)
{
adopted(&reference);
return Ref<T>(reference, Ref<T>::Adopt);
}
template<typename T>
inline Ref<T> makeRef(T& reference)
{
return Ref<T>(reference);
}
template<typename ExpectedType, typename ArgType> inline bool is(Ref<ArgType>& source)
{
return is<ExpectedType>(source.get());
}
template<typename ExpectedType, typename ArgType> inline bool is(const Ref<ArgType>& source)
{
return is<ExpectedType>(source.get());
}
} // namespace WTF
using WTF::Ref;
using WTF::adoptRef;
using WTF::makeRef;
using WTF::static_reference_cast;
#endif // WTF_Ref_h