blob: 420dd9df16db4833415173e1ae90e0a59c2405af [file] [log] [blame]
/**
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
#pragma once
#if ENABLE(DFG_JIT)
#include "DFGFlowIndexing.h"
#include "DFGGraph.h"
#include "DFGNode.h"
namespace JSC { namespace DFG {
// This is a mapping from nodes to values that is useful for flow-sensitive analysis. In such an
// analysis, at every point in the program we need to consider the values of nodes plus the shadow
// values of Phis. This makes it easy to do both of those things.
template<typename T>
class FlowMap {
public:
FlowMap(Graph& graph)
: m_graph(graph)
{
resize();
}
// Call this if the number of nodes in the graph has changed. Note that this does not reset any
// entries.
void resize()
{
m_map.resize(m_graph.maxNodeCount());
m_shadowMap.resize(m_graph.maxNodeCount());
}
Graph& graph() const { return m_graph; }
T& at(unsigned nodeIndex)
{
return m_map[nodeIndex];
}
T& at(Node* node)
{
return at(node->index());
}
T& atShadow(unsigned nodeIndex)
{
return m_shadowMap[nodeIndex];
}
T& atShadow(Node* node)
{
return atShadow(node->index());
}
T& at(unsigned nodeIndex, NodeFlowProjection::Kind kind)
{
switch (kind) {
case NodeFlowProjection::Primary:
return at(nodeIndex);
case NodeFlowProjection::Shadow:
return atShadow(nodeIndex);
}
RELEASE_ASSERT_NOT_REACHED();
return *bitwise_cast<T*>(nullptr);
}
T& at(Node* node, NodeFlowProjection::Kind kind)
{
return at(node->index(), kind);
}
T& at(NodeFlowProjection projection)
{
return at(projection.node(), projection.kind());
}
const T& at(unsigned nodeIndex) const { return const_cast<FlowMap*>(this)->at(nodeIndex); }
const T& at(Node* node) const { return const_cast<FlowMap*>(this)->at(node); }
const T& atShadow(unsigned nodeIndex) const { return const_cast<FlowMap*>(this)->atShadow(nodeIndex); }
const T& atShadow(Node* node) const { return const_cast<FlowMap*>(this)->atShadow(node); }
const T& at(unsigned nodeIndex, NodeFlowProjection::Kind kind) const { return const_cast<FlowMap*>(this)->at(nodeIndex, kind); }
const T& at(Node* node, NodeFlowProjection::Kind kind) const { return const_cast<FlowMap*>(this)->at(node, kind); }
const T& at(NodeFlowProjection projection) const { return const_cast<FlowMap*>(this)->at(projection); }
private:
Graph& m_graph;
Vector<T, 0, UnsafeVectorOverflow> m_map;
Vector<T, 0, UnsafeVectorOverflow> m_shadowMap;
};
} } // namespace JSC::DFG
namespace WTF {
template<typename T>
void printInternal(PrintStream& out, const JSC::DFG::FlowMap<T>& map)
{
CommaPrinter comma;
for (unsigned i = 0; i < map.graph().maxNodeCount(); ++i) {
if (JSC::DFG::Node* node = map.graph().nodeAt(i)) {
if (const T& value = map.at(node))
out.print(comma, node, "=>", value);
}
}
for (unsigned i = 0; i < map.graph().maxNodeCount(); ++i) {
if (JSC::DFG::Node* node = map.graph().nodeAt(i)) {
if (const T& value = map.atShadow(node))
out.print(comma, "shadow(", node, ")=>", value);
}
}
}
} // namespace WTF
#endif // ENABLE(DFG_JIT)