blob: 2d27584394d3f9def91d52b82ef7b32c9112bb84 [file] [log] [blame]
<!DOCTYPE html><html lang="en"><head><meta charset="utf-8"><meta name="viewport" content="width=device-width, initial-scale=1.0"><meta name="generator" content="rustdoc"><meta name="description" content="Source of the Rust file `/root/.cargo/registry/src/github.com-1ecc6299db9ec823/tantivy-fst-0.4.0/src/raw/mod.rs`."><meta name="keywords" content="rust, rustlang, rust-lang"><title>mod.rs - source</title><link rel="preload" as="font" type="font/woff2" crossorigin href="../../../SourceSerif4-Regular.ttf.woff2"><link rel="preload" as="font" type="font/woff2" crossorigin href="../../../FiraSans-Regular.woff2"><link rel="preload" as="font" type="font/woff2" crossorigin href="../../../FiraSans-Medium.woff2"><link rel="preload" as="font" type="font/woff2" crossorigin href="../../../SourceCodePro-Regular.ttf.woff2"><link rel="preload" as="font" type="font/woff2" crossorigin href="../../../SourceSerif4-Bold.ttf.woff2"><link rel="preload" as="font" type="font/woff2" crossorigin href="../../../SourceCodePro-Semibold.ttf.woff2"><link rel="stylesheet" href="../../../normalize.css"><link rel="stylesheet" href="../../../rustdoc.css" id="mainThemeStyle"><link rel="stylesheet" href="../../../ayu.css" disabled><link rel="stylesheet" href="../../../dark.css" disabled><link rel="stylesheet" href="../../../light.css" id="themeStyle"><script id="default-settings" ></script><script src="../../../storage.js"></script><script defer src="../../../source-script.js"></script><script defer src="../../../source-files.js"></script><script defer src="../../../main.js"></script><noscript><link rel="stylesheet" href="../../../noscript.css"></noscript><link rel="alternate icon" type="image/png" href="../../../favicon-16x16.png"><link rel="alternate icon" type="image/png" href="../../../favicon-32x32.png"><link rel="icon" type="image/svg+xml" href="../../../favicon.svg"></head><body class="rustdoc source"><!--[if lte IE 11]><div class="warning">This old browser is unsupported and will most likely display funky things.</div><![endif]--><nav class="sidebar"><a class="sidebar-logo" href="../../../tantivy_fst/index.html"><div class="logo-container"><img class="rust-logo" src="../../../rust-logo.svg" alt="logo"></div></a></nav><main><div class="width-limiter"><nav class="sub"><a class="sub-logo-container" href="../../../tantivy_fst/index.html"><img class="rust-logo" src="../../../rust-logo.svg" alt="logo"></a><form class="search-form"><div class="search-container"><span></span><input class="search-input" name="search" autocomplete="off" spellcheck="false" placeholder="Click or press ‘S’ to search, ‘?’ for more options…" type="search"><div id="help-button" title="help" tabindex="-1"><a href="../../../help.html">?</a></div><div id="settings-menu" tabindex="-1"><a href="../../../settings.html" title="settings"><img width="22" height="22" alt="Change settings" src="../../../wheel.svg"></a></div></div></form></nav><section id="main-content" class="content"><div class="example-wrap"><pre class="src-line-numbers"><span id="1">1</span>
<span id="2">2</span>
<span id="3">3</span>
<span id="4">4</span>
<span id="5">5</span>
<span id="6">6</span>
<span id="7">7</span>
<span id="8">8</span>
<span id="9">9</span>
<span id="10">10</span>
<span id="11">11</span>
<span id="12">12</span>
<span id="13">13</span>
<span id="14">14</span>
<span id="15">15</span>
<span id="16">16</span>
<span id="17">17</span>
<span id="18">18</span>
<span id="19">19</span>
<span id="20">20</span>
<span id="21">21</span>
<span id="22">22</span>
<span id="23">23</span>
<span id="24">24</span>
<span id="25">25</span>
<span id="26">26</span>
<span id="27">27</span>
<span id="28">28</span>
<span id="29">29</span>
<span id="30">30</span>
<span id="31">31</span>
<span id="32">32</span>
<span id="33">33</span>
<span id="34">34</span>
<span id="35">35</span>
<span id="36">36</span>
<span id="37">37</span>
<span id="38">38</span>
<span id="39">39</span>
<span id="40">40</span>
<span id="41">41</span>
<span id="42">42</span>
<span id="43">43</span>
<span id="44">44</span>
<span id="45">45</span>
<span id="46">46</span>
<span id="47">47</span>
<span id="48">48</span>
<span id="49">49</span>
<span id="50">50</span>
<span id="51">51</span>
<span id="52">52</span>
<span id="53">53</span>
<span id="54">54</span>
<span id="55">55</span>
<span id="56">56</span>
<span id="57">57</span>
<span id="58">58</span>
<span id="59">59</span>
<span id="60">60</span>
<span id="61">61</span>
<span id="62">62</span>
<span id="63">63</span>
<span id="64">64</span>
<span id="65">65</span>
<span id="66">66</span>
<span id="67">67</span>
<span id="68">68</span>
<span id="69">69</span>
<span id="70">70</span>
<span id="71">71</span>
<span id="72">72</span>
<span id="73">73</span>
<span id="74">74</span>
<span id="75">75</span>
<span id="76">76</span>
<span id="77">77</span>
<span id="78">78</span>
<span id="79">79</span>
<span id="80">80</span>
<span id="81">81</span>
<span id="82">82</span>
<span id="83">83</span>
<span id="84">84</span>
<span id="85">85</span>
<span id="86">86</span>
<span id="87">87</span>
<span id="88">88</span>
<span id="89">89</span>
<span id="90">90</span>
<span id="91">91</span>
<span id="92">92</span>
<span id="93">93</span>
<span id="94">94</span>
<span id="95">95</span>
<span id="96">96</span>
<span id="97">97</span>
<span id="98">98</span>
<span id="99">99</span>
<span id="100">100</span>
<span id="101">101</span>
<span id="102">102</span>
<span id="103">103</span>
<span id="104">104</span>
<span id="105">105</span>
<span id="106">106</span>
<span id="107">107</span>
<span id="108">108</span>
<span id="109">109</span>
<span id="110">110</span>
<span id="111">111</span>
<span id="112">112</span>
<span id="113">113</span>
<span id="114">114</span>
<span id="115">115</span>
<span id="116">116</span>
<span id="117">117</span>
<span id="118">118</span>
<span id="119">119</span>
<span id="120">120</span>
<span id="121">121</span>
<span id="122">122</span>
<span id="123">123</span>
<span id="124">124</span>
<span id="125">125</span>
<span id="126">126</span>
<span id="127">127</span>
<span id="128">128</span>
<span id="129">129</span>
<span id="130">130</span>
<span id="131">131</span>
<span id="132">132</span>
<span id="133">133</span>
<span id="134">134</span>
<span id="135">135</span>
<span id="136">136</span>
<span id="137">137</span>
<span id="138">138</span>
<span id="139">139</span>
<span id="140">140</span>
<span id="141">141</span>
<span id="142">142</span>
<span id="143">143</span>
<span id="144">144</span>
<span id="145">145</span>
<span id="146">146</span>
<span id="147">147</span>
<span id="148">148</span>
<span id="149">149</span>
<span id="150">150</span>
<span id="151">151</span>
<span id="152">152</span>
<span id="153">153</span>
<span id="154">154</span>
<span id="155">155</span>
<span id="156">156</span>
<span id="157">157</span>
<span id="158">158</span>
<span id="159">159</span>
<span id="160">160</span>
<span id="161">161</span>
<span id="162">162</span>
<span id="163">163</span>
<span id="164">164</span>
<span id="165">165</span>
<span id="166">166</span>
<span id="167">167</span>
<span id="168">168</span>
<span id="169">169</span>
<span id="170">170</span>
<span id="171">171</span>
<span id="172">172</span>
<span id="173">173</span>
<span id="174">174</span>
<span id="175">175</span>
<span id="176">176</span>
<span id="177">177</span>
<span id="178">178</span>
<span id="179">179</span>
<span id="180">180</span>
<span id="181">181</span>
<span id="182">182</span>
<span id="183">183</span>
<span id="184">184</span>
<span id="185">185</span>
<span id="186">186</span>
<span id="187">187</span>
<span id="188">188</span>
<span id="189">189</span>
<span id="190">190</span>
<span id="191">191</span>
<span id="192">192</span>
<span id="193">193</span>
<span id="194">194</span>
<span id="195">195</span>
<span id="196">196</span>
<span id="197">197</span>
<span id="198">198</span>
<span id="199">199</span>
<span id="200">200</span>
<span id="201">201</span>
<span id="202">202</span>
<span id="203">203</span>
<span id="204">204</span>
<span id="205">205</span>
<span id="206">206</span>
<span id="207">207</span>
<span id="208">208</span>
<span id="209">209</span>
<span id="210">210</span>
<span id="211">211</span>
<span id="212">212</span>
<span id="213">213</span>
<span id="214">214</span>
<span id="215">215</span>
<span id="216">216</span>
<span id="217">217</span>
<span id="218">218</span>
<span id="219">219</span>
<span id="220">220</span>
<span id="221">221</span>
<span id="222">222</span>
<span id="223">223</span>
<span id="224">224</span>
<span id="225">225</span>
<span id="226">226</span>
<span id="227">227</span>
<span id="228">228</span>
<span id="229">229</span>
<span id="230">230</span>
<span id="231">231</span>
<span id="232">232</span>
<span id="233">233</span>
<span id="234">234</span>
<span id="235">235</span>
<span id="236">236</span>
<span id="237">237</span>
<span id="238">238</span>
<span id="239">239</span>
<span id="240">240</span>
<span id="241">241</span>
<span id="242">242</span>
<span id="243">243</span>
<span id="244">244</span>
<span id="245">245</span>
<span id="246">246</span>
<span id="247">247</span>
<span id="248">248</span>
<span id="249">249</span>
<span id="250">250</span>
<span id="251">251</span>
<span id="252">252</span>
<span id="253">253</span>
<span id="254">254</span>
<span id="255">255</span>
<span id="256">256</span>
<span id="257">257</span>
<span id="258">258</span>
<span id="259">259</span>
<span id="260">260</span>
<span id="261">261</span>
<span id="262">262</span>
<span id="263">263</span>
<span id="264">264</span>
<span id="265">265</span>
<span id="266">266</span>
<span id="267">267</span>
<span id="268">268</span>
<span id="269">269</span>
<span id="270">270</span>
<span id="271">271</span>
<span id="272">272</span>
<span id="273">273</span>
<span id="274">274</span>
<span id="275">275</span>
<span id="276">276</span>
<span id="277">277</span>
<span id="278">278</span>
<span id="279">279</span>
<span id="280">280</span>
<span id="281">281</span>
<span id="282">282</span>
<span id="283">283</span>
<span id="284">284</span>
<span id="285">285</span>
<span id="286">286</span>
<span id="287">287</span>
<span id="288">288</span>
<span id="289">289</span>
<span id="290">290</span>
<span id="291">291</span>
<span id="292">292</span>
<span id="293">293</span>
<span id="294">294</span>
<span id="295">295</span>
<span id="296">296</span>
<span id="297">297</span>
<span id="298">298</span>
<span id="299">299</span>
<span id="300">300</span>
<span id="301">301</span>
<span id="302">302</span>
<span id="303">303</span>
<span id="304">304</span>
<span id="305">305</span>
<span id="306">306</span>
<span id="307">307</span>
<span id="308">308</span>
<span id="309">309</span>
<span id="310">310</span>
<span id="311">311</span>
<span id="312">312</span>
<span id="313">313</span>
<span id="314">314</span>
<span id="315">315</span>
<span id="316">316</span>
<span id="317">317</span>
<span id="318">318</span>
<span id="319">319</span>
<span id="320">320</span>
<span id="321">321</span>
<span id="322">322</span>
<span id="323">323</span>
<span id="324">324</span>
<span id="325">325</span>
<span id="326">326</span>
<span id="327">327</span>
<span id="328">328</span>
<span id="329">329</span>
<span id="330">330</span>
<span id="331">331</span>
<span id="332">332</span>
<span id="333">333</span>
<span id="334">334</span>
<span id="335">335</span>
<span id="336">336</span>
<span id="337">337</span>
<span id="338">338</span>
<span id="339">339</span>
<span id="340">340</span>
<span id="341">341</span>
<span id="342">342</span>
<span id="343">343</span>
<span id="344">344</span>
<span id="345">345</span>
<span id="346">346</span>
<span id="347">347</span>
<span id="348">348</span>
<span id="349">349</span>
<span id="350">350</span>
<span id="351">351</span>
<span id="352">352</span>
<span id="353">353</span>
<span id="354">354</span>
<span id="355">355</span>
<span id="356">356</span>
<span id="357">357</span>
<span id="358">358</span>
<span id="359">359</span>
<span id="360">360</span>
<span id="361">361</span>
<span id="362">362</span>
<span id="363">363</span>
<span id="364">364</span>
<span id="365">365</span>
<span id="366">366</span>
<span id="367">367</span>
<span id="368">368</span>
<span id="369">369</span>
<span id="370">370</span>
<span id="371">371</span>
<span id="372">372</span>
<span id="373">373</span>
<span id="374">374</span>
<span id="375">375</span>
<span id="376">376</span>
<span id="377">377</span>
<span id="378">378</span>
<span id="379">379</span>
<span id="380">380</span>
<span id="381">381</span>
<span id="382">382</span>
<span id="383">383</span>
<span id="384">384</span>
<span id="385">385</span>
<span id="386">386</span>
<span id="387">387</span>
<span id="388">388</span>
<span id="389">389</span>
<span id="390">390</span>
<span id="391">391</span>
<span id="392">392</span>
<span id="393">393</span>
<span id="394">394</span>
<span id="395">395</span>
<span id="396">396</span>
<span id="397">397</span>
<span id="398">398</span>
<span id="399">399</span>
<span id="400">400</span>
<span id="401">401</span>
<span id="402">402</span>
<span id="403">403</span>
<span id="404">404</span>
<span id="405">405</span>
<span id="406">406</span>
<span id="407">407</span>
<span id="408">408</span>
<span id="409">409</span>
<span id="410">410</span>
<span id="411">411</span>
<span id="412">412</span>
<span id="413">413</span>
<span id="414">414</span>
<span id="415">415</span>
<span id="416">416</span>
<span id="417">417</span>
<span id="418">418</span>
<span id="419">419</span>
<span id="420">420</span>
<span id="421">421</span>
<span id="422">422</span>
<span id="423">423</span>
<span id="424">424</span>
<span id="425">425</span>
<span id="426">426</span>
<span id="427">427</span>
<span id="428">428</span>
<span id="429">429</span>
<span id="430">430</span>
<span id="431">431</span>
<span id="432">432</span>
<span id="433">433</span>
<span id="434">434</span>
<span id="435">435</span>
<span id="436">436</span>
<span id="437">437</span>
<span id="438">438</span>
<span id="439">439</span>
<span id="440">440</span>
<span id="441">441</span>
<span id="442">442</span>
<span id="443">443</span>
<span id="444">444</span>
<span id="445">445</span>
<span id="446">446</span>
<span id="447">447</span>
<span id="448">448</span>
<span id="449">449</span>
<span id="450">450</span>
<span id="451">451</span>
<span id="452">452</span>
<span id="453">453</span>
<span id="454">454</span>
<span id="455">455</span>
<span id="456">456</span>
<span id="457">457</span>
<span id="458">458</span>
<span id="459">459</span>
<span id="460">460</span>
<span id="461">461</span>
<span id="462">462</span>
<span id="463">463</span>
<span id="464">464</span>
<span id="465">465</span>
<span id="466">466</span>
<span id="467">467</span>
<span id="468">468</span>
<span id="469">469</span>
<span id="470">470</span>
<span id="471">471</span>
<span id="472">472</span>
<span id="473">473</span>
<span id="474">474</span>
<span id="475">475</span>
<span id="476">476</span>
<span id="477">477</span>
<span id="478">478</span>
<span id="479">479</span>
<span id="480">480</span>
<span id="481">481</span>
<span id="482">482</span>
<span id="483">483</span>
<span id="484">484</span>
<span id="485">485</span>
<span id="486">486</span>
<span id="487">487</span>
<span id="488">488</span>
<span id="489">489</span>
<span id="490">490</span>
<span id="491">491</span>
<span id="492">492</span>
<span id="493">493</span>
<span id="494">494</span>
<span id="495">495</span>
<span id="496">496</span>
<span id="497">497</span>
<span id="498">498</span>
<span id="499">499</span>
<span id="500">500</span>
<span id="501">501</span>
<span id="502">502</span>
<span id="503">503</span>
<span id="504">504</span>
<span id="505">505</span>
<span id="506">506</span>
<span id="507">507</span>
<span id="508">508</span>
<span id="509">509</span>
<span id="510">510</span>
<span id="511">511</span>
<span id="512">512</span>
<span id="513">513</span>
<span id="514">514</span>
<span id="515">515</span>
<span id="516">516</span>
<span id="517">517</span>
<span id="518">518</span>
<span id="519">519</span>
<span id="520">520</span>
<span id="521">521</span>
<span id="522">522</span>
<span id="523">523</span>
<span id="524">524</span>
<span id="525">525</span>
<span id="526">526</span>
<span id="527">527</span>
<span id="528">528</span>
<span id="529">529</span>
<span id="530">530</span>
<span id="531">531</span>
<span id="532">532</span>
<span id="533">533</span>
<span id="534">534</span>
<span id="535">535</span>
<span id="536">536</span>
<span id="537">537</span>
<span id="538">538</span>
<span id="539">539</span>
<span id="540">540</span>
<span id="541">541</span>
<span id="542">542</span>
<span id="543">543</span>
<span id="544">544</span>
<span id="545">545</span>
<span id="546">546</span>
<span id="547">547</span>
<span id="548">548</span>
<span id="549">549</span>
<span id="550">550</span>
<span id="551">551</span>
<span id="552">552</span>
<span id="553">553</span>
<span id="554">554</span>
<span id="555">555</span>
<span id="556">556</span>
<span id="557">557</span>
<span id="558">558</span>
<span id="559">559</span>
<span id="560">560</span>
<span id="561">561</span>
<span id="562">562</span>
<span id="563">563</span>
<span id="564">564</span>
<span id="565">565</span>
<span id="566">566</span>
<span id="567">567</span>
<span id="568">568</span>
<span id="569">569</span>
<span id="570">570</span>
<span id="571">571</span>
<span id="572">572</span>
<span id="573">573</span>
<span id="574">574</span>
<span id="575">575</span>
<span id="576">576</span>
<span id="577">577</span>
<span id="578">578</span>
<span id="579">579</span>
<span id="580">580</span>
<span id="581">581</span>
<span id="582">582</span>
<span id="583">583</span>
<span id="584">584</span>
<span id="585">585</span>
<span id="586">586</span>
<span id="587">587</span>
<span id="588">588</span>
<span id="589">589</span>
<span id="590">590</span>
<span id="591">591</span>
<span id="592">592</span>
<span id="593">593</span>
<span id="594">594</span>
<span id="595">595</span>
<span id="596">596</span>
<span id="597">597</span>
<span id="598">598</span>
<span id="599">599</span>
<span id="600">600</span>
<span id="601">601</span>
<span id="602">602</span>
<span id="603">603</span>
<span id="604">604</span>
<span id="605">605</span>
<span id="606">606</span>
<span id="607">607</span>
<span id="608">608</span>
<span id="609">609</span>
<span id="610">610</span>
<span id="611">611</span>
<span id="612">612</span>
<span id="613">613</span>
<span id="614">614</span>
<span id="615">615</span>
<span id="616">616</span>
<span id="617">617</span>
<span id="618">618</span>
<span id="619">619</span>
<span id="620">620</span>
<span id="621">621</span>
<span id="622">622</span>
<span id="623">623</span>
<span id="624">624</span>
<span id="625">625</span>
<span id="626">626</span>
<span id="627">627</span>
<span id="628">628</span>
<span id="629">629</span>
<span id="630">630</span>
<span id="631">631</span>
<span id="632">632</span>
<span id="633">633</span>
<span id="634">634</span>
<span id="635">635</span>
<span id="636">636</span>
<span id="637">637</span>
<span id="638">638</span>
<span id="639">639</span>
<span id="640">640</span>
<span id="641">641</span>
<span id="642">642</span>
<span id="643">643</span>
<span id="644">644</span>
<span id="645">645</span>
<span id="646">646</span>
<span id="647">647</span>
<span id="648">648</span>
<span id="649">649</span>
<span id="650">650</span>
<span id="651">651</span>
<span id="652">652</span>
<span id="653">653</span>
<span id="654">654</span>
<span id="655">655</span>
<span id="656">656</span>
<span id="657">657</span>
<span id="658">658</span>
<span id="659">659</span>
<span id="660">660</span>
<span id="661">661</span>
<span id="662">662</span>
<span id="663">663</span>
<span id="664">664</span>
<span id="665">665</span>
<span id="666">666</span>
<span id="667">667</span>
<span id="668">668</span>
<span id="669">669</span>
<span id="670">670</span>
<span id="671">671</span>
<span id="672">672</span>
<span id="673">673</span>
<span id="674">674</span>
<span id="675">675</span>
<span id="676">676</span>
<span id="677">677</span>
<span id="678">678</span>
<span id="679">679</span>
<span id="680">680</span>
<span id="681">681</span>
<span id="682">682</span>
<span id="683">683</span>
<span id="684">684</span>
<span id="685">685</span>
<span id="686">686</span>
<span id="687">687</span>
<span id="688">688</span>
<span id="689">689</span>
<span id="690">690</span>
<span id="691">691</span>
<span id="692">692</span>
<span id="693">693</span>
<span id="694">694</span>
<span id="695">695</span>
<span id="696">696</span>
<span id="697">697</span>
<span id="698">698</span>
<span id="699">699</span>
<span id="700">700</span>
<span id="701">701</span>
<span id="702">702</span>
<span id="703">703</span>
<span id="704">704</span>
<span id="705">705</span>
<span id="706">706</span>
<span id="707">707</span>
<span id="708">708</span>
<span id="709">709</span>
<span id="710">710</span>
<span id="711">711</span>
<span id="712">712</span>
<span id="713">713</span>
<span id="714">714</span>
<span id="715">715</span>
<span id="716">716</span>
<span id="717">717</span>
<span id="718">718</span>
<span id="719">719</span>
<span id="720">720</span>
<span id="721">721</span>
<span id="722">722</span>
<span id="723">723</span>
<span id="724">724</span>
<span id="725">725</span>
<span id="726">726</span>
<span id="727">727</span>
<span id="728">728</span>
<span id="729">729</span>
<span id="730">730</span>
<span id="731">731</span>
<span id="732">732</span>
<span id="733">733</span>
<span id="734">734</span>
<span id="735">735</span>
<span id="736">736</span>
<span id="737">737</span>
<span id="738">738</span>
<span id="739">739</span>
<span id="740">740</span>
<span id="741">741</span>
<span id="742">742</span>
<span id="743">743</span>
<span id="744">744</span>
<span id="745">745</span>
<span id="746">746</span>
<span id="747">747</span>
<span id="748">748</span>
<span id="749">749</span>
<span id="750">750</span>
<span id="751">751</span>
<span id="752">752</span>
<span id="753">753</span>
<span id="754">754</span>
<span id="755">755</span>
<span id="756">756</span>
<span id="757">757</span>
<span id="758">758</span>
<span id="759">759</span>
<span id="760">760</span>
<span id="761">761</span>
<span id="762">762</span>
<span id="763">763</span>
<span id="764">764</span>
<span id="765">765</span>
<span id="766">766</span>
<span id="767">767</span>
<span id="768">768</span>
<span id="769">769</span>
<span id="770">770</span>
<span id="771">771</span>
<span id="772">772</span>
<span id="773">773</span>
<span id="774">774</span>
<span id="775">775</span>
<span id="776">776</span>
<span id="777">777</span>
<span id="778">778</span>
<span id="779">779</span>
<span id="780">780</span>
<span id="781">781</span>
<span id="782">782</span>
<span id="783">783</span>
<span id="784">784</span>
<span id="785">785</span>
<span id="786">786</span>
<span id="787">787</span>
<span id="788">788</span>
<span id="789">789</span>
<span id="790">790</span>
<span id="791">791</span>
<span id="792">792</span>
<span id="793">793</span>
<span id="794">794</span>
<span id="795">795</span>
<span id="796">796</span>
<span id="797">797</span>
<span id="798">798</span>
<span id="799">799</span>
<span id="800">800</span>
<span id="801">801</span>
<span id="802">802</span>
<span id="803">803</span>
<span id="804">804</span>
<span id="805">805</span>
<span id="806">806</span>
<span id="807">807</span>
<span id="808">808</span>
<span id="809">809</span>
<span id="810">810</span>
<span id="811">811</span>
<span id="812">812</span>
<span id="813">813</span>
<span id="814">814</span>
<span id="815">815</span>
<span id="816">816</span>
<span id="817">817</span>
<span id="818">818</span>
<span id="819">819</span>
<span id="820">820</span>
<span id="821">821</span>
<span id="822">822</span>
<span id="823">823</span>
<span id="824">824</span>
<span id="825">825</span>
<span id="826">826</span>
<span id="827">827</span>
<span id="828">828</span>
<span id="829">829</span>
<span id="830">830</span>
<span id="831">831</span>
<span id="832">832</span>
<span id="833">833</span>
<span id="834">834</span>
<span id="835">835</span>
<span id="836">836</span>
<span id="837">837</span>
<span id="838">838</span>
<span id="839">839</span>
<span id="840">840</span>
<span id="841">841</span>
<span id="842">842</span>
<span id="843">843</span>
<span id="844">844</span>
<span id="845">845</span>
<span id="846">846</span>
<span id="847">847</span>
<span id="848">848</span>
<span id="849">849</span>
<span id="850">850</span>
<span id="851">851</span>
<span id="852">852</span>
<span id="853">853</span>
<span id="854">854</span>
<span id="855">855</span>
<span id="856">856</span>
<span id="857">857</span>
<span id="858">858</span>
<span id="859">859</span>
<span id="860">860</span>
<span id="861">861</span>
<span id="862">862</span>
<span id="863">863</span>
<span id="864">864</span>
<span id="865">865</span>
<span id="866">866</span>
<span id="867">867</span>
<span id="868">868</span>
<span id="869">869</span>
<span id="870">870</span>
<span id="871">871</span>
<span id="872">872</span>
<span id="873">873</span>
<span id="874">874</span>
<span id="875">875</span>
<span id="876">876</span>
<span id="877">877</span>
<span id="878">878</span>
<span id="879">879</span>
<span id="880">880</span>
<span id="881">881</span>
<span id="882">882</span>
<span id="883">883</span>
<span id="884">884</span>
<span id="885">885</span>
<span id="886">886</span>
<span id="887">887</span>
<span id="888">888</span>
<span id="889">889</span>
<span id="890">890</span>
<span id="891">891</span>
<span id="892">892</span>
<span id="893">893</span>
<span id="894">894</span>
<span id="895">895</span>
<span id="896">896</span>
<span id="897">897</span>
<span id="898">898</span>
<span id="899">899</span>
<span id="900">900</span>
<span id="901">901</span>
<span id="902">902</span>
<span id="903">903</span>
<span id="904">904</span>
<span id="905">905</span>
<span id="906">906</span>
<span id="907">907</span>
<span id="908">908</span>
<span id="909">909</span>
<span id="910">910</span>
<span id="911">911</span>
<span id="912">912</span>
<span id="913">913</span>
<span id="914">914</span>
<span id="915">915</span>
<span id="916">916</span>
<span id="917">917</span>
<span id="918">918</span>
<span id="919">919</span>
<span id="920">920</span>
<span id="921">921</span>
<span id="922">922</span>
<span id="923">923</span>
<span id="924">924</span>
<span id="925">925</span>
<span id="926">926</span>
<span id="927">927</span>
<span id="928">928</span>
<span id="929">929</span>
<span id="930">930</span>
<span id="931">931</span>
<span id="932">932</span>
<span id="933">933</span>
<span id="934">934</span>
<span id="935">935</span>
<span id="936">936</span>
<span id="937">937</span>
<span id="938">938</span>
<span id="939">939</span>
<span id="940">940</span>
<span id="941">941</span>
<span id="942">942</span>
<span id="943">943</span>
<span id="944">944</span>
<span id="945">945</span>
<span id="946">946</span>
<span id="947">947</span>
<span id="948">948</span>
<span id="949">949</span>
<span id="950">950</span>
<span id="951">951</span>
<span id="952">952</span>
<span id="953">953</span>
<span id="954">954</span>
<span id="955">955</span>
<span id="956">956</span>
<span id="957">957</span>
<span id="958">958</span>
<span id="959">959</span>
<span id="960">960</span>
<span id="961">961</span>
<span id="962">962</span>
<span id="963">963</span>
<span id="964">964</span>
<span id="965">965</span>
<span id="966">966</span>
<span id="967">967</span>
<span id="968">968</span>
<span id="969">969</span>
<span id="970">970</span>
<span id="971">971</span>
<span id="972">972</span>
<span id="973">973</span>
<span id="974">974</span>
<span id="975">975</span>
<span id="976">976</span>
<span id="977">977</span>
<span id="978">978</span>
<span id="979">979</span>
<span id="980">980</span>
<span id="981">981</span>
<span id="982">982</span>
<span id="983">983</span>
<span id="984">984</span>
<span id="985">985</span>
<span id="986">986</span>
<span id="987">987</span>
<span id="988">988</span>
<span id="989">989</span>
<span id="990">990</span>
<span id="991">991</span>
<span id="992">992</span>
<span id="993">993</span>
<span id="994">994</span>
<span id="995">995</span>
<span id="996">996</span>
<span id="997">997</span>
<span id="998">998</span>
<span id="999">999</span>
<span id="1000">1000</span>
<span id="1001">1001</span>
<span id="1002">1002</span>
<span id="1003">1003</span>
<span id="1004">1004</span>
<span id="1005">1005</span>
<span id="1006">1006</span>
<span id="1007">1007</span>
<span id="1008">1008</span>
<span id="1009">1009</span>
<span id="1010">1010</span>
<span id="1011">1011</span>
<span id="1012">1012</span>
<span id="1013">1013</span>
<span id="1014">1014</span>
<span id="1015">1015</span>
<span id="1016">1016</span>
<span id="1017">1017</span>
<span id="1018">1018</span>
<span id="1019">1019</span>
<span id="1020">1020</span>
<span id="1021">1021</span>
<span id="1022">1022</span>
<span id="1023">1023</span>
<span id="1024">1024</span>
<span id="1025">1025</span>
<span id="1026">1026</span>
<span id="1027">1027</span>
<span id="1028">1028</span>
<span id="1029">1029</span>
<span id="1030">1030</span>
<span id="1031">1031</span>
<span id="1032">1032</span>
<span id="1033">1033</span>
<span id="1034">1034</span>
<span id="1035">1035</span>
<span id="1036">1036</span>
<span id="1037">1037</span>
<span id="1038">1038</span>
<span id="1039">1039</span>
<span id="1040">1040</span>
<span id="1041">1041</span>
<span id="1042">1042</span>
<span id="1043">1043</span>
<span id="1044">1044</span>
<span id="1045">1045</span>
<span id="1046">1046</span>
<span id="1047">1047</span>
<span id="1048">1048</span>
<span id="1049">1049</span>
<span id="1050">1050</span>
<span id="1051">1051</span>
<span id="1052">1052</span>
<span id="1053">1053</span>
<span id="1054">1054</span>
<span id="1055">1055</span>
<span id="1056">1056</span>
<span id="1057">1057</span>
<span id="1058">1058</span>
<span id="1059">1059</span>
<span id="1060">1060</span>
<span id="1061">1061</span>
<span id="1062">1062</span>
<span id="1063">1063</span>
<span id="1064">1064</span>
<span id="1065">1065</span>
<span id="1066">1066</span>
<span id="1067">1067</span>
<span id="1068">1068</span>
<span id="1069">1069</span>
<span id="1070">1070</span>
<span id="1071">1071</span>
<span id="1072">1072</span>
<span id="1073">1073</span>
<span id="1074">1074</span>
<span id="1075">1075</span>
<span id="1076">1076</span>
<span id="1077">1077</span>
<span id="1078">1078</span>
<span id="1079">1079</span>
<span id="1080">1080</span>
<span id="1081">1081</span>
<span id="1082">1082</span>
<span id="1083">1083</span>
<span id="1084">1084</span>
<span id="1085">1085</span>
<span id="1086">1086</span>
<span id="1087">1087</span>
<span id="1088">1088</span>
<span id="1089">1089</span>
<span id="1090">1090</span>
<span id="1091">1091</span>
<span id="1092">1092</span>
<span id="1093">1093</span>
<span id="1094">1094</span>
<span id="1095">1095</span>
<span id="1096">1096</span>
<span id="1097">1097</span>
<span id="1098">1098</span>
<span id="1099">1099</span>
<span id="1100">1100</span>
<span id="1101">1101</span>
<span id="1102">1102</span>
<span id="1103">1103</span>
<span id="1104">1104</span>
<span id="1105">1105</span>
<span id="1106">1106</span>
<span id="1107">1107</span>
<span id="1108">1108</span>
<span id="1109">1109</span>
<span id="1110">1110</span>
<span id="1111">1111</span>
<span id="1112">1112</span>
<span id="1113">1113</span>
<span id="1114">1114</span>
<span id="1115">1115</span>
<span id="1116">1116</span>
<span id="1117">1117</span>
<span id="1118">1118</span>
<span id="1119">1119</span>
<span id="1120">1120</span>
<span id="1121">1121</span>
<span id="1122">1122</span>
<span id="1123">1123</span>
<span id="1124">1124</span>
<span id="1125">1125</span>
<span id="1126">1126</span>
<span id="1127">1127</span>
<span id="1128">1128</span>
<span id="1129">1129</span>
<span id="1130">1130</span>
<span id="1131">1131</span>
<span id="1132">1132</span>
<span id="1133">1133</span>
<span id="1134">1134</span>
<span id="1135">1135</span>
<span id="1136">1136</span>
<span id="1137">1137</span>
<span id="1138">1138</span>
<span id="1139">1139</span>
<span id="1140">1140</span>
<span id="1141">1141</span>
<span id="1142">1142</span>
<span id="1143">1143</span>
<span id="1144">1144</span>
<span id="1145">1145</span>
<span id="1146">1146</span>
<span id="1147">1147</span>
<span id="1148">1148</span>
<span id="1149">1149</span>
<span id="1150">1150</span>
<span id="1151">1151</span>
<span id="1152">1152</span>
<span id="1153">1153</span>
<span id="1154">1154</span>
<span id="1155">1155</span>
<span id="1156">1156</span>
<span id="1157">1157</span>
<span id="1158">1158</span>
<span id="1159">1159</span>
<span id="1160">1160</span>
<span id="1161">1161</span>
<span id="1162">1162</span>
<span id="1163">1163</span>
<span id="1164">1164</span>
<span id="1165">1165</span>
<span id="1166">1166</span>
<span id="1167">1167</span>
<span id="1168">1168</span>
<span id="1169">1169</span>
<span id="1170">1170</span>
<span id="1171">1171</span>
<span id="1172">1172</span>
<span id="1173">1173</span>
<span id="1174">1174</span>
<span id="1175">1175</span>
<span id="1176">1176</span>
<span id="1177">1177</span>
<span id="1178">1178</span>
<span id="1179">1179</span>
<span id="1180">1180</span>
<span id="1181">1181</span>
<span id="1182">1182</span>
<span id="1183">1183</span>
<span id="1184">1184</span>
<span id="1185">1185</span>
<span id="1186">1186</span>
<span id="1187">1187</span>
<span id="1188">1188</span>
<span id="1189">1189</span>
<span id="1190">1190</span>
<span id="1191">1191</span>
<span id="1192">1192</span>
<span id="1193">1193</span>
<span id="1194">1194</span>
<span id="1195">1195</span>
<span id="1196">1196</span>
<span id="1197">1197</span>
<span id="1198">1198</span>
<span id="1199">1199</span>
<span id="1200">1200</span>
<span id="1201">1201</span>
<span id="1202">1202</span>
<span id="1203">1203</span>
<span id="1204">1204</span>
<span id="1205">1205</span>
<span id="1206">1206</span>
<span id="1207">1207</span>
<span id="1208">1208</span>
<span id="1209">1209</span>
<span id="1210">1210</span>
<span id="1211">1211</span>
<span id="1212">1212</span>
<span id="1213">1213</span>
<span id="1214">1214</span>
<span id="1215">1215</span>
<span id="1216">1216</span>
<span id="1217">1217</span>
<span id="1218">1218</span>
<span id="1219">1219</span>
<span id="1220">1220</span>
<span id="1221">1221</span>
<span id="1222">1222</span>
<span id="1223">1223</span>
<span id="1224">1224</span>
<span id="1225">1225</span>
<span id="1226">1226</span>
<span id="1227">1227</span>
<span id="1228">1228</span>
<span id="1229">1229</span>
<span id="1230">1230</span>
<span id="1231">1231</span>
<span id="1232">1232</span>
<span id="1233">1233</span>
<span id="1234">1234</span>
<span id="1235">1235</span>
<span id="1236">1236</span>
<span id="1237">1237</span>
<span id="1238">1238</span>
<span id="1239">1239</span>
<span id="1240">1240</span>
<span id="1241">1241</span>
<span id="1242">1242</span>
<span id="1243">1243</span>
<span id="1244">1244</span>
<span id="1245">1245</span>
<span id="1246">1246</span>
<span id="1247">1247</span>
<span id="1248">1248</span>
<span id="1249">1249</span>
<span id="1250">1250</span>
<span id="1251">1251</span>
<span id="1252">1252</span>
<span id="1253">1253</span>
<span id="1254">1254</span>
<span id="1255">1255</span>
<span id="1256">1256</span>
<span id="1257">1257</span>
<span id="1258">1258</span>
<span id="1259">1259</span>
<span id="1260">1260</span>
<span id="1261">1261</span>
<span id="1262">1262</span>
<span id="1263">1263</span>
<span id="1264">1264</span>
<span id="1265">1265</span>
<span id="1266">1266</span>
<span id="1267">1267</span>
<span id="1268">1268</span>
<span id="1269">1269</span>
<span id="1270">1270</span>
<span id="1271">1271</span>
<span id="1272">1272</span>
<span id="1273">1273</span>
<span id="1274">1274</span>
<span id="1275">1275</span>
<span id="1276">1276</span>
<span id="1277">1277</span>
<span id="1278">1278</span>
<span id="1279">1279</span>
<span id="1280">1280</span>
<span id="1281">1281</span>
<span id="1282">1282</span>
<span id="1283">1283</span>
<span id="1284">1284</span>
<span id="1285">1285</span>
<span id="1286">1286</span>
<span id="1287">1287</span>
<span id="1288">1288</span>
<span id="1289">1289</span>
<span id="1290">1290</span>
<span id="1291">1291</span>
<span id="1292">1292</span>
<span id="1293">1293</span>
<span id="1294">1294</span>
<span id="1295">1295</span>
<span id="1296">1296</span>
<span id="1297">1297</span>
<span id="1298">1298</span>
<span id="1299">1299</span>
<span id="1300">1300</span>
<span id="1301">1301</span>
<span id="1302">1302</span>
<span id="1303">1303</span>
<span id="1304">1304</span>
<span id="1305">1305</span>
<span id="1306">1306</span>
<span id="1307">1307</span>
<span id="1308">1308</span>
<span id="1309">1309</span>
<span id="1310">1310</span>
<span id="1311">1311</span>
<span id="1312">1312</span>
<span id="1313">1313</span>
<span id="1314">1314</span>
<span id="1315">1315</span>
<span id="1316">1316</span>
<span id="1317">1317</span>
<span id="1318">1318</span>
<span id="1319">1319</span>
<span id="1320">1320</span>
<span id="1321">1321</span>
<span id="1322">1322</span>
<span id="1323">1323</span>
<span id="1324">1324</span>
</pre><pre class="rust"><code><span class="doccomment">/*!
Operations on raw finite state transducers.
This sub-module exposes the guts of a finite state transducer. Many parts of
it, such as construction and traversal, are mirrored in the `set` and `map`
sub-modules. Other parts of it, such as direct access to nodes and transitions
in the transducer, do not have any analog.
# Overview of types
`Fst` is a read only interface to pre-constructed finite state transducers.
`Node` is a read only interface to a single node in a transducer. `Builder` is
used to create new finite state transducers. (Once a transducer is created, it
can never be modified.) `Stream` is a stream of all inputs and outputs in a
transducer. `StreamBuilder` builds range queries. `OpBuilder` collects streams
and executes set operations like `union` or `intersection` on them with the
option of specifying a merge strategy for output values.
Most of the rest of the types are streams from set operations.
*/
</span><span class="kw">use </span>std::fmt;
<span class="kw">use </span>std::ops::Deref;
<span class="kw">use </span>std::{cmp, mem};
<span class="kw">use </span>byteorder::{LittleEndian, ReadBytesExt};
<span class="kw">use </span><span class="kw">crate</span>::automaton::{AlwaysMatch, Automaton};
<span class="kw">use </span><span class="kw">crate</span>::error::Result;
<span class="kw">use </span><span class="kw">crate</span>::stream::{IntoStreamer, Streamer};
<span class="kw">pub use </span><span class="self">self</span>::build::Builder;
<span class="kw">pub use </span><span class="self">self</span>::error::Error;
<span class="kw">use </span><span class="self">self</span>::node::node_new;
<span class="kw">pub use </span><span class="self">self</span>::node::{Node, Transitions};
<span class="kw">pub use </span><span class="self">self</span>::ops::{
Chain, Difference, IndexedValue, Intersection, OpBuilder, SymmetricDifference, Union,
};
<span class="kw">mod </span>build;
<span class="kw">mod </span>common_inputs;
<span class="kw">mod </span>counting_writer;
<span class="kw">mod </span>error;
<span class="kw">mod </span>node;
<span class="kw">mod </span>ops;
<span class="kw">mod </span>pack;
<span class="kw">mod </span>registry;
<span class="kw">mod </span>registry_minimal;
<span class="attribute">#[cfg(test)]
</span><span class="kw">mod </span>tests;
<span class="doccomment">/// The API version of this crate.
///
/// This version number is written to every finite state transducer created by
/// this crate. When a finite state transducer is read, its version number is
/// checked against this value.
///
/// Currently, any version mismatch results in an error. Fixing this requires
/// regenerating the finite state transducer or switching to a version of this
/// crate that is compatible with the serialized transducer. This particular
/// behavior may be relaxed in future versions.
</span><span class="kw">pub const </span>VERSION: u64 = <span class="number">2</span>;
<span class="doccomment">/// A sentinel value used to indicate an empty final state.
</span><span class="kw">const </span>EMPTY_ADDRESS: CompiledAddr = <span class="number">0</span>;
<span class="doccomment">/// A sentinel value used to indicate an invalid state.
///
/// This is never the address of a node in a serialized transducer.
</span><span class="kw">const </span>NONE_ADDRESS: CompiledAddr = <span class="number">1</span>;
<span class="doccomment">/// Default capacity for the key buffer of a stream.
</span><span class="kw">const </span>KEY_BUFFER_CAPACITY: usize = <span class="number">128</span>;
<span class="doccomment">/// FstType is a convention used to indicate the type of the underlying
/// transducer.
///
/// This crate reserves the range 0-255 (inclusive) but currently leaves the
/// meaning of 0-255 unspecified.
</span><span class="kw">pub type </span>FstType = u64;
<span class="doccomment">/// CompiledAddr is the type used to address nodes in a finite state
/// transducer.
///
/// It is most useful as a pointer to nodes. It can be used in the `Fst::node`
/// method to resolve the pointer.
</span><span class="kw">pub type </span>CompiledAddr = usize;
<span class="doccomment">/// An acyclic deterministic finite state transducer.
///
/// # How does it work?
///
/// The short answer: it&#39;s just like a prefix trie, which compresses keys
/// based only on their prefixes, except that a automaton/transducer also
/// compresses suffixes.
///
/// The longer answer is that keys in an automaton are stored only in the
/// transitions from one state to another. A key can be acquired by tracing
/// a path from the root of the automaton to any match state. The inputs along
/// each transition are concatenated. Once a match state is reached, the
/// concatenation of inputs up until that point corresponds to a single key.
///
/// But why is it called a transducer instead of an automaton? A finite state
/// transducer is just like a finite state automaton, except that it has output
/// transitions in addition to input transitions. Namely, the value associated
/// with any particular key is determined by summing the outputs along every
/// input transition that leads to the key&#39;s corresponding match state.
///
/// This is best demonstrated with a couple images. First, let&#39;s ignore the
/// &quot;transducer&quot; aspect and focus on a plain automaton.
///
/// Consider that your keys are abbreviations of some of the months in the
/// Gregorian calendar:
///
/// ```ignore
/// jan
/// feb
/// mar
/// apr
/// may
/// jun
/// jul
/// ```
///
/// The corresponding automaton that stores all of these as keys looks like
/// this:
///
/// ![finite state automaton](http://burntsushi.net/stuff/months-set.png)
///
/// Notice here how the prefix and suffix of `jan` and `jun` are shared.
/// Similarly, the prefixes of `jun` and `jul` are shared and the prefixes
/// of `mar` and `may` are shared.
///
/// All of the keys from this automaton can be enumerated in lexicographic
/// order by following every transition from each node in lexicographic
/// order. Since it is acyclic, the procedure will terminate.
///
/// A key can be found by tracing it through the transitions in the automaton.
/// For example, the key `aug` is known not to be in the automaton by only
/// visiting the root state (because there is no `a` transition). For another
/// example, the key `jax` is known not to be in the set only after moving
/// through the transitions for `j` and `a`. Namely, after those transitions
/// are followed, there are no transitions for `x`.
///
/// Notice here that looking up a key is proportional the length of the key
/// itself. Namely, lookup time is not affected by the number of keys in the
/// automaton!
///
/// Additionally, notice that the automaton exploits the fact that many keys
/// share common prefixes and suffixes. For example, `jun` and `jul` are
/// represented with no more states than would be required to represent either
/// one on its own. Instead, the only change is a single extra transition. This
/// is a form of compression and is key to how the automatons produced by this
/// crate are so small.
///
/// Let&#39;s move on to finite state transducers. Consider the same set of keys
/// as above, but let&#39;s assign their numeric month values:
///
/// ```ignore
/// jan,1
/// feb,2
/// mar,3
/// apr,4
/// may,5
/// jun,6
/// jul,7
/// ```
///
/// The corresponding transducer looks very similar to the automaton above,
/// except outputs have been added to some of the transitions:
///
/// ![finite state transducer](http://burntsushi.net/stuff/months-map.png)
///
/// All of the operations with a transducer are the same as described above
/// for automatons. Additionally, the same compression techniques are used:
/// common prefixes and suffixes in keys are exploited.
///
/// The key difference is that some transitions have been given an output.
/// As one follows input transitions, one must sum the outputs as they
/// are seen. (A transition with no output represents the additive identity,
/// or `0` in this case.) For example, when looking up `feb`, the transition
/// `f` has output `2`, the transition `e` has output `0`, and the transition
/// `b` also has output `0`. The sum of these is `2`, which is exactly the
/// value we associated with `feb`.
///
/// For another more interesting example, consider `jul`. The `j` transition
/// has output `1`, the `u` transition has output `5` and the `l` transition
/// has output `1`. Summing these together gets us `7`, which is again the
/// correct value associated with `jul`. Notice that if we instead looked up
/// the `jun` key, then the `n` transition would be followed instead of the
/// `l` transition, which has no output. Therefore, the `jun` key equals
/// `1+5+0=6`.
///
/// The trick to transducers is that there exists a unique path through the
/// transducer for every key, and its outputs are stored appropriately along
/// this path such that the correct value is returned when they are all summed
/// together. This process also enables the data that makes up each value to be
/// shared across many values in the transducer in exactly the same way that
/// keys are shared. This is yet another form of compression!
///
/// # Bonus: a billion strings
///
/// The amount of compression one can get from automata can be absolutely
/// ridiuclous. Consider the particular case of storing all billion strings
/// in the range `0000000001-1000000000`, e.g.,
///
/// ```ignore
/// 0000000001
/// 0000000002
/// ...
/// 0000000100
/// 0000000101
/// ...
/// 0999999999
/// 1000000000
/// ```
///
/// The corresponding automaton looks like this:
///
/// ![finite state automaton - one billion strings]
/// (http://burntsushi.net/stuff/one-billion.png)
///
/// Indeed, the on disk size of this automaton is a mere **251 bytes**.
///
/// Of course, this is a bit of a pathological best case, but it does serve
/// to show how good compression can be in the optimal case.
///
/// Also, check out the
/// [corresponding transducer](http://burntsushi.net/stuff/one-billion-map.svg)
/// that maps each string to its integer value. It&#39;s a bit bigger, but still
/// only takes up **896 bytes** of space on disk. This demonstrates that
/// output values are also compressible.
///
/// # Does this crate produce minimal transducers?
///
/// For any non-trivial sized set of keys, it is unlikely that this crate will
/// produce a minimal transducer. As far as this author knows, guaranteeing a
/// minimal transducer requires working memory proportional to the number of
/// states. This can be quite costly and is anathema to the main design goal of
/// this crate: provide the ability to work with gigantic sets of strings with
/// constant memory overhead.
///
/// Instead, construction of a finite state transducer uses a cache of
/// states. More frequently used states are cached and reused, which provides
/// reasonably good compression ratios. (No comprehensive benchmarks exist to
/// back up this claim.)
///
/// It is possible that this crate may expose a way to guarantee minimal
/// construction of transducers at the expense of exorbitant memory
/// requirements.
///
/// # Bibliography
///
/// I initially got the idea to use finite state tranducers to represent
/// ordered sets/maps from
/// [Michael
/// McCandless&#39;](http://blog.mikemccandless.com/2010/12/using-finite-state-transducers-in.html)
/// work on incorporating transducers in Lucene.
///
/// However, my work would also not have been possible without the hard work
/// of many academics, especially
/// [Jan Daciuk](http://galaxy.eti.pg.gda.pl/katedry/kiw/pracownicy/Jan.Daciuk/personal/).
///
/// * [Incremental construction of minimal acyclic finite-state automata](http://www.mitpressjournals.org/doi/pdfplus/10.1162/089120100561601)
/// (Section 3 provides a decent overview of the algorithm used to construct
/// transducers in this crate, assuming all outputs are `0`.)
/// * [Direct Construction of Minimal Acyclic Subsequential Transducers](http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.24.3698&amp;rep=rep1&amp;type=pdf)
/// (The whole thing. The proof is dense but illuminating. The algorithm at
/// the end is the money shot, namely, it incorporates output values.)
/// * [Experiments with Automata Compression](http://www.researchgate.net/profile/Jii_Dvorsky/publication/221568039_Word_Random_Access_Compression/links/0c96052c095630d5b3000000.pdf#page=116), [Smaller Representation of Finite State Automata](http://www.cs.put.poznan.pl/dweiss/site/publications/download/fsacomp.pdf)
/// (various compression techniques for representing states/transitions)
/// * [Jan Daciuk&#39;s dissertation](http://www.pg.gda.pl/~jandac/thesis.ps.gz)
/// (excellent for in depth overview)
/// * [Comparison of Construction Algorithms for Minimal, Acyclic, Deterministic, Finite-State Automata from Sets of Strings](http://www.cs.mun.ca/~harold/Courses/Old/CS4750/Diary/q3p2qx4lv71m5vew.pdf)
/// (excellent for surface level overview)
</span><span class="kw">pub struct </span>Fst&lt;Data = Vec&lt;u8&gt;&gt; {
meta: FstMeta,
data: Data,
}
<span class="kw">struct </span>FstMeta {
version: u64,
root_addr: CompiledAddr,
ty: FstType,
len: usize,
}
<span class="kw">impl </span>FstMeta {
<span class="attribute">#[inline(always)]
</span><span class="kw">fn </span>root&lt;<span class="lifetime">&#39;f</span>&gt;(<span class="kw-2">&amp;</span><span class="self">self</span>, data: <span class="kw-2">&amp;</span><span class="lifetime">&#39;f </span>[u8]) -&gt; Node&lt;<span class="lifetime">&#39;f</span>&gt; {
<span class="self">self</span>.node(<span class="self">self</span>.root_addr, data)
}
<span class="attribute">#[inline(always)]
</span><span class="kw">fn </span>node&lt;<span class="lifetime">&#39;f</span>&gt;(<span class="kw-2">&amp;</span><span class="self">self</span>, addr: CompiledAddr, data: <span class="kw-2">&amp;</span><span class="lifetime">&#39;f </span>[u8]) -&gt; Node&lt;<span class="lifetime">&#39;f</span>&gt; {
node_new(<span class="self">self</span>.version, addr, data)
}
<span class="kw">fn </span>empty_final_output(<span class="kw-2">&amp;</span><span class="self">self</span>, data: <span class="kw-2">&amp;</span>[u8]) -&gt; <span class="prelude-ty">Option</span>&lt;Output&gt; {
<span class="kw">let </span>root = <span class="self">self</span>.root(data);
<span class="kw">if </span>root.is_final() {
<span class="prelude-val">Some</span>(root.final_output())
} <span class="kw">else </span>{
<span class="prelude-val">None
</span>}
}
}
<span class="kw">impl</span>&lt;Data: Deref&lt;Target = [u8]&gt;&gt; Fst&lt;Data&gt; {
<span class="doccomment">/// Open a `Fst` from a given data.
</span><span class="kw">pub fn </span>new(data: Data) -&gt; <span class="prelude-ty">Result</span>&lt;Fst&lt;Data&gt;&gt; {
<span class="kw">if </span>data.len() &lt; <span class="number">32 </span>{
<span class="kw">return </span><span class="prelude-val">Err</span>(Error::Format.into());
}
<span class="comment">// The read_u64 unwraps below are OK because they can never fail.
// They can only fail when there is an IO error or if there is an
// unexpected EOF. However, we are reading from a byte slice (no
// IO errors possible) and we&#39;ve confirmed the byte slice is at least
// N bytes (no unexpected EOF).
</span><span class="kw">let </span>version = (<span class="kw-2">&amp;*</span>data).read_u64::&lt;LittleEndian&gt;().unwrap();
<span class="kw">if </span>version == <span class="number">0 </span>|| version &gt; VERSION {
<span class="kw">return </span><span class="prelude-val">Err</span>(Error::Version {
expected: VERSION,
got: version,
}
.into());
}
<span class="kw">let </span>ty = (<span class="kw-2">&amp;</span>data[<span class="number">8</span>..]).read_u64::&lt;LittleEndian&gt;().unwrap();
<span class="kw">let </span>root_addr = {
<span class="kw">let </span><span class="kw-2">mut </span>last = <span class="kw-2">&amp;</span>data[data.len() - <span class="number">8</span>..];
u64_to_usize(last.read_u64::&lt;LittleEndian&gt;().unwrap())
};
<span class="kw">let </span>len = {
<span class="kw">let </span><span class="kw-2">mut </span>last2 = <span class="kw-2">&amp;</span>data[data.len() - <span class="number">16</span>..];
u64_to_usize(last2.read_u64::&lt;LittleEndian&gt;().unwrap())
};
<span class="comment">// The root node is always the last node written, so its address should
// be near the end. After the root node is written, we still have to
// write the root *address* and the number of keys in the FST.
// That&#39;s 16 bytes. The extra byte comes from the fact that the root
// address points to the last byte in the root node, rather than the
// byte immediately following the root node.
//
// If this check passes, it is still possible that the FST is invalid
// but probably unlikely. If this check reports a false positive, then
// the program will probably panic. In the worst case, the FST will
// operate but be subtly wrong. (This would require the bytes to be in
// a format expected by an FST, which is incredibly unlikely.)
//
// The special check for EMPTY_ADDRESS is needed since an empty FST
// has a root node that is empty and final, which means it has the
// special address `0`. In that case, the FST is the smallest it can
// be: the version, type, root address and number of nodes. That&#39;s
// 32 bytes (8 byte u64 each).
//
// This is essentially our own little checksum.
</span><span class="kw">if </span>(root_addr == EMPTY_ADDRESS &amp;&amp; data.len() != <span class="number">32</span>) &amp;&amp; root_addr + <span class="number">17 </span>!= data.len() {
<span class="kw">return </span><span class="prelude-val">Err</span>(Error::Format.into());
}
<span class="prelude-val">Ok</span>(Fst {
data,
meta: FstMeta {
version,
root_addr,
ty,
len,
},
})
}
<span class="doccomment">/// Retrieves the value associated with a key.
///
/// If the key does not exist, then `None` is returned.
</span><span class="attribute">#[inline(never)]
</span><span class="kw">pub fn </span>get&lt;B: AsRef&lt;[u8]&gt;&gt;(<span class="kw-2">&amp;</span><span class="self">self</span>, key: B) -&gt; <span class="prelude-ty">Option</span>&lt;Output&gt; {
<span class="kw">let </span><span class="kw-2">mut </span>node = <span class="self">self</span>.root();
<span class="kw">let </span><span class="kw-2">mut </span>out = Output::zero();
<span class="kw">for </span><span class="kw-2">&amp;</span>b <span class="kw">in </span>key.as_ref() {
node = <span class="kw">match </span>node.find_input(b) {
<span class="prelude-val">None </span>=&gt; <span class="kw">return </span><span class="prelude-val">None</span>,
<span class="prelude-val">Some</span>(i) =&gt; {
<span class="kw">let </span>t = node.transition(i);
out = out.cat(t.out);
<span class="self">self</span>.node(t.addr)
}
}
}
<span class="kw">if </span>!node.is_final() {
<span class="prelude-val">None
</span>} <span class="kw">else </span>{
<span class="prelude-val">Some</span>(out.cat(node.final_output()))
}
}
<span class="doccomment">/// Returns true if and only if the given key is in this FST.
</span><span class="kw">pub fn </span>contains_key&lt;B: AsRef&lt;[u8]&gt;&gt;(<span class="kw-2">&amp;</span><span class="self">self</span>, key: B) -&gt; bool {
<span class="kw">let </span><span class="kw-2">mut </span>node = <span class="self">self</span>.root();
<span class="kw">for </span><span class="kw-2">&amp;</span>b <span class="kw">in </span>key.as_ref() {
node = <span class="kw">match </span>node.find_input(b) {
<span class="prelude-val">None </span>=&gt; <span class="kw">return </span><span class="bool-val">false</span>,
<span class="prelude-val">Some</span>(i) =&gt; <span class="self">self</span>.node(node.transition_addr(i)),
}
}
node.is_final()
}
<span class="doccomment">/// Return a lexicographically ordered stream of all key-value pairs in
/// this fst.
</span><span class="attribute">#[inline]
</span><span class="kw">pub fn </span>stream(<span class="kw-2">&amp;</span><span class="self">self</span>) -&gt; Stream {
<span class="self">self</span>.stream_builder(AlwaysMatch).into_stream()
}
<span class="kw">fn </span>stream_builder&lt;A: Automaton&gt;(<span class="kw-2">&amp;</span><span class="self">self</span>, aut: A) -&gt; StreamBuilder&lt;A&gt; {
StreamBuilder::new(<span class="kw-2">&amp;</span><span class="self">self</span>.meta, <span class="kw-2">&amp;</span><span class="self">self</span>.data, aut)
}
<span class="doccomment">/// Return a builder for range queries.
///
/// A range query returns a subset of key-value pairs in this fst in a
/// range given in lexicographic order.
</span><span class="attribute">#[inline]
</span><span class="kw">pub fn </span>range(<span class="kw-2">&amp;</span><span class="self">self</span>) -&gt; StreamBuilder {
<span class="self">self</span>.stream_builder(AlwaysMatch)
}
<span class="doccomment">/// Executes an automaton on the keys of this map.
</span><span class="kw">pub fn </span>search&lt;A: Automaton&gt;(<span class="kw-2">&amp;</span><span class="self">self</span>, aut: A) -&gt; StreamBuilder&lt;A&gt; {
<span class="self">self</span>.stream_builder(aut)
}
<span class="doccomment">/// Returns the number of keys in this fst.
</span><span class="attribute">#[inline]
</span><span class="kw">pub fn </span>len(<span class="kw-2">&amp;</span><span class="self">self</span>) -&gt; usize {
<span class="self">self</span>.meta.len
}
<span class="doccomment">/// Returns true if and only if this fst has no keys.
</span><span class="attribute">#[inline]
</span><span class="kw">pub fn </span>is_empty(<span class="kw-2">&amp;</span><span class="self">self</span>) -&gt; bool {
<span class="self">self</span>.len() == <span class="number">0
</span>}
<span class="doccomment">/// Returns the number of bytes used by this fst.
</span><span class="attribute">#[inline]
</span><span class="kw">pub fn </span>size(<span class="kw-2">&amp;</span><span class="self">self</span>) -&gt; usize {
<span class="self">self</span>.data.len()
}
<span class="doccomment">/// Creates a new fst operation with this fst added to it.
///
/// The `OpBuilder` type can be used to add additional fst streams
/// and perform set operations like union, intersection, difference and
/// symmetric difference on the keys of the fst. These set operations also
/// allow one to specify how conflicting values are merged in the stream.
</span><span class="attribute">#[inline]
</span><span class="kw">pub fn </span>op(<span class="kw-2">&amp;</span><span class="self">self</span>) -&gt; OpBuilder {
OpBuilder::default().add(<span class="self">self</span>)
}
<span class="doccomment">/// Returns true if and only if the `self` fst is disjoint with the fst
/// `stream`.
///
/// `stream` must be a lexicographically ordered sequence of byte strings
/// with associated values.
</span><span class="kw">pub fn </span>is_disjoint&lt;<span class="lifetime">&#39;f</span>, I, S&gt;(<span class="kw-2">&amp;</span><span class="self">self</span>, stream: I) -&gt; bool
<span class="kw">where
</span>I: <span class="kw">for</span>&lt;<span class="lifetime">&#39;a</span>&gt; IntoStreamer&lt;<span class="lifetime">&#39;a</span>, Into = S, Item = (<span class="kw-2">&amp;</span><span class="lifetime">&#39;a </span>[u8], Output)&gt;,
S: <span class="lifetime">&#39;f </span>+ <span class="kw">for</span>&lt;<span class="lifetime">&#39;a</span>&gt; Streamer&lt;<span class="lifetime">&#39;a</span>, Item = (<span class="kw-2">&amp;</span><span class="lifetime">&#39;a </span>[u8], Output)&gt;,
{
<span class="self">self</span>.op().add(stream).intersection().next().is_none()
}
<span class="doccomment">/// Returns true if and only if the `self` fst is a subset of the fst
/// `stream`.
///
/// `stream` must be a lexicographically ordered sequence of byte strings
/// with associated values.
</span><span class="kw">pub fn </span>is_subset&lt;<span class="lifetime">&#39;f</span>, I, S&gt;(<span class="kw-2">&amp;</span><span class="self">self</span>, stream: I) -&gt; bool
<span class="kw">where
</span>I: <span class="kw">for</span>&lt;<span class="lifetime">&#39;a</span>&gt; IntoStreamer&lt;<span class="lifetime">&#39;a</span>, Into = S, Item = (<span class="kw-2">&amp;</span><span class="lifetime">&#39;a </span>[u8], Output)&gt;,
S: <span class="lifetime">&#39;f </span>+ <span class="kw">for</span>&lt;<span class="lifetime">&#39;a</span>&gt; Streamer&lt;<span class="lifetime">&#39;a</span>, Item = (<span class="kw-2">&amp;</span><span class="lifetime">&#39;a </span>[u8], Output)&gt;,
{
<span class="kw">let </span><span class="kw-2">mut </span>op = <span class="self">self</span>.op().add(stream).intersection();
<span class="kw">let </span><span class="kw-2">mut </span>count = <span class="number">0</span>;
<span class="kw">while let </span><span class="prelude-val">Some</span>(<span class="kw">_</span>) = op.next() {
count += <span class="number">1</span>;
}
count == <span class="self">self</span>.len()
}
<span class="doccomment">/// Returns true if and only if the `self` fst is a superset of the fst
/// `stream`.
///
/// `stream` must be a lexicographically ordered sequence of byte strings
/// with associated values.
</span><span class="kw">pub fn </span>is_superset&lt;<span class="lifetime">&#39;f</span>, I, S&gt;(<span class="kw-2">&amp;</span><span class="self">self</span>, stream: I) -&gt; bool
<span class="kw">where
</span>I: <span class="kw">for</span>&lt;<span class="lifetime">&#39;a</span>&gt; IntoStreamer&lt;<span class="lifetime">&#39;a</span>, Into = S, Item = (<span class="kw-2">&amp;</span><span class="lifetime">&#39;a </span>[u8], Output)&gt;,
S: <span class="lifetime">&#39;f </span>+ <span class="kw">for</span>&lt;<span class="lifetime">&#39;a</span>&gt; Streamer&lt;<span class="lifetime">&#39;a</span>, Item = (<span class="kw-2">&amp;</span><span class="lifetime">&#39;a </span>[u8], Output)&gt;,
{
<span class="kw">let </span><span class="kw-2">mut </span>op = <span class="self">self</span>.op().add(stream).union();
<span class="kw">let </span><span class="kw-2">mut </span>count = <span class="number">0</span>;
<span class="kw">while let </span><span class="prelude-val">Some</span>(<span class="kw">_</span>) = op.next() {
count += <span class="number">1</span>;
}
count == <span class="self">self</span>.len()
}
<span class="doccomment">/// Returns the underlying type of this fst.
///
/// FstType is a convention used to indicate the type of the underlying
/// transducer.
///
/// This crate reserves the range 0-255 (inclusive) but currently leaves
/// the meaning of 0-255 unspecified.
</span><span class="attribute">#[inline]
</span><span class="kw">pub fn </span>fst_type(<span class="kw-2">&amp;</span><span class="self">self</span>) -&gt; FstType {
<span class="self">self</span>.meta.ty
}
<span class="doccomment">/// Returns the root node of this fst.
</span><span class="attribute">#[inline(always)]
</span><span class="kw">pub fn </span>root(<span class="kw-2">&amp;</span><span class="self">self</span>) -&gt; Node {
<span class="self">self</span>.meta.root(<span class="self">self</span>.data.deref())
}
<span class="doccomment">/// Returns the node at the given address.
///
/// Node addresses can be obtained by reading transitions on `Node` values.
</span><span class="attribute">#[inline]
</span><span class="kw">pub fn </span>node(<span class="kw-2">&amp;</span><span class="self">self</span>, addr: CompiledAddr) -&gt; Node {
<span class="self">self</span>.meta.node(addr, <span class="self">self</span>.data.deref())
}
<span class="doccomment">/// Returns a copy of the binary contents of this FST.
</span><span class="attribute">#[inline]
</span><span class="kw">pub fn </span>to_vec(<span class="kw-2">&amp;</span><span class="self">self</span>) -&gt; Vec&lt;u8&gt; {
<span class="self">self</span>.data.to_vec()
}
}
<span class="kw">impl</span>&lt;<span class="lifetime">&#39;a</span>, <span class="lifetime">&#39;f</span>, Data&gt; IntoStreamer&lt;<span class="lifetime">&#39;a</span>&gt; <span class="kw">for </span><span class="kw-2">&amp;</span><span class="lifetime">&#39;f </span>Fst&lt;Data&gt;
<span class="kw">where
</span>Data: Deref&lt;Target = [u8]&gt;,
{
<span class="kw">type </span>Item = (<span class="kw-2">&amp;</span><span class="lifetime">&#39;a </span>[u8], Output);
<span class="kw">type </span>Into = Stream&lt;<span class="lifetime">&#39;f</span>&gt;;
<span class="attribute">#[inline]
</span><span class="kw">fn </span>into_stream(<span class="self">self</span>) -&gt; <span class="self">Self</span>::Into {
<span class="self">self</span>.stream()
}
}
<span class="doccomment">/// A builder for constructing range queries on streams.
///
/// Once all bounds are set, one should call `into_stream` to get a
/// `Stream`.
///
/// Bounds are not additive. That is, if `ge` is called twice on the same
/// builder, then the second setting wins.
///
/// The `A` type parameter corresponds to an optional automaton to filter
/// the stream. By default, no filtering is done.
///
/// The `&#39;f` lifetime parameter refers to the lifetime of the underlying fst.
</span><span class="kw">pub struct </span>StreamBuilder&lt;<span class="lifetime">&#39;f</span>, A = AlwaysMatch&gt; {
meta: <span class="kw-2">&amp;</span><span class="lifetime">&#39;f </span>FstMeta,
data: <span class="kw-2">&amp;</span><span class="lifetime">&#39;f </span>[u8],
aut: A,
min: Bound,
max: Bound,
backward: bool,
}
<span class="kw">impl</span>&lt;<span class="lifetime">&#39;f</span>, A: Automaton&gt; StreamBuilder&lt;<span class="lifetime">&#39;f</span>, A&gt; {
<span class="kw">fn </span>new(meta: <span class="kw-2">&amp;</span><span class="lifetime">&#39;f </span>FstMeta, data: <span class="kw-2">&amp;</span><span class="lifetime">&#39;f </span>[u8], aut: A) -&gt; <span class="self">Self </span>{
StreamBuilder {
meta,
data,
aut,
min: Bound::Unbounded,
max: Bound::Unbounded,
backward: <span class="bool-val">false</span>,
}
}
<span class="doccomment">/// Specify a greater-than-or-equal-to bound.
</span><span class="kw">pub fn </span>ge&lt;T: AsRef&lt;[u8]&gt;&gt;(<span class="kw-2">mut </span><span class="self">self</span>, bound: T) -&gt; <span class="self">Self </span>{
<span class="self">self</span>.min = Bound::Included(bound.as_ref().to_owned());
<span class="self">self
</span>}
<span class="doccomment">/// Specify a greater-than bound.
</span><span class="kw">pub fn </span>gt&lt;T: AsRef&lt;[u8]&gt;&gt;(<span class="kw-2">mut </span><span class="self">self</span>, bound: T) -&gt; <span class="self">Self </span>{
<span class="self">self</span>.min = Bound::Excluded(bound.as_ref().to_owned());
<span class="self">self
</span>}
<span class="doccomment">/// Specify a less-than-or-equal-to bound.
</span><span class="kw">pub fn </span>le&lt;T: AsRef&lt;[u8]&gt;&gt;(<span class="kw-2">mut </span><span class="self">self</span>, bound: T) -&gt; <span class="self">Self </span>{
<span class="self">self</span>.max = Bound::Included(bound.as_ref().to_owned());
<span class="self">self
</span>}
<span class="doccomment">/// Specify a less-than bound.
</span><span class="kw">pub fn </span>lt&lt;T: AsRef&lt;[u8]&gt;&gt;(<span class="kw-2">mut </span><span class="self">self</span>, bound: T) -&gt; <span class="self">Self </span>{
<span class="self">self</span>.max = Bound::Excluded(bound.as_ref().to_owned());
<span class="self">self
</span>}
<span class="doccomment">/// Sets the `StreamBuilder` to stream the `(key, value)` backward.
</span><span class="kw">pub fn </span>backward(<span class="kw-2">mut </span><span class="self">self</span>) -&gt; <span class="self">Self </span>{
<span class="self">self</span>.backward = <span class="bool-val">true</span>;
<span class="self">self
</span>}
<span class="doccomment">/// Return this builder and gives the automaton states
/// along with the results.
</span><span class="kw">pub fn </span>with_state(<span class="self">self</span>) -&gt; StreamWithStateBuilder&lt;<span class="lifetime">&#39;f</span>, A&gt; {
StreamWithStateBuilder(<span class="self">self</span>)
}
}
<span class="kw">impl</span>&lt;<span class="lifetime">&#39;a</span>, <span class="lifetime">&#39;f</span>, A: Automaton&gt; IntoStreamer&lt;<span class="lifetime">&#39;a</span>&gt; <span class="kw">for </span>StreamBuilder&lt;<span class="lifetime">&#39;f</span>, A&gt; {
<span class="kw">type </span>Item = (<span class="kw-2">&amp;</span><span class="lifetime">&#39;a </span>[u8], Output);
<span class="kw">type </span>Into = Stream&lt;<span class="lifetime">&#39;f</span>, A&gt;;
<span class="kw">fn </span>into_stream(<span class="self">self</span>) -&gt; Stream&lt;<span class="lifetime">&#39;f</span>, A&gt; {
Stream::new(
<span class="self">self</span>.meta,
<span class="self">self</span>.data,
<span class="self">self</span>.aut,
<span class="self">self</span>.min,
<span class="self">self</span>.max,
<span class="self">self</span>.backward,
)
}
}
<span class="doccomment">/// A builder for constructing range queries of streams
/// that returns results along with automaton states.
///
/// Once all bounds are set, one should call `into_stream` to get a
/// `StreamWithState`.
///
/// Bounds are not additive. That is, if `ge` is called twice on the same
/// builder, then the second setting wins.
///
/// The `A` type parameter corresponds to an optional automaton to filter
/// the stream. By default, no filtering is done.
///
/// The `&#39;f` lifetime parameter refers to the lifetime of the underlying fst.
</span><span class="kw">pub struct </span>StreamWithStateBuilder&lt;<span class="lifetime">&#39;f</span>, A = AlwaysMatch&gt;(StreamBuilder&lt;<span class="lifetime">&#39;f</span>, A&gt;);
<span class="kw">impl</span>&lt;<span class="lifetime">&#39;a</span>, <span class="lifetime">&#39;f</span>, A: <span class="lifetime">&#39;a </span>+ Automaton&gt; IntoStreamer&lt;<span class="lifetime">&#39;a</span>&gt; <span class="kw">for </span>StreamWithStateBuilder&lt;<span class="lifetime">&#39;f</span>, A&gt;
<span class="kw">where
</span>A::State: Clone,
{
<span class="kw">type </span>Item = (<span class="kw-2">&amp;</span><span class="lifetime">&#39;a </span>[u8], Output, A::State);
<span class="kw">type </span>Into = StreamWithState&lt;<span class="lifetime">&#39;f</span>, A&gt;;
<span class="kw">fn </span>into_stream(<span class="self">self</span>) -&gt; StreamWithState&lt;<span class="lifetime">&#39;f</span>, A&gt; {
StreamWithState::new(
<span class="self">self</span>.<span class="number">0</span>.meta,
<span class="self">self</span>.<span class="number">0</span>.data,
<span class="self">self</span>.<span class="number">0</span>.aut,
<span class="self">self</span>.<span class="number">0</span>.min,
<span class="self">self</span>.<span class="number">0</span>.max,
<span class="self">self</span>.<span class="number">0</span>.backward,
)
}
}
<span class="attribute">#[derive(Clone, Debug)]
</span><span class="kw">enum </span>Bound {
Included(Vec&lt;u8&gt;),
Excluded(Vec&lt;u8&gt;),
Unbounded,
}
<span class="kw">impl </span>Bound {
<span class="kw">fn </span>exceeded_by(<span class="kw-2">&amp;</span><span class="self">self</span>, inp: <span class="kw-2">&amp;</span>[u8]) -&gt; bool {
<span class="kw">match </span><span class="kw-2">*</span><span class="self">self </span>{
Bound::Included(<span class="kw-2">ref </span>v) =&gt; inp &gt; v,
Bound::Excluded(<span class="kw-2">ref </span>v) =&gt; inp &gt;= v,
Bound::Unbounded =&gt; <span class="bool-val">false</span>,
}
}
<span class="kw">fn </span>subceeded_by(<span class="kw-2">&amp;</span><span class="self">self</span>, inp: <span class="kw-2">&amp;</span>[u8]) -&gt; bool {
<span class="kw">match </span><span class="kw-2">*</span><span class="self">self </span>{
Bound::Included(<span class="kw-2">ref </span>v) =&gt; inp &lt; v,
Bound::Excluded(<span class="kw-2">ref </span>v) =&gt; inp &lt;= v,
Bound::Unbounded =&gt; <span class="bool-val">false</span>,
}
}
<span class="kw">fn </span>is_empty(<span class="kw-2">&amp;</span><span class="self">self</span>) -&gt; bool {
<span class="kw">match </span><span class="kw-2">*</span><span class="self">self </span>{
Bound::Included(<span class="kw-2">ref </span>v) =&gt; v.is_empty(),
Bound::Excluded(<span class="kw-2">ref </span>v) =&gt; v.is_empty(),
Bound::Unbounded =&gt; <span class="bool-val">true</span>,
}
}
<span class="kw">fn </span>is_inclusive(<span class="kw-2">&amp;</span><span class="self">self</span>) -&gt; bool {
<span class="kw">match </span><span class="kw-2">*</span><span class="self">self </span>{
Bound::Excluded(<span class="kw">_</span>) =&gt; <span class="bool-val">false</span>,
<span class="kw">_ </span>=&gt; <span class="bool-val">true</span>,
}
}
}
<span class="doccomment">/// Stream of `key, value` not exposing the state of the automaton.
</span><span class="kw">pub struct </span>Stream&lt;<span class="lifetime">&#39;f</span>, A = AlwaysMatch&gt;(StreamWithState&lt;<span class="lifetime">&#39;f</span>, A&gt;)
<span class="kw">where
</span>A: Automaton;
<span class="kw">impl</span>&lt;<span class="lifetime">&#39;f</span>, A: Automaton&gt; Stream&lt;<span class="lifetime">&#39;f</span>, A&gt; {
<span class="kw">fn </span>new(
meta: <span class="kw-2">&amp;</span><span class="lifetime">&#39;f </span>FstMeta,
data: <span class="kw-2">&amp;</span><span class="lifetime">&#39;f </span>[u8],
aut: A,
min: Bound,
max: Bound,
backward: bool,
) -&gt; <span class="self">Self </span>{
<span class="self">Self</span>(StreamWithState::new(meta, data, aut, min, max, backward))
}
<span class="doccomment">/// Convert this stream into a vector of byte strings and outputs.
///
/// Note that this creates a new allocation for every key in the stream.
</span><span class="kw">pub fn </span>into_byte_vec(<span class="kw-2">mut </span><span class="self">self</span>) -&gt; Vec&lt;(Vec&lt;u8&gt;, u64)&gt; {
<span class="kw">let </span><span class="kw-2">mut </span>vs = <span class="macro">vec!</span>[];
<span class="kw">while let </span><span class="prelude-val">Some</span>((k, v)) = <span class="self">self</span>.next() {
vs.push((k.to_vec(), v.value()));
}
vs
}
<span class="doccomment">/// Convert this stream into a vector of Unicode strings and outputs.
///
/// If any key is not valid UTF-8, then iteration on the stream is stopped
/// and a UTF-8 decoding error is returned.
///
/// Note that this creates a new allocation for every key in the stream.
</span><span class="kw">pub fn </span>into_str_vec(<span class="kw-2">mut </span><span class="self">self</span>) -&gt; <span class="prelude-ty">Result</span>&lt;Vec&lt;(String, u64)&gt;&gt; {
<span class="kw">let </span><span class="kw-2">mut </span>vs = <span class="macro">vec!</span>[];
<span class="kw">while let </span><span class="prelude-val">Some</span>((k, v)) = <span class="self">self</span>.next() {
<span class="kw">let </span>k = String::from_utf8(k.to_vec()).map_err(Error::from)<span class="question-mark">?</span>;
vs.push((k, v.value()));
}
<span class="prelude-val">Ok</span>(vs)
}
<span class="doccomment">/// Convert this stream into a vector of byte strings.
///
/// Note that this creates a new allocation for every key in the stream.
</span><span class="kw">pub fn </span>into_byte_keys(<span class="kw-2">mut </span><span class="self">self</span>) -&gt; Vec&lt;Vec&lt;u8&gt;&gt; {
<span class="kw">let </span><span class="kw-2">mut </span>vs = <span class="macro">vec!</span>[];
<span class="kw">while let </span><span class="prelude-val">Some</span>((k, <span class="kw">_</span>)) = <span class="self">self</span>.next() {
vs.push(k.to_vec());
}
vs
}
<span class="doccomment">/// Convert this stream into a vector of Unicode strings.
///
/// If any key is not valid UTF-8, then iteration on the stream is stopped
/// and a UTF-8 decoding error is returned.
///
/// Note that this creates a new allocation for every key in the stream.
</span><span class="kw">pub fn </span>into_str_keys(<span class="kw-2">mut </span><span class="self">self</span>) -&gt; <span class="prelude-ty">Result</span>&lt;Vec&lt;String&gt;&gt; {
<span class="kw">let </span><span class="kw-2">mut </span>vs = <span class="macro">vec!</span>[];
<span class="kw">while let </span><span class="prelude-val">Some</span>((k, <span class="kw">_</span>)) = <span class="self">self</span>.next() {
<span class="kw">let </span>k = String::from_utf8(k.to_vec()).map_err(Error::from)<span class="question-mark">?</span>;
vs.push(k);
}
<span class="prelude-val">Ok</span>(vs)
}
<span class="doccomment">/// Convert this stream into a vector of outputs.
</span><span class="kw">pub fn </span>into_values(<span class="kw-2">mut </span><span class="self">self</span>) -&gt; Vec&lt;u64&gt; {
<span class="kw">let </span><span class="kw-2">mut </span>vs = <span class="macro">vec!</span>[];
<span class="kw">while let </span><span class="prelude-val">Some</span>((<span class="kw">_</span>, v)) = <span class="self">self</span>.next() {
vs.push(v.value());
}
vs
}
}
<span class="kw">impl</span>&lt;<span class="lifetime">&#39;f</span>, <span class="lifetime">&#39;a</span>, A: Automaton&gt; Streamer&lt;<span class="lifetime">&#39;a</span>&gt; <span class="kw">for </span>Stream&lt;<span class="lifetime">&#39;f</span>, A&gt; {
<span class="kw">type </span>Item = (<span class="kw-2">&amp;</span><span class="lifetime">&#39;a </span>[u8], Output);
<span class="kw">fn </span>next(<span class="kw-2">&amp;</span><span class="lifetime">&#39;a </span><span class="kw-2">mut </span><span class="self">self</span>) -&gt; <span class="prelude-ty">Option</span>&lt;<span class="self">Self</span>::Item&gt; {
<span class="self">self</span>.<span class="number">0</span>.next(|<span class="kw">_</span>| ()).map(|(key, out, <span class="kw">_</span>)| (key, out))
}
}
<span class="doccomment">/// A lexicographically ordered stream from an fst
/// of key-value pairs along with the state of the automaton.
///
/// The `A` type parameter corresponds to an optional automaton to filter
/// the stream. By default, no filtering is done.
///
/// The `&#39;f` lifetime parameter refers to the lifetime of the underlying fst.
</span><span class="attribute">#[derive(Clone)]
</span><span class="kw">pub struct </span>StreamWithState&lt;<span class="lifetime">&#39;f</span>, A = AlwaysMatch&gt;
<span class="kw">where
</span>A: Automaton,
{
fst: <span class="kw-2">&amp;</span><span class="lifetime">&#39;f </span>FstMeta,
data: <span class="kw-2">&amp;</span><span class="lifetime">&#39;f </span>[u8],
aut: A,
inp: Buffer,
empty_output: <span class="prelude-ty">Option</span>&lt;Output&gt;,
stack: Vec&lt;StreamState&lt;<span class="lifetime">&#39;f</span>, A::State&gt;&gt;,
end_at: Bound,
min: Bound,
max: Bound,
reversed: bool,
}
<span class="attribute">#[derive(Clone, Debug)]
</span><span class="kw">struct </span>StreamState&lt;<span class="lifetime">&#39;f</span>, S&gt; {
node: Node&lt;<span class="lifetime">&#39;f</span>&gt;,
trans: usize,
out: Output,
aut_state: S,
done: bool, <span class="comment">// (&#39;done&#39; = true) means that there are no unexplored transitions in the current state.
// &#39;trans&#39; value should be ignored when done is true.
</span>}
<span class="kw">impl</span>&lt;<span class="lifetime">&#39;f</span>, A: Automaton&gt; StreamWithState&lt;<span class="lifetime">&#39;f</span>, A&gt; {
<span class="kw">fn </span>new(
fst: <span class="kw-2">&amp;</span><span class="lifetime">&#39;f </span>FstMeta,
data: <span class="kw-2">&amp;</span><span class="lifetime">&#39;f </span>[u8],
aut: A,
min: Bound,
max: Bound,
backward: bool,
) -&gt; <span class="self">Self </span>{
<span class="kw">let </span>min_2 = min.clone();
<span class="kw">let </span>max_2 = max.clone();
<span class="kw">let </span>end_at: Bound = <span class="kw">if </span>!backward { max.clone() } <span class="kw">else </span>{ min.clone() };
<span class="kw">let </span><span class="kw-2">mut </span>stream = StreamWithState {
fst,
data,
aut,
inp: Buffer::new(),
empty_output: <span class="prelude-val">None</span>,
stack: <span class="macro">vec!</span>[],
end_at,
min: min_2,
max: max_2,
reversed: backward,
};
stream.seek(<span class="kw-2">&amp;</span>min, <span class="kw-2">&amp;</span>max);
stream
}
<span class="doccomment">/// Seeks the underlying stream such that the next key to be read is the
/// smallest key in the underlying fst that satisfies the given minimum
/// bound.
///
/// This theoretically should be straight-forward, but we need to make
/// sure our stack is correct, which includes accounting for automaton
/// states.
</span><span class="kw">fn </span>seek(<span class="kw-2">&amp;mut </span><span class="self">self</span>, min: <span class="kw-2">&amp;</span>Bound, max: <span class="kw-2">&amp;</span>Bound) {
<span class="kw">let </span>start_bound = <span class="kw">if </span><span class="self">self</span>.reversed { <span class="kw-2">&amp;</span>max } <span class="kw">else </span>{ <span class="kw-2">&amp;</span>min };
<span class="kw">if </span>min.is_empty() &amp;&amp; min.is_inclusive() {
<span class="self">self</span>.empty_output = <span class="self">self</span>.resolve_empty_output(min, max);
}
<span class="kw">if </span>start_bound.is_empty() {
<span class="self">self</span>.stack.clear();
<span class="kw">let </span>node = <span class="self">self</span>.fst.root(<span class="self">self</span>.data);
<span class="kw">let </span>transition = <span class="self">self</span>.starting_transition(<span class="kw-2">&amp;</span>node);
<span class="self">self</span>.stack = <span class="macro">vec!</span>[StreamState {
node,
trans: transition.unwrap_or_default(),
out: Output::zero(),
aut_state: <span class="self">self</span>.aut.start(),
done: transition.is_none(),
}];
<span class="kw">return</span>;
}
<span class="kw">let </span>(key, inclusive) = <span class="kw">match </span>start_bound {
Bound::Excluded(<span class="kw-2">ref </span>start_bound) =&gt; (start_bound, <span class="bool-val">false</span>),
Bound::Included(<span class="kw-2">ref </span>start_bound) =&gt; (start_bound, <span class="bool-val">true</span>),
Bound::Unbounded =&gt; <span class="macro">unreachable!</span>(),
};
<span class="comment">// At this point, we need to find the starting location of `min` in
// the FST. However, as we search, we need to maintain a stack of
// reader states so that the reader can pick up where we left off.
// N.B. We do not necessarily need to stop in a final state, unlike
// the one-off `find` method. For the example, the given bound might
// not actually exist in the FST.
</span><span class="kw">let </span><span class="kw-2">mut </span>node = <span class="self">self</span>.fst.root(<span class="self">self</span>.data);
<span class="kw">let </span><span class="kw-2">mut </span>out = Output::zero();
<span class="kw">let </span><span class="kw-2">mut </span>aut_state = <span class="self">self</span>.aut.start();
<span class="kw">for </span><span class="kw-2">&amp;</span>b <span class="kw">in </span>key {
<span class="kw">match </span>node.find_input(b) {
<span class="prelude-val">Some</span>(i) =&gt; {
<span class="kw">let </span>t = node.transition(i);
<span class="kw">let </span>prev_state = aut_state;
aut_state = <span class="self">self</span>.aut.accept(<span class="kw-2">&amp;</span>prev_state, b);
<span class="self">self</span>.inp.push(b);
<span class="kw">let </span>transition = <span class="self">self</span>.next_transition(<span class="kw-2">&amp;</span>node, i);
<span class="self">self</span>.stack.push(StreamState {
node,
trans: transition.unwrap_or_default(),
out,
aut_state: prev_state,
done: transition.is_none(),
});
out = out.cat(t.out);
node = <span class="self">self</span>.fst.node(t.addr, <span class="self">self</span>.data);
}
<span class="prelude-val">None </span>=&gt; {
<span class="comment">// This is a little tricky. We&#39;re in this case if the
// given bound is not a prefix of any key in the FST.
// Since this is a minimum bound, we need to find the
// first transition in this node that proceeds the current
// input byte.
</span><span class="kw">let </span>trans = <span class="self">self</span>.transition_within_bound(<span class="kw-2">&amp;</span>node, b);
<span class="self">self</span>.stack.push(StreamState {
node,
trans: trans.unwrap_or_default(),
out,
aut_state,
done: trans.is_none(),
});
<span class="kw">return</span>;
}
}
}
<span class="kw">if </span><span class="self">self</span>.stack.is_empty() {
<span class="kw">return</span>;
}
<span class="kw">let </span>last = <span class="self">self</span>.stack.len() - <span class="number">1</span>;
<span class="kw">let </span>state = <span class="kw-2">&amp;</span><span class="self">self</span>.stack[last];
<span class="kw">let </span>transition = <span class="kw">if </span>!state.done {
<span class="self">self</span>.previous_transition(<span class="kw-2">&amp;</span>state.node, state.trans)
} <span class="kw">else </span>{
<span class="self">self</span>.last_transition(<span class="kw-2">&amp;</span>state.node)
};
<span class="kw">if </span>inclusive {
<span class="self">self</span>.stack[last].trans = transition.unwrap_or_default();
<span class="self">self</span>.stack[last].done = transition.is_none();
<span class="self">self</span>.inp.pop();
} <span class="kw">else </span>{
<span class="kw">let </span>next_node = <span class="self">self</span>.fst.node(
state.node.transition(transition.unwrap_or_default()).addr,
<span class="self">self</span>.data,
);
<span class="kw">let </span>starting_transition = <span class="self">self</span>.starting_transition(<span class="kw-2">&amp;</span>next_node);
<span class="self">self</span>.stack.push(StreamState {
node: next_node,
trans: starting_transition.unwrap_or_default(),
out,
aut_state,
done: starting_transition.is_none(),
});
}
}
<span class="attribute">#[inline]
</span><span class="kw">fn </span>next&lt;F, T&gt;(<span class="kw-2">&amp;mut </span><span class="self">self</span>, transform: F) -&gt; <span class="prelude-ty">Option</span>&lt;(<span class="kw-2">&amp;</span>[u8], Output, T)&gt;
<span class="kw">where
</span>F: Fn(<span class="kw-2">&amp;</span>A::State) -&gt; T,
{
<span class="kw">if </span>!<span class="self">self</span>.reversed {
<span class="comment">// Inorder empty output (will be first).
</span><span class="kw">if let </span><span class="prelude-val">Some</span>(out) = <span class="self">self</span>.empty_output.take() {
<span class="kw">return </span><span class="prelude-val">Some</span>((<span class="kw-2">&amp;</span>[], out, transform(<span class="kw-2">&amp;</span><span class="self">self</span>.aut.start())));
}
}
<span class="kw">while let </span><span class="prelude-val">Some</span>(state) = <span class="self">self</span>.stack.pop() {
<span class="kw">if </span>state.done || !<span class="self">self</span>.aut.can_match(<span class="kw-2">&amp;</span>state.aut_state) {
<span class="kw">if </span>state.node.addr() != <span class="self">self</span>.fst.root_addr {
<span class="comment">// Reversed return next logic.
// If the stack is empty the value should not be returned.
</span><span class="kw">if </span><span class="self">self</span>.reversed &amp;&amp; !<span class="self">self</span>.stack.is_empty() &amp;&amp; state.node.is_final() {
<span class="kw">let </span>out_of_bounds =
<span class="self">self</span>.min.subceeded_by(<span class="kw-2">&amp;</span><span class="self">self</span>.inp) || <span class="self">self</span>.max.exceeded_by(<span class="kw-2">&amp;</span><span class="self">self</span>.inp);
<span class="kw">if </span>!out_of_bounds &amp;&amp; <span class="self">self</span>.aut.is_match(<span class="kw-2">&amp;</span>state.aut_state) {
<span class="kw">return </span><span class="prelude-val">Some</span>((<span class="kw-2">&amp;</span><span class="self">self</span>.inp.pop(), state.out, transform(<span class="kw-2">&amp;</span>state.aut_state)));
}
}
<span class="self">self</span>.inp.pop();
}
<span class="kw">continue</span>;
}
<span class="kw">let </span>trans = state.node.transition(state.trans);
<span class="kw">let </span>out = state.out.cat(trans.out);
<span class="kw">let </span>next_state = <span class="self">self</span>.aut.accept(<span class="kw-2">&amp;</span>state.aut_state, trans.inp);
<span class="kw">let </span>is_match = <span class="self">self</span>.aut.is_match(<span class="kw-2">&amp;</span>next_state);
<span class="kw">let </span>next_node = <span class="self">self</span>.fst.node(trans.addr, <span class="self">self</span>.data);
<span class="self">self</span>.inp.push(trans.inp);
<span class="kw">let </span>current_transition = <span class="self">self</span>.next_transition(<span class="kw-2">&amp;</span>state.node, state.trans);
<span class="self">self</span>.stack.push(StreamState {
trans: current_transition.unwrap_or_default(),
done: current_transition.is_none(),
..state
});
<span class="kw">let </span>ns = transform(<span class="kw-2">&amp;</span>next_state);
<span class="kw">let </span>next_transition = <span class="self">self</span>.starting_transition(<span class="kw-2">&amp;</span>next_node);
<span class="self">self</span>.stack.push(StreamState {
node: next_node,
trans: next_transition.unwrap_or_default(),
out,
aut_state: next_state,
done: next_transition.is_none(),
});
<span class="comment">// Inorder return next logic.
</span><span class="kw">if </span>!<span class="self">self</span>.reversed {
<span class="kw">if </span><span class="self">self</span>.end_at.exceeded_by(<span class="kw-2">&amp;</span><span class="self">self</span>.inp) {
<span class="comment">// We are done, forever.
</span><span class="self">self</span>.stack.clear();
<span class="kw">return </span><span class="prelude-val">None</span>;
} <span class="kw">else if </span>!<span class="self">self</span>.reversed &amp;&amp; next_node.is_final() &amp;&amp; is_match {
<span class="kw">return </span><span class="prelude-val">Some</span>((<span class="kw-2">&amp;</span><span class="self">self</span>.inp, out.cat(next_node.final_output()), ns));
}
}
}
<span class="comment">// If we are streaming backward, we still need to return the empty output, if empty is
// part of our fst, matches the range and the automaton
</span><span class="self">self</span>.empty_output
.take()
.map(|out| (<span class="kw-2">&amp;</span>[][..], out, transform(<span class="kw-2">&amp;</span><span class="self">self</span>.aut.start())))
}
<span class="comment">// The first transition that is in a bound for a given node.
</span><span class="attribute">#[inline]
</span><span class="kw">fn </span>transition_within_bound(<span class="kw-2">&amp;</span><span class="self">self</span>, node: <span class="kw-2">&amp;</span>Node&lt;<span class="lifetime">&#39;f</span>&gt;, bound: u8) -&gt; <span class="prelude-ty">Option</span>&lt;usize&gt; {
<span class="kw">let </span><span class="kw-2">mut </span>trans;
<span class="kw">if let </span><span class="prelude-val">Some</span>(t) = <span class="self">self</span>.starting_transition(<span class="kw-2">&amp;</span>node) {
trans = t;
} <span class="kw">else </span>{
<span class="kw">return </span><span class="prelude-val">None</span>;
}
<span class="kw">loop </span>{
<span class="kw">let </span>transition = node.transition(trans);
<span class="kw">if </span>(!<span class="self">self</span>.reversed &amp;&amp; transition.inp &gt; bound)
|| (<span class="self">self</span>.reversed &amp;&amp; transition.inp &lt; bound)
{
<span class="kw">return </span><span class="prelude-val">Some</span>(trans);
} <span class="kw">else if let </span><span class="prelude-val">Some</span>(t) = <span class="self">self</span>.next_transition(<span class="kw-2">&amp;</span>node, trans) {
trans = t;
} <span class="kw">else </span>{
<span class="kw">return </span><span class="prelude-val">None</span>;
}
}
}
<span class="doccomment">/// Resolves value of the empty output. Will be none if the empty output should not be returned.
</span><span class="attribute">#[inline]
</span><span class="kw">fn </span>resolve_empty_output(<span class="kw-2">&amp;mut </span><span class="self">self</span>, min: <span class="kw-2">&amp;</span>Bound, max: <span class="kw-2">&amp;</span>Bound) -&gt; <span class="prelude-ty">Option</span>&lt;Output&gt; {
<span class="kw">if </span>min.subceeded_by(<span class="kw-2">&amp;</span>[]) || max.exceeded_by(<span class="kw-2">&amp;</span>[]) {
<span class="kw">return </span><span class="prelude-val">None</span>;
}
<span class="kw">let </span>start = <span class="self">self</span>.aut.start();
<span class="kw">if </span>!<span class="self">self</span>.aut.is_match(<span class="kw-2">&amp;</span>start) {
<span class="kw">return </span><span class="prelude-val">None</span>;
}
<span class="self">self</span>.fst.empty_final_output(<span class="self">self</span>.data)
}
<span class="attribute">#[inline]
</span><span class="kw">fn </span>starting_transition(<span class="kw-2">&amp;</span><span class="self">self</span>, node: <span class="kw-2">&amp;</span>Node&lt;<span class="lifetime">&#39;f</span>&gt;) -&gt; <span class="prelude-ty">Option</span>&lt;usize&gt; {
<span class="kw">if </span>node.is_empty() {
<span class="prelude-val">None
</span>} <span class="kw">else if </span>!<span class="self">self</span>.reversed {
<span class="prelude-val">Some</span>(<span class="number">0</span>)
} <span class="kw">else </span>{
<span class="prelude-val">Some</span>(node.len() - <span class="number">1</span>)
}
}
<span class="attribute">#[inline]
</span><span class="kw">fn </span>last_transition(<span class="kw-2">&amp;</span><span class="self">self</span>, node: <span class="kw-2">&amp;</span>Node&lt;<span class="lifetime">&#39;f</span>&gt;) -&gt; <span class="prelude-ty">Option</span>&lt;usize&gt; {
<span class="kw">if </span>node.is_empty() {
<span class="prelude-val">None
</span>} <span class="kw">else if </span><span class="self">self</span>.reversed {
<span class="prelude-val">Some</span>(<span class="number">0</span>)
} <span class="kw">else </span>{
<span class="prelude-val">Some</span>(node.len() - <span class="number">1</span>)
}
}
<span class="doccomment">/// Returns the next transition.
///
/// The concept of `next` transition is dependent on whether the stream is in reverse mode or
/// not. If all the transitions of this node have been emitted, this method returns None.
</span><span class="attribute">#[inline]
</span><span class="kw">fn </span>next_transition(<span class="kw-2">&amp;</span><span class="self">self</span>, node: <span class="kw-2">&amp;</span>Node&lt;<span class="lifetime">&#39;f</span>&gt;, current_transition: usize) -&gt; <span class="prelude-ty">Option</span>&lt;usize&gt; {
<span class="kw">if </span><span class="self">self</span>.reversed {
<span class="self">Self</span>::backward_transition(node, current_transition)
} <span class="kw">else </span>{
<span class="self">Self</span>::forward_transition(node, current_transition)
}
}
<span class="doccomment">/// See `StreamWithState::next_transition`.
</span><span class="attribute">#[inline]
</span><span class="kw">fn </span>previous_transition(<span class="kw-2">&amp;</span><span class="self">self</span>, node: <span class="kw-2">&amp;</span>Node&lt;<span class="lifetime">&#39;f</span>&gt;, current_transition: usize) -&gt; <span class="prelude-ty">Option</span>&lt;usize&gt; {
<span class="kw">if </span><span class="self">self</span>.reversed {
<span class="self">Self</span>::forward_transition(node, current_transition)
} <span class="kw">else </span>{
<span class="self">Self</span>::backward_transition(node, current_transition)
}
}
<span class="doccomment">/// Returns the next logical transition.
///
/// This is independent from whether the stream is in backward mode or not.
</span><span class="attribute">#[inline]
</span><span class="kw">fn </span>forward_transition(node: <span class="kw-2">&amp;</span>Node&lt;<span class="lifetime">&#39;f</span>&gt;, current_transition: usize) -&gt; <span class="prelude-ty">Option</span>&lt;usize&gt; {
<span class="kw">if </span>current_transition + <span class="number">1 </span>&lt; node.len() {
<span class="prelude-val">Some</span>(current_transition + <span class="number">1</span>)
} <span class="kw">else </span>{
<span class="prelude-val">None
</span>}
}
<span class="doccomment">/// See [Stream::forward_transition].
</span><span class="attribute">#[inline]
</span><span class="kw">fn </span>backward_transition(node: <span class="kw-2">&amp;</span>Node&lt;<span class="lifetime">&#39;f</span>&gt;, current_transition: usize) -&gt; <span class="prelude-ty">Option</span>&lt;usize&gt; {
<span class="kw">if </span>current_transition &gt; <span class="number">0 </span>&amp;&amp; !node.is_empty() {
<span class="prelude-val">Some</span>(current_transition - <span class="number">1</span>)
} <span class="kw">else </span>{
<span class="prelude-val">None
</span>}
}
}
<span class="kw">impl</span>&lt;<span class="lifetime">&#39;f</span>, <span class="lifetime">&#39;a</span>, A: <span class="lifetime">&#39;a </span>+ Automaton&gt; Streamer&lt;<span class="lifetime">&#39;a</span>&gt; <span class="kw">for </span>StreamWithState&lt;<span class="lifetime">&#39;f</span>, A&gt;
<span class="kw">where
</span>A::State: Clone,
{
<span class="kw">type </span>Item = (<span class="kw-2">&amp;</span><span class="lifetime">&#39;a </span>[u8], Output, A::State);
<span class="kw">fn </span>next(<span class="kw-2">&amp;</span><span class="lifetime">&#39;a </span><span class="kw-2">mut </span><span class="self">self</span>) -&gt; <span class="prelude-ty">Option</span>&lt;<span class="self">Self</span>::Item&gt; {
<span class="self">self</span>.next(Clone::clone)
}
}
<span class="doccomment">/// An output is a value that is associated with a key in a finite state
/// transducer.
///
/// Note that outputs must satisfy an algebra. Namely, it must have an additive
/// identity and the following binary operations defined: `prefix`,
/// `concatenation` and `subtraction`. `prefix` and `concatenation` are
/// commutative while `subtraction` is not. `subtraction` is only defined on
/// pairs of operands where the first operand is greater than or equal to the
/// second operand.
///
/// Currently, output values must be `u64`. However, in theory, an output value
/// can be anything that satisfies the above algebra. Future versions of this
/// crate may make outputs generic on this algebra.
</span><span class="attribute">#[derive(Copy, Clone, Debug, Hash, Eq, Ord, PartialEq, PartialOrd)]
</span><span class="kw">pub struct </span>Output(u64);
<span class="attribute">#[derive(Clone)]
</span><span class="kw">struct </span>Buffer {
buf: Box&lt;[u8]&gt;,
len: usize,
}
<span class="kw">impl </span>Buffer {
<span class="kw">fn </span>new() -&gt; <span class="self">Self </span>{
Buffer {
buf: <span class="macro">vec!</span>[<span class="number">0u8</span>; KEY_BUFFER_CAPACITY].into_boxed_slice(),
len: <span class="number">0</span>,
}
}
<span class="kw">fn </span>capacity(<span class="kw-2">&amp;</span><span class="self">self</span>) -&gt; usize {
<span class="self">self</span>.buf.len()
}
<span class="kw">fn </span>double_cap(<span class="kw-2">&amp;mut </span><span class="self">self</span>) {
<span class="kw">let </span>old_cap = <span class="self">self</span>.capacity();
<span class="kw">let </span>new_cap = old_cap * <span class="number">2</span>;
<span class="kw">let </span><span class="kw-2">mut </span>new_buf = <span class="macro">vec!</span>[<span class="number">0u8</span>; new_cap].into_boxed_slice();
new_buf[..old_cap].copy_from_slice(<span class="kw-2">&amp;</span><span class="self">self</span>.buf[..old_cap]);
mem::replace(<span class="kw-2">&amp;mut </span><span class="self">self</span>.buf, new_buf);
}
<span class="kw">fn </span>push(<span class="kw-2">&amp;mut </span><span class="self">self</span>, b: u8) {
<span class="kw">if </span><span class="self">self</span>.capacity() &lt;= <span class="self">self</span>.len {
<span class="self">self</span>.double_cap();
}
<span class="self">self</span>.buf[<span class="self">self</span>.len] = b;
<span class="self">self</span>.len += <span class="number">1</span>;
}
<span class="comment">// Pops one byte and returns the entire chain before the byte was popped.
</span><span class="kw">fn </span>pop(<span class="kw-2">&amp;mut </span><span class="self">self</span>) -&gt; <span class="kw-2">&amp;</span>[u8] {
<span class="kw">let </span>len = <span class="self">self</span>.len;
<span class="self">self</span>.len = len - <span class="number">1</span>;
<span class="kw-2">&amp;</span><span class="self">self</span>.buf[..len]
}
}
<span class="kw">impl </span>Deref <span class="kw">for </span>Buffer {
<span class="kw">type </span>Target = [u8];
<span class="kw">fn </span>deref(<span class="kw-2">&amp;</span><span class="self">self</span>) -&gt; <span class="kw-2">&amp;</span>[u8] {
<span class="kw-2">&amp;</span><span class="self">self</span>.buf[..<span class="self">self</span>.len]
}
}
<span class="kw">impl </span>Output {
<span class="doccomment">/// Create a new output from a `u64`.
</span><span class="attribute">#[inline]
</span><span class="kw">pub fn </span>new(v: u64) -&gt; Output {
Output(v)
}
<span class="doccomment">/// Create a zero output.
</span><span class="attribute">#[inline]
</span><span class="kw">pub fn </span>zero() -&gt; Output {
Output(<span class="number">0</span>)
}
<span class="doccomment">/// Retrieve the value inside this output.
</span><span class="attribute">#[inline]
</span><span class="kw">pub fn </span>value(<span class="self">self</span>) -&gt; u64 {
<span class="self">self</span>.<span class="number">0
</span>}
<span class="doccomment">/// Returns true if this is a zero output.
</span><span class="attribute">#[inline]
</span><span class="kw">pub fn </span>is_zero(<span class="self">self</span>) -&gt; bool {
<span class="self">self</span>.<span class="number">0 </span>== <span class="number">0
</span>}
<span class="doccomment">/// Returns the prefix of this output and `o`.
</span><span class="attribute">#[inline]
</span><span class="kw">pub fn </span>prefix(<span class="self">self</span>, o: Output) -&gt; Output {
Output(cmp::min(<span class="self">self</span>.<span class="number">0</span>, o.<span class="number">0</span>))
}
<span class="doccomment">/// Returns the concatenation of this output and `o`.
</span><span class="attribute">#[inline]
</span><span class="kw">pub fn </span>cat(<span class="self">self</span>, o: Output) -&gt; Output {
Output(<span class="self">self</span>.<span class="number">0 </span>+ o.<span class="number">0</span>)
}
<span class="doccomment">/// Returns the subtraction of `o` from this output.
///
/// This function panics if `self &gt; o`.
</span><span class="attribute">#[inline]
</span><span class="kw">pub fn </span>sub(<span class="self">self</span>, o: Output) -&gt; Output {
Output(
<span class="self">self</span>.<span class="number">0
</span>.checked_sub(o.<span class="number">0</span>)
.expect(<span class="string">&quot;BUG: underflow subtraction not allowed&quot;</span>),
)
}
}
<span class="doccomment">/// A transition from one note to another.
</span><span class="attribute">#[derive(Copy, Clone, Hash, Eq, PartialEq)]
</span><span class="kw">pub struct </span>Transition {
<span class="doccomment">/// The byte input associated with this transition.
</span><span class="kw">pub </span>inp: u8,
<span class="doccomment">/// The output associated with this transition.
</span><span class="kw">pub </span>out: Output,
<span class="doccomment">/// The address of the node that this transition points to.
</span><span class="kw">pub </span>addr: CompiledAddr,
}
<span class="kw">impl </span>Default <span class="kw">for </span>Transition {
<span class="attribute">#[inline]
</span><span class="kw">fn </span>default() -&gt; <span class="self">Self </span>{
Transition {
inp: <span class="number">0</span>,
out: Output::zero(),
addr: NONE_ADDRESS,
}
}
}
<span class="kw">impl </span>fmt::Debug <span class="kw">for </span>Transition {
<span class="kw">fn </span>fmt(<span class="kw-2">&amp;</span><span class="self">self</span>, f: <span class="kw-2">&amp;mut </span>fmt::Formatter) -&gt; fmt::Result {
<span class="kw">if </span><span class="self">self</span>.out.is_zero() {
<span class="macro">write!</span>(f, <span class="string">&quot;{} -&gt; {}&quot;</span>, <span class="self">self</span>.inp <span class="kw">as </span>char, <span class="self">self</span>.addr)
} <span class="kw">else </span>{
<span class="macro">write!</span>(
f,
<span class="string">&quot;({}, {}) -&gt; {}&quot;</span>,
<span class="self">self</span>.inp <span class="kw">as </span>char,
<span class="self">self</span>.out.value(),
<span class="self">self</span>.addr
)
}
}
}
<span class="attribute">#[inline]
#[cfg(target_pointer_width = <span class="string">&quot;64&quot;</span>)]
</span><span class="kw">fn </span>u64_to_usize(n: u64) -&gt; usize {
n <span class="kw">as </span>usize
}
<span class="attribute">#[inline]
#[cfg(not(target_pointer_width = <span class="string">&quot;64&quot;</span>))]
</span><span class="kw">fn </span>u64_to_usize(n: u64) -&gt; usize {
<span class="kw">if </span>n &gt; ::std::usize::MAX <span class="kw">as </span>u64 {
<span class="macro">panic!</span>(
<span class="string">&quot;\
Cannot convert node address {} to a pointer sized variable. If this FST
is very large and was generated on a system with a larger pointer size
than this system, then it is not possible to read this FST on this
system.&quot;</span>,
n
);
}
n <span class="kw">as </span>usize
}
</code></pre></div>
</section></div></main><div id="rustdoc-vars" data-root-path="../../../" data-current-crate="tantivy_fst" data-themes="ayu,dark,light" data-resource-suffix="" data-rustdoc-version="1.66.0-nightly (5c8bff74b 2022-10-21)" ></div></body></html>