blob: 01f2946287c9608a210ec0a106355615a65ef6a1 [file] [log] [blame]
<!DOCTYPE html><html lang="en"><head><meta charset="utf-8"><meta name="viewport" content="width=device-width, initial-scale=1.0"><meta name="generator" content="rustdoc"><meta name="description" content="Source of the Rust file `/root/.cargo/registry/src/github.com-1ecc6299db9ec823/snap-0.2.5/src/compress.rs`."><meta name="keywords" content="rust, rustlang, rust-lang"><title>compress.rs - source</title><link rel="preload" as="font" type="font/woff2" crossorigin href="../../SourceSerif4-Regular.ttf.woff2"><link rel="preload" as="font" type="font/woff2" crossorigin href="../../FiraSans-Regular.woff2"><link rel="preload" as="font" type="font/woff2" crossorigin href="../../FiraSans-Medium.woff2"><link rel="preload" as="font" type="font/woff2" crossorigin href="../../SourceCodePro-Regular.ttf.woff2"><link rel="preload" as="font" type="font/woff2" crossorigin href="../../SourceSerif4-Bold.ttf.woff2"><link rel="preload" as="font" type="font/woff2" crossorigin href="../../SourceCodePro-Semibold.ttf.woff2"><link rel="stylesheet" href="../../normalize.css"><link rel="stylesheet" href="../../rustdoc.css" id="mainThemeStyle"><link rel="stylesheet" href="../../ayu.css" disabled><link rel="stylesheet" href="../../dark.css" disabled><link rel="stylesheet" href="../../light.css" id="themeStyle"><script id="default-settings" ></script><script src="../../storage.js"></script><script defer src="../../source-script.js"></script><script defer src="../../source-files.js"></script><script defer src="../../main.js"></script><noscript><link rel="stylesheet" href="../../noscript.css"></noscript><link rel="alternate icon" type="image/png" href="../../favicon-16x16.png"><link rel="alternate icon" type="image/png" href="../../favicon-32x32.png"><link rel="icon" type="image/svg+xml" href="../../favicon.svg"></head><body class="rustdoc source"><!--[if lte IE 11]><div class="warning">This old browser is unsupported and will most likely display funky things.</div><![endif]--><nav class="sidebar"><a class="sidebar-logo" href="../../snap/index.html"><div class="logo-container"><img class="rust-logo" src="../../rust-logo.svg" alt="logo"></div></a></nav><main><div class="width-limiter"><nav class="sub"><a class="sub-logo-container" href="../../snap/index.html"><img class="rust-logo" src="../../rust-logo.svg" alt="logo"></a><form class="search-form"><div class="search-container"><span></span><input class="search-input" name="search" autocomplete="off" spellcheck="false" placeholder="Click or press ‘S’ to search, ‘?’ for more options…" type="search"><div id="help-button" title="help" tabindex="-1"><a href="../../help.html">?</a></div><div id="settings-menu" tabindex="-1"><a href="../../settings.html" title="settings"><img width="22" height="22" alt="Change settings" src="../../wheel.svg"></a></div></div></form></nav><section id="main-content" class="content"><div class="example-wrap"><pre class="src-line-numbers"><span id="1">1</span>
<span id="2">2</span>
<span id="3">3</span>
<span id="4">4</span>
<span id="5">5</span>
<span id="6">6</span>
<span id="7">7</span>
<span id="8">8</span>
<span id="9">9</span>
<span id="10">10</span>
<span id="11">11</span>
<span id="12">12</span>
<span id="13">13</span>
<span id="14">14</span>
<span id="15">15</span>
<span id="16">16</span>
<span id="17">17</span>
<span id="18">18</span>
<span id="19">19</span>
<span id="20">20</span>
<span id="21">21</span>
<span id="22">22</span>
<span id="23">23</span>
<span id="24">24</span>
<span id="25">25</span>
<span id="26">26</span>
<span id="27">27</span>
<span id="28">28</span>
<span id="29">29</span>
<span id="30">30</span>
<span id="31">31</span>
<span id="32">32</span>
<span id="33">33</span>
<span id="34">34</span>
<span id="35">35</span>
<span id="36">36</span>
<span id="37">37</span>
<span id="38">38</span>
<span id="39">39</span>
<span id="40">40</span>
<span id="41">41</span>
<span id="42">42</span>
<span id="43">43</span>
<span id="44">44</span>
<span id="45">45</span>
<span id="46">46</span>
<span id="47">47</span>
<span id="48">48</span>
<span id="49">49</span>
<span id="50">50</span>
<span id="51">51</span>
<span id="52">52</span>
<span id="53">53</span>
<span id="54">54</span>
<span id="55">55</span>
<span id="56">56</span>
<span id="57">57</span>
<span id="58">58</span>
<span id="59">59</span>
<span id="60">60</span>
<span id="61">61</span>
<span id="62">62</span>
<span id="63">63</span>
<span id="64">64</span>
<span id="65">65</span>
<span id="66">66</span>
<span id="67">67</span>
<span id="68">68</span>
<span id="69">69</span>
<span id="70">70</span>
<span id="71">71</span>
<span id="72">72</span>
<span id="73">73</span>
<span id="74">74</span>
<span id="75">75</span>
<span id="76">76</span>
<span id="77">77</span>
<span id="78">78</span>
<span id="79">79</span>
<span id="80">80</span>
<span id="81">81</span>
<span id="82">82</span>
<span id="83">83</span>
<span id="84">84</span>
<span id="85">85</span>
<span id="86">86</span>
<span id="87">87</span>
<span id="88">88</span>
<span id="89">89</span>
<span id="90">90</span>
<span id="91">91</span>
<span id="92">92</span>
<span id="93">93</span>
<span id="94">94</span>
<span id="95">95</span>
<span id="96">96</span>
<span id="97">97</span>
<span id="98">98</span>
<span id="99">99</span>
<span id="100">100</span>
<span id="101">101</span>
<span id="102">102</span>
<span id="103">103</span>
<span id="104">104</span>
<span id="105">105</span>
<span id="106">106</span>
<span id="107">107</span>
<span id="108">108</span>
<span id="109">109</span>
<span id="110">110</span>
<span id="111">111</span>
<span id="112">112</span>
<span id="113">113</span>
<span id="114">114</span>
<span id="115">115</span>
<span id="116">116</span>
<span id="117">117</span>
<span id="118">118</span>
<span id="119">119</span>
<span id="120">120</span>
<span id="121">121</span>
<span id="122">122</span>
<span id="123">123</span>
<span id="124">124</span>
<span id="125">125</span>
<span id="126">126</span>
<span id="127">127</span>
<span id="128">128</span>
<span id="129">129</span>
<span id="130">130</span>
<span id="131">131</span>
<span id="132">132</span>
<span id="133">133</span>
<span id="134">134</span>
<span id="135">135</span>
<span id="136">136</span>
<span id="137">137</span>
<span id="138">138</span>
<span id="139">139</span>
<span id="140">140</span>
<span id="141">141</span>
<span id="142">142</span>
<span id="143">143</span>
<span id="144">144</span>
<span id="145">145</span>
<span id="146">146</span>
<span id="147">147</span>
<span id="148">148</span>
<span id="149">149</span>
<span id="150">150</span>
<span id="151">151</span>
<span id="152">152</span>
<span id="153">153</span>
<span id="154">154</span>
<span id="155">155</span>
<span id="156">156</span>
<span id="157">157</span>
<span id="158">158</span>
<span id="159">159</span>
<span id="160">160</span>
<span id="161">161</span>
<span id="162">162</span>
<span id="163">163</span>
<span id="164">164</span>
<span id="165">165</span>
<span id="166">166</span>
<span id="167">167</span>
<span id="168">168</span>
<span id="169">169</span>
<span id="170">170</span>
<span id="171">171</span>
<span id="172">172</span>
<span id="173">173</span>
<span id="174">174</span>
<span id="175">175</span>
<span id="176">176</span>
<span id="177">177</span>
<span id="178">178</span>
<span id="179">179</span>
<span id="180">180</span>
<span id="181">181</span>
<span id="182">182</span>
<span id="183">183</span>
<span id="184">184</span>
<span id="185">185</span>
<span id="186">186</span>
<span id="187">187</span>
<span id="188">188</span>
<span id="189">189</span>
<span id="190">190</span>
<span id="191">191</span>
<span id="192">192</span>
<span id="193">193</span>
<span id="194">194</span>
<span id="195">195</span>
<span id="196">196</span>
<span id="197">197</span>
<span id="198">198</span>
<span id="199">199</span>
<span id="200">200</span>
<span id="201">201</span>
<span id="202">202</span>
<span id="203">203</span>
<span id="204">204</span>
<span id="205">205</span>
<span id="206">206</span>
<span id="207">207</span>
<span id="208">208</span>
<span id="209">209</span>
<span id="210">210</span>
<span id="211">211</span>
<span id="212">212</span>
<span id="213">213</span>
<span id="214">214</span>
<span id="215">215</span>
<span id="216">216</span>
<span id="217">217</span>
<span id="218">218</span>
<span id="219">219</span>
<span id="220">220</span>
<span id="221">221</span>
<span id="222">222</span>
<span id="223">223</span>
<span id="224">224</span>
<span id="225">225</span>
<span id="226">226</span>
<span id="227">227</span>
<span id="228">228</span>
<span id="229">229</span>
<span id="230">230</span>
<span id="231">231</span>
<span id="232">232</span>
<span id="233">233</span>
<span id="234">234</span>
<span id="235">235</span>
<span id="236">236</span>
<span id="237">237</span>
<span id="238">238</span>
<span id="239">239</span>
<span id="240">240</span>
<span id="241">241</span>
<span id="242">242</span>
<span id="243">243</span>
<span id="244">244</span>
<span id="245">245</span>
<span id="246">246</span>
<span id="247">247</span>
<span id="248">248</span>
<span id="249">249</span>
<span id="250">250</span>
<span id="251">251</span>
<span id="252">252</span>
<span id="253">253</span>
<span id="254">254</span>
<span id="255">255</span>
<span id="256">256</span>
<span id="257">257</span>
<span id="258">258</span>
<span id="259">259</span>
<span id="260">260</span>
<span id="261">261</span>
<span id="262">262</span>
<span id="263">263</span>
<span id="264">264</span>
<span id="265">265</span>
<span id="266">266</span>
<span id="267">267</span>
<span id="268">268</span>
<span id="269">269</span>
<span id="270">270</span>
<span id="271">271</span>
<span id="272">272</span>
<span id="273">273</span>
<span id="274">274</span>
<span id="275">275</span>
<span id="276">276</span>
<span id="277">277</span>
<span id="278">278</span>
<span id="279">279</span>
<span id="280">280</span>
<span id="281">281</span>
<span id="282">282</span>
<span id="283">283</span>
<span id="284">284</span>
<span id="285">285</span>
<span id="286">286</span>
<span id="287">287</span>
<span id="288">288</span>
<span id="289">289</span>
<span id="290">290</span>
<span id="291">291</span>
<span id="292">292</span>
<span id="293">293</span>
<span id="294">294</span>
<span id="295">295</span>
<span id="296">296</span>
<span id="297">297</span>
<span id="298">298</span>
<span id="299">299</span>
<span id="300">300</span>
<span id="301">301</span>
<span id="302">302</span>
<span id="303">303</span>
<span id="304">304</span>
<span id="305">305</span>
<span id="306">306</span>
<span id="307">307</span>
<span id="308">308</span>
<span id="309">309</span>
<span id="310">310</span>
<span id="311">311</span>
<span id="312">312</span>
<span id="313">313</span>
<span id="314">314</span>
<span id="315">315</span>
<span id="316">316</span>
<span id="317">317</span>
<span id="318">318</span>
<span id="319">319</span>
<span id="320">320</span>
<span id="321">321</span>
<span id="322">322</span>
<span id="323">323</span>
<span id="324">324</span>
<span id="325">325</span>
<span id="326">326</span>
<span id="327">327</span>
<span id="328">328</span>
<span id="329">329</span>
<span id="330">330</span>
<span id="331">331</span>
<span id="332">332</span>
<span id="333">333</span>
<span id="334">334</span>
<span id="335">335</span>
<span id="336">336</span>
<span id="337">337</span>
<span id="338">338</span>
<span id="339">339</span>
<span id="340">340</span>
<span id="341">341</span>
<span id="342">342</span>
<span id="343">343</span>
<span id="344">344</span>
<span id="345">345</span>
<span id="346">346</span>
<span id="347">347</span>
<span id="348">348</span>
<span id="349">349</span>
<span id="350">350</span>
<span id="351">351</span>
<span id="352">352</span>
<span id="353">353</span>
<span id="354">354</span>
<span id="355">355</span>
<span id="356">356</span>
<span id="357">357</span>
<span id="358">358</span>
<span id="359">359</span>
<span id="360">360</span>
<span id="361">361</span>
<span id="362">362</span>
<span id="363">363</span>
<span id="364">364</span>
<span id="365">365</span>
<span id="366">366</span>
<span id="367">367</span>
<span id="368">368</span>
<span id="369">369</span>
<span id="370">370</span>
<span id="371">371</span>
<span id="372">372</span>
<span id="373">373</span>
<span id="374">374</span>
<span id="375">375</span>
<span id="376">376</span>
<span id="377">377</span>
<span id="378">378</span>
<span id="379">379</span>
<span id="380">380</span>
<span id="381">381</span>
<span id="382">382</span>
<span id="383">383</span>
<span id="384">384</span>
<span id="385">385</span>
<span id="386">386</span>
<span id="387">387</span>
<span id="388">388</span>
<span id="389">389</span>
<span id="390">390</span>
<span id="391">391</span>
<span id="392">392</span>
<span id="393">393</span>
<span id="394">394</span>
<span id="395">395</span>
<span id="396">396</span>
<span id="397">397</span>
<span id="398">398</span>
<span id="399">399</span>
<span id="400">400</span>
<span id="401">401</span>
<span id="402">402</span>
<span id="403">403</span>
<span id="404">404</span>
<span id="405">405</span>
<span id="406">406</span>
<span id="407">407</span>
<span id="408">408</span>
<span id="409">409</span>
<span id="410">410</span>
<span id="411">411</span>
<span id="412">412</span>
<span id="413">413</span>
<span id="414">414</span>
<span id="415">415</span>
<span id="416">416</span>
<span id="417">417</span>
<span id="418">418</span>
<span id="419">419</span>
<span id="420">420</span>
<span id="421">421</span>
<span id="422">422</span>
<span id="423">423</span>
<span id="424">424</span>
<span id="425">425</span>
<span id="426">426</span>
<span id="427">427</span>
<span id="428">428</span>
<span id="429">429</span>
<span id="430">430</span>
<span id="431">431</span>
<span id="432">432</span>
<span id="433">433</span>
<span id="434">434</span>
<span id="435">435</span>
<span id="436">436</span>
<span id="437">437</span>
<span id="438">438</span>
<span id="439">439</span>
<span id="440">440</span>
<span id="441">441</span>
<span id="442">442</span>
<span id="443">443</span>
<span id="444">444</span>
<span id="445">445</span>
<span id="446">446</span>
<span id="447">447</span>
<span id="448">448</span>
<span id="449">449</span>
<span id="450">450</span>
<span id="451">451</span>
<span id="452">452</span>
<span id="453">453</span>
<span id="454">454</span>
<span id="455">455</span>
<span id="456">456</span>
<span id="457">457</span>
<span id="458">458</span>
<span id="459">459</span>
<span id="460">460</span>
<span id="461">461</span>
<span id="462">462</span>
<span id="463">463</span>
<span id="464">464</span>
<span id="465">465</span>
<span id="466">466</span>
<span id="467">467</span>
<span id="468">468</span>
<span id="469">469</span>
<span id="470">470</span>
<span id="471">471</span>
<span id="472">472</span>
<span id="473">473</span>
<span id="474">474</span>
<span id="475">475</span>
<span id="476">476</span>
<span id="477">477</span>
<span id="478">478</span>
<span id="479">479</span>
<span id="480">480</span>
<span id="481">481</span>
<span id="482">482</span>
<span id="483">483</span>
<span id="484">484</span>
<span id="485">485</span>
<span id="486">486</span>
<span id="487">487</span>
<span id="488">488</span>
<span id="489">489</span>
<span id="490">490</span>
<span id="491">491</span>
<span id="492">492</span>
<span id="493">493</span>
<span id="494">494</span>
<span id="495">495</span>
<span id="496">496</span>
<span id="497">497</span>
<span id="498">498</span>
<span id="499">499</span>
<span id="500">500</span>
<span id="501">501</span>
<span id="502">502</span>
<span id="503">503</span>
<span id="504">504</span>
<span id="505">505</span>
<span id="506">506</span>
<span id="507">507</span>
<span id="508">508</span>
<span id="509">509</span>
<span id="510">510</span>
<span id="511">511</span>
<span id="512">512</span>
<span id="513">513</span>
<span id="514">514</span>
<span id="515">515</span>
<span id="516">516</span>
<span id="517">517</span>
<span id="518">518</span>
<span id="519">519</span>
<span id="520">520</span>
<span id="521">521</span>
<span id="522">522</span>
<span id="523">523</span>
<span id="524">524</span>
<span id="525">525</span>
<span id="526">526</span>
<span id="527">527</span>
<span id="528">528</span>
<span id="529">529</span>
<span id="530">530</span>
<span id="531">531</span>
<span id="532">532</span>
<span id="533">533</span>
<span id="534">534</span>
<span id="535">535</span>
<span id="536">536</span>
<span id="537">537</span>
<span id="538">538</span>
<span id="539">539</span>
<span id="540">540</span>
<span id="541">541</span>
<span id="542">542</span>
<span id="543">543</span>
<span id="544">544</span>
<span id="545">545</span>
<span id="546">546</span>
<span id="547">547</span>
<span id="548">548</span>
<span id="549">549</span>
<span id="550">550</span>
<span id="551">551</span>
<span id="552">552</span>
<span id="553">553</span>
<span id="554">554</span>
<span id="555">555</span>
<span id="556">556</span>
<span id="557">557</span>
<span id="558">558</span>
<span id="559">559</span>
<span id="560">560</span>
<span id="561">561</span>
<span id="562">562</span>
<span id="563">563</span>
<span id="564">564</span>
<span id="565">565</span>
</pre><pre class="rust"><code><span class="kw">use </span>std::ops::{Deref, DerefMut};
<span class="kw">use </span>std::ptr;
<span class="kw">use </span>byteorder::{ByteOrder, LittleEndian <span class="kw">as </span>LE};
<span class="kw">use </span>error::{Error, <span class="prelude-ty">Result</span>};
<span class="kw">use </span>varint::write_varu64;
<span class="kw">use </span>{MAX_INPUT_SIZE, MAX_BLOCK_SIZE};
<span class="doccomment">/// The total number of slots we permit for our hash table of 4 byte repeat
/// sequences.
</span><span class="kw">const </span>MAX_TABLE_SIZE: usize = <span class="number">1</span>&lt;&lt;<span class="number">14</span>;
<span class="doccomment">/// The size of a small hash table. This is useful for reducing overhead when
/// compressing very small blocks of bytes.
</span><span class="kw">const </span>SMALL_TABLE_SIZE: usize = <span class="number">1</span>&lt;&lt;<span class="number">10</span>;
<span class="doccomment">/// The total number of bytes that we always leave uncompressed at the end
/// of the buffer. This in particular affords us some wiggle room during
/// compression such that faster copy operations can be used.
</span><span class="kw">const </span>INPUT_MARGIN: usize = <span class="number">16 </span>- <span class="number">1</span>;
<span class="doccomment">/// The minimum block size that we&#39;re willing to consider for compression.
/// Anything smaller than this gets emitted as a literal.
</span><span class="kw">const </span>MIN_NON_LITERAL_BLOCK_SIZE: usize = <span class="number">1 </span>+ <span class="number">1 </span>+ INPUT_MARGIN;
<span class="doccomment">/// Nice names for the various Snappy tags.
</span><span class="kw">enum </span>Tag {
Literal = <span class="number">0b00</span>,
Copy1 = <span class="number">0b01</span>,
Copy2 = <span class="number">0b10</span>,
<span class="comment">// Compression never actually emits a Copy4 operation and decompression
// uses tricks so that we never explicitly do case analysis on the copy
// operation type, therefore leading to the fact that we never use Copy4.
</span><span class="attribute">#[allow(dead_code)]
</span>Copy4 = <span class="number">0b11</span>,
}
<span class="doccomment">/// Returns the maximum compressed size given the uncompressed size.
///
/// If the uncompressed size exceeds the maximum allowable size then this
/// returns 0.
</span><span class="kw">pub fn </span>max_compress_len(input_len: usize) -&gt; usize {
<span class="kw">let </span>input_len = input_len <span class="kw">as </span>u64;
<span class="kw">if </span>input_len &gt; MAX_INPUT_SIZE {
<span class="kw">return </span><span class="number">0</span>;
}
<span class="kw">let </span>max = <span class="number">32 </span>+ input_len + (input_len / <span class="number">6</span>);
<span class="kw">if </span>max &gt; MAX_INPUT_SIZE {
<span class="number">0
</span>} <span class="kw">else </span>{
max <span class="kw">as </span>usize
}
}
<span class="doccomment">/// Encoder is a raw encoder for compressing bytes in the Snappy format.
///
/// Thie encoder does not use the Snappy frame format and simply compresses the
/// given bytes in one big Snappy block (that is, it has a single header).
///
/// Unless you explicitly need the low-level control, you should use `Writer`
/// instead, which compresses to the Snappy frame format.
///
/// It is beneficial to reuse an Encoder.
</span><span class="kw">pub struct </span>Encoder {
small: [u16; SMALL_TABLE_SIZE],
big: Vec&lt;u16&gt;,
}
<span class="kw">impl </span>Encoder {
<span class="doccomment">/// Return a new encoder that can be used for compressing bytes.
</span><span class="kw">pub fn </span>new() -&gt; Encoder {
Encoder {
small: [<span class="number">0</span>; SMALL_TABLE_SIZE],
big: <span class="macro">vec!</span>[],
}
}
<span class="doccomment">/// Compresses all bytes in `input` into `output`.
///
/// `input` can be any arbitrary sequence of bytes.
///
/// `output` must be large enough to hold the maximum possible compressed
/// size of `input`, which can be computed using `max_compress_len`.
///
/// On success, this returns the number of bytes written to `output`.
///
/// # Errors
///
/// This method returns an error in the following circumstances:
///
/// * The total number of bytes to compress exceeds `2^32 - 1`.
/// * `output` has length less than `max_compress_len(input.len())`.
</span><span class="kw">pub fn </span>compress(
<span class="kw-2">&amp;mut </span><span class="self">self</span>,
<span class="kw-2">mut </span>input: <span class="kw-2">&amp;</span>[u8],
output: <span class="kw-2">&amp;mut </span>[u8],
) -&gt; <span class="prelude-ty">Result</span>&lt;usize&gt; {
<span class="kw">match </span>max_compress_len(input.len()) {
<span class="number">0 </span>=&gt; {
<span class="kw">return </span><span class="prelude-val">Err</span>(Error::TooBig {
given: input.len() <span class="kw">as </span>u64,
max: MAX_INPUT_SIZE,
});
}
min <span class="kw">if </span>output.len() &lt; min =&gt; {
<span class="kw">return </span><span class="prelude-val">Err</span>(Error::BufferTooSmall {
given: output.len() <span class="kw">as </span>u64,
min: min <span class="kw">as </span>u64,
});
}
<span class="kw">_ </span>=&gt; {}
}
<span class="comment">// Handle an edge case specially.
</span><span class="kw">if </span>input.is_empty() {
<span class="comment">// Encodes a varint of 0, denoting the total size of uncompressed
// bytes.
</span>output[<span class="number">0</span>] = <span class="number">0</span>;
<span class="kw">return </span><span class="prelude-val">Ok</span>(<span class="number">1</span>);
}
<span class="comment">// Write the Snappy header, which is just the total number of
// uncompressed bytes.
</span><span class="kw">let </span><span class="kw-2">mut </span>d = write_varu64(output, input.len() <span class="kw">as </span>u64);
<span class="kw">while </span>!input.is_empty() {
<span class="comment">// Find the next block.
</span><span class="kw">let </span><span class="kw-2">mut </span>src = input;
<span class="kw">if </span>src.len() &gt; MAX_BLOCK_SIZE {
src = <span class="kw-2">&amp;</span>src[..MAX_BLOCK_SIZE <span class="kw">as </span>usize];
}
input = <span class="kw-2">&amp;</span>input[src.len()..];
<span class="comment">// If the block is smallish, then don&#39;t waste time on it and just
// emit a literal.
</span><span class="kw">let </span><span class="kw-2">mut </span>block = Block::new(src, output, d);
<span class="kw">if </span>block.src.len() &lt; MIN_NON_LITERAL_BLOCK_SIZE {
<span class="kw">let </span>lit_end = block.src.len();
<span class="kw">unsafe </span>{
<span class="comment">// SAFETY: next_emit is zero (in bounds) and the end is
// the length of the block (in bounds).
</span>block.emit_literal(lit_end);
}
} <span class="kw">else </span>{
<span class="kw">let </span>table = <span class="self">self</span>.block_table(block.src.len());
block.compress(table);
}
d = block.d;
}
<span class="prelude-val">Ok</span>(d)
}
<span class="doccomment">/// Compresses all bytes in `input` into a freshly allocated `Vec`.
///
/// This is just like the `compress` method, except it allocates a `Vec`
/// with the right size for you. (This is intended to be a convenience
/// method.)
///
/// This method returns an error under the same circumstances that
/// `compress` does.
</span><span class="kw">pub fn </span>compress_vec(<span class="kw-2">&amp;mut </span><span class="self">self</span>, input: <span class="kw-2">&amp;</span>[u8]) -&gt; <span class="prelude-ty">Result</span>&lt;Vec&lt;u8&gt;&gt; {
<span class="kw">let </span><span class="kw-2">mut </span>buf = <span class="macro">vec!</span>[<span class="number">0</span>; max_compress_len(input.len())];
<span class="kw">let </span>n = <span class="macro">try!</span>(<span class="self">self</span>.compress(input, <span class="kw-2">&amp;mut </span>buf));
buf.truncate(n);
<span class="prelude-val">Ok</span>(buf)
}
}
<span class="kw">struct </span>Block&lt;<span class="lifetime">&#39;s</span>, <span class="lifetime">&#39;d</span>&gt; {
src: <span class="kw-2">&amp;</span><span class="lifetime">&#39;s </span>[u8],
s: usize,
s_limit: usize,
dst: <span class="kw-2">&amp;</span><span class="lifetime">&#39;d </span><span class="kw-2">mut </span>[u8],
d: usize,
next_emit: usize,
}
<span class="kw">impl</span>&lt;<span class="lifetime">&#39;s</span>, <span class="lifetime">&#39;d</span>&gt; Block&lt;<span class="lifetime">&#39;s</span>, <span class="lifetime">&#39;d</span>&gt; {
<span class="attribute">#[inline(always)]
</span><span class="kw">fn </span>new(
src: <span class="kw-2">&amp;</span><span class="lifetime">&#39;s </span>[u8],
dst: <span class="kw-2">&amp;</span><span class="lifetime">&#39;d </span><span class="kw-2">mut </span>[u8],
d: usize,
) -&gt; Block&lt;<span class="lifetime">&#39;s</span>, <span class="lifetime">&#39;d</span>&gt; {
Block {
src: src,
s: <span class="number">0</span>,
s_limit: src.len(),
dst: dst,
d: d,
next_emit: <span class="number">0</span>,
}
}
<span class="attribute">#[inline(always)]
</span><span class="kw">fn </span>compress(<span class="kw-2">&amp;mut </span><span class="self">self</span>, <span class="kw-2">mut </span>table: BlockTable) {
<span class="macro">debug_assert!</span>(!table.is_empty());
<span class="macro">debug_assert!</span>(<span class="self">self</span>.src.len() &gt;= MIN_NON_LITERAL_BLOCK_SIZE);
<span class="self">self</span>.s += <span class="number">1</span>;
<span class="self">self</span>.s_limit -= INPUT_MARGIN;
<span class="kw">let </span><span class="kw-2">mut </span>next_hash = table.hash(LE::read_u32(<span class="kw-2">&amp;</span><span class="self">self</span>.src[<span class="self">self</span>.s..]));
<span class="kw">loop </span>{
<span class="kw">let </span><span class="kw-2">mut </span>skip = <span class="number">32</span>;
<span class="kw">let </span><span class="kw-2">mut </span>candidate;
<span class="kw">let </span><span class="kw-2">mut </span>s_next = <span class="self">self</span>.s;
<span class="kw">loop </span>{
<span class="self">self</span>.s = s_next;
<span class="kw">let </span>bytes_between_hash_lookups = skip &gt;&gt; <span class="number">5</span>;
s_next = <span class="self">self</span>.s + bytes_between_hash_lookups;
skip += bytes_between_hash_lookups;
<span class="kw">if </span>s_next &gt; <span class="self">self</span>.s_limit {
<span class="kw">return </span><span class="self">self</span>.done();
}
<span class="kw">unsafe </span>{
<span class="comment">// SAFETY: next_hash is always computed by table.hash
// which is guaranteed to be in bounds.
</span>candidate = <span class="kw-2">*</span>table.get_unchecked(next_hash) <span class="kw">as </span>usize;
<span class="kw-2">*</span>table.get_unchecked_mut(next_hash) = <span class="self">self</span>.s <span class="kw">as </span>u16;
<span class="kw">let </span>srcp = <span class="self">self</span>.src.as_ptr();
<span class="comment">// SAFETY: s_next is guaranteed to be less than s_limit by
// the conditional above, which implies s_next is in
// bounds.
</span><span class="kw">let </span>x = loadu32_le(srcp.offset(s_next <span class="kw">as </span>isize));
next_hash = table.hash(x);
<span class="comment">// SAFETY: self.s is always less than s_next, so it is also
// in bounds by the argument above.
//
// candidate is extracted from table, which is only ever
// set to valid positions in the block and is therefore
// also in bounds.
//
// We only need to compare y/z for equality, so we don&#39;t
// need to both with endianness. cur corresponds to the
// bytes at the current position and cand corresponds to
// a potential match. If they&#39;re equal, we declare victory
// and move below to try and extend the match.
</span><span class="kw">let </span>cur = loadu32(srcp.offset(<span class="self">self</span>.s <span class="kw">as </span>isize));
<span class="kw">let </span>cand = loadu32(srcp.offset(candidate <span class="kw">as </span>isize));
<span class="kw">if </span>cur == cand {
<span class="kw">break</span>;
}
}
}
<span class="comment">// While the above found a candidate for compression, before we
// emit a copy operation for it, we need to make sure that we emit
// any bytes between the last copy operation and this one as a
// literal.
</span><span class="kw">let </span>lit_end = <span class="self">self</span>.s;
<span class="kw">unsafe </span>{
<span class="comment">// SAFETY: next_emit is set to a previous value of self.s,
// which is guaranteed to be less than s_limit (in bounds).
// lit_end is set to the current value of self.s, also
// guaranteed to be less than s_limit (in bounds).
</span><span class="self">self</span>.emit_literal(lit_end);
}
<span class="kw">loop </span>{
<span class="comment">// Look for more matching bytes starting at the position of
// the candidate and the current src position. We increment
// self.s and candidate by 4 since we already know the first 4
// bytes match.
</span><span class="kw">let </span>base = <span class="self">self</span>.s;
<span class="self">self</span>.s += <span class="number">4</span>;
<span class="kw">unsafe </span>{
<span class="comment">// SAFETY: candidate is always set to a value from our
// hash table, which only contains positions in self.src
// that have been seen for this block that occurred before
// self.s.
</span><span class="self">self</span>.extend_match(candidate + <span class="number">4</span>);
}
<span class="kw">let </span>(offset, len) = (base - candidate, <span class="self">self</span>.s - base);
<span class="self">self</span>.emit_copy(offset, len);
<span class="self">self</span>.next_emit = <span class="self">self</span>.s;
<span class="kw">if </span><span class="self">self</span>.s &gt;= <span class="self">self</span>.s_limit {
<span class="kw">return </span><span class="self">self</span>.done();
}
<span class="comment">// Update the hash table with the byte sequences
// self.src[self.s - 1..self.s + 3] and
// self.src[self.s..self.s + 4]. Instead of reading 4 bytes
// twice, we read 8 bytes once.
//
// If we happen to get a hit on self.src[self.s..self.s + 4],
// then continue this loop and extend the match.
</span><span class="kw">unsafe </span>{
<span class="kw">let </span>srcp = <span class="self">self</span>.src.as_ptr();
<span class="comment">// SAFETY: self.s can never exceed s_limit given by the
// conditional above and self.s is guaranteed to be
// non-zero and is therefore in bounds.
</span><span class="kw">let </span>x = loadu64_le(srcp.offset((<span class="self">self</span>.s - <span class="number">1</span>) <span class="kw">as </span>isize));
<span class="comment">// The lower 4 bytes of x correspond to
// self.src[self.s - 1..self.s + 3].
</span><span class="kw">let </span>prev_hash = table.hash(x <span class="kw">as </span>u32);
<span class="comment">// SAFETY: Hash values are guaranteed to be in bounds.
</span><span class="kw-2">*</span>table.get_unchecked_mut(prev_hash) = (<span class="self">self</span>.s - <span class="number">1</span>) <span class="kw">as </span>u16;
<span class="comment">// The lower 4 bytes of x&gt;&gt;8 correspond to
// self.src[self.s..self.s + 4].
</span><span class="kw">let </span>cur_hash = table.hash((x &gt;&gt; <span class="number">8</span>) <span class="kw">as </span>u32);
<span class="comment">// SAFETY: Hash values are guaranteed to be in bounds.
</span>candidate = <span class="kw-2">*</span>table.get_unchecked(cur_hash) <span class="kw">as </span>usize;
<span class="kw-2">*</span>table.get_unchecked_mut(cur_hash) = <span class="self">self</span>.s <span class="kw">as </span>u16;
<span class="comment">// SAFETY: candidate is set from table, which always
// contains valid positions in the current block.
</span><span class="kw">let </span>y = loadu32_le(srcp.offset(candidate <span class="kw">as </span>isize));
<span class="kw">if </span>(x &gt;&gt; <span class="number">8</span>) <span class="kw">as </span>u32 != y {
<span class="comment">// If we didn&#39;t get a hit, update the next hash
// and move on. Our initial 8 byte read continues to
// pay off.
</span>next_hash = table.hash((x &gt;&gt; <span class="number">16</span>) <span class="kw">as </span>u32);
<span class="self">self</span>.s += <span class="number">1</span>;
<span class="kw">break</span>;
}
}
}
}
}
<span class="doccomment">/// Emits one or more copy operations with the given offset and length.
/// offset must be in the range [1, 65535] and len must be in the range
/// [4, 65535].
</span><span class="attribute">#[inline(always)]
</span><span class="kw">fn </span>emit_copy(<span class="kw-2">&amp;mut </span><span class="self">self</span>, offset: usize, <span class="kw-2">mut </span>len: usize) {
<span class="macro">debug_assert!</span>(<span class="number">1 </span>&lt;= offset &amp;&amp; offset &lt;= <span class="number">65535</span>);
<span class="comment">// Copy operations only allow lengths up to 64, but we&#39;ll allow bigger
// lengths and emit as many operations as we need.
//
// N.B. Since our block size is 64KB, we never actually emit a copy 4
// operation.
</span><span class="macro">debug_assert!</span>(<span class="number">4 </span>&lt;= len &amp;&amp; len &lt;= <span class="number">65535</span>);
<span class="comment">// Emit copy 2 operations until we don&#39;t have to.
// We check on 68 here and emit a shorter copy than 64 below because
// it is cheaper to, e.g., encode a length 67 copy as a length 60
// copy 2 followed by a length 7 copy 1 than to encode it as a length
// 64 copy 2 followed by a length 3 copy 2. They key here is that a
// copy 1 operation requires at least length 4 which forces a length 3
// copy to use a copy 2 operation.
</span><span class="kw">while </span>len &gt;= <span class="number">68 </span>{
<span class="self">self</span>.emit_copy2(offset, <span class="number">64</span>);
len -= <span class="number">64</span>;
}
<span class="kw">if </span>len &gt; <span class="number">64 </span>{
<span class="self">self</span>.emit_copy2(offset, <span class="number">60</span>);
len -= <span class="number">60</span>;
}
<span class="comment">// If we can squeeze the last copy into a copy 1 operation, do it.
</span><span class="kw">if </span>len &lt;= <span class="number">11 </span>&amp;&amp; offset &lt;= <span class="number">2047 </span>{
<span class="self">self</span>.dst[<span class="self">self</span>.d] =
(((offset &gt;&gt; <span class="number">8</span>) <span class="kw">as </span>u8) &lt;&lt; <span class="number">5</span>)
| (((len - <span class="number">4</span>) <span class="kw">as </span>u8) &lt;&lt; <span class="number">2</span>)
| (Tag::Copy1 <span class="kw">as </span>u8);
<span class="self">self</span>.dst[<span class="self">self</span>.d + <span class="number">1</span>] = offset <span class="kw">as </span>u8;
<span class="self">self</span>.d += <span class="number">2</span>;
} <span class="kw">else </span>{
<span class="self">self</span>.emit_copy2(offset, len);
}
}
<span class="doccomment">/// Emits a &quot;copy 2&quot; operation with the given offset and length. The
/// offset and length must be valid for a copy 2 operation. i.e., offset
/// must be in the range [1, 65535] and len must be in the range [1, 64].
</span><span class="attribute">#[inline(always)]
</span><span class="kw">fn </span>emit_copy2(<span class="kw-2">&amp;mut </span><span class="self">self</span>, offset: usize, len: usize) {
<span class="macro">debug_assert!</span>(<span class="number">1 </span>&lt;= offset &amp;&amp; offset &lt;= <span class="number">65535</span>);
<span class="macro">debug_assert!</span>(<span class="number">1 </span>&lt;= len &amp;&amp; len &lt;= <span class="number">64</span>);
<span class="self">self</span>.dst[<span class="self">self</span>.d] = (((len - <span class="number">1</span>) <span class="kw">as </span>u8) &lt;&lt; <span class="number">2</span>) | (Tag::Copy2 <span class="kw">as </span>u8);
LE::write_u16(<span class="kw-2">&amp;mut </span><span class="self">self</span>.dst[<span class="self">self</span>.d + <span class="number">1</span>..], offset <span class="kw">as </span>u16);
<span class="self">self</span>.d += <span class="number">3</span>;
}
<span class="doccomment">/// Attempts to extend a match from the current position in self.src with
/// the candidate position given.
///
/// This method uses unaligned loads and elides bounds checks, so the
/// caller must guarantee that cand points to a valid location in self.src
/// and is less than the current position in src.
</span><span class="attribute">#[inline(always)]
</span><span class="kw">unsafe fn </span>extend_match(<span class="kw-2">&amp;mut </span><span class="self">self</span>, <span class="kw-2">mut </span>cand: usize) {
<span class="macro">debug_assert!</span>(cand &lt; <span class="self">self</span>.s);
<span class="kw">while </span><span class="self">self</span>.s + <span class="number">8 </span>&lt;= <span class="self">self</span>.src.len() {
<span class="kw">let </span>srcp = <span class="self">self</span>.src.as_ptr();
<span class="comment">// SAFETY: The loop invariant guarantees that there is at least
// 8 bytes to read at self.src + self.s. Since cand must be
// guaranteed by the caller to be valid and less than self.s, it
// also has enough room to read 8 bytes.
//
// TODO(ag): Despite my best efforts, I couldn&#39;t get this to
// autovectorize with 128-bit loads. The logic after the loads
// appears to be a little too clever...
</span><span class="kw">let </span>x = loadu64(srcp.offset(<span class="self">self</span>.s <span class="kw">as </span>isize));
<span class="kw">let </span>y = loadu64(srcp.offset(cand <span class="kw">as </span>isize));
<span class="kw">if </span>x == y {
<span class="comment">// If all 8 bytes are equal, move on...
</span><span class="self">self</span>.s += <span class="number">8</span>;
cand += <span class="number">8</span>;
} <span class="kw">else </span>{
<span class="comment">// Otherwise, find the last byte that was equal. We can do
// this efficiently by interpreted x/y as little endian
// numbers, which lets us use the number of trailing zeroes
// as a proxy for the number of equivalent bits (after an XOR).
</span><span class="kw">let </span>z = x.to_le() ^ y.to_le();
<span class="self">self</span>.s += z.trailing_zeros() <span class="kw">as </span>usize / <span class="number">8</span>;
<span class="kw">return</span>;
}
}
<span class="comment">// When we have fewer than 8 bytes left in the block, fall back to the
// slow loop.
</span><span class="kw">while </span><span class="self">self</span>.s &lt; <span class="self">self</span>.src.len() &amp;&amp; <span class="self">self</span>.src[<span class="self">self</span>.s] == <span class="self">self</span>.src[cand] {
<span class="self">self</span>.s += <span class="number">1</span>;
cand += <span class="number">1</span>;
}
}
<span class="doccomment">/// Executes any cleanup when the current block has finished compressing.
/// In particular, it emits any leftover bytes as a literal.
</span><span class="attribute">#[inline(always)]
</span><span class="kw">fn </span>done(<span class="kw-2">&amp;mut </span><span class="self">self</span>) {
<span class="kw">if </span><span class="self">self</span>.next_emit &lt; <span class="self">self</span>.src.len() {
<span class="kw">let </span>lit_end = <span class="self">self</span>.src.len();
<span class="kw">unsafe </span>{
<span class="comment">// SAFETY: Both next_emit and lit_end are trivially in bounds
// given the conditional and definition above.
</span><span class="self">self</span>.emit_literal(lit_end);
}
}
}
<span class="doccomment">/// Emits a literal from self.src[self.next_emit..lit_end].
///
/// This uses unaligned loads and elides bounds checks, so the caller must
/// guarantee that self.src[self.next_emit..lit_end] is valid.
</span><span class="attribute">#[inline(always)]
</span><span class="kw">unsafe fn </span>emit_literal(<span class="kw-2">&amp;mut </span><span class="self">self</span>, lit_end: usize) {
<span class="kw">let </span>lit_start = <span class="self">self</span>.next_emit;
<span class="kw">let </span>len = lit_end - lit_start;
<span class="kw">let </span>n = len.checked_sub(<span class="number">1</span>).unwrap();
<span class="kw">if </span>n &lt;= <span class="number">59 </span>{
<span class="self">self</span>.dst[<span class="self">self</span>.d] = ((n <span class="kw">as </span>u8) &lt;&lt; <span class="number">2</span>) | (Tag::Literal <span class="kw">as </span>u8);
<span class="self">self</span>.d += <span class="number">1</span>;
<span class="kw">if </span>len &lt;= <span class="number">16 </span>&amp;&amp; lit_start + <span class="number">16 </span>&lt;= <span class="self">self</span>.src.len() {
<span class="comment">// SAFETY: lit_start is equivalent to self.next_emit, which
// is only set to self.s immediately proceeding a copy
// emit. The conditional above also ensures that there is at
// least 16 bytes of room in both src and dst.
//
// dst is big enough because the buffer is guaranteed to
// be big enough to hold biggest possible compressed size plus
// an extra 32 bytes, which exceeds the 16 byte copy here.
</span><span class="kw">let </span>srcp = <span class="self">self</span>.src.as_ptr().offset(lit_start <span class="kw">as </span>isize);
<span class="kw">let </span>dstp = <span class="self">self</span>.dst.as_mut_ptr().offset(<span class="self">self</span>.d <span class="kw">as </span>isize);
ptr::copy_nonoverlapping(srcp, dstp, <span class="number">16</span>);
<span class="self">self</span>.d += len;
<span class="kw">return</span>;
}
} <span class="kw">else if </span>n &lt; <span class="number">256 </span>{
<span class="self">self</span>.dst[<span class="self">self</span>.d] = (<span class="number">60 </span>&lt;&lt; <span class="number">2</span>) | (Tag::Literal <span class="kw">as </span>u8);
<span class="self">self</span>.dst[<span class="self">self</span>.d + <span class="number">1</span>] = n <span class="kw">as </span>u8;
<span class="self">self</span>.d += <span class="number">2</span>;
} <span class="kw">else </span>{
<span class="self">self</span>.dst[<span class="self">self</span>.d] = (<span class="number">61 </span>&lt;&lt; <span class="number">2</span>) | (Tag::Literal <span class="kw">as </span>u8);
LE::write_u16(<span class="kw-2">&amp;mut </span><span class="self">self</span>.dst[<span class="self">self</span>.d + <span class="number">1</span>..], n <span class="kw">as </span>u16);
<span class="self">self</span>.d += <span class="number">3</span>;
}
<span class="comment">// SAFETY: lit_start is equivalent to self.next_emit, which
// is only set to self.s immediately proceeding a copy, which
// implies that it always points to valid bytes in self.src.
//
// We can&#39;t guarantee that there are at least len bytes though,
// which must be guaranteed by the caller and is why this method
// is unsafe.
</span><span class="kw">let </span>srcp = <span class="self">self</span>.src.as_ptr().offset(lit_start <span class="kw">as </span>isize);
<span class="kw">let </span>dstp = <span class="self">self</span>.dst.as_mut_ptr().offset(<span class="self">self</span>.d <span class="kw">as </span>isize);
ptr::copy_nonoverlapping(srcp, dstp, len);
<span class="self">self</span>.d += len;
}
}
<span class="doccomment">/// `BlockTable` is a map from 4 byte sequences to positions of their most
/// recent occurrence in a block. In particular, this table lets us quickly
/// find candidates for compression.
///
/// We expose the `hash` method so that callers can be fastidious about the
/// number of times a hash is computed.
</span><span class="kw">struct </span>BlockTable&lt;<span class="lifetime">&#39;a</span>&gt; {
table: <span class="kw-2">&amp;</span><span class="lifetime">&#39;a </span><span class="kw-2">mut </span>[u16],
<span class="doccomment">/// The number of bits required to shift the hash such that the result
/// is less than table.len().
</span>shift: u32,
}
<span class="kw">impl </span>Encoder {
<span class="kw">fn </span>block_table(<span class="kw-2">&amp;mut </span><span class="self">self</span>, block_size: usize) -&gt; BlockTable {
<span class="kw">let </span><span class="kw-2">mut </span>shift: u32 = <span class="number">32 </span>- <span class="number">8</span>;
<span class="kw">let </span><span class="kw-2">mut </span>table_size = <span class="number">256</span>;
<span class="kw">while </span>table_size &lt; MAX_TABLE_SIZE &amp;&amp; table_size &lt; block_size {
shift -= <span class="number">1</span>;
table_size <span class="kw-2">*</span>= <span class="number">2</span>;
}
<span class="comment">// If our block size is small, then use a small stack allocated table
// instead of putting a bigger one on the heap. This particular
// optimization is important if the caller is using Snappy to compress
// many small blocks. (The memset savings alone is considerable.)
</span><span class="kw">let </span>table: <span class="kw-2">&amp;mut </span>[u16] =
<span class="kw">if </span>table_size &lt;= SMALL_TABLE_SIZE {
<span class="kw-2">&amp;mut </span><span class="self">self</span>.small[<span class="number">0</span>..table_size]
} <span class="kw">else </span>{
<span class="kw">if </span><span class="self">self</span>.big.is_empty() {
<span class="comment">// Interestingly, using `self.big.resize` here led to some
// very weird code getting generated that led to a large
// slow down. Forcing the issue with a new vec seems to
// fix it. ---AG
</span><span class="self">self</span>.big = <span class="macro">vec!</span>[<span class="number">0</span>; MAX_TABLE_SIZE];
}
<span class="kw-2">&amp;mut </span><span class="self">self</span>.big[<span class="number">0</span>..table_size]
};
<span class="kw">for </span>x <span class="kw">in </span><span class="kw-2">&amp;mut *</span>table {
<span class="kw-2">*</span>x = <span class="number">0</span>;
}
BlockTable {
table: table,
shift: shift,
}
}
}
<span class="kw">impl</span>&lt;<span class="lifetime">&#39;a</span>&gt; BlockTable&lt;<span class="lifetime">&#39;a</span>&gt; {
<span class="attribute">#[inline(always)]
</span><span class="kw">fn </span>hash(<span class="kw-2">&amp;</span><span class="self">self</span>, x: u32) -&gt; usize {
(x.wrapping_mul(<span class="number">0x1E35A7BD</span>) &gt;&gt; <span class="self">self</span>.shift) <span class="kw">as </span>usize
}
}
<span class="kw">impl</span>&lt;<span class="lifetime">&#39;a</span>&gt; Deref <span class="kw">for </span>BlockTable&lt;<span class="lifetime">&#39;a</span>&gt; {
<span class="kw">type </span>Target = [u16];
<span class="kw">fn </span>deref(<span class="kw-2">&amp;</span><span class="self">self</span>) -&gt; <span class="kw-2">&amp;</span>[u16] { <span class="self">self</span>.table }
}
<span class="kw">impl</span>&lt;<span class="lifetime">&#39;a</span>&gt; DerefMut <span class="kw">for </span>BlockTable&lt;<span class="lifetime">&#39;a</span>&gt; {
<span class="kw">fn </span>deref_mut(<span class="kw-2">&amp;mut </span><span class="self">self</span>) -&gt; <span class="kw-2">&amp;mut </span>[u16] { <span class="self">self</span>.table }
}
<span class="kw">unsafe fn </span>loadu64(data: <span class="kw-2">*const </span>u8) -&gt; u64 {
<span class="kw">let </span><span class="kw-2">mut </span>n: u64 = <span class="number">0</span>;
ptr::copy_nonoverlapping(
data,
<span class="kw-2">&amp;mut </span>n <span class="kw">as </span><span class="kw-2">*mut </span>u64 <span class="kw">as </span><span class="kw-2">*mut </span>u8,
<span class="number">8</span>);
n
}
<span class="kw">unsafe fn </span>loadu64_le(data: <span class="kw-2">*const </span>u8) -&gt; u64 {
loadu64(data).to_le()
}
<span class="kw">unsafe fn </span>loadu32(data: <span class="kw-2">*const </span>u8) -&gt; u32 {
<span class="kw">let </span><span class="kw-2">mut </span>n: u32 = <span class="number">0</span>;
ptr::copy_nonoverlapping(
data,
<span class="kw-2">&amp;mut </span>n <span class="kw">as </span><span class="kw-2">*mut </span>u32 <span class="kw">as </span><span class="kw-2">*mut </span>u8,
<span class="number">4</span>);
n
}
<span class="kw">unsafe fn </span>loadu32_le(data: <span class="kw-2">*const </span>u8) -&gt; u32 {
loadu32(data).to_le()
}
</code></pre></div>
</section></div></main><div id="rustdoc-vars" data-root-path="../../" data-current-crate="snap" data-themes="ayu,dark,light" data-resource-suffix="" data-rustdoc-version="1.66.0-nightly (5c8bff74b 2022-10-21)" ></div></body></html>